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Non-Oberbeck–Boussinesq (NOB) effects on the Nusselt number Nu and Reynolds
number Re in strongly turbulent Rayleigh–Bénard (RB) convection in liquids were
investigated both experimentally and theoretically. In the experiments the heat current,
the temperature difference, and the temperature at the horizontal midplane were
measured. Three cells of different heights L, all filled with water and all with
aspect ratio Γ close to 1, were used. For each L, about 1.5 decades in Ra were
covered, together spanning the range 108 � Ra � 1011. For the largest temperature
difference between the bottom and top plates, ∆ =40 K, the kinematic viscosity and
the thermal expansion coefficient, owing to their temperature dependence, varied
by more than a factor of 2. The Oberbeck–Boussinesq (OB) approximation of
temperature-independent material parameters thus was no longer valid. The ratio
χ of the temperature drops across the bottom and top thermal boundary layers
became as small as χ =0.83, which may be compared with the ratio χ = 1 in
the OB case. Nevertheless, the Nusselt number Nu was found to be only slightly
smaller (by at most 1.4%) than in the next larger cell with the same Rayleigh
number, where the material parameters were still nearly height independent. The
Reynolds numbers in the OB and NOB case agreed with each other within the
experimental resolution of about 2%, showing that NOB effects for this parameter
were small as well. Thus Nu and Re are rather insensitive against even significant
deviations from OB conditions. Theoretically, we first account for the robustness
of Nu with respect to NOB corrections: the NOB effects in the top boundary
layer cancel those which arise in the bottom boundary layer as long as they are
linear in the temperature difference ∆. The net effects on Nu are proportional to
∆2 and thus increase only slowly and still remain minor despite drastic material-
parameter changes. We then extend the Prandtl–Blasius boundary-layer theory
to NOB Rayleigh–Bénard flow with temperature-dependent viscosity and thermal
diffusivity. This allows calculation of the shift in the bulk temperature, the temperature
drops across the boundary layers, and the ratio χ without the introduction of
any fitting parameter. The calculated quantities are in very good agreement with
experiment. When in addition we use the experimental finding that for water the sum
of the top and bottom thermal boundary-layer widths (based on the slopes of the
temperature profiles at the plates) remains unchanged under NOB effects within the
experimental resolution, the theory also gives the measured small Nusselt-number
reduction for the NOB case. In addition, it predicts an increase by about 0.5%
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of the Reynolds number, which is also consistent with the experimental data. By
studying theoretically hypothetical liquids for which only one of the material
parameters is temperature dependent, we are able to shed further light on the
origin of NOB corrections in water: while the NOB deviation of χ from its OB
value χ = 1 mainly originates from the temperature dependence of the viscosity, the
NOB correction of the Nusselt number primarily originates from the temperature
dependence of the thermal diffusivity. Finally, we give predictions from our theory
for the NOB corrections if glycerol were used as the operating liquid.

1. Introduction
Controlled experiments on Rayleigh–Bénard (RB) convection are normally done

with relatively small temperature differences ∆ between the top and the bottom
plate, so that the Oberbeck–Boussinesq (OB) approximation can be used. That
approximation assumes that material properties such as the kinematic viscosity ν, the
thermal diffusivity κ , the heat conductivity Λ, the isobaric specific heat capacity cp ,
and the isobaric thermal expansion coefficient β can be considered to be temperature
independent and thus to have constant values all over the cell (Oberbeck 1879;
Boussinesq 1903). However, in order to achieve large Rayleigh numbers Ra, one
would like to make ∆ as large as possible. A relatively well-analysed effect due
to deviations from OB conditions is that the temperature drops across the top
and bottom thermal boundary layers (Wu & Libchaber 1991; Zhang, Childress &
Libchaber 1997) become different, i.e. an asymmetry with respect to the midplane of
the cell shows up. The associated NOB effects on the Nusselt number Nu and the
Reynolds number Re are unclear. Nonetheless, it is often argued in very general terms
that NOB effects are responsible for some measured large-Ra peculiarities in Nu or
Re. The lack of our understanding of possible NOB effects at large Ra on Nu and Re
measurements is all the more unsatisfactory, as it is in this large-Ra regime where the
crossover to an ultimate scaling regime Nu ∼ Ra1/2 is expected (Kraichnan 1962). In
helium gas beyond Ra ≈ 1011 Chavanne et al. (1997, 2001) found a steeper increase
in the logarithmic slope of the Nu(Ra) curve than Niemela et al. (2000, 2001) and
they associated this finding with the ultimate Kraichnan regime. However, there is a
major controversy about whether these and other large-Ra data are ‘contaminated’
by NOB effects (Chavanne et al. 1997, 2001; Roche et al. 2001, 2002; Niemela et al.
2000, 2001; Niemela & Sreenivasan 2003; Ashkenazi & Steinberg 1999).

The aim of this paper is first to present systematic measurements of NOB effects on
the Nusselt number Nu, the Reynolds number Re, and the centre temperature Tc of
the cell and then to attempt to understand these NOB effects theoretically. We do so
by extending the Prandtl–Blasius boundary-layer theory to the case of temperature-
dependent viscosity and thermal diffusivity and apply this to NOB Rayleigh–Bénard
flow. Our results hold for liquids whose specific heat capacity cp and density ρ except
for buoyancy are temperature independent in sufficiently good approximation and if
the flow is incompressible.

For small Ra close to the transition to convection and pattern formation, NOB
effects have been treated theoretically by various authors, and most systematically
by Busse (1967). They were examined experimentally by Hoard, Robertson & Acrivos
(1970); Ahlers (1980); Walden & Ahlers (1981); Ciliberto, Pampaloni & Perez-Garcia
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(1988); Bodenschatz et al. (1991); Pampaloni et al. (1992); and were reviewed by
Bodenschatz, Pesch & Ahlers (2000).

The outline of the paper is as follows. In § 2 we introduce our notation and
define quantitative measures of NOB effects. These include different thicknesses of
the thermal boundary layers (BLs) as well as different temperature drops across these
layers at the bottom and the top plates. In § 3 we present our experimental results
for the various measures of NOB effects, in particular for Nu and Re. We find a
robustness of Nu and Re towards NOB effects, which we try to rationalize in § 4. In
§ 5 we briefly review the model of Wu & Libchaber (1991) and Zhang et al. (1997),
who analysed NOB effects on RB flow for cryogenic helium gas and for glycerin, both
experimentally and theoretically. We compare the predictions of their model with our
data for water. Although they correctly predict the robustness of Nu with respect to
NOB effects and even account for the very small Nu decrease for the NOB case, it
turns out that a basic assumption of this model is not fulfilled. In § 6 we apply an
extended Prandtl–Blasius boundary-layer theory to the NOB Rayleigh–Bénard flow,
gaining excellent agreement with the measured data for the centre temperature, the
Nusselt number, and the Reynolds number. § 7 contains the conclusions.

2. Characterization of non-Oberbeck–Boussinesq effects
2.1. Control parameters

What fluid properties should be used to define the non-dimensional numbers of
non-Oberbeck–Boussinesq Rayleigh–Bénard flow? Since the commonly used control
parameters are the temperatures Tb and Tt at the bottom and top plates, the immediate
choice of a reference temperature to characterize the typical material properties is the
mean temperature Tm =(Tt + Tb)/2. The overall temperature drop is ∆ = Tb − Tt . The
corresponding definition of the parameters describing the thermal convection is the
Rayleigh number

Ram =
βmg∆L3

νmκm

≡ Ra, (2.1)

the Prandtl number

Prm = νm/κm ≡ Pr, (2.2)

and, as a response of the system, the Reynolds number of the resulting large-scale
circulation (the ‘wind’),

Rem =
UL

νm

≡ Re. (2.3)

Here U is the mean velocity of the large-scale wind in the bulk of the fluid. We
assume that there is only one such velocity scale, or, to be more precise, that the
velocity of the wind is the same close to the top and close to the bottom of the cell.
The label m indicates that the material parameters are those at the mean temperature
Tm. In the following we shall omit the label m of Ra, Pr , Re, and, later, also of the
Nusselt number Nu. Whenever these non-labelled dimensionless parameters are used,
the respective material properties are meant as those at the mean temperature Tm of
the external control temperatures. The actual time-averaged temperature in the bulk
is called Tc. It is different from Tm due to NOB effects: Tc �= Tm.

The notation used in this paper is shown in figure 1. The fluid properties such as
ν, κ , and β carry the same index as the corresponding temperature at which they are
considered, e.g. νt = ν(Tt ) for the kinematic viscosity at the top plate, and so on.
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Figure 1. The time-averaged temperature vs. height z in the OB and NOB cases, respectively.
The height of the cell is L. The temperature at the top plate, z = L, is Tt and that at the
bottom plate, z = 0, is Tb . The mean temperature is Tm = (Tt + Tb)/2. The thickness of the top
thermal BL is λt and that of the bottom thermal BL is λb . The respective temperature drops
are ∆t and ∆b . The time-averaged temperature in the centre is Tc . For water as the working
fluid this centre or bulk temperature Tc is larger than the mean temperature Tm. While λt,b in
the OB case are equal, under NOB conditions in the case of water the bottom BL is thinner
than the top BL, λb < λt . The z-dependence of Λ implies a (numerically small) curvature of
the temperature profiles in the BLs. For Tc >Tm the top BL width becomes larger and the
bottom BL width smaller if OB is no longer valid. As will be discussed later, the sum of
both widths, at least for water seems to be the same, as the corresponding sum under OB
conditions. The relations between the slope-based BL thicknesses λsl and the profile-based
99% rule thicknesses λ99% will be shown to be λsl

t,b < λ99%
t,b , as is apparent from the graph; cf.

also § 6.2, and figure 15.

2.2. Temperature profile

Wu & Libchaber (1991) showed that for NOB thermal convection in cryogenic helium
the temperature drop across the top BL, ∆t , is smaller than the temperature drop
across the bottom BL, ∆b. In contrast, for NOB thermal convection in glycerol Zhang
et al. (1997) showed that the opposite is the case, i.e. ∆t >∆b. In general, the ratio of
the temperature drops is described by the parameter (the reciprocal of the parameter
x of Wu & Libchaber).

χ = χ∆ = ∆b/∆t . (2.4)

Just as in large-Ra Rayleigh–Bénard flow under OB conditions, we have no indication
that for the time-averaged profile there is a temperature drop across the bulk (centre)
of the RB cell, and therefore we assume that the total temperature difference between
the cold top-plate temperature Tt and the hot bottom-plate temperature Tb = Tt +∆
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consists only of the temperature drops across the thermal boundary layers,

∆ = ∆t + ∆b. (2.5)

The time-averaged temperature in the centre of the cell is then Tc = Tt + ∆t = Tb − ∆b.
It deviates from Tm and expresses the response of the system to the NOB effects;
Tm is just the arithmetic mean of the external control parameters. Depending on the
fluid, Tc may be larger or smaller than Tm.

Equations (2.4) and (2.5) can be solved for the temperature drops ∆b and ∆t across
the bottom and top thermal BLs,

∆b =
χ

1 + χ
∆, (2.6)

∆t =
1

1 + χ
∆. (2.7)

The temperature profile in the container is shown in figure 1. In § 6 it will be calculated
within an extended Prandtl–Blasius boundary-layer theory.

