
Non-normality and Nonlinearity in Thermoacoustic Instabilities

R. I. Sujith1, M. P. Juniper2 & P. J. Schmid3

1 Indian Institute of Technology Madras, Chennai, India
2 University of Cambridge, Cambridge, U. K.

3 Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Abstract

Analysis of thermoacoustic instabilities were dominated by modal (eigenvalue) analysis
for many decades. Recent progress in nonmodal stability analysis allows us to study the
problem from a different perspective, by quantitatively describing the short-term behavior of
disturbances. The short term evolution has a bearing on subcritical transition to instability,
known popularly as triggering instability in thermoacoustic parlance. We provide a review
of the recent developments in the context of triggering instability. A tutorial for non-modal
stability analysis is provided. The applicability of the tools from non-modal stability analysis
are demonstrated with the help of a simple model of a Rjike tube. The paper closes with a
brief description of how to characterize bifurcations in thermoacoustic systems.

1 Introduction

When Yuri Gagarin was launched into orbit in 1961 on a Vostok 1, the probability of a rocket
blowing up on take-off was around 50% [1]. In those days, one of the most persistent causes
of failure was a violent oscillation caused by the coupling between acoustics and heat release in
the combustion chamber. These thermoacoustic oscillations have caused countless rocket engine
and gas turbine failures since the 1930s and have been studied extensively [2]. Nevertheless,
they are still one of the major problems facing rocket and gas turbine manufacturers today
[3]. A short history of thermoacoustic oscillations in liquid-fueled rockets, gas-fueled rockets,
solid-fueled rockets, ramjets, afterburners and gas turbines can be found in §1.2 of [2].

Rockets, jet engines, and power generating gas turbines are particularly susceptible to cou-
pling between heat release and acoustics because they have high energy densities and low acoustic
damping. The energy densities are roughly 10 GW m−3 for liquid rockets, 1 GW m−3 for solid
rockets, and 0.1 GW m−3 for jet engines and afterburners. The acoustic damping is low because
combustion chambers tend to be nearly closed systems whose walls reflect sound. Consequently,
high amplitude acoustic oscillations are sustained even when a small proportion of the available
thermal energy is converted to acoustic (mechanical) energy. Furthermore, because so much
thermal energy is available, the existence and amplitude of thermoacoustic oscillations tend to
be very sensitive to small changes in the system and therefore difficult to predict.

1.1 Entropy, vortical and acoustic waves

In order to achieve high energy densities, the combustion inside rocket and jet engines is highly
turbulent. It might seem surprising that long wavelength acoustic waves can become so strong,
given that the heat release fluctuations associated with turbulent combustion occur on small
time and length scales. To explain this, it helps to consider small amplitude perturbations to
the flow in a combustor. These can be decomposed into entropy waves (hot spots), vorticity
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waves, and acoustic waves. These waves interact at boundaries and in the combustion zone.
The interaction in the combustion zone is central to this paper. They also interact if the mean
flow is not uniform or if perturbations are large enough to be nonlinear.

In order for thermal energy to be converted to mechanical energy, higher heat release must
coincide with higher pressure, and lower heat release must coincide with lower pressure. Small
entropy and vorticity waves do not cause appreciable pressure perturbations and therefore can-
not contribute to this mechanism by themselves. Acoustic waves, however, cause both pressure
and velocity perturbations. These perturbations change the entry conditions to the combustor,
causing entropy and vorticity fluctuations within the combustor. These then lead to fluctuating
heat release, in time with the pressure waves. Thermal energy is thereby converted to mechanical
energy, usually building up over many cycles and usually preferring long wavelengths, at which
the pressure is more coherent over the combustion zone. This explains why classical acoustic
waves are the predominant feature of thermoacoustic oscillations even though combustion cham-
bers contain highly turbulent flow, which comprises predominantly entropy and vorticity waves.

In this paper, entropy and vorticity waves will be neglected outside the combustion zone. It
is important to recognize, however, that this precludes the study of some influential feedback
mechanisms, such as entropy waves passing through a convergent nozzle and radiating pressure
waves back into the combustor [4].

1.2 Linear analysis of the steady base flow

The simplest starting point for the study of thermoacoustic oscillations is a linear stability analy-
sis of the steady base flow. This either considers the behaviour of perturbations that are periodic
in time, or the response to an impulse. In both cases, the system is said to be linearly stable if
every small perturbation decays in time and linearly unstable if at least one perturbation grows
in time. These analyses have been performed on all types of rocket and gas turbine engines [2]
and are used in network models, which predict the stability of industrial gas turbines. Most of
the analysis in the last 50 years has been linear.

1.3 Nonlinear analysis

If a combustor is linearly unstable, the amplitude of infinitesimal thermoacoustic oscillations
grows exponentially until their amplitude becomes so large that nonlinear behaviour overwhelms
the linear behaviour (§2). In the simplest cases, the system reaches a constant amplitude peri-
odic solution. In other cases it can reach multi-periodic, quasi-periodic, intermittent or chaotic
solutions [5, 6, 7, 8, 9].

The operating point at which the combustor transitions from linear stability to linear insta-
bility is called a bifurcation point. If the system’s behaviour around this point is periodic, it
is called a Hopf bifurcation. The nonlinear behaviour around this point is particularly crucial.
On the one hand, if the growth rate decreases as the oscillations’ amplitude increases, then the
steady state amplitude grows gradually as the operating point passes through the Hopf bifur-
cation. This is known as a supercritical bifurcation. On the other hand, if the growth rate
increases as the oscillations’ amplitude increases, then the steady state amplitude runs away as
the operating point passes through the Hopf bifurcation point, until a higher order nonlinearity
acts to limit it. This is known as a subcritical bifurcation. The range of operating conditions in
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which the system can support a stable non-oscillating solution and a stable oscillating solution
is known as the bistable region. The behaviour observed in this region depends on the history
of the system. We will return to this in §1.6 and say more about bifurcations in §2.

1.4 Sources of nonlinearity

There are three main sources of nonlinearity in combustion systems: (1) nonlinear gas dynamics,
which become significant when the velocity of the acoustic perturbations is not small compared
with the speed of sound and is quantified by the acoustic Mach number; (2) nonlinear heat
release rate, which becomes significant when the velocity of the acoustic perturbations is not
small compared with that of the mean flow [10]; (3) nonlinear damping.

Nonlinear gas dynamics are particularly relevant for rocket motors, in which the energy den-
sities are very high and the acoustic Mach number is large [11, 12, 13, 14, 15]. An important
conclusion of these studies is that systems that have linear heat release rate and nonlinear gas
dynamics from first to third order do not exhibit subcritical bifurcations [16].

As well as in the above references, nonlinear heat release has been examined by [17, 18, 19,
20]. Nonlinear heat release rate can cause subcritical bifurcations, whether the gas dynamics are
linear or nonlinear. In general, the heat release rate is a function of the velocity and pressure
fluctuations. For solid rocket engines, pressure fluctuations have the strongest influence. How-
ever, for most other applications, velocity fluctuations have the strongest influence. For these
reasons, in this paper we will focus on systems with linear acoustics and in which heat release
rate is a nonlinear function of velocity.

Nonlinear damping mechanisms have been examined by [21], who included the amplitude
dependence of acoustic radiation. Nonlinear damping is a very influential factor in the behaviour
of thermoacoustic systems but is not the subject of this paper.

Although much work has been done over the last 50 years, it is mostly in the framework of
classical linear stability analysis. A comprehensive prediction of the conditions for the onset of
instabilities is a difficult task, which is not yet mastered. In particular, predicting the limit-cycle
amplitude of oscillations remains a key challenge because little is known, even in a qualitative
sense, about the key parameters controlling nonlinear flame dynamics, even in simple laminar
flames [3].

1.5 A simple nonlinear thermoacoustic system

The analysis in §5 is performed on the Rijke tube, which is a simple thermoacoustic system.
This is an open-ended duct, through which air passes, with a heat source located near a quarter
length from the end at which air enters. If the duct is vertical, the air can be driven by natural
convection. If it is horizontal, the air must be driven by forced convection.

Heckl [22] studied nonlinear effects leading to limit cycles in a Rijke tube, both experimen-
tally and theoretically. She showed that the most influential nonlinear effects are nonlinear heat
release rate and nonlinear damping. The former is caused by the reduction of the rate of heat
transfer when the velocity amplitudes are of the same order as the mean velocity. The latter
is caused by the increase of losses at the ends of the tube at very high amplitudes. Hantschk
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and Vortmeyer [23] also showed that the limit-cycle amplitude in a Rijke tube is determined by
nonlinearities in the heat flux from the heating element to the flow.

In order to explain the nonlinear effects of a Rijke tube, Matveev and Culick [21] and [24]
constructed a simple theory by using an energy approach. The equilibrium states of the system
are found by balancing thermoacoustic energy input and acoustic losses. Their work reaffirmed
that the nonlinearity of the unsteady heat transfer is a dominant factor in determining the limit-
cycle amplitude. Furthermore, Matveev [25] demonstrated the necessity of accurately modeling
the effects of the temperature gradient on the mode shapes to obtain accurate results for stability.

Yoon et al. [26] proposed a nonlinear model of a generalized Rijke tube. Their model for the
oscillatory heat release rate was not derived from physical principles. They derived both closed
form and numerical solutions for the acoustic field by an approximate modal analysis using a
two-mode formulation. The two-mode nonlinear model is capable of predicting the growth of
oscillations in an initially decaying system. They refer to this as the bootstrapping effect, which
they say characterizes nonlinear velocity sensitive combustion response in rocket motors.

1.6 Triggering

The concept of a combustor that can sustain oscillations even when its base flow is linearly
stable was introduced in §1.4 for combustors that have a bistable region. The question now is
whether the system can be pulsed from the stable base flow to the sustained oscillations, and
vice-versa. This is known as ‘triggering’.

Between the stable base flow and the sustained limit cycle oscillation, there is an unstable
limit cycle. This will be described in more detail in §2. To a first approximation (but only to
a first approximation) if a pulse is big enough to force the system beyond the unstable limit
cycle, and in the right direction, it will continue to grow to sustained oscillations. Below this
amplitude, it will decay back to the stable base flow [18].

Triggering was first reported in solid rockets in the 1960s [27]. The first analyses were per-
formed by [28] and [29]. Examples of triggering can be found in [2] (Fig. 7.49) for solid rocket
engines and liquid rocket engines and [10] for a model gas turbine combustor.

The pulse that causes triggering can be imposed deliberately, as in tests on the Apollo F1
engine, can be caused by unforeseen events, such as debris exiting the choked nozzle of a solid
rocket motor during firing or can be caused by background noise levels [10, 30, 31]. Triggering
seems to be common to all types of thermoacoustic system, although probably not to each in-
dividual system.

