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In this paper, we present the non-orthogonal configuration interaction singles (NO-

CIS) method for calculating core-excited states of closed-shell molecules. NOCIS is

a black-box variant of NOCI, which uses A different core-ionized determinants for a

molecule with A atoms of a given element to form single substitutions. NOCIS is

a variational, spin-pure, size-consistent ab-initio method that dramatically improves

on standard CIS by capturing essential orbital relaxation effects, in addition to es-

sential configuration interaction. We apply it to the calculation of core-excitations

for several smaller molecules, and demonstrate that it performs competitively with

other Hartree-Fock and DFT-based methods. We also benchmark it in several basis

sets.
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I. INTRODUCTION

Due to the increasing accessibility of synchrotron radiation, x-ray absorption spectroscopy

(XAS) methods have become far more powerful, and are able to study an increasing num-

ber of systems. However, the theoretical calculation of core-excited states, which are often

needed to identify XAS peaks, still has space to improve. An ideal core-excited state cal-

culation is one which, while still efficient, considers the interactions between the different

possible core excitations and correctly treats electron localization on atoms of the same type.

If possible, it should also be systematically improvable.

There are many different approaches to calculating core-excited states. Early methods

used multiple scattering Xα
1, static exchange2, and transition potential calculations3, but

several methods have evolved since then. One such method is configuration interaction

singles (CIS)4, which is based on a Hartree-Fock (HF) reference for an excited state that

considers all single-electron excitations. However, CIS calculations do not allow for orbital

relaxation5, or include dynamic correlation6, meaning that their results are not particularly

accurate. Dynamic correlation via CIS(D)7,8 offers only limited improvement9.

Another method is time-dependent density functional theory (TDDFT), which calculates

poles of the DFT response function from a CIS-like equation. While it allows for only very

limited orbital relaxation, it does include differential electron correlation effects. Another

problem is that a TDDFT potential does not not have the correct long-range Coulomb

tail, due to the self-interaction problem, meaning that excitation energies corresponding

to states that use this tail are not accurate10, so this method has been most widely used

for valence-excited states. These methods scale can scale from N2 to N4 depending on

how they are implemented11. Significant effort, nonetheless, has been devoted to modifying

standard density functionals to improve the performance of TDDFT for predicting core

excitation energies12–16. In particular, in contrast with the success of long-range corrected

functionals17 for valence Rydberg and charge-transfer excited states, short-range corrected

functionals18 improve core-excited states.

Another set of methods is delta-self-consistent field (∆-SCF) and ∆-DFT, which scale

N2-N3 depending on implementation. In these methods, the excited state energy is obtained

by subtracting a ground-state from an excited-state HF or Kohn-Sham energy calculation18.

Since the excited state is computed separately and explicitly, this method allows for orbital
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relaxation. ∆-SCF does not include electron correlation effects, while ∆-DFT does through

its functional19. Another crucial component of this method is the functional used, as different

functionals produce different results for different types of calculations. Some shortfalls of

these methods are that ∆-DFT suffers from the same self-interaction problem as TDDFT,

and that both ∆ methods are not spin pure, which is important when simulating XAS

spectra. Additionally, they do not consider static correlation in the case of molecules with

several of the same atom.

A different method is algebraic diagrammatic construction (ADC)20, which scales as N5

for ADC(2), the most common variant used21,22. This approximation to the polarization

propagator comes from Green’s function theory and it has been derived with the diagram-

matic perturbation expansion of the polarization propagator using the Møller-Plesset par-

tition of the Hamiltonian. For core-excited states, there exists the core-valence separation

(CVS) addition to the ADC scheme23–27, which uses the decoupling of the space of core-

excitations from the valence in the ADC matrix. Orbital relaxation effects are included in-

directly in ADC(2), the second-order Møller-Plesset perturbation (MP2)-corrected version.

Electron correlation is also included, resulting in a relatively high degree of accuracy28.

A final set of methods to consider are those that come from equation-of-motion coupled-

cluster singles and doubles (EOM-CCSD) methods29, specifically those for electronically

excited states (EOM-EE) and electron affinities (EOM-EA), which scale as N6. In these

types of calculations, target states are excitations from a reference state, and they are

constructed using an excitation operator. For EOM-EE, the reference state is the closed-

shell CC ground state, and the excitation operator conserves the number of α and β electrons.