2.3. Heat flux

The heat flux can be evaluated from the local heat-conservation equation

ρcp(∂tθ + ui∂iθ) = ∂i(Λ∂iθ), (2.8)

where θ is the temperature deviation from a convenient reference temperature, e.g.
Tm. ∂i means ∂/∂xi , i = x, y, z are the three coordinates, and summation over repeated
indices is assumed. By starting from (2.8) we have already assumed that to a good
approximation the variation in the entropy per mass s with pressure p does not
contribute, more precisely that∣∣∣∣dT

dz

∣∣∣∣ �
∣∣∣∣ T

cp

(
∂s

∂p

)
T

dp

dz

∣∣∣∣.
Using dp/dz = −ρg, the right-hand side of this inequality can be rewritten as
ρg(∂T /∂p)s ≡ ag . Thus we assume that ag , the adiabatic temperature change with pres-
sure, is much smaller than the applied temperature gradient ∆/L (Furukawa & Onuki
2002; Gitterman 1978; Landau & Lifshitz 1987). Indeed, for the experiment with
water described in § 3 we typically have agL/∆ ≈ 10−6 for this so-called Schwarzschild
parameter, i.e. it is negligibly small. Note that for gases close to the critical point the
Schwarzschild correction in general cannot be neglected (Gitterman & Steinberg 1971;
Gitterman 1978; Ashkenazi & Steinberg 1999; Kogan & Meyer 2001; Furukawa &
Onuki 2002).

We area-and-time-average (2.8); see (2.9). The label A indicates the planes z =
constant, which are parallel to the top and bottom plates of the container. In addition,
we assume that plane-averaged products of the type 〈ρcp∂z(uzθ)〉A or 〈Λ∂zθ〉A can be
approximated by their respective factorizations 〈ρcp〉A〈∂z(uzθ)〉A and 〈Λ〉A∂z〈θ〉A. We
then obtain

∂z[〈ρcp〉A〈uzθ〉A − Λ(z)∂z〈θ〉A] = 〈uzθ〉A∂z〈ρcp〉A ≈ 0. (2.9)

In the second (approximate) equality, ≈, we have used the fact that for liquids the mass
density ρ and the isobaric specific heat capacity cp per mass to a good approximation
are temperature, and therefore height, independent. For the case of water between 20
and 60 ◦C, on which we will focus, these are given with precisions of 1.6% and 0.07%,
respectively; see table 1. Thus in the following we will always consider ρ and cp as
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temperature 10−3ρ 10−3cp 104β Λ 106κ 106ν P r

(◦C) (kg m−3) (J kg−1K−1) (K−1) (Wm−1K−1) (m2s−1) (m2s−1)

Tt = 20.000 0.99809 4.175 2.05 0.5975 0.1448 1.004 6.94
Tt̄ = 30.911 0.99532 4.169 3.14 0.6162 0.1494 0.794 5.31
Tm = 40.000 0.99220 4.169 3.88 0.6297 0.1528 0.669 4.38
Tc = 41.822 0.99150 4.169 4.02 0.6322 0.1534 0.648 4.23
Tb̄ = 50.911 0.98761 4.173 4.64 0.6434 0.1563 0.557 3.57
Tb = 60.000 0.98316 4.178 5.21 0.6529 0.1590 0.485 3.05

Table 1. Fluid parameters for a medium cell of height L =24.76 cm in the local gravity field
(Santa Barbara) g = 979.1 cm s−2, with top temperature Tt = 20.00 ◦C and bottom temperature
Tb = 60.00 ◦C. The corresponding Rayleigh number is Ra = 2.26 × 1010 and the Prandtl number
is Pr = 4.38; both values are based on the fluid parameters at the mean temperature
Tm = 40.00 ◦C. This corresponds closely to the last data point for the medium cell in figure 9.
The value χ = 0.833 is obtained from the measured centre temperature Tc =41.822 ◦C. The
mean temperatures Tt̄ and Tb̄ in the thermal top and bottom BLs are Tt̄ = Tt + ∆t/2 and
Tb̄ = Tb − ∆b/2; the temperature drops follow from ∆t = Tc − Tt and ∆b = Tb − Tc .

being constant. All the results we obtain are considered as applicable to liquids which
share the properties ρ = constant and cp = constant.

Equation (2.9) then means that the expression in square brackets is z-independent
and therefore defines the conserved thermal current

〈uzθ〉A − κ(z)∂z〈θ〉A ≡ J. (2.10)

Here κ(z) = Λ(z)/ρcp is the thermal diffusivity; J is z-independent and is interpreted
as the thermal flux, connected with the heat flux Q by J = Q/ρcp . Making the thermal
flux J or the heat flux Q dimensionless, we obtain the Nusselt number

Num = Nu ≡ Q

Λm∆/L
=

J

κm∆/L
=

L

κm∆
[〈uzθ〉A − κ(z)∂z〈θ〉A]. (2.11)

Again, Nu without a label m refers to the flux as being non-dimensionalized using the
material parameter κm being taken at the mean temperature Tm of the control temp-
eratures at the plates.

2.4. Thermal boundary-layer thicknesses

As under OB conditions, the boundary-layer thickness in the NOB case can be
defined in two ways. A theoretically convenient definition is via the slope of the
temperature profile at the plate. For the thickness λsl of the boundary layer we take
the distance from the plate where the tangent to the temperature profile at z = 0 (or
correspondingly at z = L) reaches the centre temperature Tc.

From (2.11) we have Q = −Λ(T (z =0))∂z〈θ〉A(0). For a given heat current Q the
slopes at the top and bottom are different, because the Λ’s are different owing to their
temperature dependence. For z > 0 but in the immediate vicinity of the plates, where
the convective contribution in (2.11) is still negligible, the slope ∂z〈θ〉A already varies
with z since Λ(T (z)) does so. Thus there is a curvature in the NOB profile which is
absent in the OB case, where Λ is z-independent.

Going e.g. from the bottom plate z =0 into the interior of the RB cell, Λ(z)
decreases according to the material properties of water, given in table 1. Therefore
the slope ∂z〈θ〉A increases and ∂z/∂〈θ〉, its inverse, decreases. The profile thus first
bends downwards (becoming more parallel to the plate surface) before, near the
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bulk range, it more or less sharply bends upwards to merge into the constant centre
temperature Tc. This characteristic additional curvature of the profile, which increases
the angle under which the temperature profile hits the bottom plate surface, is a
signature of NOB conditions in the thermal boundary layer. In comparison with the
OB case, the slope ∂〈θ〉/∂(−z) = Q/Λ in the NOB case is smaller, since Λ is larger
at the bottom temperature Tb. In contrast, at the cooler top plate the slope becomes
larger under NOB conditions because of the smaller Λ, and thus here the angle to
the plate surface decreases. This breaks the symmetry of the temperature profile in
the z-direction about the horizontal midplane of the cell. In figure 1 we show the BL
temperature profiles for the OB and NOB cases. (Near the onset of convection this
broken midplane symmetry is one of the important factors for pattern formation under
NOB conditions, which is different from the OB case, cf. Busse (1967).) These findings
regarding temperature-profile changes are still open for experimental verification.

Now, by definition, the flux-conservation equation (2.11) for the heat flux Q or
thermal flux J implies a relation between the ratios of the BL thicknesses λsl

b , λsl
t and

the corresponding temperature drops ∆b, ∆t . Namely, applying (2.10) or (2.11) at the
two plates z =0 and z = L gives

κt

∆t

λsl
t

= κb

∆b

λsl
b

= J = Nu
κm∆

L
. (2.12)

In analogy with the ratio χ of the temperature drops cf. (2.4) we also introduce the
ratio of the slope BL thicknesses

χλsl =
λsl

b

λsl
t

=
κb

κt

∆b

∆t

=
κb

κt

χ = χκχ, (2.13)

which is another measure characterizing NOB effects. Here χκ is the ratio

χκ = κb/κt , (2.14)

and χν , χβ , etc. are similarly defined.
For the thicknesses of the BLs themselves one has from (2.12) and (2.6), (2.7)

λsl
b

L
=

∆b

∆

κb

κm

1

Nu
=

χ

1 + χ

κb

κm

1

Nu
, (2.15)

λsl
t

L
=

∆t

∆

κt

κm

1

Nu
=

1

1 + χ

κt

κm

1

Nu
. (2.16)

By adding these two equations one easily obtains for the Nusselt number

Nu =
L

λsl
t + λsl

b

κt∆t + κb∆b

κm∆
. (2.17)

Another way of defining the thermal BL thickness takes the full temperature
profile of the BL into account. It defines the thermal BL thickness λ99% as the
distance from, say, the bottom plate to the position at which the temperature T

is given by T = Tb − 0.99∆b. This definition is in analogy to the definition of the
thickness δ of the kinetic BL, as the distance from the plate to the position where,
say, 99% of the bulk velocity is achieved.

In the OB case this profile-based thickness δ of the kinetic BL follows from the
classical Prandtl–Blasius theory (Prandtl 1905; Blasius 1908),

δ = aL/Re1/2. (2.18)
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In Grossmann & Lohse (2002) the value of the prefactor a for the case of flow in RB
cells was determined from the experimental results of Qiu & Tong (2001b) to be 0.483.
(This value differs, of course, from the Blasius factor, valid for flow along infinite
plates.) Under OB conditions the profile-based thermal boundary-layer thickness λ99%

can be calculated according to the Prandtl–Blasius BL theory (cf. Meksyn 1961;
Schlichting & Gersten 2000). It is (cf. Grossmann & Lohse 2004)

λ99%

L
=

a′C(Pr)

Re1/2Pr1/3
, (2.19)

the function C(Pr) being given by Meksyn (1961). For large Pr one has C(Pr) → 1,
whereas for small Pr one finds C(Pr) ∝ Pr−1/6. The prefactor a′ in principle can be
different from the prefactor a of (2.18).

While λ99%/δ ∝ C(Pr)/P r1/3 depends on Pr only, the corresponding ratio λsl/δ ∝√
Re/Nu depends on both Pr and Ra in general. From the above profile discussion

we expect λ99% > λsl . In § 6 this expectation will be shown to be correct.
It would seem that the flow in the BLs of large-Ra convection will be time

dependent. There are lots of BL separations and plume formations. Thus the terms
∂tθ in the heat-conservation equation (2.8) and ∂tui in the Navier–Stokes equation for
momentum conservation,

∂tui + uj∂jui = −∂i

p

ρ
+ ∂j (ν∂jui), (2.20)

will contribute also. The flow is no longer laminar-time-independent. But the
overwhelming amount of RB data is consistent with the assumption that the
characteristic Prandtl scaling of the wall-normal quantities still holds, z ∝ L/

√
Re

and uz ∝ U/
√

Re. The boundary-layer flow is not yet fluctuation dominated as it is in
fully developed turbulence, where the profile is expected to be adequately described
by a logarithmic profile.

The formulas (2.4)–(2.7) represent our description of the basic features of the
temperature profile. Equations (2.8)–(2.11) are consequences of the local conservation
of heat. Equations (2.12) and (2.15), (2.16) contain additional physics, namely the
definition of the BL thicknesses λsl

b and λsl
t . They reflect the fact that the heat

transport into the liquid at the entrance z =0 and out of the liquid at the exit z = L

is purely molecular; convection does not yet contribute. Note that instead the profile
thicknesses λ99%

b,t contain the influence of convection, represented by 〈uzθ〉A.