As well as identifying the unstable limit cycle as a threshold for the onset of triggering, [18]
also discovered that the phase and frequency content of the initial pulse is influential. In partic-
ular, [18] found that, in order to cause triggering, most of the pulse’s energy must be contained
in the fundamental acoustic mode. This can be explained by nonlinearity alone. However, the
fact that triggering in some systems seems to be provoked by nothing more the background
noise, can only be explained by non-normality.
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1.7 Non-normality

The non-normal nature of themoacoustic oscillations has not received any attention until re-
cently. It is a linear phenomenon and is usually investigated for infinitesimal perturbations
around a steady base flow. It can equally well be calculated around periodic solutions, however
[32] [33] in which case it measures the transient growth of infinitesimal perturbations away from
a periodic solution.

Nicoud et al. [34] have shown that the eigenvectors of a general thermoacoustic system are
non-orthogonal in the presence of heat release or in the presence of general complex impedance
boundary conditions. Systems with non-orthogonal eigenvectors are always non-normal and this
can lead to transient growth of oscillations even when the eigenvalues indicate linear stability.

The role of non-normality in thermoacoustic oscillations has been shown in the context of
ducted diffusion flames [35], the Rijke tube Mariappan and Sujith [33, 36, 37, 38], premixed
flames [39] and vortex combustors [40] using a Galerkin type analysis. In more detail, [41]
showed that ignoring the linear coupling of the modes results in significant changes in the linear
and nonlinear system dynamics. Mariappan and Sujith [42] investigated non-normality in the
context of pulsed instabilities in solid rocket motors. Kulkarni et al. [43] demonstrated that
non-normality and transient growth can lead to the failure of traditional controllers that are
designed based on classical linear stability analysis.

Recently [44] showed experimentally that the eigenmodes of a horizontal Rijke tube are non-
orthogonal. Wieczoerk et al.[45] studied non-normal effects for a thermoacoustic system that
contains both a source of entropy fluctuations and a zone of accelerated mean flow. Zhao [46]
studied non-normality in a Rijke tube. Kim and Hochgreb [47] studied triggering and transient
growth in a model gas turbine combustor. Waugh et al. [48] and Waugh and Juniper [30]
numerically and Jagadesan and Sujith [31] experimentally studied noise induced transiton to
instability and the role played by non-normality in a Rijke tube. Mangesius and Polifke [49]
adopted a discrete-time, state-space approach for the investigation of non-normal effects in ther-
moacoustic systems.

In systems with no bistable region, non-normality is just a curiosity. It increases the rate at
which sustained oscillations are reached, but it is not the cause of them being reached. Its only
substantial effect is to change a system’s sensitivity to external noise [50].

In systems with a bistable region, however, non-normality plays a critical role in triggering.
In the subcritical region, perturbations can grow transiently away from the steady base flow and
grow transiently around the unstable periodic solution. This means that non-normality helps
triggering to occur from pulses that have less energy than that of the unstable periodic solution.
The first clues to this behaviour could be found in the observation of [18] that most of the energy
must be in the first mode and that the phase and frequency content of the pulse is critical. The
aim of this paper is to explain why this is.

In summary, there are two distinct aspects of combustion acoustic interactions: (1) non-
linearity; (2) non-orthogonality of the eigenmodes of the linearized system. The objective of this
paper is to highlight these aspects, particularly in the context of subcritical bifurcations. The
rest of this paper is organized as follows. Nonlinearity and bifurcation diagrams are introduced
in section 2. A tutorial on non-modal stability analysis is presented in section 3, together with
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its consequences in the context of thermoacoustic instabilities. Section 4 presents a simple “toy
model” for a horizontal Rijke tube, which has many features of a thermoacoustic system. Non-
normality and its consequences in subcritical transition to instability are explained in Section 5,
using this model. Section 6 presents studies on transient growth in more complex systems. In
Section 7, methodologies to characterize bifurcations, both experimentally and numerically, are
presented.

2 Nonlinearity and bifurcation diagrams
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Figure 1: The steady state oscillation amplitude, aSS , as a function of a control parameter, R,
for (a) a supercritical bifurcation and (b) a subcritical bifurcation. Rl is the point at which the
fixed point (i.e. the zero amplitude solution) becomes unstable. Rc is the point below which
no oscillations can be sustained and Re is the point below which all perturbations decrease
monotically to zero.

Two systems with the same control parameter, R, are shown in figure 1 in order to demon-
strate two types of bifurcation. In flow instability, R is usually a Reynolds number. In ther-
moacoustics, R could be a heat release parameter or a geometric quantity such as the position
of a flame within a combustion chamber. R is plotted on the horizontal axis and some measure
of the amplitude of the system, a, is plotted on the vertical axis. In an oscillating system, this
is often the peak-to-peak amplitude of the oscillations.

At low values of R there is a single solution with zero amplitude, which is called a fixed
point. The growth rate of the amplitude of infinitesimal linear perturbations around this fixed
point, (da/dt)/a, can be calculated, usually by finding the eigenvalues of the associated linear
stability operator, §3. If all the eigenvalues are stable then all the infinitesimal perturbations
around the fixed point have negative growth rate and the fixed point is stable. An example of a
stable fixed point in fluid mechanics is the steady and stable flow around a cylinder at Reynolds
number less than 45. An example in thermoacoustics is the Rijke tube whose heater is placed
three quarters of a length from the end at which the air enters.

When R reaches Rl, at least one pair of eigenvalues around the fixed point becomes unstable
and the amplitude of the infinitesimal perturbations starts to grow exponentially, i.e. (da/dt)/a
is a positive constant. This is the Hopf bifurcation point mentioned in the introduction. The
fixed point remains a solution of the governing equations but is unstable, shown by a dashed
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line in figure 1. An example of this unstable fixed point is the steady flow around a cylinder at
Reynolds numbers above 45 (e.g. Fig. 5 in [51]). It can be calculated numerically but cannot
be achieved experimentally without active control.

As the perturbations grow, nonlinearities become significant and the growth rate, (da/dt)/a,
becomes a function of a. At a certain amplitude, the growth rate reaches zero and the state
reaches a periodic solution, which is also known as a limit cycle. The stability of this solution can
be examined by considering the growth rate of infinitesimal perturbations around one period.
This is called a Floquet analysis. If all perturbations have negative growth rate then it is stable,
shown by solid lines in figure 1. If at least one perturbation has positive growth rate then it is
unstable, shown by dashed lines in figure 1.

The nonlinear behaviour around the Hopf point at Rl is particularly crucial. If the growth
rate, (da/dt)/a, decreases as a increases then the steady state amplitude of periodic solutions,
aSS , is a gradually-growing function of R for R > Rl. This is known as a supercritical bifurca-
tion (figure 1 a). If the growth rate increases as a increases then the amplitude, a, runs away
as R increases through the Hopf point until a higher order nonlinearity acts to limit it. In the
latter case, there is a periodic solution that continues from the Hopf point, but it lies at R < Rl

and it is unstable (figure 1 b). This is known as a subcritical bifurcation.

For subcritical bifurcations there is a range of R over which the system can support both a
stable fixed point and a stable periodic solution. This range is called the bistable region. It is
bounded on one side by the Hopf bifurcation point, Rl, and on the other by the fold point, Rc,
below which there are no periodic solutions. The final state of the system at these values of R
depends on its history.

The rate of change of energy with time, dE/dt, can also be calculated for the nonlinear
system. The maximum value of R that gives dE/dt < 0 for all states gives a bound for absolute
stability, Re. Although conceptually useful, this bound is usually not practically useful because
it often much smaller than the value at the fold point, Rc. If the linear stability operator is nor-
mal and if the non-linear terms conserve or dissipate energy, then the bifurcation is supercritical
and Re coincides with Rc and Rl. More detail will be given in section 3.1. Benard convection
and Von-Karman vortex shedding are examples of situations in flow instability that become un-
stable through supercritical bifurcations. In these situations, a linear stability analysis around
the fixed point determines Rl, Re and Rc accurately.

Periodic solutions and fixed points can be calculated with continuation analysis programs
such as AUTO and DDE Biftool. The first example of such tools being applied to thermoacous-
tics by Jahnke and Culick [52] and they have since been used extensively. Until recently, they
have been limited to a few tens of degrees of freedom but systems with several thousand degrees
of freedom can be considered now [53, 54].

Periodic solutions are not the only possible solutions to nonlinear differential equations.
There can also be multi-periodic, quasi-periodic and chaotic solutions. These solutions have
multiple local peaks at each value of the control parameter R. These types of solution appear in
thermoacoustic models such as Figs. 4 and 6 in Sterling and Zukoski [5] and in thermoacoustic
experiments such as Gotoda et al. [55] and Kabiraj et al. [7].
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3 Non-normality and transient growth

3.1 Principles of nonmodal stability analysis

Nonmodal stability theory is concerned with the accurate quantitative description of disturbance
behavior governed by a linear nonnormal evolution operator. It has its origin in scientific studies
from the late 1980s and early 1990s [56, 57, 58, 59, 60, 61, 62], even though various aspects and
features can be traced back to much earlier investigations or observations. Since these early
days, nonmodal stability theory has evolved and matured significantly, is now applied rather
routinely across a wide range of applications and flow configurations [63], and has found its place
within hydrodynamic stability theory in particular and fluid dynamics in general [32, 64]. In its
approach, nonmodal stability theory distinguishes itself from the traditional view of assigning
significance to individual eigenvalues; rather, it describes the complete dynamics of the flow as
a superposition of many eigensolutions. In this superposition the decay/growth and oscillatory
characteristics (given by the eigenvalues) are as important as the angle between the individ-
ual eigenfunctions. In what follows we will give a basic introduction to fundamental concepts
underlying nonmodal stability analysis. Particularly, we will demonstrate these concepts on
rather small model-systems; this approach should make the essential components of nonmodal
analysis more transparent and lay the foundation for applications to systems with more degrees
of freedom and more complex behavior.

3.1.1 Linear analysis of nonnormal systems

The simplest category of governing equations is given by the class of linear time-invariant (LTI)
systems which can simply be described by the temporal evolution equation

d

dt
q = Aq q(0) = q0 (1)

where the matrix A stands for the spatially discretized governing equations and q denotes
the spatially discretized state-vector describing the flow disturbance. An even more drastic
simplication is the reduction to only two degrees of freedom resulting in an evolution equation
of the form

d

dt

(
q1
q2

)

=






1

100
− 1

Re
1

0 − 2

Re






(
q1
q2

)

(2)

together with appropriate initial conditions. A parameter Re has been introduced to mimic the
dependence on a Reynolds number. The particular form of the system matrix A allows us to
determine the eigenvalues of the system as λ1 = 1/100 − 1/Re and λ2 = −2/Re; the first one
changes sign at a critical value of the Reynolds number (Recrit = 100), the second one is always
negative. For Reynolds numbers Re < 100 we thus have a stable system.