While EOM-EA and EOM-EE have the same reference state (typically the CCSD ground

state), they differ in that EOM-EA uses electron attaching excitation operators, while EOM-

EE uses electron exciting operators. Both methods include correlation effects30, but while

EOM-EE does not fully include orbital relaxation31, EOM-EA does, as it is used with a

core-ionized reference32.

There have been several methods developed recently that have also made important

strides toward the computation of high-energy states. One such example is the DFT/ROCIS

work of Roemelt et al.33 in which was specifically designed for L-edge XAS and combines

DFT with CI through the use of Kohn-Sham orbitals. Other work has been done by Coriani

et al.34 on damped coupled-cluster linear response functions to extend this method from UV
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to XAS spectra.

It is also important to discuss non-orthogonal configuration interaction (NOCI) methods

for excited states35–38. NOCI uses different Hartree-Fock solutions as the basis for the CI

calculation, which renders the basis non-orthogonal. This allows the basis to more effectively

span the relevant part of the configuration space than an orthogonal calculation39. Since

the creation of this method, further work has been done to increase the accuracy of NOCI

calculations, for example, the spin-flip NOCI (SF-NOCI)40 and NOCI-MP241 methods. In

SF-NOCI, the wavefunction is defined as a linear combination of independently relaxed

Slater determinants obtained from all possible spin-flipping excitations, and it improves on

several less-desirable elements in the original NOCI calculation process40. NOCI-MP2 was

designed to add dynamic correlation to NOCI. The formalism has recently been improved

to permit size-consistency and an efficient implementation has been developed41.

In this paper, we present a novel method for the calculation of single and multi-

reference core-excited states: non-orthogonal configuration interaction singles, or NOCIS.

This method considers the interactions not only between singly-excited states of different

core orbitals but also between localized excited states for a molecule with two or more of

the same atom. While NOCI is a general framework, where the appropriate determinants

are chosen on a case-by-case basis, NOCIS is designed as a black-box method that includes

a precisely defined set of determinants. NOCIS allows for orbital relaxation by using as

its basis the electron-attached states of independently optimized, core-ionized references,

providing, as we shall demonstrate, an impressive improvement over the standard orthog-

onal CIS method. Thus, it can efficiently produce all core-excitation energy values for a

given molecule with a high degree of accuracy. It is important to note that this method is

identical to the static exchange approximation (STEX) method42 for a single reference, but

its invocation of non-orthogonality for multi-reference states renders it unique from other

average-of-configurations methods such as 4C STEX43, which still use orthogonal orbitals.

II. THEORY

The NOCIS wavefunction is constructed from R different core-ionized determinants cor-

responding to core electron removal from each identical atom of interest (eg. R=3 for C

in C3H4O) and ROHF optimization of those cation determinants. Electrons are then reat-
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tached into the V virtual orbitals (different for each cation determinant), and the resulting

core-excited configuration is projected against the closed-shell ground state determinant

to ensure that the core-excited states are strongly orthogonal to the ground state. The

amplitudes taα are unknowns to be variationally determined:

|ΨNOCIS⟩ =
R∑

i=1

V∑

a=1

tai (1− P̂)[â†aâi ± â†āâī]|Φi⟩ (1)

Here |Φi⟩ is the ROHF determinant with its core hole on atom i filled. P̂ acts by projecting

against the neutral ground state reference. Since Eq. 1 is a linear trial function, application

of the variational principle gives a generalized eigenvalue problem for the core-excited state

energies Ek and amplitudes tk.

Htk = StkEk (2)

We can at this stage note that in addition to being variational, the NOCIS core-excited

state energies are also size-consistent, just as for the standard orthogonal CIS energy. For

a supersystem composed of two non-interacting molecules, M1 and M2, the NOCIS core

excitation energies on M1 are unaffected by the presence of M2. This property is essential

to correctly predict substituent effects on core excitation energies.