3. Experimental results
3.1. Experimental setup

The experiments were done using three cylindrical cells filled with water. In each
cell we made measurements of the quantities characterizing NOB effects at constant
mean temperature Tm and thus constant mean Pr . In each case the aspect ratio
Γ ≡ D/L was close to unity. The cells had heights L =50.62, 24.76, and 9.52 cm and
diameters D = 49.70, 24.81, and 9.21 cm corresponding to Γ = 0.982, 1.002, and 0.967.
We will refer to them as the large, medium, and small cell, respectively. For most
measurements the mean temperature was Tm = 40.00 ◦C with Pr = 4.38; for some it
was 29 ◦C with Pr = 5.55. We varied Ra by varying ∆ at fixed Tm, thus keeping
all other parameters in the definition (2.1) of Ra fixed. Therefore Ra here means
Ra = ∆/∆m,i , with ∆m,i = νmκm/βmgL3

i ; the label i means large, medium, or small cell.
Time-averaged values of the top-plate temperature Tt , the bottom-plate temperature
Tb, and the heat current Q were obtained at each Ra. For the medium and large cell
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Figure 2. The ratios χX of the material parameters for Tm = 40 ◦C at the bottom and top
walls as functions of ∆ (a) and as functions of Ra = ∆/∆m,medium (b) for the medium cell.
∆m,medium is 1.772 × 10−9 K. The symbol X stands for β , κ , ρ, or ν. χΛ is indistinguishable from
χκ , and both χρ and χcp

are nearly equal to 1. Deviations from χX =1 signal NOB effects. The
ratio can be larger than 2 (smaller than 1/2) for χβ (χν). Evident consequences are significant
differences of the buoyancy force, of the viscous drag, and thus of the BL thickness near the
bottom region as compared with the top region. A nonlinear dependence of the various χX on
∆ seems clear.

we also determined Tc by measuring the side-wall temperature at half-height using
eight thermometers at uniformly distributed azimuthal locations. All measurements
were averaged over time periods ranging from slightly less than a day to several
days. For each Ra value the side-wall temperatures were averaged over the eight
locations. Since there is virtually no heat flow laterally through the wall, we expect
the side-wall temperature to be equal to the temperature of the fluid adjacent to
it. Because of the large-scale circulation (LSC), the fluid temperature varies along a
diameter of the horizontal midplane, being higher where the fluid rises and lower
where it falls. Qiu & Tong (2001a) made temperature measurements for a slightly
tilted cell with Γ = 1.07 and L =20.3 cms in which the LSC had a preferred angular
orientation determined by the tilt direction. Along a diameter oriented to coincide
with the tilt direction they showed that the temperature variation δT is linear. For
Rayleigh number 3.3 × 109 (∆ = 16 K) they found δT � 0.12 K across the radius,
giving δT /∆ � 0.0075. Because of the linear variation in T along the diameter, we
expected the average of the temperatures at two opposite locations to be equal to
the centre temperature Tc to better than 0.1% of ∆. Since we averaged the readings
of eight thermometers uniformly distributed around the azimuth, we believe that our
side-wall temperature-readings gave an accurate determination of Tc. We note that
such a determination cannot be done accurately with a single thermometer, as was
attempted by Chillà et al. (2004). For details regarding the experimental apparatus
and procedures, see Brown et al. (2005).

3.2. Temperature measurements

The ratios χκ , χν , χβ , . . . (see e.g. (2.14)) characterize the strength of the NOB effects
in terms of the material properties. For the ∆ range covered in the medium and
small cell these effects can be considerable, as seen in figure 2. In particular, this
is the case for the kinematic viscosity, which at the top wall is more than twice as
large than at the bottom wall, and for the thermal expansion coefficient β , which
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Figure 3. The relative deviation 2(Xb − Xt )/(Xb + Xt ) of a property X from its mean value
(Xb + Xt )/2 as a function of the temperature difference ∆ for a mean temperature Tm = 40 ◦C.
Solid line, expansion coefficient β; Short-dashed line, heat conductivity Λ and thermal
diffusivity κ; dotted line, density ρ; Long-dashed line, kinematic viscosity ν; dash-dotted
line, Prandtl number Pr .

at the top wall is less than one-half its value at the bottom wall. The effect on χκ

and χΛ is up to 8%, whereas it is negligibly small for the density ρ and the specific
heat capacity cp . Figure 3 displays the relative deviations 2(Xb − Xt )/(Xb + Xt ) of
the various material properties. A similar analysis of the properties of the helium
gas used for Nusselt-number measurements in cryogenic experiments was carried out
by Niemela & Sreenivasan (2003) (see their figure 6). In the helium case the major
contribution to NOB effects comes from cp and β; unlike for water, the viscosity
plays only a minor role.

In figure 4 we show the temperature differences ∆b = Tb−Tc (circles) and ∆t = Tc−Tt

(squares) for Pr =4.38. The open (solid) symbols are for the medium (large) cell.
The increasing difference between ∆b and ∆t with increasing ∆ reflects the growing
deviation from the Oberbeck–Boussinesq approximation; for OB conditions one
would have ∆b = ∆t =∆/2. In figure 5 we show half this difference, equal to Tc −Tm, as
a function of ∆ for Pr = 4.38 as well as for Pr = 5.55. Figure 6 gives the experimental
results for χ = (Tb−Tc)/(Tc−Tt ) = ∆b/∆t for the large cell (solid symbols) and medium
cell (open symbols) for Pr = 4.38 (circles) and for Pr = 5.55 (squares). In figure 7
we replot χ as a function of Ra, for the medium cell and Pr = 4.38. With regard to
figures 5 and 6, equations for polynomial fits to the data are given in the caption.
In § 5 we will compare our experimental results for χ with the prediction of Wu &
Libchaber (1991), based on the assumption of equal temperature scales at the bottom
and the top boundary layers. As can be seen already from figure 6, this prediction
does not agree very well with our data.

3.3. NOB effects on Nu and Re

We now come to the NOB effects on the Nusselt number Nu and the Reynolds
number Re. For each L the data covered about 1.5 decades of Ra. However, since
Ra ∝ L3∆, the Ra range of each cell was shifted relative to the next larger or smaller
cell by about a decade. The measurements at the largest Ra of a smaller cell, which
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Figure 4. The measured temperature differences ∆b = Tb − Tc (circles) across the bottom BL
and ∆t = Tc − Tt (squares) across the top BL for Tm = 40 ◦C (Pr =4.38) as a function of the
total applied temperature difference ∆. Solid symbols, large cell; open symbols, medium cell.
The solid and the dashed lines originate from our theory, presented in § 6.
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Figure 5. (a) The difference between the measured temperature Tc at half-height and the mean
(control) temperature Tm = (Tb + Tt )/2. Solid symbols, large cell; open symbols, medium
cell. Circles, Tm =40 ◦C and Pr =4.38; squares, Tm = 29 ◦C and Pr = 5.55. The solid
(dashed) line corresponds to the polynomial fit Tc − Tm = c2∆

2 + c3∆
3 + c4∆

4 to the large-cell
(medium-cell) data with c2 = 1.47 × 10−3K−1 (c2 = 1.81 × 10−3K−1), c3 = −1.37 × 10−5K−2

(c3 = −1.81 × 10−5K−2), c4 = 1.35 × 10−7K−3 (c4 = 0). The bold line results from our theory
of § 6 applied to the large cell. Its polynomial representation yielded c2 = 1.105 × 10−3K−1,
c3 = 1.09 × 10−8K−2, and c4 = 5.79 × 10−9K−3. Although c3 and c4 are much smaller than
the experimental values, the overall curve is in quite good agreement with the data. The
centre temperature Tc deviates from Tm by 1.822 K for ∆= 40 K, i.e. by less than 5%. Thus
comparison between theory and experiment is easier if one plots the quantity (Tc − Tm)/∆2 in
K−1, vs. ∆, as in the inset (again the solid and the bold line are the fits to the data and the
theory respectively). Panel (b) displays the dimensionless quantity (Tc − Tm)/∆ vs. ∆ for the
large cell only.

might be expected to show departures of Nu and Re from the OB approximation,
overlapped with results at the smallest Ra of a larger cell, which in turn would be
expected to conform well to the OB approximation. Thus a comparison between any
two cells in the overlapping range of Ra can be expected to reveal NOB effects.
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Figure 6. Experimental results for the ratio χ = (Tb − Tc)/(Tc − Tt ) = ∆b/∆t for the large
cell (solid symbols) and medium cell (open symbols). Circles, Tm = 40.00 ◦C and Pr = 4.38;
squares, Tm = 29.00 ◦C and Pr = 5.55. The solid (dashed) line is a polynomial fit to the data
that yielded χ =1+ aχ,1∆ + aχ,2∆

2 with aχ,1 = −5.48 × 10−3K−1 and aχ,2 = 3.25 × 10−5K−2

(aχ,1 = −7 × 10−3K−1 and aχ,2 = 6 × 10−5K−2). The dotted and dash-dotted lines are the
results computed for Tm = 40.00 and 29.00 ◦C respectively from (5.4) as suggested by Wu
& Libchaber (1991). They can be represented by χWL = 1 − 0.00694∆+2.38 × 10−5∆2 and
χWL = 1 − 0.00945∆+4.35 × 10−5∆2, respectively. In our data the linear terms seem dominant,
but the nonlinear deviations are clearly visible. For ∆= 40 K the contributions are − 0.219
from the linear and + 0.052 from the quadratic term. The bold line results from the theory of
§ 6, applied to the large cell. It is in reasonable agreement with the data.

0 10 20 30 40
∆ (K)

0.8

0.9

1.0

χX

χ

χλ
sl

χλ
sl

9 9.5 10
log10 Ra

0.8

0.9

1.0

χ

Figure 7. The ratios χ = χ∆, (2,4), (solid line) and χλsl , (2.13), (dashed line) at Tm = 40 ◦C
and Pr = 4.38 as functions of ∆ (a), and as functions of Ra = ∆/∆m,medium for the medium
cell (b), with ∆m,medium = νmκm/(βmgL3

medium) = 1.772 × 10−9K. Deviations from χX = 1 signal
NOB effects.

The Reynolds number Re of the large-scale circulation, deduced from plume
transit times, was measured via temperature auto- and cross-correlations, as detailed
by Brown, Funfschilling & Ahlers (2006). The velocity U , on which Re is based
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Figure 8. Upper figure: Re/Ra1/2 vs. Ra as measured for the medium cell (solid symbols)
and the large cell (open symbols). The dashed and solid lines indicate the change in the
Ra-dependence of Re. Lower figure: χ = ∆b/∆t as a function of Ra for the medium cell (solid
line) and large cell (dashed line). The square symbols originate from the cross-correlations,
the circle symbols from autocorrelations of temperatures. The solid squares (medium cell)
at the highest Ra (Ra = 2.1 × 1010) are for ∆= 38 K: they have χ � 0.84 and should show
NOB effects, whereas those for the large cell at the same Ra (open symbols), which are for
∆ ≈ 4.4 K, have χ � 0.98 and are clearly in the OB range. As the two data sets agree within
the experimental precision (2%), it can be concluded that NOB effects on Re are at most of
that order of magnitude for χ near 0.84.

via (2.3), was measured as a distance, proportional to the cell height L, divided by
the turnover time of the plumes. In the OB case Re was found to scale as Ra0.46 up
to Ra � 2 × 109 and, beyond that critical Rayleigh number as Ra1/2. Here we focus
only on possible NOB effects on Re. For this we show in figure 8 the experimental
results for Re/Ra1/2 versus Ra. The solid squares (medium cell) near Ra = 2.1 × 1010

are for ∆ =38 K and should show NOB effects, whereas those for the large cell (open
symbols) at the same Ra are for ∆ ≈ 4.4 K, clearly in the OB range. For each cell, the
extent of departures of Tc from the OB approximation Tm is illustrated in the lower
figure by the temperature ratio

χ =
∆b

∆t

=
∆/2 − (Tc − Tm)

∆/2 + (Tc − Tm)
.