Taking a more general (less asymptotic) approach to stability theory, we are interested in
the maximum temporal amplification G(t) of perturbation energy governed by (2) over a finite
time span t. Mathematically, this amounts to [63, 64]

G(t) = max
q0

‖q(t)‖2
‖q0‖2

= max
q0

‖ exp(tA)q0‖2
‖q0‖2

= ‖ exp(tA)‖2 (3)

where the square of the norm of the state vector q symbolizes the kinetic energy of the dis-
turbance. In the above expression we have used the matrix exponential exp(tA) as the formal
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solution of (2) as well as the definition of an induced matrix norm. The quantity G(t) then
describes the largest possible energy amplification of any initial condition over a time interval
[0, t].
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Figure 2: (a) Energy amplification versus time for the LTI system (1) for three selected Reynolds
numbers. (b) Instantaneous energy growth rates for the three cases. The asymptotic energy
growth rates are indicated on the right edge of the figure by thick line segments.

Figure 2a shows the maximum energy amplification G(t) versus time for three selected
Reynolds numbers. Short-time energy growth is observed, before G(t) approaches the exponen-
tially decaying (for Re = 50, 80) or growing (for Re = 110) behavior one would expect from
inspection of the eigenvalues. The instantaneous energy growth rate defined as γ(t) = 1

E
dE
dt

with E = ‖q‖2 = 〈q,q〉 is given in figure 2b for the same three Reynolds numbers, with the
asymptotic values indicated on the right edge of the figure by the thick colored lines. Again, we
observe substantial positive energy growth rates for short times, before the asymptotic values
are approached.

To better understand this behavior, a geometric point of view is taken [32]. The solution to
the initial value problem (2) may be expanded in terms of the eigenvalues λ1,2 and eigenvectors
Φ1,2 of the 2× 2 evolution matrix A according to

q = c1Φ1 exp((1/100− 1/Re)t) + c2Φ2 exp(−2t/Re) (4)

with the coefficients c1,2 given by the initial condition. It is easily verified that the two eigenvec-
tors are non-orthogonal (under the standard inner product); in fact, the scalar product of Φ1 and
Φ2 approaches cos θ = 100/

√
10001, i.e., the eigenvectors become nearly colinear (θ = 0.573o)

as the Reynolds number tends to infinity. As a consequence, the coefficients c1,2 may be sub-
stantially larger in magnitude than the norm of the initial condition we wish to express. For
example, for large Reynolds numbers, the initial state vector q = [0, 1]T would require c1 ∼ 100
and c2 ∼ −

√
10001, and the two components in (4) will cancel each other to result in a unit-norm

initial condition. As time progresses, this mutual cancellation ceases to hold which subsequently
gives rise to state vectors with large norms (or flow states with large energies) before asymptotic
decay/growth eventually sets in.

This type of behavior is illustrated in figure 3. For the non-normal case (on the right), we
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t=0t=0

normal non normal

Figure 3: Geometric sketch of energy growth/decay in a two-dimensional orthogonal (left) and
non-orthogonal (right) system. In either case, the two vector components contract, ultimately
yielding a solution vector of zero length. In the normal case, monotonic decay towards a zero-
length solution is observed; in the non-normal case, transient growth prevails before the asymp-
totic limit of a zero-length vector is reached.

observe that two large, nonorthogonal vectors, that nearly cancel, are required to produce the
initial condition (indicated by the thick blue line). We further assume that the decay along one
of the vectors is more rapid (green symbols) than along the other one (red symbols). The non-
orthogonal superposition of the two decaying vectors produces a solution whose norm (length)
increases before it eventually decays to zero. During this process, the solution progressively aligns
itself along the least stable direction. On the left of the figure, the normal case is displayed;
the initial condition (again, thick blue line) is represented as a superposition of two orthogonal
vectors. Their initial length is however on the same order as the length of the initial condition.
As before, we assume a more rapid decay along one vector (in green) than along the other (in
red). No stretching of the vector, but rather a monotonic decay, is observed.

Non-orthogonality of the eigenvectors thus enabled the short-time amplification of initial
energy, even though — based on eigenvalues alone — the system is asymptotically stable. The
reason for the non-orthogonality of the eigenvectors lies in the non-normality of the system
matrix A. Formally, a non-normal matrix (or operator) does not commute with its adjoint,
which is mathematically expressed as AA+ 6= A+A with + denoting the adjoint [63].

From the simple example above, we conclude that for non-normal LTI-systems of the form (1)
eigenvalues become an asymptotic tool describing the long-term behavior. The short-term be-
havior cannot be described by eigenvalues alone; instead the angle between the eigenvectors
plays an important role in explaining and quantifying transient growth of energy (or of other
state-vector norms).

If eigenvalues describe the long-term behavior (t → ∞) for non-normal systems, we are
interested in other sets in the complex plane that describes the short-time dynamics. One
of these sets is given by the numerical range of the matrix A and can be easily derived by
reconsidering the expression for the energy growth rate γ(t). We have [63]

γ(t) =
1

‖q‖2
d

dt
〈q,q〉 = 1

‖q‖2 〈
d

dt
q,q〉+ 1

‖q‖2 〈q,
d

dt
q〉 = 2 Real

(〈Aq,q〉
〈q,q〉

)

. (5)

The last expression establishes a link between the energy growth rate γ and the set of all
Rayleigh quotients 〈Aq,q〉/〈q,q〉 of our matrix A; this set is known as the numerical range of
A. It is easy to show that the numerical range of A is a convex set in the complex plane that
contains the spectrum of A (the Rayleigh quotient becomes an eigenvalue of A if q is chosen as an
eigenvector). Less obvious is the fact that the numerical range degenerates into the convex hull
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of the spectrum of A, if A is normal [65]. For our case (and a Reynolds number of Re = 10), the
numerical range is plotted in the complex plane, together with the spectrum of A (see figure 4a).
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Figure 4: (a) Boundary of the numerical range (in red) and spectrum (in black symbols) of the
non-normal matrix A for Re = 10. (b) Boundary of the numerical range (in red) and spectrum
(in black symbols) of A when the off-diagonal term is set to zero, thus rendering A a normal
matrix.

We verify that for nonnormal matrices A the numerical range is convex and contains the
spectrum (the eigenvalues, illustrated by the two black symbols). What is more important,
however, is that the numerical range reaches into the unstable half-plane, shaded in gray. Ac-
cording to (5) this means that there exist positive energy growth rates, despite the fact that
both eigenvalues are confined to the stable half-plane. Setting the off-diagonal term in A to zero
yields a diagonal — and thus normal — matrix. The numerical range in this case is given by
the convex hull of the spectrum; this is displayed in figure 4b. Rayleigh quotients fall on a line
that connects the two eigenvalues; consequently, the energy growth rates will remain negative
for all times. This is consistent with our earlier findings.

It is interesting and instructive to determine the initial energy growth rate, i.e., the energy
growth rate at t = 0+. For this we use a Taylor series expansion of the matrix exponential for
small times, i.e., exp(tA) ≈ I+ tA, to arrive at

γ(0+) = lim
t→0+

1

‖q0‖2
d

dt
〈q,q〉 = lim

t→0+

1

‖q0‖2
d

dt
〈(I+ tA)q0, (I+ tA)q0〉 =

〈q0, (A+ A+) q0〉
〈q0,q0〉

. (6)

The final expression represents a Rayleigh quotient for a normal matrix, A+ A+, which attains
its maximum at λmax(A + A+). This means that the largest eigenvalue of the matrix A + A+,
also known as the numerical abscissa of A, gives the largest initial energy growth rate of our
system [32, 63].

After establishing that for non-normal systems eigenvalues quantify the dynamic behavior
for large times (t → ∞), while the numerical range gives information about the short time
behavior (t = 0+), a third quantity in the complex plane describes the behavior at intermediate
times — though only approximately. For asymptotically stable systems the peak Gmax of the
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matrix exponential (see the blue and black curve in figure 2a) can be bounded by

max
Real(z)>0

Real(z)‖(zI− A)−1‖ ≤
√

Gmax ≤ 1

2π

∮

C
‖(zI− A)−1‖ d|z|. (7)

The lower bound is based on a Laplace transform of the matrix exponential, while the upper
bound stems from an application of Cauchy’s integral formula (along a contour C that encloses
the spectrum of A); details of these bounds are given elsewhere [63, 66]. It is interesting to
note, however, that both bounds involve the quantity (zI − A)−1 which is referred to as the
resolvent and is defined in the complex plane (z ∈ C), with pole singularities where z coincides
with an eigenvalue of A. It seems appropriate then to consider the norm of the resolvent in the
complex plane. This has been done in figure 4 where contour lines of constant resolvent norm
have been added in gray. For the normal case (figure 4b) the resolvent contours degenerate
to concentric circles around the two eigenvalues, with the contour levels dropping inversely
proportional to the distance to the closest eigenvalue. For the non-normal case (figure 4a)
the contours of the resolvent norm show values that exceed the inverse distance to the closest
eigenvalue. We conclude from equation (7) and from figure 4 that the resolvent value away from
the eigenvalues plays a significant role. In other words, one should not only concentrate on the
singularities of the resolvent (the eigenvalues), regions of the complex plane where the resolvent
is not infinite but nevertheless large (compared to the one-over-distance behavior) are equally
important [32, 64, 66, 67].

In summary, non-normal systems with their non-orthogonal eigenvectors exhibit a rich dy-
namical behavior which requires more complex tools to describe and quantify. For short times,
the numerical range determines the initial energy growth rate; for intermediate times, expres-
sions based on the resolvent can be used to approximate the maximum transient growth; and
only for asymptotically large times do the eigenvalues describe the system’s behavior. For nor-
mal systems, these three tools collapse into one: the numerical range is the convex hull of the
spectrum, and the resolvent is given by a one-over-distance function to the spectrum; both
quantities carry no more information than the eigenvalues themselves. The eigenvalues are thus
the only quantity one has to consider; for normal systems they describe the dynamic behavior
for all times.

For non-normal systems that exhibit substantial transient growth, it is often interesting to
determine the specific initial condition that achieves the maximum energy amplification Gmax

or the maximum energy amplication at a prescribed time. By its definition (3), the norm of the
matrix exponential G(t) = ‖ exp(tA)‖2 contains an optimization over all initial conditions, and
the curves in figure 2 thus represent envelopes over many individual realizations; each point on
these optimal curves may have been generated by a different initial condition. To recover the
specific initial condition that produces optimal energy amplification at a given time τ we write

exp(τA)q0 = ‖ exp(τA)‖qτ (8)

which states that the unit-norm initial condition q0 is propagated over a time span τ by exp(τA)
resulting in another unit-norm state vector qτ that is multiplied by the amplification factor
‖ exp(τA)‖. Expression (8) is reminiscent of a singular value decomposition (SVD), namely
CV = UΣ with V and U as unitary matrices with orthonormalized columns and Σ as a diagonal
matrix. Recalling that σ1 (the dominant singular value) is ‖C‖, the principal component of
the singular value decomposition reads Cv1 = u1‖B‖ where v1 and u1 denote the first column
of V and U. Comparing this last expression with (8) we identify q0 as first column of the
right singular vectors and qτ as the first column of the left singular vectors of exp(τA). The
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computational procedure to determine the optimal initial condition for a prescribed time τ
consists of a singular value decomposition of the propagator exp(τA) from which the optimal
initial condition q0 follows as the principal right singular vector, the optimal output qτ is given
by the principal left singular vector [32, 64]. An elaborate discussion of SVD in the context of
a thermoacoustic system is given in [68].