As the two sets of data for Re agree within the experimental precision (about 2%), it
can be concluded that NOB effects on Re for χ � 0.84 are at most a percent or two.

The Nu data for the large and medium cells were corrected for the effect of the
finite conductivity of the copper top and bottom plates (Chaumat, Castaing & Chillà
2002; Verzicco 2004; Brown et al. 2005; Nikolaenko et al. 2005) on the heat transport
in the fluid (no correction was needed for the small cell case). The influence of
finite wall conductivity (Ahlers 2000; Roche et al. 2001; Verzicco 2002; Niemela &
Sreenivasan 2003) was negligible, except for the small cell where a correction of order
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1% was applied. These experiments are described in detail by Brown et al. (2005).
Data for Nu(Ra) under strictly Boussinesq conditions were reported by Funfschilling
et al. (2005). Here we concentrate on the results relevant to deviations from the OB
approximation.

One may wonder whether the weak deviation of the aspect ratio from 1 (Γ =0.982,
1.002, 0.967 for the large, medium, and small cell, respectively) may affect our results
for the Nusselt number, since Shraiman & Siggia (1990) suggested a relatively strong
aspect-ratio dependence, Nu ∼ Γ −3/7. However, we note that the actual dependence
is much weaker, as demonstrated experimentally by the work of Funfschilling et al.
(2005). There it is shown for instance that the Γ = 6 results for Nu are only about
4% below the Γ =1 results. An extremely small Γ -dependence was confirmed more
recently by Sun et al. (2005). It cannot influence the present data over the range
0.967 � Γ � 1.002 by a measurable amount. Note also that the experimental analysis
of the Γ -dependence included many Γ -values close to Γ = 1, where one would only
expect a deformation of the large-scale convection roll, but no extra roll. For example,
Nikolaenko et al. (2005) analysed Γ = 0.98, 0.67, 0.43, and 0.275, Funfschilling et al.
(2005) analysed Γ =0.967, 0.982, 1.003, 1.506, 2.006, 3.010, and 6.020, and Sun et al.
(2005) analysed Γ = 0.67, 1.0, 2.0, 5.0, 10, and 20, all only finding minute dependences.
However, we have corrected for tiny systematic errors in the data as discussed already
by Funfschilling et al. (2005) (due primarily to errors in the geometry), which can
be different for different cells, by a fraction of a percent by overlapping the Nusselt
numbers (through tiny shifts) of the small and the medium cell and then of the
medium and the large cell in their respective OB regimes.

In figure 9(a) we show the results for Nu in the reduced form Nu/Ra1/3 as a function
of Ra (on a logarithmic scale). For the small and medium cell, one sees that Nu in
the NOB region is slightly smaller, but only by a percent or so, than the data in the
strictly Boussinesq range.

In order to show the NOB effect more clearly, we fitted the strictly Oberbeck–
Boussinesq data (Funfschilling et al. 2005) to the empirical function

Nu/Ra0.3 =

4∑
i=0

bi[log10(Ra)]i (3.1)

and obtained the coefficients b0 = −1.7934, b1 = 0.85734, b2 = −0.13992, b3 =
0.009902, b4 = 0.0002490. The function fits the data within their scatter, but should
not be relied upon for Ra values outside the range 108 <Ra < 1011 used in the fit.
Relative deviations from the function are shown in figure 9(b). There the deviations
from the OB approximation become more clear. In figure 10 the same data for
NuNOB/NuOB are given as a function of ∆.

Comparison with figures 6 and 7 shows that NOB effects on Nu are negligible in
the range where χ >∼ 0.94 but detectable in the experiment with smaller values of χ ,
i.e., with larger NOB deviations from χ = 1. But even when χ reaches its smallest
experimental value, near 0.83, the data fall less than 1.5% below the Boussinesq
results. Even though the NOB effects on Nu are quite small, it is interesting to note
that they diminish the heat transport.

Measurements of χ and of Nu under NOB conditions were made previously by
Wu & Libchaber (1991) using 4He gas at low temperatures near its critical point. For
small Ra, where their cells conformed to the Oberbeck–Boussinesq approximation,
they found χ � 1.1. It is not known why their results in this OB limit differed
systematically from unity. At large Ra, however, their results for χ became as large
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Figure 9. (a) The reduced Nusselt number Nu/Ra1/3 on a linear scale as a function of the
Rayleigh number Ra on a logarithmic scale for the small (open squares), medium (solid
circles), and large (open circles) cell for Tm = 40 ◦C and Pr = 4.38. For the small (medium) cell,
deviations from the Oberbeck–Boussinesq approximation are seen at the largest Ra values
and yield Nusselt numbers that are smaller than the more nearly Oberbeck–Boussinesq results
obtained from the medium (large) cell. (b) The relative deviations of Nu from (3.1) as a
function of Ra. This equation provides a good fit to the data taken under OB conditions in
the Ra range considered here. In figure 10 the same data for NuNOB/NuOB are given as a
function of ∆.

as 2.5, indicating strong NOB effects. They did not have two cells of different sizes,
and thus of different departures from the OB approximation at the same Ra, for
comparison. However, when their data were plotted on a log–log scale, the results at
large Ra fell significantly below a straight line drawn through the results at smaller
Ra. Assuming that a power law should have fited the OB data, one then can conclude
that in this case also Nu is decreased by NOB effects.

4. Towards understanding the NOB robustness of Nu

Can one understand the insensitivity of Nu to the NOB conditions, which so
strongly contrasts with the sensitivity of the ratios χν , χβ relating to the material
properties or of the ratio χ = ∆b/∆t? The centre temperature Tc deviates from the
mean temperature Tm by about 5% of ∆ at ∆ =40 K, i.e. it also is rather insensitive.
A step towards an understanding of this is to divide the Nusselt number Nu in the
form (2.17) by its OB value NuOB = L/(2λsl

OB). This gives

NuNOB

NuOB

=
2λsl

OB

λsl
t + λsl

b

κt∆t + κb∆b

κm∆
. (4.1)
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Figure 10. F1F2 = NuNOB/NuOB and F1 (defined by (4.2) but calculated via (4.4), right most
formula) as functions of ∆. Solid circles, F1F2 for the medium cell; open circles, F1 for
the medium cell; solid squares, F1F2 for the small cell; open squares, F1 for the small
cell. While the product F1F2 is the measured ratio of the heat currents in the NOB case
and in the OB case, the individual factors F1 and F2 contain the material properties; in
particular F2 depends on κ(T ) together with χ according to (4.3). The inset shows the
parameter F2 = (κt∆t + κb∆b)/(κm∆) as a function of ∆ for Tm = 40 ◦C. The input is the material
parameter κ(T ) and the measured ratio χ = ∆b/∆t . The equation F2 = 1 + d2∆

2 + d3∆
3 with

d2 = − 6.81 × 10−6K−2 and d3 = 0.98 × 10−8K−3 yields a good fit to the data.

(For clarity in this section we denote the measured Nusselt number Nu as NuNOB .)
This ratio consists of two factors. In the first,

F1 =
2λsl

OB

λsl
t + λsl

b

, (4.2)

describing the contributions of the top and bottom thermal BL thicknesses, only the
sum of the respective BL thicknesses in the OB and the NOB cases appears. Similarly,
in the second factor,

F2 =
κt∆t + κb∆b

κm∆
, (4.3)

the corresponding sums κt∆t + κb∆b and κm(∆/2 + ∆/2) appear. In both the factors F1

and F2 the NOB effects will increase one term and decrease the other in the respective
sums. If the material parameters depended on temperature only linearly then there
would be a (partial) cancellation of the NOB effects in the two terms, leading to
only small, order ∆2, NOB corrections. This point will be made quantitative in § 6.4.
Thus NOB corrections of Nu depend on nonlinear, at least quadratic, contributions
to the NOB deviations of the material parameters, in contrast with those of χ or
of (Tc − Tm)/∆, χν , and χβ , which already have linear contributions. From figure 2,
left-hand diagram, and figure 3 we conclude that at least for not too large ∆ the
∆-dependence of the material properties is indeed basically linear, and therefore we
may start to understand the robustness of Nu towards NOB corrections: the linear
NOB contributions cancel in Nu.

Let us focus on the ∆-dependence of the factors F1 and F2 in (4.1) in more detail.
From the thermal diffusivity κ(T ) and the experimental results for ∆t and ∆b we
obtain F2(∆); see the inset of figure 10. As was the case for Tc − Tm, the factor F2
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can be well represented by the quadratic equation F2 − 1 = d2∆
2, without any linear

term (plus of course higher powers of ∆). A least-squares fit to the data yielded
d2 = −6.81 × 10−6 K−2. We will be able to theoretically understand this quadratic
dependence in § 6.4.

With this F2 and using the experimental results for NuNOB/NuOB from figure 10 we
can calculate

F1 =
2λsl

OB

λsl
t + λsl

b

=
NuNOB/NuOB

F2

=
Q/QOB

F2

, (4.4)

the ratio of the total thermal BL thicknesses. F1 is displayed as open symbols in
figure 10. We see that within an experimental uncertainty of 0.2% the BL thickness
ratio F1 is independent of ∆, namely F1 ≈ 1. The experimental data thus suggest that
λsl

t + λsl
b

∼=2λsl
OB even under strong NOB conditions, where λsl

t /λsl
b differs considerably

from unity. Because of our finding for thermal convection in water, that the sum of
the thermal-slope BL thicknesses is conserved within experimental precision,

λsl
t + λsl

b
∼= 2λsl

OB, (4.5)

the NOB corrections on Nu are governed only by F2 and thus are quadratic in ∆ to
an extremely good approximation. Finding F2 < 1 would then explain the observed
reduction in NuNOB as compared with NuOB .

Figure 10 also shows NuNOB/NuOB = F1F2 for the medium and small cell as solid
circles and open squares, respectively. One sees that within 0.1% or so the data
collapse onto a single curve.

We may speculate on the meaning of these results and cautiously draw some very
preliminary conclusions. Consider a hypothetical case where κ (thus Λ) does not
depend on T i.e. κb = κt = κm, while ν and β vary strongly. Then F2 = 1 for any
distribution of the temperature drops between the top and bottom BLs. Since for
constant κ there is no additional curvature, the temperature profile will not lose its
linear form in the BLs under NOB effects. Nevertheless, λsl

b can still be different from
λsl

t , resulting in Tc �= Tm. As long as the sum of the new BL thicknesses is the same as
it was before, i.e. under OB conditions, F1 = 1. This immediately gives QNOB = QOB

or NuNOB = NuOB , i.e. the heat flow will not change despite the fact that Tc �= Tm. The
shift in the bulk temperature from Tm to Tc is the sole effect of the strong variations
in ν and β , but Nu need not see this if κ is T -independent.

If, however, κ depends on T there is additional profile curvature then, which will
lead to a change in the heat flow Q. It seems as though F2 is responsible for this
and that we still have F1

∼= 1. Therefore the non-Oberbeck–Boussinesq heat current
Q can be calculated solely from the material properties and the temperature drops
∆b and ∆t ,

QNOB

QOB

=
NuNOB

NuOB

∼=
κb∆b + κt∆t

κm∆
. (4.6)

This guarantees the robustness against NOB effects, because the linear term in the
numerator is κm∆ and the cubic terms lead to corrections of order ∆2 for the Q-ratio.