3.1.2 Extensions and further results of nonmodal analysis

The de-emphasis of eigenvalues for describing the dynamic behavior of non-normal systems
translates to many other areas where eigenvalues have traditionally prevailed. One area with
important applications in fluid mechanics is receptivity analysis which is, for example, concerned
with the response of a boundary layer to external disturbances or to wall roughness. The
governing equations for receptivity constitute a driven system, and the maximum response
in energy to a unit-energy forcing is often taken as a receptivity measure. Traditionally, this
measure is linked to a resonance argument. However, resonances are commonly described by the
closeness of the driving frequency to the eigenvalues of the driven system. For normal systems,
this is a necessary and sufficient condition for a large response; for non-normal systems, this
eigenvalue-based analysis is inadequate. In general, the maximum response of a driven system
is given by the resolvent norm. As we have seen above, a large resolvent norm is not necessarily
associated with closeness to an eigenvalue, when the system is non-normal. In this case, large
responses can also be generated for driving frequencies that are far from any eigen-frequency
of the system. A resonance of this type is often referred to as a pseudo-resonance [61]. These
concepts are becoming increasingly important in receptivity analysis, but also in flow control
and model reduction efforts.

The existence of transient amplification of energy at subcritical parameter values raises the
question whether this amplification is sufficient to trigger nonlinear effects [69, 70, 71]. To
investigate this question, we will study the nonlinear system

d

dt

(
q1
q2

)

=






1

100
− 1

Re
1

0 − 2

Re






(
q1
q2

)

+
√

q21 + q22

(
0 −1
1 0

)

︸ ︷︷ ︸

B

(
q1
q2

)

(9)

which has the same linear operator as before. The nonlinear terms have been chosen to preserve
energy, i.e., qHBq = 0, thus mimicking the nonlinear terms of the incompressible Navier-Stokes
equations. Figure 5a displays simulations for Re = 50 starting with the initial condition q0 =
A(0, 1)T of increasing amplitude A. For sufficiently small initial amplitude A we observe the
familiar scenario of short-term transient growth followed by an asymptotic decay. As the initial
amplitude surpasses a critical value Acrit nonlinear effects will pull the phase curves towards a
non-zero steady state. In figure 5a we see a rapid increase in energy and an oscillatory settling
into a flow state with E = 1. For still higher initial amplitudes this unit-energy flow state is
reached more quickly. It is important to realize that the nonlinear term cannot produce energy
by itself; it simply redistributes energy from decaying directions in phase-space to transiently
growing ones, thus harvesting the full potential for transient growth by a nonlinear feedback
mechanism. This mechanism is often referred to as bootstrapping [61].

The question then arises about the critical initial amplitudes Acrit that delineate attraction
to the nonlinear unit-energy state from decay towards the zero-energy solution. These triggering
amplitudes are part of a bifurcation diagram and, in general, are very difficult to determine since
they involve an optimization of a nonlinear system over all admissable initial conditions. For
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Figure 5: (a) Perturbation energy versus time for the nonlinear system (9) starting with
q0 = A(0, 1)T and four different amplitudes A. (b) Bifurcation diagram for the nonlinear
system (9), indicating the triggering amplitudes (blue symbols) and the nonlinear steady state
(green symbols). The critical Reynolds number is Recrit = 100.

our case of a 2× 2, the optimization can be accomplished rather straightforwardly. The results
are given in figure 5b; it presents the critical amplitudes (optimized over all initial conditions)
versus the Reynolds number (as blue symbols). For initial amplitudes above this line, we can
approach the nonlinear steady state (indicated by green symbols); for amplitudes below this
line, we decay towards the “laminar” state. The critical amplitude becomes zero for Re > 100
since a linear modal instability will amplify even infinitesimal perturbations until the nonlinear
(E = 1)-state is reached.

A bifurcation like the one depicted in figure 5b is known as a subcritical bifurcation. In
this case, finite-amplitude states become unstable before the infinitesimal state does. As a
consequence, over a finite range of Reynolds numbers two stable states coexist: the stable
infinitesimal state (which is reached, if the initial amplitude is less than the critical one) and
the stable finite-amplitude state (which can be reached, if the initial amplitude exceeds the
critical one). In contrast, a bifurcation is labelled supercritical if finite-amplitude states become
unstable after the infinitesimal state has become unstable. Fluid mechanics knows a wide range
of phenomena and configurations that fall either into the subcritical (e.g. wall-bounded shear
flows) or the supercritical (e.g. Rayleigh-Bénard convection) category.

For nonlinearities that preserve the energy norm, as is the case for our 2 × 2 system and is
the case for the incompressible Navier-Stokes equations, there is an interesting link between the
bifurcation behavior (supercritical/subcritical) and the non-normality of the linear operator. A
non-normal linear operator is necessary for a subcritical bifurcation behavior, since — in the
absence of energy production by nonlinear terms — only a linear operator will provide the re-
quired energy amplification to reach the nonlinear steady state. This linear energy amplification
mechanism has to be active even before modal (eigenvalue) instabilities are present; only a non-
normal operator can accomplish this. In other words and in reference to figure 4a, the numerical
range has to cross into the unstable half-plane before the eigenvalues do. This can only be
true of a non-normal operator, where the numerical range is detached from the spectrum. On
the contrary, a normal linear operator can only cause a supercritical bifurcation behavior. In
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this case, energy growth and modal growth towards a finite-amplitude steady-state occur at the
same parameter value (in our case, the Reynolds number), since the numerical range is attached
to the least stable mode; both, the numerical range and the least stable mode cross into the
unstable half-plane at the same critical parameter. It is important to stress that non-normality
is a necessary condition for subcritical behavior and that normality is a sufficient condition for
supercritical behavior; in addition, the above arguments only hold when nonlinearities preserve
energy. In the case of thermoacoustic systems studies so far indicate that nonlinearities are not
energy conserving.

Non-normal linear systems play an important role in many physical processes. The above
tools (matrix exponential, resolvent, numerical range, etc.) give a means to isolate and quantify
effects due the non-normality of the underlying linear system. The first indication of non-
normality that is often encountered in numerical experiments is a marked sensitivity of eigenval-
ues to minute perturbations. In figure 6 we perturb the system matrix A by a random matrix E
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Figure 6: Sensitivity of eigenvalues for (a) the non-normal system at Re = 50, and (b) the
normal system (with zero off-diagonal term) at the same Reynolds number. In both cases, the
matrix A has been perturbed by random matrices of norm 10−2.

of norm 10−2 and display the eigenvalues of A+ E for multiple realizations [63, 64, 67]. For the
non-normal case (figure 6a), we observe that a small perturbation displaces the eigenvalues by
a disproportionately large amount, yielding eigenvalues even far in the unstable domain. The
same amount of perturbations has little effect on the eigenvalues for the normal matrix (see
figure 6b): the displacement of the eigenvalue is bounded by the size of the perturbation. A
connection can be made between the maximum displacement of eigenvalues and the resolvent
norm contour associated with the inverse perturbation norm ‖E‖−1.

3.1.3 A more general framework

The analysis of non-normal systems can be generalized to more complex systems, beyond sim-
ple LTI-systems, by casting it in a variational framework and by performing the optimization
explicitly, rather than by invoking it via the definition of an induced matrix norm (as in equa-
tion (3)). The variational formulation allows substantially greater flexibility in treating fluid
problems that do not strictly fall within the constraints above [72].
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We are still interested in the maximum energy growth over a given time span [0 τ ] optimized
over all admissible initial conditions; however, rather than making use of the fundamental solu-
tion of our linear system (as before, by substituting the matrix exponential in (3)), we instead
impose the governing equation as a constraint via a Lagrangian multiplier p. This Lagrangian
multiplier is also referred to as the adjoint variable. We get the optimization problem

J =
‖q(τ)‖
‖q0‖

− 〈p, d
dt
q− Aq〉 → max. (10)

It is evident that this approach is more general: the governing equations are always known,
whereas an explicit solution is only given under exceptional circumstances and/or can be ob-
tained only at substantial numerical cost. The above functional J is to be maximized with
respect to all independent variables: q,q0 and p. First variations with respect to these three
variables yield three respective equations:

d

dt
q = Aq, (11)

− d

dt
p = A

+p, (12)

q0 =
E0

Eτ
p(0), (13)

with E0 = 〈q0,q0〉 and Eτ = 〈q(τ),q(τ)〉. The first two equations are evolution equations for
the direct variable q and the adjoint variable p, respectively. The third equation (from the first
variation of J with respect to the initial condition q0) provides a link between the direct and
adjoint variables. The above three equations can be set up as an iterative optimization scheme
sketched in figure 7 [73, 74, 75, 76]. Starting with an initial guess, we solve the direct equation
(11) over the prescribed interval [0, τ ]. The final solution is then propagated backwards in time
from t = τ to t = 0 using the adjoint equation (12). The solution of the adjoint equation is then
used in (13) to update the initial condition q0 for the next iteration. The direct-adjoint cycle is
repeated until convergence is reached.

Figure 7: Sketch of iterative optimization scheme based on the direct and adjoint governing
equations, derived from a variational framework.

The variational framework is not restricted to enforce only linear evolution equations, it can
easily be applied to compute optimal initial conditions that maximize transient energy growth
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when propagated by a nonlinear equation. In this case, we write

J =
‖q(τ)‖
‖q0‖

− 〈p, d
dt
q− f(q)〉 → max. (14)

The derivation of the iterative scheme proceeds along the same line. After taking the first
variation with respect to the three variables, we recover the nonlinear evolution equation for
q, obtain a linear evolution equation for the adjoint variable p and get an expression linking
q and p. Even though the adjoint equation is linear in p, its coefficients depend on the direct
variables q. This fact complicates the iterative optimization scheme, since during the solution
of the direct equation snapshots of q need to stored; these snapshots are then used (in time-
reversed order) to evaluate the coefficients for the backward-integration of the adjoint equation
(see figure 8) [33, 77, 78, 79]. For small-scale problems (e.g., our 2 × 2 model problem), the
storage of all produced fields does not pose a problem, but for large-scale applications with many
degrees of freedom, memory issues become relevant, and specific storage strategies have to be
employed. Flow fields at prescribed instants in time (known as checkpoints) are stored and the
coefficients for the backward integration have to be reconstituted from these checkpoint fields
(see e.g. [80]). This involves short forward-integrations of the direct system using the stored

Figure 8: Sketch of iterative optimization scheme based on the nonlinear, direct and variable-
coefficient, adjoint governing equations, derived from a variational framework. The checkpoints
at which the direct solutions are stored are indicated by green symbols.

checkpoint solutions as initial conditions. An optimal placement of checkpoints, given a total
amount of available storage, leads to a non-equidistant spacing in time (not shown in figure 8).

3.1.4 Application to fluid systems

Over the past decades transient growth and nonmodal analysis have become important and
accepted tools of fluid dynamics [32]. In numerous studies, the presence of non-normal linear
operators and its consequence on the dynamic processes have been recognized.

In bypass transition, defined as a route to turbulence that does not rely on an exponential
instability, the importance of linear growth mechanisms that operate efficiently at subcritical
conditions has been acknowledged [81]. These mechanisms favor structures in the flow that
markedly deviate from modal ones; in particular, streaks, i.e., fluid elements elongated in the
streamwise direction, have been found as the omnipresent manifestation of nonmodal dynamics.
Both numerical simulations and experiments have confirmed their importance.
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The same elongated structures also play an important role in receptivity studies, where
perturbations in the freestream trigger disturbance growth in the boundary layer. In this case,
nonmodal processes compete with modal ones [82].

In fully developed turbulent flow, the importance of a linear mechanism based on non-
normality has been recognized [83, 84]. In this case, it is part of a self-sustaining process that
involves transient energy amplification, secondary breakdown and nonlinear regeneration. Even
though the entire cycle is nonlinear, without a linear non-normal component it would collapse,
yielding relaminarized flow [85].

Much has been gained in stability theory and fluid dynamics by abandoning the concept
of Lyapunov (time-asymptotic) stability in favor of a more general, finite-time stability notion.
Most fluid devices or configurations have an instrinsic time-scale that is often far shorter than the
asymptotic limit required for Lyapunov stability. Moreover, exponential growth rates are often
too weak to account for significant energy growth over short or intermediate time intervals. For
this reason, it seems fitting to introduce a characteristic time-scale into the definition of stability
and adopt mathematical tools that describe fluid processes on a finite rather than infinite time
horizon. Some of these tools have been introduced above. Over the years, these concepts
have provided deeper insight into many fluid dynamical mechanisms; the same is expected for
thermoacoustic systems.

4 A toy model for the Rijke tube

A horizontal Rijke tube with an electric heat source is a convenient system for studying the
fundamental principles of thermoacoustic instability both experimentally and theoretically (fig-
ure 9). The mean flow is imposed by a fan, rather than by natural convection, so the heater
power and the mean flow are controlled independently. We present here a simple model for the
horizontal Rijke tube, which has been used by [21, 22, 24, 25, 33, 36, 38, 86]. A more elaborate
model for the Rijke tube can be found in Mariappan and Sujith [38].

	
  

Figure 9: Diagram of a horizontal Rijke tube

4.1 Governing equations

The tube has length L0 and a hot wire is placed distance x̃f from one end. A base flow is
imposed with velocity u0. The physical properties of the gas in the tube are described by cv, γ,
R and λ, which represent the constant volume specific heat capacity, the ratio of specific heats,
the gas constant and the thermal conductivity respectively. The unperturbed quantities of the
base flow are ρ0, p0 and T0, which represent density, pressure and temperature respectively.
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From these one can derive the speed of sound c0 ≡ √
γRT0 and the Mach number of the flow

M ≡ u0/c0.

Acoustic perturbations are considered on top of this base flow. In dimensional form, the
perturbation velocity and perturbation pressure are represented by the variables ũ and p̃ respec-
tively and distance and time are represented by the coordinates x̃ and t̃ respectively. Quantities
evaluated at the hot wire’s position, x̃f , have subscript f . At the hot wire, the rate of heat

transfer to the gas is given by ˜̇Q. This heat transfer is applied at the wire’s position by multi-

plying ˜̇Q by the dimensional Dirac delta distribution δ̃D(x̃− x̃f ). Acoustic damping, which will
be described in §4.4, is represented by ζ.

The dimensional governing equations for the perturbation are the momentum equation and
the energy equation:

F̃1 ≡ ρ0
∂ũ

∂t̃
+

∂p̃

∂x̃
= 0, (15)

F̃2 ≡ ∂p̃

∂t̃
+ γp0

∂ũ

∂x̃
+ ζ

c0
L0

p̃− (γ − 1) ˜̇Qδ̃D(x̃− x̃f ) = 0. (16)

The heat release is modelled with a form of King’s law adapted from [22], in which the
heat release increases with the square root of the velocity. Surface heat transfer and subsequent
thermal diffusion between the wire and the fluid are modelled by a constant time delay, τ̃ ,
between the time when the velocity acts and the time when the corresponding heat release is
felt by the perturbation:

˜̇Q =
2Lw(Tw − T0)

S
√
3

(

πλcvρ0
dw
2

) 1

2
(∣
∣
∣
u0
3

+ ũf (t̃− τ̃)
∣
∣
∣

1

2 −
(u0
3

) 1

2

)

, (17)

where Lw, dw and Tw represent the length, diameter and temperature of the wire respectively
and S represents the cross-sectional area of the tube. Heckl [22] based the off-set of u0/3 on
experimental results. It is now apparent that recent papers have gone beyond the range of
validity of the model, specifically when u < −u0/3, and that this caused oscillations to saturate
earlier than they should have done. The results are qualitatively correct, however, and we have
decided to retain Heckl’s law here so that this paper is consistent with previous papers.

4.2 The nondimensional governing equations

Reference scales for speed, pressure, length and time are taken to be u0, p0γM , L0 and L0/c0
respectively. The dimensional variables, coordinates and Dirac delta can then be written as:

ũ = u0u, p̃ = p0γMp, x̃ = Lx t̃ = (L/c0)t, δ̃D(x̃− x̃f ) = δD(x− xf )/L, (18)

where the quantities without a tilde or subscript 0 are dimensionless.
A remark on non-dimensionalizing the acoustic velocity using the mean flow velocity is called

for here. It has been shown that for systems that work at very low Mach number, the convective
terms in the wave equation can be neglected [87]. However, this thermoacoustic system is driven
by a heat release rate which has a dependence on the mean convective velocity. Hence, we choose
the include the convective velocity in the scaling law for acoustic velocity. Further, it is known
when limit cycle is attained, the amplitude of the acoustic velocity is of the order of the mean
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convective velocity. Scaling the acoustic velocity using the mean flow velocity leads to a non-
dimensional acoustic velocity amplitude of 1, when the acoustic velocity equals the mean flow
velocity.

Substituting (18) into the dimensional governing equations (15) and (16) and making use
of the definition of c0 and the ideal gas law, p0 = ρ0RT0, gives the dimensionless governing
equations:

F1 ≡ ∂u

∂t
+

∂p

∂x
= 0, (19)

F2 ≡ ∂p

∂t
+

∂u

∂x
+ ζp− β

(∣
∣
∣
∣

1

3
+ uf (t− τ)

∣
∣
∣
∣

1

2

−
(
1

3

) 1

2

)

δD(x− xf ) = 0, (20)

where

β ≡ 1

p0
√
u0

(γ − 1)

γ

2Lw(Tw − T0)

S
√
3

(

πλcvρ0
dw
2

) 1

2

. (21)

The system has four control parameters: ζ, which is the damping; β, which encapsulates all
relevant information about the hot wire, base velocity and ambient conditions; τ , which is the
time delay and xf , which is the position of the wire.

4.3 The boundary conditions and the discretized governing equations

When appropriate boundary conditions in x are set, the governing equations (19) and (20)
reduce to an initial value problem in t. For the system examined in this paper, ∂u/∂x and p are
both set to zero at the ends of the tube. These boundary conditions are enforced by choosing
basis sets that match these boundary conditions:

u(x, t) =
N∑

j=1

ηj(t) cos(jπx), (22)

p(x, t) = −
N∑

j=1

(
η̇j(t)

jπ

)

sin(jπx), (23)

where the relationship between ηj and η̇j has not yet been specified. In this discretization, all
the basis vectors are orthogonal.

The state of the system is given by the amplitudes of the modes that represent velocity,
ηj , and those that represent pressure, η̇j/jπ. These are given the notation u ≡ (η1, . . . , ηN )T

and p ≡ (η̇1/π, . . . , η̇N/Nπ)T . The state vector of the discretized system is the column vector
x ≡ (u;p).

The governing equations are discretized by substituting (22) and (23) into (19) and (20). As
described in §4.4, the damping, ζ, is dealt with by assigning a damping parameter, ζj , to each
mode. Equation (20) is then multiplied by sin(kπx) and integrated over the domain x = [0, 1].
The governing equations then reduce to two Delay Differential Equations (DDEs) for each mode,
j:

F1G ≡ d

dt
ηj − jπ

(
η̇j
jπ

)

= 0, (24)

F2G ≡ d

dt

(
η̇j
jπ

)

+ jπηj + ζj

(
η̇j
jπ

)

. . .

. . . +2β

(∣
∣
∣
∣

1

3
+ uf (t− τ)

∣
∣
∣
∣

1

2

−
(
1

3

) 1

2

)

sin(jπxf ) = 0, (25)
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where

uf (t− τ) =

N∑

k=1

ηk(t− τ) cos(kπxf ). (26)

Decomposition into a set of coupled oscillator equations (24 – 25) is a standard technique in
thermoacoustics and is described in several early papers, such as Culick [88]. Section 4.3-4.4 of
Culick [2] contains a discussion of this method, called spatial averaging, and the closely-related
Galerkin method, which give the same result for the system in this paper.

4.4 Damping

For the system examined in this paper, p and ∂u/∂x are both set to zero at the ends of the
tube, which means that the system cannot dissipate acoustic energy by doing work on the
surroundings. Furthermore, the acoustic waves are planar, which means that the system cannot
dissipate acoustic energy in the viscous and thermal boundary layers at the tube walls. Both
types of dissipation are modelled by the damping parameter for each mode:

ζj = c1j
2 + c2j

1/2, (27)

where c1 and c2 are the same for each mode. This model was used in Balasubramanian and
Sujith [36] and Nagaraja et al. [68] and was based on correlations developed by Matveev [21]
from models in [89].

4.5 The definition of the acoustic energy norm

For the optimization procedure, it is necessary to define some measure of the size of the per-
turbations. Several measures are possible and each could give a different optimal. The most
convenient measure is the acoustic energy per unit volume, Ẽ, because it is easy to calculate
and has a simple physical interpretation; [68].