In the case of a curved profile the supposed condition F1
∼= 1 could mean that the

value of Tc has to adjust itself in such a way that the sum of the BL thicknesses
is invariant, i.e. that (4.5) holds. The volume of the turbulent bulk then is invariant
under deviations from OB conditions; only its time-averaged temperature Tc responds
to the NOB conditions and deviates from Tm. Certainly one has to check in further
experiments (or using theoretical arguments) whether the constraint λsl

b + λsl
t

∼= 2λsl
OB

holds for liquids other than water in order to validate our finding. We do not know a
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physical reason why this should be the case in general; it may be incidental for water
in the temperature range under investigation.

For a more thorough understanding of the robustness of Nu and also Re against
NOB corrections, more theoretical insight into the mechanism of the heat transport
is required. Therefore we next consider RB convection models. We shall start with the
first attempt to explain NOB effects, namely the model of Wu & Libchaber (1991). It
will turn out that their basic assumption is not consistent with the new data. We then,
in § 6, extend the Prandtl–Blasius boundary-layer theory to T -dependent material
parameters. It turns out that this can explain the experimental observations rather
well.

5. Wu–Libchaber model for NOB effects
Wu & Libchaber (1991) and later Zhang et al. (1997) studied the influence of

deviations from OB conditions, both experimentally and also by developing a model
to cope with NOB effects on the Nusselt number. Their model extends the ideas
of the Chicago scaling model for RB convection (Castaing et al. 1989) by allowing
for different temperature drops ∆b and ∆t at the bottom and top. We shall briefly
summarize the Wu–Libchaber (WL) results as far as is relevant here, in our notation.

Wu & Libchaber also used (2.5), ∆b + ∆t =∆. Different top and bottom temp-
eratures imply different thermal boundary-layer thicknesses, which they introduced
by employing heat flux conservation,

Q = Λb̄

∆b

λb̄

= Λt̄

∆t

λt̄

. (5.1)

These BL thicknesses λb̄,̄t are defined in terms of the material properties, taken at the
mean temperatures Tb̄ and Tt̄ in the respective BLs. These temperatures are

Tb̄ = Tc +
∆b

2
=

Tc + Tb

2
and Tt̄ = Tc − ∆t

2
=

Tc + Tt

2
.

Next, temperature scales θb and θt are introduced, characterizing the boundary
layers in a different way than by the temperature drops ∆b and ∆t :

θb =
νb̄κb̄

gβb̄λ
3
b̄

, θt =
νt̄κt̄

gβt̄λ
3
t̄

. (5.2)

From their data (and later from the model of Zhang et al. 1997) they concluded
that these temperature scales should coincide†, and that, moreover, in the framework
of the model these scales should be identified with the scale ∆c of the temperature
fluctuations in the bulk,

θb = θt = ∆c. (5.3)

These equalities say that the BL thicknesses respond to the different temperature
drops at the bottom and top in such a way that the thermal scales communicate

† Wu & Libchaber (1991) in fact only assumed that θb and θt scale in the same way, and
experimentally they found a ratio θb/θt �= 1, independent of Ra, i.e., of ∆. This, however, cannot be
true, as the ratio must become equal to 1 in the OB limit. It might be that the observed asymmetry
in Wu & Libchaber (1991) originates from the asymmetry of the setup; while the top plate was
kept at constant temperature around 5K, a constant heat flux was imposed at the bottom plate.
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Figure 11. The ratios χθ (solid line), χRa (short-dashed line), χu, and χũ (dashed lines),
for water with Tm = 40 ◦C and Pr = 4.38 as functions of ∆ (left), and as functions of
Ra = ∆/∆m,medium for the medium cell (right). Deviations from χX = 1 signal NOB effects.
One sees that χθ �= 1, in conflict with the assumption of Wu & Libchaber (1991) underlying
their model of NOB effects.

through the thermal scale in the bulk. From (5.1), (5.2), and (5.3) one obtains

χ =
∆b

∆t

=
Λt̄

Λb̄

λt̄

λb̄

=
κt̄

κb̄

(
βt̄νb̄κb̄

βb̄νt̄κt̄

)1/3

. (5.4)

All material properties are to be taken at the middle temperature of the respective
BL. Note that in (5.4) we have replaced the Λ-ratio by the κ-ratio because in water
the additional factors ρ, cp are practically temperature independent.

Since the temperatures Tb̄ and Tt̄ needed to evaluate the material parameters can be
expressed in terms of χ , (5.4) becomes an implicit equation for the temperature ratio
χ . It can be solved iteratively (with fast convergence). The resulting Wu–Libchaber
χWL for the case of water is plotted in figure 6 for comparison with our measured
data. Clearly, χWL is considerably smaller than found from experiment.

What is the origin of this shortcoming of the Wu–Libchaber model? To answer
this we have to check the basic assumption, (5.3), on which (5.4) is based, i.e.

χθ = 1, whereχθ ≡ θb

θt

=
νb̄κb̄βt̄

νt̄κt̄βb̄

χ−3
λ =

νb̄κb̄βt̄

νt̄κt̄βb̄

(
κb̄

κt̄

χ

)−3

. (5.5)

This, however, is clearly not the case, as can be seen from figure 11, which shows that
χθ significantly deviates from unity. The idea of equal temperature scales θb and θt in
the bottom and top BLs is thus not consistent with experiment. For easier comparison
with the corresponding Wu–Libchaber plot we show in figure 12 all ratios also as
functions of χ .

Although the basic assumption χθ = 1 underlying the model of Wu & Libchaber
(1991) and Zhang et al. (1997) turns out not to be valid for our experimental data for
water, we will now sketch briefly the derivation of the Nusselt-number modification
in the NOB case by these authors. In order to calculate the Nusselt number, Wu
& Libchaber (1991) adopted the previous hypothesis of Castaing et al. (1989) and
assumed that the heat flux Q in the centre range is determined by the velocity
fluctuation uc and the temperature fluctuations ∆c only:

Q ∼ ρ cpuc∆c. (5.6)
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Figure 12. The same ratios χθ , χRa, χu, and χũ as in figures 11 as functions of the
temperature-drop ratio χ = ∆b/∆t =χ∆ for water and Tm = 40 ◦C.

With uc ∼
√

gβc∆cL and, furthermore, assuming that the BL temperature scale
θt = θb is the same as the bulk temperature fluctuation ∆c, (5.3), together with
Q =Λt̄∆t/λt̄ = Λb̄∆b/λb̄, (5.1), and the notation(

νκ

β

)1/3
1

Λ
≡ S, (5.7)

one finally obtains

Nu ∼
(

νm

νc

)3/7 (
κm

κc

)−6/7 (
βc

βm

)2/7 (
2Sc

St̄ + Sb̄

)9/7

Ra2/7
m P r−1/7

m . (5.8)

As in the 1989 Chicago model, we have the scaling law Nu ∝ Ra2/7. This scaling law is
not globally valid; see Grossmann & Lohse (2000, 2001), Xu, Bajaj & Ahlers (2000),
and many other references. It is nevertheless interesting to consider the change in Nu

under NOB effects,

NuNOB

NuOB

∣∣∣∣
WL

=

(
νm

νc

)3/7 (
κm

κc

)−6/7 (
βc

βm

)2/7 (
2Sc

St̄ + Sb̄

)9/7

. (5.9)

Note that the first three factors in (5.9), F3 ≡ (νm/νc)
3/7, F4 ≡ (κm/κc)

−6/7, and
F5 ≡ (βc/βm)2/7 simply originate from the fact that the Nusselt numbers are given
in terms of Ra and Pr at Tm and are non-dimensionalized with κm. These factors are
not used by Wu & Libchaber (1991), as the Rayleigh and Prandtl numbers in the
theoretical part of that paper are defined in terms of Tc. Here we use Tm instead of
Tc as the reference temperature, because Tm is the external control parameter while
Tc depends on the a priori unknown response of the RB flow to NOB conditions and
on the material properties at this centre temperature.

Although the basic assumptions for its derivation are not valid, (5.9) turns out
to describe the measured ratio of the NOB and OB Nusselt numbers surprisingly
well; see figure 13. Here we have calculated the ratio NuNOB/NuOB for water in the
medium cell as a function of Ra with the help of the experimentally determined
function χ(Ra) (rather than χWL). Not only is the robustness of Nu with respect to
NOB effects correctly reflected but even the small decrease in NuNOB as compared
with NuOB is given by (5.9). This holds in spite of the disagreement between the
experimental and theoretical χ-ratios and the violation of the basic assumption
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Figure 13. NuNOB/NuOB vs. Ra for water with Tm = 40 ◦C and Pr = 4.38, from our
measurements with the medium cell (circles), from the Wu–Libchaber model (5.9) but with the
ratio χ as measured in our water experiments in the medium cell (dashed line), and from the
theory of § 6 (solid line). Note the scale on the ordinate as compared with the corresponding
ordinate scale on the figures for the χ ’s: the Nusselt number is very robust to NOB effects.
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Figure 14. The individual factors in (5.9) as functions of ∆ for water and Tm = 40 ◦C: F3(∆)
(short-and-long-dashed line), F4(∆) (long-dashed line), F5(∆) (short-dashed line), and F6(∆)
(solid line). The factor F6 can be fitted by 1 − 3.07 × 10−5∆2. This fit is indistinguishable from
the curve itself.

χθ = 1 of the model. We conclude that the value of χ has little effect on the NOB
corrections to the Nusselt number, which are robustly very small. A similar conclusion
seems to be valid concerning the local Ra-scaling exponent of Nu, since 2/7 is not
verified experimentally either.

Let us look at the ∆-dependences of the individual factors in (5.9), F3, F4, F5, and
F6 = (2Sc/(St̄ + Sb̄))

9/7 in more detail; see figure 14. The last factor F6 again has the
property that only the sum of the bottom-layer and top-layer contributions of the
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quantity S appears. Thus, in the lowest, linear, order in the temperature deviations
here also the NOB effects from the top and bottom BLs compensate each other.
Indeed, the factor F6 is nicely described by a quadratic dependence on ∆, namely by
F6 = 1 − 3.07 × 10−5∆2. The other factors Fi , i = 3, 4, 5, introduce linear dependences
on ∆, however.

Since the ratios of the bottom and top quantities are of particular interest in
characterizing deviations from OB conditions quantitatively, χ = χ∆ in particular but
also χκ, χν, χβ (and, in the framework of the Wu–Libchaber model, χθ ), we now check
other such ratios. Consider first the ∆ or ∆/∆m,medium = Ra dependence of the ratio
of the bottom and top Rayleigh numbers χRa = Rab/Rat , with

Rab =
gβb̄λ

3
b̄
∆b

νb̄κb̄

=
∆b

θb

(5.10)

and Rat defined correspondingly. We have

χRa =
Rab

Rat

= χχ−1
θ . (5.11)

The BL thickness ratio in the Wu–Libchaber approximation is χλ̄ = λb̄/λt̄ = (κb̄/κt̄ ) χ.

Furthermore, there are various velocity scales in the RB system. Define wb as that
velocity scale in the BL for which buoyancy is of the order of the viscous loss,
gβb̄∆b ∼ νb̄wb/λ

2
b̄
, leading to

χw =
wb

wt

=
βb̄νt̄

βt̄νb̄

∆b

∆t

(
λb̄

λt̄

)2

= χβχ
−1
ν χχ2

λ̄
. (5.12)

Also of interest is this velocity scale in the boundary layers. In the bottom BL the
relevant length scale is λb̄ and the relevant temperature difference is either ∆b or θb.
Defining

ub = (βb̄g∆bλb̄)
1/2 and ũb = (βb̄gθbλb̄)

1/2 =

(
νb̄

λb̄

κb̄

λb̄

)1/2

one is led to

χu =
ub

ut

=

(
βb̄

βt̄

χχλ

)1/2

(5.13)

and

χũ =
ũb

ũt

= χ1/2
ν χ1/2

κ χ−1
λ . (5.14)

Note that ũb (and correspondingly ũt ) is the geometric mean of the viscous and
thermal molecular velocities in the boundary layer, independently of any buoyancy.

We present various of these ratios for the case of water as working fluid in figure 11,
as functions of ∆ and of ∆/∆m,medium = Ra. They all show prominent NOB effects. The
Ra-ratios χRa and also χũ have only moderate deviations from the OB value χX =1.
But apparently they too are not ∆-independent constants. For better comparison with
the curves of Wu and Libchaber (Wu & Libchaber 1991) we also present the ratios
of interest as functions of the preferred measure for NOB effects, the BL temperature
ratio χ = χ∆ (figure 12).
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6. Extension of boundary-layer theory to NOB conditions
6.1. Motivation

The previous section showed the shortcomings of the Wu–Libchaber model in explain-
ing the centre temperature Tc, and thus χ , in the examined NOB case of water. In this
section we will present an alternative theory which will not have these shortcomings
and which will be able to account consistently for all measured NOB effects in relation
to the OB data for water. It is based on the Prandtl–Blasius theory for laminar BLs
(Prandtl 1905; Blasius 1908; Pohlhausen 1921; Meksyn 1961; Landau & Lifshitz
1987; Schlichting & Gersten 2000), extended to the case of temperature-dependent
viscosity and thermal diffusivity (Plapp 1957); see also Zhang et al. (1997) and Wall &
Wilson (1997) who considered the case of temperature-dependent viscosity only. The
justification for starting from the Prandtl–Blasius BL theory is that, for water, even
for Ra = 1011 the wall Reynolds number is not larger than about 100. Indeed, the
Grossmann–Lohse unifying theory of RB convection (Grossmann & Lohse 2000, 2001,
2002, 2004), which is able to account for the measured Nu(Ra, P r) and Re(Ra, P r)
in a considerable part of parameter space, employs the scaling of the Prandtl–Blasius
BL theory as a central ingredient although the layers certainly show plume separation
and therefore time dependence. But they are not yet fully turbulent and therefore not
fluctuation dominated.

In § 2.4 we have already addressed how the BL thicknesses will be modified in the
NOB case. We will now calculate the full velocity and temperature profiles and from
those derive the centre temperature Tc and thus the ratio χ = ∆b/∆t (§ 6.2), which are
found to be in very good agreement with the experimental data. No fitting parameter
has to be introduced. In addition we employ the experimental finding of figure 10
that for water the factor F1 = 1 within the experimental resolution in the ∆ range of
interest, meaning that the sum of the top and bottom thermal-boundary-layer widths
(based on the slopes of the temperature profiles at the plates) remains unchanged in
the NOB case. Then the theory also gives the measured small reduction of Nusselt
number for the NOB case and an at most 0.5% increase in the Reynolds number for
the ∆ considered here; this is also consistent with the experimental data (§ 6.3). In
§ 6.4 we explore the origin of the NOB corrections by studying hypothetical liquids
for which only one of the material parameters is temperature dependent. In § 6.5 we
apply our theory to glycerol and make predictions for the NOB effects in that liquid.

6.2. Viscous and thermal boundary layers with temperature-dependent viscosity and
thermal diffusivity

As pointed out in § 2, for water one can assume to a very good approximation that
the fluid density and the isobaric specific heat capacity are constant, i.e. throughout
the liquid they are equal to ρm and cp,m, respectively. In contrast, the temperature
dependences of the kinematic viscosity ν(T ) = η(T )/ρm and the thermal diffusivity
κ(T ) = Λ(T )/(cp,mρm) are explicitly taken into consideration and calculated according
to the Appendix.

In this approximation Prandtl’s equation, on which Prandtl’s stationary-BL theory
is based, reads

ux∂xux + uz∂zux = ∂z(ν∂zux). (6.1)

Pressure contributions are omitted. ux is the horizontal velocity component at the
bottom or top plates in the direction of the large-scale circulation (the wind of
turbulence) and uz is the vertical velocity component. Both velocity components are
taken to be uniform in the lateral, y-direction, i.e. in the direction perpendicular to the
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wind, and are functions of x and z only. The following boundary conditions apply:

ux(x, 0) = 0, (6.2)

uz(x, 0) = 0, (6.3)

ux(x, ∞) = UNOB. (6.4)

The longitudinal asymptotic velocity UNOB outside the viscous BL is identified with
the wind of turbulence. Note that UNOB is not necessarily the same as UOB , since it
may vary with the bulk properties, in particular with Tc and thus with ∆. Its value is
part of the boundary conditions. For solving the BL equations the only thing which
matters is to fix the asymptotic (z → ∞) value of ux(x, z). The difference between UNOB

and UOB will be determined by an additional input, taken from an argument beyond
boundary-layer theory, namely, the experimental finding that the sum of the physical
boundary-layer thicknesses for water has been measured as independent of ∆.

Analogously, the thermal boundary layer is described by

ux∂xT + uz∂zT = ∂z

(
κ ∂zT

)
, (6.5)

with boundary conditions

T (x, 0) = Tb or T (x, 0) = Tt , (6.6)

T (x, ∞) = Tc. (6.7)

The two possible boundary conditions describe two plates facing each other, one the
top plate and the other the bottom plate. The asymptotic temperature of the fluid
outside each thermal BL is Tc, which under NOB conditions is not the same as Tm. Its
value is part of the boundary conditions as well and is determined by the constraint
that the thermal current across the RB container is conserved, as will be explained
below.

Now, the temperature is measured as the deviation from the top temperature and
is non-dimensionalized using ∆:

Θ =
T − Tt

∆
=

T − Tm

∆
+

1

2
. (6.8)

(Distinguish Θ from θ , the temperature in K as measured from the chosen reference
temperature, usually Tm, introduced already above.) Then Θm = 1/2 and the thermal
boundary conditions for the bottom and top plates read Θb = 1 and Θt = 0. The
central new element as compared with the standard laminar BL theory is that both
the kinematic viscosity and the thermal diffusivity are now temperature dependent; in
dimensionless form we have ν̃(Θ) = ν(T )/νm and κ̃(Θ) = κ(T )/κm, respectively, giving
rise to extra terms when the z-derivatives on the right-hand sides of (6.1) and (6.5)
are performed.

We now reduce (6.1) and (6.5) to ODEs by introducing a streamfunction ψ and
then employing its self-similarity under x and z changes. The streamfunction ψ can
be introduced because Prandtl’s BL theory deals with two-dimensional incompressible
flow. It satisfies ux = ∂zψ and uz = −∂xψ . In analogy with the OB case, we introduce
the transverse length scale �NOB:

�NOB ≡
√

x νm

UNOB

. (6.9)

This length scale is defined in terms of the asymptotic velocity UNOB as the velocity
scale, since this choice guarantees that the boundary condition for the stream-function
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will always be Ψ ′(∞) = 1, independently of the value of ∆. As UNOB is a priori
unknown, so is �NOB . Next the similarity variable ξ is introduced:

ξ = z

√
UNOB

x νm

=
z

�NOB

. (6.10)

The streamfunction ψ(x, z) is assumed to depend on this x, z-combination
only, implying a self-similar solution. As in the standard Prandtl theory, ψ is
non-dimensionalized as

Ψ (ξ ) =
ψ(x, z)

�NOBUNOB

. (6.11)

With this non-dimensional self-similarity ansatz for the stream function one finds
from the Prandtl equation (6.1) the ODE

ν̃Ψ ′′′ +

(
1

2
Ψ +

dν̃

dΘ
Θ ′

)
Ψ ′′ = 0. (6.12)

The boundary conditions are

Ψ (0) = 0, (6.13)

Ψ ′(0) = 0, (6.14)

Ψ ′(∞) = 1. (6.15)

Note that the velocity profile Ψ ′ = ux/UNOB depends explicitly on viscosity and
implicitly on the thermal diffusivity (since the Θ-profile depends on Pr , as will be
shown below; see (6.16)). Therefore, the solution of the dimensionless boundary-value
problem (6.12)–(6.15) is non-universal. Namely, it depends on the material parameters
and their respective temperature dependences.

Correspondingly, from the temperature equation (6.5) one obtains for the similarity
function Θ describing the temperature field Θ(x, z) =Θ(ξ )

κ̃ Θ ′′ +

(
1

2
Pr Ψ +

dκ̃

dΘ
Θ ′

)
Θ ′ = 0. (6.16)

There are two possible boundary conditions, either for the bottom or for the top BL:

Θ(0) = Θb = 1 or Θ(0) = Θt = 0, (6.17)

together with

Θ(∞) = Θc. (6.18)

Thus, in the RB configuration, each thermal plate is associated with a boundary
layer described by (6.12)–(6.15) coupled to (6.16)–(6.18). Therefore, in principle, it
would be just a matter of integrating the top and bottom BL equations, as in the
OB case. However, the NOB case has a subtle point: the asymptotic temperature
Θc = (Tc − Tt )/∆, with 0 <Θc < 1, is a response parameter, which has not been fixed
yet. Therefore, in order to solve the BL equations one has first to identify the centre
(bulk) temperature Tc and thus the boundary condition (6.18).

We determine Θc by the constraint that the thermal flux across the cell is conserved
and therefore the influx at the bottom must be the same as the outflux at the top,
J (z = 0) = J (z = L). This means that

κb∂zT |b = κt∂zT |t (6.19)
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Figure 15. (a) (Dimensionless) longitudinal velocity profile Ψ ′ = ux/UNOB and (b) tempera-
ture Θ profile for water at Tm = 40 ◦C and ∆= 40 ◦C in the NOB case. The centre temperature
Θc is larger than the mean temperature Θm = 0.5. The bottom-plate slope-based thermal BL
is smaller than the corresponding one at the top plate, λsl

b < λsl
t .

or in dimensionless form

κ̃b | Θ ′
b| = κ̃tΘ

′
t . (6.20)

This determines the bulk temperature Θc.
The BL equations (6.12)–(6.15) and (6.16)–(6.18) are solved iteratively until

condition (6.20) is satisfied. Technically, this can be achieved for example with a
shooting method (see Press et al. 1986). The solution gives the centre temperature Tc

(shown in figure 5), or alternatively the temperature drops ∆t and ∆b over the top and
bottom thermal BLs (shown in figure 4) and of course their ratio χ (shown in figure 6).
All these theoretical results are in good agreement with our measurements. We stress
that the derivation is based on two ingredients only: (i) the dimensionless BL equations
(6.12)–(6.15) and (6.16)–(6.18), assisted by the given temperature dependences of the
fluid properties, and (ii) the conservation of the thermal current. No additional input
or fitting parameter is needed.

The solution of the BL equations also gives the dimensionless velocity and
temperature profiles; see figure 15. Both the kinetic and the thermal bottom BLs
are thinner than the respective top BLs, as already argued in § 2 for the thermal
BLs. In the right-hand panel of figure 15 the difference between the slope-based
thermal BL thicknesses λsl

b and λsl
t is shown explicitly. It is also seen that Θc is

larger than Θm = 1/2. All NOB profiles are characterized by a pronounced curvature,
as qualitatively discussed in § 2. Figure 16 shows the moduli of the dimensionless
temperature slopes Θ ′; they are different at the top and bottom plates and vary
strongly with height z, owing to the temperature dependence of the thermal diffusion
coefficient.