The acoustic energy per unit volume, Ẽ consists of a kinetic component, Ẽk and a pressure
potential component, Ẽp. In dimensional form it is given by:

Ẽ = Ẽk + Ẽp =
1

2
ρ0

(

ũ2 +
p̃2

ρ20c
2
0

)

. (28)

Substituting for ũ and p̃ from (18), making use of the ideal gas relation and defining the
reference scale for energy per unit volume to be ρ0u

2
0, the dimensionless acoustic energy per unit

volume, E, is given by [68]:

E =
1

2
u2 +

1

2
p2 =

1

2

N∑

j=1

η2j +
1

2

N∑

j=1

(
η̇j
jπ

)2

=
1

2
xHx =

1

2
||x||2, (29)

where || · || represents the 2-norm. The rate of change of the acoustic energy with time is:

dE

dt
= u

du

dt
+ p

dp

dt
=

N∑

j=1

ηj
dηj
dt

+

N∑

j=1

(
η̇j
jπ

)
d

dt

(
η̇j
jπ

)

(30)

= −
N∑

j=1

ζj

(
η̇j
jπ

)2

−
N∑

j=1

2β

(
η̇j
jπ

)(∣
∣
∣
∣

1

3
+ uf (t− τ)

∣
∣
∣
∣

1

2

−
(
1

3

) 1

2

)

sin(jπxf ). (31)
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The first term on the right hand side of (31) represents damping and is always negative.
The second term is the instantaneous value of pQ̇ and is the rate at which thermal energy is
transferred to acoustic energy at the wire. It is worth noting that this transfer of energy can be
in either direction.

In general, care should be taken in adopting the appropriate norm. A number of definitions
of disturbance energies are available; for a recent review, see George and Sujith [90]. Chu’s
norm [91] was used in Mariappan and Sujith [42] and Wieczoerk et al. [45], whereas Mariappan
et al. [37] used Myers’ energy [92]. The consequences of choosing an inappropriate norm are
highlighted in Wieczoerk et al. [45]

4.6 The linearized governing equations

Non-normality, which is central to this paper, is a linear phenomenon. It is most easily examined
when the governing equations are linearized around x = 0 and expressed in the form dx/dt = Lx,
where x represents the state of the system and L represents the evolution operator or matrix.
Two linearizations are required in order to express the governing equations in this form. The
first linearization, which is valid for uf (t − τ) ≪ 1/3, is performed on the square root term in
(20) and (25):

(∣
∣
∣
∣

1

3
+ uf (t− τ)

∣
∣
∣
∣

1

2

−
(
1

3

) 1

2

)

≈
√
3

2
uf (t− τ). (32)

This produces a system of linear DDEs: dx/dt = L1x(t) + L2x(t − τ), where L1 is a normal
matrix and L2 is a non-normal matrix. It is possible to find the eigenvalues of this linear DDE
system and to quantify the non-normality of L2 but, in [36] and this paper, a second linearization
is performed on the time delay:

uf (t− τ) ≈ uf (t)− τ
∂uf (t)

∂t

=
N∑

k=1

ηk(t) cos(kπxf )− τ
N∑

k=1

kπ

(
η̇k(t)

kπ

)

cos(kπxf ). (33)

This linearization is valid only for the Galerkin modes for which τ ≪ Tj , where Tj = 2/j is
the period of the jth Galerkin mode. Equations (32) and (33) are substituted into (25) to give
the linearized governing equations:

F1G ≡ d

dt
ηj − jπ

(
η̇j
jπ

)

= 0, (34)

F2G ≡ d

dt

(
η̇j
jπ

)

+ jπηj + ζj

(
η̇j
jπ

)

. . .

. . . +
√
3βsj

N∑

k=1

ηk(t)ck −
√
3βτsj

N∑

k=1

kπ

(
η̇k
kπ

)

ck = 0, (35)

where sj ≡ sin(jπxf ) and ck ≡ cos(kπxf ). This is a set of linear Ordinary Differential Equations
(ODEs), which can be expressed in the matrix form:

d

dt
x =

d

dt

(
u

p

)

=

(
LTL LTR

LBL LBR

)(
u

p

)

= Lx. (36)
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LTR and LBL contain non-zero elements along their diagonals, which represent the isentropic
part of the acoustics (i.e. the first two terms on the RHS of (36) and (37)). LBR contains non-
zero elements along its diagonal, which represents the damping, ζj . The heat release term, β,
makes every element non-zero in LBL and LBR. Therefore these two sub-matrices are full.

The rate of change of energy dE/dt can be found either by substituting (32) and (33) into
(31) or by evaluating xTLx. This gives:

dE

dt
= −

N∑

j=1

ζj

(
η̇j
jπ

)2

−
√
3β

N∑

j=1

N∑

k=1

sjck

(
η̇j
jπ

)

ηk +
√
3βτ

N∑

j=1

N∑

k=1

sjckkπ

(
η̇j
jπ

)(
η̇k
kπ

)

. (37)

5 Transient growth and triggering in the Rijke tube

The thermoacoustic system examined in this paper has xf = 0.3, c1 = 0.05, c2 = 0.01 and
τ = 0.02 and N = 10. The time delay is slightly shorter than that found in Heckl [22], who used
τ = 0.08. It models a hot wire and is therefore much shorter than it would be if modelling a
flame. We chose a short delay so that the linearization (33) would be valid, even though we only
use that linearization in §5.3. A longer time delay would cause the system to become unstable
at lower β but would not change its qualitative behaviour.

5.1 Fixed points and periodic solutions

The bifurcation diagram in figure 10 shows the minimum acoustic energy on each periodic
solution as a function of β. The Hopf bifurcation lies at βl = 0.86 and is subcritical. The fold
point lies at βc = 0.72. There is an unstable periodic solution at low amplitude and a stable
periodic solution at high amplitude. The results in §5.3 to §7.2 are found for β = 0.75, at which
the system has a stable fixed point, an unstable periodic solution and a stable periodic solution.
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Figure 10: Bifurcation diagram for the Rijke tube

5.2 Non-normality and transient growth around the fixed point

When the governing equations are linearized around the fixed point, the evolution matrix (36)
is obtained. The spectra and pseudospectra of this matrix are shown in figure 11. The pseu-
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Figure 11: Spectra (black dots) and pseudospectra (contours) for linear perturbations about the
fixed point.

dospectra are nearly concentric circles centred on the spectra, which shows that the degree of
non-normality is small.

The maximum transient growth, G(T ), can be calculated with the SVD, as described in
section 3.1.1 and is shown in figure 12. The maximum is at Gmax = 1.26 and T = 0.2 and the
corresponding initial state is shown in figure 13.
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Figure 12: Maximum transient growth, G(T ), as a function of optimization time, T , for the
10 mode Rijke tube with xf = 0.3, c1 = 0.05, c2 = 0.01, τ = 0.02 and β = 0.75 for the
fully-linearized system (solid line). The maximum value is Gmax = 1.26 at T = 0.2.

Three significant points can be made at this stage. The first is that the amount of transient
growth is small because the degree of non-normality is small. The second is that the maximum
transient growth occurs within the first period (0 < T < 2), which will always be the case for a
linearly stable system. The third is that, although the first mode (u2

1 + p2
1) has the highest ini-

tial amplitude, the next few modes have quite high initial amplitudes. This distribution differs
considerably from the nonlinear optimal initial state in §5.4.

The most important question, however, is whether the transient growth from this initial state
is sufficient to cause triggering to the stable periodic solution. Figure 14 shows the evolution of
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Figure 13: Amplitudes of the Galerkin modes that cause the maximum transient growth in
figure 12.

acoustic energy with time, starting from this initial state at different initial energies, E0. The
evolution is shown for the nonlinear (24–25) and the linear (34–35) governing equations. At low
E0, the evolution is predicted well by the linear analysis but at high E0 the nonlinear evolution
has much less transient growth than the linear evolution.

Reading from figure 10, the lowest energy on the unstable periodic solution is 0.125, which
is a first approximation for the initial energy, E0, required for triggering [18]. In §5.4 it will be
shown that the lowest initial energy that leads to triggering is E0 = 0.1099. At this value of
E0, the linear optimal (figure 13) causes very little transient growth and, as will be confirmed
in §5.4, is very different from the types of initial states that cause triggering. We might have
anticipated this from Wicker et al.’s results [18], who found that the initial state that triggers
(in their two mode system) has to have most of its energy in the first mode.

5.3 Non-normality and transient growth around the unstable periodic solu-

tion

Non-normality and transient growth are usually considered only around fixed points. They can
also be considered around periodic solutions, however, and this turns out to be crucial for trig-
gering.

The 10 mode Rijke tube has 20 degrees of freedom. The state of the system can be rep-
resented by a point in 20-dimensional space and the acoustic energy of each point is given by
its distance from the origin. This is difficult to draw so figure 15 shows a cartoon of this space
in three dimensions. The grey potato-shaped surface is the closed manifold that separates the
states that evolve to the stable fixed point, which lies inside the surface, from the states that
evolve to the stable periodic solution, which is the large loop that lies away from the surface.
Points exactly on the manifold remain on the manifold for all time. In order for a state to reach
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Figure 14: The acoustic energy growth with time, starting from the linear optimal initial state.
The linear evolution is shown as a dashed line. The nonlinear evolution is shown as solid lines
for initial acoustic energies of 10−3, 10−2, 10−1, 1, 10. For small initial energies, the nonlinear
and linear evolutions are almost identical and transient growth can be ween at small times. For
large initial energies, however, the nonlinear evolution differs greatly from the linear evolution.
Crucially, it can be seen that the linear optimal initial state causes no transient growth at all
here when the initial energy is greater than 1.

the stable periodic solution, it must start outside this closed manifold.

The unstable periodic solution is a loop exactly on this manifold. Any state on this loop, if
given an infinitesimal increase in energy, would evolve to the stable periodic solution. This is
why the lowest energy point on this loop is a first approximation to the energy required for trig-
gering. We will call this point n and define the unit vector from the origin to this point as n̂. The
important question is whether there are states with even lower energy that lie outside this closed
manifold. In other words, what is the shape of the potato around the unstable periodic solution?

Let us consider small perturbations around the unstable periodic solution. We do this by
generating the monodromy matrix [32] which maps the evolution of an infinitesimal perturba-
tion after one loop around the periodic solution. Its eigenvalues and pseudospectra are shown in
figure 16. The pseudospectra are nearly (but not quite) circles centred on the spectra. Therefore
the system is slightly non-normal. There are eighteen eigenvalues inside the unit circle, which
are stable, one eigenvalue on the unit circle, which is neutrally stable and represents motion
in the direction of the periodic solution, and one eigenvalue outside the unit circle, which is
unstable. This shows that the unstable manifold attracts states from every direction except one.
Furthermore, because this system has no other fixed, periodic, or chaotic solutions, every state
exactly on the manifold, as well as remaining on the manifold, must be attracted towards the
unstable periodic solution.

At the point with minimum energy on the unstable periodic solution, the neutral eigenvector
is perpendicular to the radial direction, n̂, If the monodromy matrix is normal and if the unsta-
ble eigenvector points in direction n̂, then all the stable eigenvectors must also be perpendicular
to the radial direction there. This means that the point with minimum energy on the unstable
periodic solution is a local energy minimum on the manifold.
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Figure 15: A cartoon of the manifold that separates the states that evolve to the stable fixed
point from those that evolve to the stable periodic solution.