The temperature and velocity profiles remain to be measured. Note that the theory
can only predict the shape of the profile including its non-dimensional thickness; it
can not predict its absolute, physical, thickness, since the as yet unknown velocity
UNOB (and derived from this the unknown transverse length scale �NOB) is involved
in the non-dimensionalization.

6.3. Application of NOB boundary-layer theory to Nu and Re

The lack of knowledge of UNOB (and thus of �NOB) also is the reason why the Nusselt
number NuNOB cannot yet be calculated. This is of course not surprising, as the BL
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Figure 16. (Dimensionless) slope of the temperature profiles in the top and bottom NOB
thermal BLs. The same liquid (water) and parameters Tm and ∆ as in figure 15 are chosen.

theory under consideration does not take notice of the thermal expansion coefficient β ,
which is responsible for the buoyant driving of the flow. We have calculated, instead,
the change in NuNOB relative to NuOB due to NOB influences. The relevant formulas
are (4.1), (4.2), (4.3). While F2 can be calculated from the non-dimensionalized BL
theory immediately, because only non-dimensional NOB quantities enter, the ratio
of the sum of the BL thicknesses, F1 = 2λsl

OB/(λsl
t + λsl

b ), (4.2), contains the length ratio
�OB/�NOB =

√
UNOB/UOB . Since the velocities UNOB , UOB feel the buoyancy in the

bulk, they are expected to be influenced by the NOB change in the thermal expansion
coefficient from βm to βc.

In order to determine the ratio UNOB/UOB we require the thickness ratio F1;
see (4.2). From our experiments with water we know for that case and within
experimental resolution that F1 = 1, i.e. the sum of the physical top and bottom
thermal-BL thicknesses remains constant under deviations from OB conditions; see
figure 10. Therefore we can use the value of F1, here equal to unity, as an additional
ingredient from experiment, in order to be able to calculate NuNOB/NuOB within the
extended BL theory.

Write F1 in terms of the dimensionless thicknesses and the respective length scales:

F1 =
2λ̃sl

OB

λ̃sl
t + λ̃sl

b

�OB

�NOB

= F̃1

√
UNOB

UOB

. (6.21)

Then one has

UNOB

UOB

=
ReNOB

ReOB

=

(
F1

F̃1

)2

. (6.22)

The non-dimensional factor F̃1 = 2λ̃sl
OB/(λ̃sl

t + λ̃sl
b ) is fully given by the Prandtl–

Blasius boundary-layer theory, namely by the integration of (6.12)–(6.15) together with
(6.16)–(6.18). F1 is taken as an input from experiment; here F1 = 1 as mentioned above.
Then (6.22) determines the U - or Re-ratio.

With the same experimental input of F1 (in particular F1 = 1 for the water case),
the Nusselt-number ratio follows from the exact relation (4.1):

NuNOB

NuOB

=
2λsl

OB

λsl
t + λsl

b

κt∆t + κb∆b

κm∆
= F1F2 = F2 =

κt∆t + κb∆b

κm∆
, (6.23)
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Figure 17. ReNOB/ReOB vs. ∆ for the medium cell with Tm = 40 ◦C and Pr = 4.38, from the
theory of § 6. Note the scale of the ordinate, as compared with the ordinate scale in the figures
for the χ ’s. The Reynolds number is very robust towards NOB corrections. Owing to the
deviations from OB conditions the wind amplitude increases slightly, while the heat current
decreases slightly.

i.e. it follows directly from the results for ∆t and ∆b of the previous subsection. The
resulting dependence of the heat-flux ratio on ∆ or on

Ra =
βmgL3

νmκm

∆

was shown in figure 13, together with the experimental data. Very good agreement
is seen. Not only the robustness of the Nusselt number towards NOB corrections is
found but even the tiny 1% decrease in NuNOB as compared with NuOB . The Reynolds-
number ratio ReNOB/ReOB ∝ F̃ −2

1 , (6.22), is shown in figure 17. The Reynolds number
also turns out to be very robust towards NOB corrections. It increases by about 0.5%
as compared with the OB case. This theoretical finding is again consistent with our
measurements (see figure 8), showing a less than 2% variation in ReNOB (which is
equal to our experimental error bar) due to NOB effects.

6.4. Origin of NOB corrections for χ and Nu

In order to shed light on the origin of the various features of the NOB corrections of
the Nu robustness in particular, we now consider the NOB corrections for hypothetical
liquids (i) with ν(T ) as in water but with κ = κm constant, and (ii) with κ(T ) as in
water but with ν = νm constant. The results for χ are shown in figure 18. For the ratios
NuNOB/NuOB and ReNOB/ReOB as displayed in figure 19 we in addition assumed that
F1 = 1 also for the hypothetical liquids. Note that ∆b, ∆t , χ , and F2 can be calculated
from the BL theory without any fitting parameter and without any measured data,
using only theory and the given material properties. But in order to determine the
Nu- and Re- ratios, we again have to know F1. Although obviously F1 cannot be
measured for hypothetical liquids, we assumed F1 = 1 as an extra hypothesis. These
calculations with hypothetical liquids quantify our qualitative discussions of § 4.

From the figures we conclude that Tc and thus ∆b, ∆t , and χ are mainly determined
by the temperature dependence of the viscosity ν(T ). The variation in the thermal
diffusivity κ(T ) with T has only a small influence on these quantities. In contrast,
within our theory the Nusselt-number modification under NOB effects is exclusively
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Figure 18. χ = ∆b/∆t vs. ∆ for the medium cell with Tm =40 ◦C, for the hypothetical liquids.
The solid line takes the full temperature dependence of both ν(T ) and κ(T ) into consideration,
i.e. represents real water. The dotted line shows χ for a hypothetical liquid with ν(T ) as in
water but with κm constant. Vice versa, the dashed line shows the ratio χ for a hypothetical
liquid with κ(T ) as in water but with νm constant. Only the extended Prandtl–Blasius BL
theory is used; there is no further experimental input.
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Figure 19. NuNOB/NuOB (left) and ReNOB/ReOB (right) vs. ∆ for the medium cell with
Tm = 40 ◦C, filled with either water (solid lines) or with a hypothetical liquid (the dashed
or dotted lines). The solid lines are valid if the temperature dependences of both ν(T )
and κ(T ) as in water are taken into account. The dotted lines show the Nusselt-number and
Reynolds-number changes for a hypothetical liquid with ν(T ) as in water but with κm constant.
Vice versa, the dashed lines show these numbers for a hypothetical liquid with κ(T ) as in water
but with νm constant. For comparison, the value F1 = 1 for the factor describing the OB/NOB
boundary-layer thickness ratio is used for the hypothetical liquids also.

determined by the temperature dependence of κ(T ). As can be seen easily from
(4.1), a temperature dependence of the viscosity ν(T ) with κ = κm constant has no
effect on the Nusselt number, in spite of the modification of the central temperature
(remembering always that F1 = 1 is assumed to hold).

The physical reason why Nu and Re are so robust under large changes in the
material parameters with temperature is that F2 is not affected by the linear, dominant,
variations in κ, ν, etc. The parameter F2 is affected only by the higher-order nonlinear
changes in the material parameters. These are visible as curvatures (or even the
changes of those) of (κ(T ) − κm)/κm, (ν(T ) − νm)/νm, etc., as seen in figure 20. The
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Figure 20. The relative deviations (X − Xm)/Xm of water properties X from their values Xm

at Tm for Tm = 40 ◦C. Solid line, isobaric thermal expansion coefficient β; long-dashed line,
kinematic viscosity ν; short dashed line, thermal conductivity Λ; dash-dotted line, Prandtl
number Pr; dotted line, density ρ.

dominant, linear, contributions in the material parameters cancel owing to the shift
in the bulk temperature Tm → Tc.

To understand this cancellation of the bottom and top NOB effects in linear
(∝ ∆) order analytically, as far as F2 is concerned, we apply a systematic expansion
of the relevant quantities in terms of ∆. We have from the caption to figure 5
that (Tc − Tm)/∆ = c2∆ + c3∆

2 + c4∆
3 and from the appendix, equation (A 1) the

expansions κb,t /κm = 1 ± aκ,1∆/2 + aκ,2∆
2/4 ± aκ,3∆

3/8; here ± corresponds to b, t

(bottom, top). This leads to

F2(∆) = 1 + d2∆
2 + d3∆

3 + d4∆
4. (6.24)

One may easily convince oneself that the linear terms (∝ ∆) cancel. The deviation from
F2 = 1 starts with ∆2. The following relations between the contributing coefficients
are valid:

d2 =
aκ,2

4
− aκ,1c2, d3 = −aκ,1 c3, d4 = −(aκ,1c4 + aκ,3c2). (6.25)

With the numerical values for the aκ,i from table 2 in the Appendix and for the cj

from the caption of figure 5 one obtains d2 = −7.2 × 10−6 K−2, in good agreement
with what was found from the data for F2; see the inset of figure 10. Both terms in the
sum for d2, the quadratic-order κ-coefficient as well as the product of the linear-order
κ-contribution and the linear-order (Tc − Tm)/∆-contribution, are negative and so
their effects are reinforced. For the next coefficient one calculates d3 = 3.2 × 10−8K−3.
The fourth-order term d4 consists of the first term only, since according to table 2
one has aκ,3 = 0. This gives d4 = −3.2 × 10−10 K−4. Equations (6.24) and (6.25) give a
consistent analytical description of the thermal NOB effects, connecting κ(T ) with Tc.
All these statements also hold for NuNOB/NuOB , as long as F1 = 1, as measured for
water in the temperature range under investigation.
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The quadratic dependence of F2 on ∆ is in agreement with experiment (see figure 10)
and was discussed in § 4. We may now also understand what sets the sign of the
NOB correction to the Nusselt number (provided that F1 = 1): It is the sign of the
sum constituting d2 = −aκ,1c2 + aκ,2/4. The factor aκ,1 results from the temperature
dependence of the thermal diffusivity, while the factor c2 in addition strongly depends
on the temperature dependence of the viscosity ν(T ); it immediately reflects whether Tc

is larger than Tm (as for water) or smaller. Furthermore, the curvature coefficient aκ,2 of
the thermal diffusivity κ(T ) contributes to the sign of the deviation Tc −Tm. For water
both terms in the sum are negative, thus adding to the downshift of NuNOB/NuOB .
As emphasized already, the effect is quadratic in ∆; the linear contributions from the
top and the bottom BLs cancel.

The NOB modifications of the Reynolds number Re are more subtle; see the right-
hand diagram in figure 19. For water, the NOB effects of a temperature-dependent
viscosity with a constant thermal diffusivity (resulting in a slight enhancement of Re)
and those of a temperature-dependent thermal diffusivity with a constant viscosity
(resulting in a slight decrease of Re) partly compensate each other, leading to only a
tiny net enhancement of Re. The reason for the enhanced Reynolds number for the
case ν(T ), κ = κm, is the overall temperature increase in the cell, Tc >Tm, resulting in
a smaller cell-averaged viscosity. Note again that according to our theory this does
not have any effect on the Nusselt number. The reason for the reduced Reynolds
number for the case κ(T ), ν = νm, is less obvious. Technically, it results from F̃1 > 1,
i.e. 2λ̃sl

OB > λ̃sl
t + λ̃sl

b . But remember that for this discussion we have always made the
assumption that F1 = 1.