If the monodromy matrix is non-normal, however, then the stable eigenvectors are non-
orthogonal. Whichever direction the unstable eigenvector points in, the stable eigenvectors are
unlikely to point perpendicular to the radial direction, n̂. This means that the point with min-
imum energy on the unstable periodic solution is not a local energy minimum on the manifold.
It is easy to check this numerically for specific cases by taking the dot product of the stable
eigenvectors with the radial direction n̂. The technique described in §5.4 and Juniper [33] can
then be used to iterate to the local energy minimum. It uses a local optimization routine and
starts from the lowest energy point on the unstable periodic solution.

Although this is enough motivation for the analysis in §5.4, we may wish to use this linear
technique to estimate the optimum initial state very crudely.

Firstly, let us consider states that remain exactly on the manifold. In the long time limit,
all of these states are attracted to the unstable periodic solution. If the monodromy matrix
is non-normal, however, some states initially grow away from the unstable periodic solution,
some to higher energies, before being attracted back. These states are the projection of the first
singular vector of the monodromy matrix, s, onto the manifold around the unstable periodic
solution. This direction is (s− s · n̂). It is also easy to check this numerically.

Secondly, if we make the reasonable assumption that trajectories are locally parallel, then the
states that start from lower energy than the unstable periodic solution but grow transiently and
are then attracted towards it will look similar to those described above. To a first approximation,
therefore, the optimal initial state is given by n+k(s−s · n̂), where k is an unknown small value.

It is shown in [33] that n has most energy in the first mode and that s has most energy in the
first mode and appreciable energy in the third and fourth modes. We would expect, therefore,
that the optimal initial state will have most energy in the first mode and some in the third and
fourth, but not as much in the second mode. This is what is found in the next section.
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Figure 16: (a) Eigenvalues and (b) pseudospectra of the monodromy matrix around the unstable
periodic solution

5.4 Nonlinear optimal initial states and triggering

The analysis in §5.3 calculated the perturbations that maximize transient growth around the
unstable periodic solution and shows that some initial states that trigger can have lower energy
than the unstable periodic solution. It gives an indication of the direction of these points away
from the unstable periodic solution but cannot give the optimal initial state itself. For that,
nonlinear optimization is required.

In the linear analysis, the energy growth, G, is a function only of the optimization time,
T . In the nonlinear analysis, it is also a function of the state’s initial amplitude, which can be
quantified by the initial acoustic energy, E0. Therefore, Gmax needs to be found by optimizing
G over all T and all E0.

These nonlinear optimal initial states are found with a constrained optimization technique
[33] adapted from optimal control [93]. A cost functional, J , is defined, which can be ||x(T )||2/||x0||2.
A Lagrangian functional, L, is then defined as the cost functional, J , minus a set of inner prod-
ucts. These inner products multiply the governing equations by one set of Lagrange multipliers
and the initial state by another set of Lagrange multipliers. When all variations of L with
respect to the Lagrange multipliers, state variables, x, and initial state, x0, are zero then an
initial state has been found that optimizes J and satisfies the governing equations.

To find this initial state, the direct governing equations are integrated forward for time T
from an initial guess, thus satisfying the requirement that all variations of L with respect to
the Lagrange multipliers are zero. The Lagrangian functional is then re-arranged so that it is
expressed in terms of a different set of inner products. These inner products multiply the state
variables, x, by a first set of constraints. They also multiply the initial state, x0, by a second set
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of constraints. The requirement that all variations of L with respect to x are zero can be met
by satisfying the first constraints. Half of these, known as the optimality conditions, determine
the relationship between an adjoint state vector , x+, and the direct state vector, x, at time
T . The other half, known as the adjoint governing equations, govern the evolution of x+ for
t = [0, T ]. After setting the optimality conditions at t = T , the adjoint governing equations
are integrated backward to time 0, thus satisfying the requirement that all variations of L with
respect to x are zero. The second set of constraints return the gradient information ∂L/∂x0 at
the initial guess for x0. This is combined with a convenient optimization algorithm, such as the
steepest descent method or the conjugate gradient method, in order to converge towards the
optimal initial state, at which ∂L/∂x0 = 0. This finds local optima. This process is repeated
starting from several hundred random starting states in order to find a global optimum.
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Figure 17: Transient growth, G(T,E0), as a function of optimization time, T and initial energy,
E0, for perturbations around the fixed point of the Rijke tube.

Figure 17 shows contours of G(T,E0). For details, please refer [33] Two regions of high
transient growth can be seen. The first is centred on (E0, T ) = (0.050, 0.25), with Gmax = 1.48,
and is a continuation of the linear optimal into the non-linear regime. The second is found
at high values of T and corresponds to initial states that reach the stable limit cycle from the
lowest possible energies. These are the triggering states that we seek. The lowest energy state
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that triggers has E0 = 1.099 and it is not a continuation of the linear optimal.

Figure 18 shows a slice through figure 17 at E0 = 0.1099 and figure 19 shows the correspond-
ing initial states at optimization times T = 0.1, T = 1.0, and T = 10. Figure 20 shows the
evolution from these three initial states on two timescales: (a) 0 ≤ t ≤ 10 (b) 0 ≤ t ≤ 100. The
first state (T = 0.1), which we show because its optimization time is similar to the linear optimal
time, has strong initial transient growth but then very quickly decays back to the fixed point.
The second state (T = 1), which is in region 1 of figure 17, has strong growth over the first cycle
and is almost attracted towards the unstable periodic solution but then also decays back to the
fixed point. The third state (T = 10), which is in region 2 of figure 17, has less growth over the
first cycle but is then attracted towards the unstable periodic solution and, although not shown
here, is then attracted to the stable periodic solution. This state has most of its energy in the
first mode, as anticipated from Wicker et al. [18], so that it can start reasonably close to the
unstable periodic solution. It has significant energy in the third and fourth modes, as suggested
by the linear analysis around the unstable periodic solution §5.3.

	
  

10
!2

10
!1

10
0

10
1

1

1.1

1.2

1.3

1.4

1.5

T

G
(T

,E
0
=

0.
10
99
)

T
=

τ
=

0.
02

Figure 18: Slice through figure 17 at E0 = 0.1099.
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T = 1.0, T = 10. The optimal initial state with T = 10 has most energy in the first mode and
appreciable energy in the 3rd and 4th modes.
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Figure 20: Energy, E, as a function of time, t, for the three initial states in figure 19. The
optimal initial state with T = 10 has smaller transient growth at short times but then grows to
the stable limit cycle (not shown).

Jagadesan and Sujith [31] showed experimentally that during triggering, the system evolves
transiently towards an unstable periodic orbit, before growing to limit-cycle, in a manner anal-
ogous to this bypass scenario originally proposed by Juniper [33].

6 Non-normality and transient growth in complex systems

Having discussed a toy model for Rijke tube in great detail, more complex models for the Rijke
tube and other thermoacoustic systems can be constructed. We we will now briefly review the
studies on systems that are more complex.

6.1 Ducted premixed flame

Stringent emission requirements drive operating conditions of premixed gas turbines and combus-
tors to the lean regime. However, lean premixed combustion has been shown to be particularly
susceptible to combustion instability [94, 95]. Subramanian and Sujith [39] investigated the role
of non-normality and nonlinearity in flame-acoustic interaction in a ducted premixed flame.

The premixed flame thermoacoustic system is modeled by considering the acoustic momen-
tum and energy equations together with the equation for the evolution of the flame front obtained
from the kinematic G-equation [96]. The G-equation is rewritten as the front-tracking equation
as given in Eq. (32) for an axi-symmetric wedge flame in a purely axial flow [45] shown in figure
7. The scales used for nondimensionalisation are derived from the length of the flame b sinα
and the velocity of the flow ū as shown below in equation (39).

X = X̃ sinα/b; ū = ˜̄u/˜̄u = 1; t = t̃/(b/ū sinα) (38)

∂ξ′

∂t
= (1 + u′) cosα

(
∂ξ′

∂X

)

− (1 + u′) sinα−

√

1 +

(
∂ξ′

∂X

)2

(39)

The configuration of a duct which is open at both ends with the axi-symmetric wedge flame
stabilized at an axial location within it is considered.

The linear operator of a generic thermoacoustic system has been shown to be non-normal
[35, 36]. The linearised operator for the premixed flame thermoacoustic system is also found to
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Figure 21: Geometry of an axi-symmetric wedge flame stabilized on a wire. Here ξ′ is the
displacement of instantaneous flame shape from the unperturbed flame shape along X, α is the
flame angle, SL is the laminar flame speed, b is the radius of the burner and ū is the mean flow.
Figure reproduced with permission from [39].

be non-normal leading to non-orthogonality of its eigenvectors [39]. Non-orthogonal eigenvectors
can cause transient growth in evolutions even when all the eigenvectors are decaying for a linearly
stable case. Therefore, classical linear stability theory cannot predict the finite time transient
growth observed in non-normal systems. A parametric study of the variation in transient growth
due to change in parameters such as flame location and flame angle is performed. It is found
that the transient growth is pronounced when the flame has a small angle of flame and is
located close to the center of the duct. The optimum initial condition which causes maximum
transient growth can be identified using singular value decomposition (SVD) for a given system
configuration. In addition to projections along the acoustic variables of velocity and pressure,
the optimal initial condition for the self evolving system has significant projections along the
variables for heat release rate.

Nonlinear simulations show subcritical transition to instability from a small but finite am-
plitude perturbation to the system as shown in figure 22. The system is perturbed with the
optimal initial perturbation with initial acoustic velocity of small but finite amplitude at the
flame location. It shows that the linear and nonlinear evolutions diverge within a short period
of time. Asymptotically, the linear evolution decays as shown in figure 22(a) while the nonlin-
ear evolution reaches a self sustained oscillation of amplitude as seen in the inset from figure
22(b). Therefore an initial condition with very small initial amplitude, if applied in the optimal
manner, can cause transient growth in the energy of the system.

The premixed flame thermoacoustic system has more degrees of freedom than the number of
acoustic modes. These additional degrees of freedom represent the internal degrees of freedom
of the flame front or the internal flame dynamics. These internal degrees of the flame front
must be preserved in the thermoacoustic model to accurately capture the non-normal effects.
In thermoacoustic systems, subcritical transition to instability has been thought of as being
caused by a large amplitude initial perturbation to a linearly stable system. In a linearly stable
case, even a small but finite amplitude optimal initial perturbation is shown to reach a limit
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Figure 22: Geometry of coupled system with an axi-symmetric wedge flame stabilized on a wire.
Here L is the length of the duct, (b/a) is the ratio of burner to duct radius and ỹf is the flame
location along the length of the duct. Figure reproduced with permission from [39].

cycle. The optimum initial condition may have contributions from variables that represent the
flame front dynamics, and will not be purely acoustic. Therefore in non-normal systems, initial
perturbations with amplitudes that are small when compared with the limit cycle oscillations
can cause subcritical transition to instability.

6.2 Ducted diffusion Flame

The role of non-normality and nonlinearity in flame-acoustic interaction in a ducted diffusion
flame has been investigated by Balasubramanian and Sujith [35]. They used the infinite rate
chemistry model to study unsteady diffusion flames in a Burke-Schumann type geometry. The
combustion response to perturbations of velocity is non-normal and nonlinear. This flame model
is then coupled with a linear model of the duct acoustic field to study the temporal evolution
of acoustic perturbations. The one-dimensional acoustic field is simulated in the time domain
using the Galerkin technique, treating the fluctuating heat release from the combustion zone as a
compact acoustic source. The coupled combustion-acoustic system is non-normal and nonlinear.

6.3 Solid rocket motor

Solid rocket motors (SRMs) are often prone to combustion instability. The prediction of com-
bustion instability in the early design stage is a formidable task due to the complex unsteady
flow field existing in the combustion chamber. Combustion instability occurs when the unsteady
burn rate from the propellant (in SRMs) is amplified by the positive feed back of the acoustic
oscillations in the chamber. Combustion instability causes excessive pressure oscillations, which
might resonate with the structural modes of the rocket, leading to excessive vibration and dam-
age of the payload. Further, during the occurrence of combustion instability, the heat transfer to
the combustion chamber walls is increased, eventually melting them [2]. Instabilities in SRMs
have been known to exist since 1930 [2]. Since then, many investigations were conducted to
understand the mechanisms behind them and arrive at measures to control them.

Mariappan and Sujith [42] investigated the role of non-normality in the occurrence of trig-
gering instability in solid rocket motors with homogeneous propellant grain. Their theoretical
analysis starts with linearising the governing equations and analyzing their stability. This leads
to finding the eigenvalues (complex frequency) and eigenmodes of the system. In classical lin-
ear stability analysis, a system is said to be linearly stable if the oscillations decay to zero in
the asymptotic time limit, reaching finally the steady state (stable fixed point). The system
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Figure 23: Evolution of acoustic velocity at the flame for (a) linearised system and (b) nonlinear
system. Evolution of the energy due to fluctuations E(t)/E(0) for (c) linearised system and (d)
nonlinear system. All evolutions are plotted along the acoustic time scale t. The optimal initial
condition with u′f (0) = 7.8× 10−5 and E(0) = 4× 10−6 is seen to grow transiently and decay in
the linear evolution. The nonlinear evolution reaches a limit cycle of amplitude |u′f |LC = 0.67.

The other system parameters are α = 10◦, yf = 0.2, φ = 0.8, c1 = 2×10−3, c2 = 2×10−4, SL =
0.2782 m/s and ∆qR = 2.2263× 106 J/Kg. Figure reproduced with permission from [39].

34



is linearly unstable if the oscillations grow exponentially. Both the definitions are for small
disturbances with respect to the corresponding mean quantities. Non-normal systems show ini-
tial transient growth for suitable initial perturbations even when the system is stable according
to classical linear stability theory. Transient growth plays an important role in the subcritical
transition to instability regime [42]. In SRM the above is termed as pulsed instability, where
the system is linearly (small amplitude) stable, but nonlinearly (large amplitude) unstable.

Mariappan and Sujith [42] showed that pulsed instabilities can occur in two ways: (1) by
introducing a large pulse into the system where nonlinearities are important, leading to a limit
cycle; (2) through a small, but not infinitesimal, initial condition in the appropriate direction
that causes transient growth. As the amplitude of the oscillation increases, nonlinear terms can
then contribute, leading to a limit cycle.

6.4 Experimental efforts

The ideas of non-normality and transient growth have been pursued by the fluid dynamics com-
munity for nearly two decades, resulting in a large body of theoretical and numerical studies in
the literature. However, there are just a handful of experimental efforts. The lack of experimen-
tal studies, in the authors’ opinion, is due to the inherent difficulty in extracting the relevant
details (say for example the growth factor) from experiments.

Mariappan et al. [44] confirmed experimentally that the eigenmodes of a horizontal Rijke
tube are non-orthogonal. Further, they quantified transient growth using acoustic energy as
a scalar norm, and confirmed the predictions of Balasubramanian and Sujith [36] and Juniper
[33]. Kim and Hochgreb [47] experimentally investigated triggering and transient growth of
thermoacoustic oscillations in a model lean-premixed gas turbine combustor. Zhao [46, 97]
investigated transient growth of flow disturbances in triggering combustion instability in a Rijke
tube that is driven by a premixed flame.

7 Characterising bifurcations in thermoacoustic systems

We have seen the role played by non-normality and transient growth in the evolution of a
thermoacoustic system. The final state to which the system evolved depends on the nonlinear
characteristics of the system.

The nonlinear dynamical behaviour of a thermoacoustic system is best characterized by a
bifurcation diagram. The bifurcation diagram can be obtained theoretically, numerically and
experimentally.

7.1 Method of multiple scales

Analytical methods of bifurcation analysis are particularly advantageous as they help to (i) iden-
tify unifying common features across varied systems and to (ii) derive reduced order models that
preserve the nonlinear dynamical behavior of the system. Classical linear stability analysis is
employed to determine the onset of instabilities in thermoacoustic systems. A weakly nonlinear
analysis near the onset of linear instability through a Hopf point can be performed using the
method of multiple scales. This method helps to extend the results of linear analysis in deter-
mining the criticality of the Hopf bifurcation by characterizing the branch of periodic solutions
that emerge from the Hopf point. Subramanian et al. [98] applied the method of multiple scales
to study subcritical bifurcations and bistability in thermoacoustic systems.
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The method of multiple scales consists of introducing different scales to formally separate
the fast and slow scales [99]. The dynamics of a general thermoacoustic system is analysed
close to the critical Hopf point that occurs at a parameter value of σ = σH . The fast timescale
(reciprocal of the frequency) and the location of the Hopf point can be obtained from linear
stability analysis. The evolution equation of the system close to this critical point can then be
completely described in terms of a complex amplitude W that varies only in the slow time scale
t. The evolution of W in the slow time scale is in the form of a Stuart-Landau equation [100]
given by

dW

dt
= (B1 + iB3)(σ − σH)W + (B2 + iB4)|W |2W . (40)

ExpandingW = Aeiφ in the above equation, the amplitude and phase equations for the evolution
of the system can be obtained as

dA

dt
= (B1 ν) A+B2A

3 , (41)

dφ

dt
= B3 ν +B4A

2 . (42)

In the above relations, determining the fixed point of the slow flow amplitude equation (41)
gives the amplitude of the periodic state and the stability analysis of the fixed point helps
in determining the criticality of the Hopf bifurcation. However, the estimates obtained using
this method become less accurate as we move away from the Hopf point as the assumption
of weak nonlinearity becomes invalid. Other analytical methods such as harmonic balance or
energy balance method [101] must then be employed to estimate the dynamical behavior of the
system far from the Hopf point. Alternatively, numerical methods of continuation can be used
to obtain the complete bifurcation plots of systems using a single technique as detailed in the
next subsection.

7.2 Numerical continuation

The nonlinear dynamical behavior of a thermoacoustic system is best characterized by a bifur-
cation diagram. Numerical continuation is used to compute the numerical solutions to a set of
parameterized nonlinear equations where other approaches to solve the problem are prohibitively
expensive. The limit cycles found by continuation methods are exact, because the methods op-
erate in the time domain. Frequency domain methods, such as the Flame Describing Function
(FDF), can only estimate limit cycles. More importantly, however, continuation analysis can
be used as a tool to gain insight into the qualitative properties of the solutions. It is used to
calculate the bifurcations or qualitative changes in the solution for the variation of one or more
parameters of the system. Solutions which are connected to a given state of the system are
computed. Bifurcations are identified by including multiple test functions which change sign at
the critical value of the parameter.

This method has the advantage that once a stationary or periodic solution has been com-
puted, the dependence of the solution on the variation of a parameter is obtained very efficiently.
It can also be used to compute unstable limit cycles. Presently, this technique has been applied
to thermoacoustic systems such as a nonlinear Rijke tube model [102] and to the ducted premixed
flame model [103]

Using iterative techniques [54], continuation methods have now been applied to a Burke-
Schumann flame in an acoustic duct with a few hundred degrees of freedom [53] and to a G-
equation flame in an acoustic duct with a few thousand degrees of freedom [104]. By examining
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the Floquet multipliers of the periodic solutions that are found, this reveals stable periodic
solutions, unstable periodic solutions, stable and unstable period-2 periodic solutions, Hopf
bifurcations, Neimark-Sacker bifurcations, fold bifurcations, and period-doubling bifurcations.
This qualitatively shows the same rich nonlinear behaviour seen in experiments [8]. Continuation
methods can find unstable solutions as easily as they can find stable solutions. In regions of
multistability, these unstable solutions have been shown to be critical for mode switching [30, 31].
Furthermore, the corresponding Floquet modes show which coupled behaviour is responsible for
causing each bifurcation.

8 Conclusions

A thermoacoustic system is non-normal, and hence the eigenvectors are non-orthogonal. Non-
normality leads to short time amplification, even though the individual modes decay exponen-
tially. In a thermoacoustic system, states that have low energy can initially exploit non-normal
linear transient growth around the unstable periodic solution before growing from there to the
stable periodic solution due to nonlinear effects. This can explain the triggering caused by small-
amplitude disturbances, or the order of background noise level [3]. The current methodology
to study the onset of thermoacoustic oscillations involves looking for exponentially growing or
decaying modes by calculating the individual eigenvalues of the linearized system. More so-
phisticated approaches have to be adoped and more involved methods have to be introduced,
to accurately capture the transient behaviour which is critical for the overall system stability.
We wish to emphasise that thermoacoustic systems are indeed nonlinear dynamical systems and
should be analysed with tools from that field that are well developed.

Presently, thermoacoustic instability is associated synonymously with limit cycle oscillations
[3]. However, recent results indicate that the dynamics of thermoacoustic oscillations are not
limited to limit cycle oscillations. The limit cycle state obtained at the onset of instability can
undergo further bifurcations leading to a variety of complex nonlinear states. The quasi-periodic
route to chaos [7] and the frequency-locking route to chaos [8] have been recently established
in thermoacoustics. Further Kabiraj et al. [9, 105] has also identified type-II intermittancy in
thermoacoustic instabilities. Models of thermoacoustics of ducted premixed flames also capture
this phenomena [103, 106]. In combustors with turbulent flow, Nair et al. [107] showed recently
that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high
amplitude periodic oscillations that appear in a near-random fashion amidst regions of aperiodic
low-amplitude fluctuations. Further, Nair and Sujith [108] showed that in a turbulent combustor
the low-amplitude, irregular pressure fluctuations acquired during stable regimes, termed com-
bustion noise, display scale invariance and have a multifractal signature that disappears at the
onset of combustion instability. Thus it appears as if the subject of nonlinear thermoacoustics
is headed for exiting developments.
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