6.5. NOB effects in glycerol

We now consider theoretically NOB effects for another liquid besides water, namely
glycerol. The reason is to have an independent test for our theory, as there are data
for Tc − Tm available from Zhang et al. (1997). In that paper Nusselt numbers are also
offered, but not the ratio NuNOB/NuOB . The glycerol case is a particularly interesting
one, because this liquid shows a dramatic change in viscosity ν(T ) with temperature,
while the T -dependence of the thermal diffusivity κ(T ) is rather weak. Thus glycerol
is a liquid that behaves approximately like one of the hypothetical liquids studied in
the previous subsection.

In the RB cell of Zhang et al. (1997), the mean operating temperature for glycerol
was sometimes near Tm = 40 ◦C but was not kept fixed as in our measurements.
With ∆ =10 K and their cell height L = 18.3 cm (the cell is a cubic box, so Γ = 1)
the Rayleigh number Ra = 1.29 × 107. The temperature dependences of the material
properties for glycerol are known and can be found in the Appendix, table 3.
As we have detailed above, within our BL theory knowledge of the temperature-
dependent viscosity ν(T ) and thermal diffusivity κ(T ) is enough to calculate the shift
of the centre temperature Tc − Tm as a function of ∆, without any fitting parameter.
Our result is shown in figure 21 and may be compared with the measured data
from Zhang et al. (1997). Indeed, our theory is able to describe reasonably well
the considerable deviation of Tc from Tm for this case also. Figure 20(b) shows the
corresponding temperature-drop ratio χ = ∆b/∆t . The increase in Tc as compared
with Tm and therefore the deviation from χ =1 are much more pronounced than
those for water, shown in figure 6. Instead of χ = 0.83 for water we find χ = 0.52 for
glycerol, both for ∆ = 40 K. Apparently the deviations from linearity are also stronger
than for the water case shown in figure 6.
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Figure 21. (a) The temperature shift in the centre of the cylinder filled with glycerol at
Tm = 40 ◦C as a function of ∆. Some experimental values measured by Zhang et al. (1997) are
also displayed, although for them constant Tm is not valid. Thus the data can only serve as an
approximate comparison. This is still reasonably promising, however. (b) The ratio χ = ∆b/∆t

as a function of ∆ for glycerol; Tm =40 ◦C. Note that Tc − Tm is much larger (about 6.5 K)
in glycerol than in water (about 1.8 K), both for ∆= 40 K. The temperature-drop ratio χ for
glycerol varies by about 50%.
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Figure 22. The change in the Nusselt number for glycerol under NOB effects. Since
no experimental information on the ratio of the total boundary-layer thicknesses
F1 = 2λsl

OB/(λsl
b + λsl

t ) is available, we have plotted the Nusselt number divided by F1, i.e.
the factor F2. If we assume that F1 ≈ 1 as in water then the NOB shift in the Nusselt
number will be tiny, as anticipated from the hypothetical liquid for which ν(T ) is temperature
dependent while κ is (for glycerol only nearly) constant.

We finally present the Nusselt-number ratio under NOB conditions in terms of
F1, in figure 22. Note that F1 is still unknown for glycerol. If for glycerol also the
conservation of the sum of thicknesses of the thermal BLs under NOB deviations
held, F1 = 1, the plot would show the Nusselt-number ratio directly. For a temperature
difference ∆ =40 K the relative shift is less than about 0.3%, much less than for water.
This is in agreement with the small temperature dependence of κ(T ), which leads to

F2 =
κt

κm

∆t

∆
+

κb

κm

∆b

∆
≈ 1.
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Clearly, it is of great interest to measure the Nu shift under NOB conditions in
glycerol also, in order to confirm whether the boundary-layer-thickness sum rule holds.
With the function F1 then available the Reynolds-number modification, ReNOB/ReOB ,
would also follow. Both results will shed light on the respective roles of the temperature
dependences of the viscosity ν(T ) and of the thermal diffusivity κ(T ). Also, the non-
trivial validity of the extended Prandtl–Blasius BL theory for the NOB case could be
confirmed.

7. Summary and conclusions
We have measured NOB effects on the ratio χ of the bottom and top temperature

drops across the thermal BLs and on the Nusselt number Nu and the Reynolds
number Re for turbulent Rayleigh–Bénard convection in water. While χ can vary
considerably (up to 20% in the case considered), the NOB effects on Nu and Re are
very small, resulting in only a less than 2% reduction of Nu and no modification of Re
within experimental accuracy (which for Re -measurements is about 2%). This holds
even though the viscosity and the thermal expansion coefficient vary by more than a
factor 2 between the top and bottom plates. We have theoretically accounted for this
robustness of Nu and Re towards NOB effects: the NOB corrections from the top and
bottom BLs compensate each other in first order by appropriately shifting the centre
temperature Tm → Tc. We believe that this conclusion is valid beyond the assumptions
of constant cp and ρ. We also expect that it will hold more generally than for water,
at least for all systems with Pr larger than 1. Then the thermal boundary layers are
always nested into the kinetic ones. The robustness of the Nusselt number against
NOB effects because of the cancellations will thus hold more generally. We have
also shown that one of the basic assumptions regarding the NOB model of Wu &
Libchaber (1991) and Zhang et al. (1997) is in conflict with the experimental data.
Nonetheless, like ours that model shows the robustness of Nu towards NOB effects.

An interesting, unexpected, and non-trivial finding for water as the working liquid is
the observation, that in the temperature range considered the sum of the slope-based
BL thicknesses λsl

b + λsl
t seems to be invariant under deviations from OB conditions.

Within experimental precision it turned out to be constant for even strong NOB
effects. The ratio of the NOB and OB heat fluxes QNOB/QOB can then be calculated
on the basis of the thermal diffusivities κb and κt at the bottom and top and measured
or theoretically evaluated (BL-theory) temperature drops ∆b and ∆t ; see (4.6). This
ratio is of second order in ∆ and thus in NOB effects.

The theory that we have employed is based on the Prandt–Blasius theory for
laminar BLs, extended to the case of temperature-dependent viscosity and thermal
diffusivity. Remarkably, we do not have to make use of the temperature dependence
of the thermal expansion coefficient. The theory gives a centre temperature Tc in very
good agreement with the experimental data, without employing any free parameter.
With the experimental finding that for water the sum of the slope-based thermal
BL thicknesses seems to be invariant under deviations from OB, the theory also
gives Nusselt- and Reynolds-number modifications consistent with the measurements.
The theory offers the opportunity to discuss hypothetical liquids with only one
temperature-dependent material parameter, thus shedding light on the mechanism of
the NOB corrections: whereas the NOB correction for χ mainly originates from the
temperature dependence of the viscosity, the NOB correction on the Nusselt number
exclusively (if F1 = 1) originates from the temperature dependence of the thermal
diffusivity.
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To validate our theory further, the next step would be to extend the experiments on
Rayleigh–Bénard flow under NOB conditions to other liquids, such as e.g. glycerol.

An exciting extension would be to analyse NOB effects for gases also, in particular
for those close to the critical point. Then one might have to take Schwarzschild
corrections into consideration. Here an interesting case is when the mean temperature
is above the critical temperature and the mean density corresponds to the critical
value. In that case, the top and bottom boundary layers are nearly symmetric but
nonetheless the fluid properties can vary significantly within them (Oh et al. 2004).
These interesting problems go beyond the scope of the present paper. From a
theoretical point of view the challenge in the analysis of NOB effects in gases lies in
the temperature dependences of the density and the specific heat capacity, which can
be and have been considered as constants in the present paper.

The role of the Grossmann–Lohse theory in the present context is to give
Nu(Ra, P r) and Re(Ra, P r), as long as ∆ is small enough to allow the neglect
of NOB effects. We have seen that in experiments ∆ does not need to be very small
for OB conditions to hold owing to the small effects of deviations from OB conditions,
the corrections increasing only ∝ ∆2. While in the present paper BL effects have been
dealt with, an extension of GL theory would allow one to calculate NuNOB and ReNOB

immediately, without further input from experiment. This extended GL theory will
be addressed separately. In particular it takes the T -dependence of the expansion
coefficient β(T ) into account explicitly.

This work was initiated at the Lorentz-Centre Workshop on turbulent thermal
convection in Leiden in June 2003 and we would like to express our gratitude to Wim
van Saarloos for making such workshop possible. We thank Alexei Nikolaenko for
his contributions to the experiments and Enrico Calzavarini and Kazuyasu Sugiyama
for discussions. The work in Twente is part of the research program of FOM, which
is financially supported by NWO, and it was also supported (for DL and SG) by
the European Union (EU) under contract HPRN-CT-2000-00162. The work at Santa
Barbara was supported by the US Department of Energy through Grant DE-FG02-
03ER46080.

Appendix. Physical properties of water and glycerol

The relative deviations (X − Xm)/Xm from their values Xm at Tm = 40 ◦C of various
physical properties X of water at a pressure of one bar are shown in figure 20. One
sees immediately that the properties with significant temperature dependences are the
thermal expansion coefficient β and the kinematic viscosity ν. The cubic polynomial

X − Xm

Xm

= a1(T − Tm) + a2(T − Tm)2 + a3(T − Tm)3 (A 1)

gives a good fit to the data for each property. In some cases the cubic term is not
needed. The coefficients as well as the values of Xm for Tm = 40 ◦C are given in table 2.

For the glycerol case, the dramatic change in viscosity with temperature as shown
in figure 23, required a fifth-order polynomial,

X − Xm

Xm

= a1(T − Tm) + a2(T − Tm)2 + a3(T − Tm)3 + a4(T − Tm)4 + a5(T − Tm)5. (A 2)

The coefficients as well as the values of Xm for Tm = 40 ◦C are given in table 3.
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Figure 23. The relative deviations (X − Xm)/Xm of glycerol properties X from their values Xm

at Tm for Tm = 40 ◦C . (a) solid line, isobaric thermal expansion coefficient β; short dashed-line,
thermal conductivity Λ; dotted line, density ρ; double-dashed dotted line, specific heat capacity
cp . (b) solid line, kinematic viscosity ν; dotted line, Prandtl number Pr . Note the very different
scales in the (a) and (b).

X Xm a1 (10−4 K−1) a2 (10−6 K−2) a3 (10−8 K−3)

ρ/103kg m−3 0.9922 −3.736 −3.98 —
cp/103J kg−1K−1 4.1690 0.084 4.60 —
β/10−4K−1 3.8810 195.0 −159.8 207
Λ/Wm−1K−1 0.6297 21.99 −17.8 —
κ/10−6m2s−1 0.1528 23.52 −14.9 —
ν/10−6m2s−1 0.6690 −175.9 295.8 −460
Pr 4.3820 −197.6 370 −618

Table 2. The values of Xm at Tm = 40 ◦C of several properties X of water and the
coefficients obtained by fitting the polynomial (A 1) to data over the range 10 < T < 70 ◦C.

a1 a2 a3 a4 a5

X Xm (10−4 K−1) (10−6 K−2) (10−8 K−3) (10−10 K−4) (10−12 K−5)

ρ/103 kg m−3 1.2477 −4.789 −0.3795 — — —

cp/103 J kg−1K
−1

2.5108 22.511 — — — —
β/10−4 K−1 4.7893 20.639 4.664 1.0757 0.2540 —
Λ/10−3 Wm−1K−1 2.9351 3.863 — — — —
κ/10−6 m2s−1 0.0937 13.858 3.913 −0.7577 — —
ν/10−6 m2s−1 238.71 −702.83 2393.1 −6923.0 33 131.3 −71 517.5
Pr 2547.9 −687.68 2325.9 −6646.3 30 875.9 −65 996.9

Table 3. The values of Xm at Tm = 40 ◦C of several properties X of glycerol and the
coefficients obtained by fitting the polynomial (A 2) to data over the range 10 < T < 70 ◦C.
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