FIG. 1. A visual of the Hamiltonian Matrix in the NOCIS scheme; the peach components are the

Fock ionized elements and the blue elements are obtained with NOCI. This example is considering

a potential excitation from 2 different core orbitals

The algorithm for a NOCIS calculation is as follows:

1. A self-consistent field (SCF) calculation is run on the ground state of the given molecule

2. If more than two core orbitals are to be considered, a Boys Localization44 is per-

formed on those orbitals (we restrict ourselves to K shells in this discussion though

generalization is possible)

3. The molecular orbital (MO) coefficient matrices are rearranged to reflect the removal

of an electron from the core orbital of interest
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4. A restricted open-shell Hartree-Fock (ROHF) optimization is performed on this cation

state without freezing the core orbital

5. Steps 3 and 4 are repeated as necessary for each relevant core orbital

6. The diagonal blocks of the H, S, and S2 matrices are constructed for each i (determi-

nants in a block are orthonormal)

7. The off-diagonal elements of the matrices are constructed using NOCI

8. The generalized eigenvalue problem is solved, the SCF ground energy is subtracted

from the resulting energies to obtain the excitation energy of each state, and the ⟨S2⟩

value for each state can be obtained

The number of core orbitals of a particular type defines the number of references in the

calculation (eg. a 1s calculation for C2H2 would have 2 references). Figure 1 shows a visual

example of a completed NOCIS matrix. As NOCIS calculations have only been implemented

so far for closed-shell molecules, those are what are discussed here. For NOCIS, it is necessary

to consider both alpha and beta ionization, but, for closed shell reference, it is only necessary

to perform the optimization for either alpha or beta.

A. Diagonal-Block Matrix Elements

In the aforementioned peach blocks of Figure 1, NOCI and CIS calculations produce the

same results. These diagonal blocks represent particle states, which are formed by adding

an electron to a determinant, and thus they are simply the vv block of the Fock matrix for

ionized states. In the basis of these particle states, the matrix elements of H are then the

matrix elements of the Fock operator, with the addition of the excited ion energy on the

diagonal elements.

The S matrix is simply the identity because these matrix elements are between configu-

rations constructed from the same set of orthonormal MOs. This orthonormality also makes

the S2 matrix simple to compute.
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TABLE I. Deviation of excitation energies (ωex) of the first three singlet core-excited states of CO

(C and O 1s) and NH3 (N 1s) calculated using NOCIS and different basis sets, compared with

results from the aug-cc-pCVQZ basis set.

CO C 1s CO O 1s NH3 N 1s

States ωex (eV) States ωex (eV) States ωex (eV)

Basis set 1 2 3 1 2 3 1 2 3

cc-pVDZ -2.36 -7.88 -11.46 -2.62 -7.74 -13.30 -3.63 -4.08 -14.62

cc-pVTZ -0.42 -3.62 -5.59 -0.54 -3.68 -6.49 -1.09 -1.58 -6.96

cc-pVQZ -0.13 -2.25 -3.44 -0.14 -2.29 -3.79 -0.60 -1.03 -4.81

cc-pV5Z -0.03 -1.31 -1.58 -0.02 -1.36 -1.77 -0.33 -0.61 -2.25

aug-cc-pVDZ -2.24 -2.62 -2.71 -2.66 -2.91 -2.99 -2.37 -2.42 -2.93

aug-cc-pVTZ -0.29 -0.35 -0.38 -0.47 -0.52 -0.56 -0.30 -0.31 -0.51

aug-cc-pVQZ -0.11 -0.10 -0.11 -0.13 -0.12 -0.13 -0.09 -0.09 -0.09

aug-cc-pV5Z -0.03 0.03 0.06 -0.02 0.05 0.07 - - -

d-aug-cc-pVDZ -2.20 -2.29 -2.25 -2.66 -2.60 -2.53 -2.33 -2.79 -13.30

d-aug-cc-pVTZ -0.24 -0.11 -0.06 -0.45 -0.29 -0.23 -0.29 -0.28 0.14

cc-pCVDZ -1.04 -6.42 -10.06 -1.27 -6.32 -11.90 -2.33 -2.79 -13.30

cc-pCVTZ -0.10 -3.27 -5.26 -0.14 -3.26 -5.96 -0.81 -1.29 -6.66

cc-pCVQZ -0.02 -2.13 -3.31 -0.01 -2.15 -3.64 -0.50 -0.93 -4.71

aug-cc-pCVDZ -0.95 -1.23 -1.33 -1.30 -1.50 -1.60 -1.07 -1.12 -1.63

aug-cc-pCVTZ -0.08 -0.13 -0.16 -0.12 -0.18 -0.21 -0.07 -0.08 -0.28

d-aug-cc-pCVDZ -0.92 -0.91 -0.86 -1.30 -1.20 -1.14 -1.06 -1.06 -0.65

d-aug-cc-pCVTZ -0.07 0.07 0.11 -0.12 0.04 0.10 -0.07 -0.06 0.36

aug-cc-pCVQZ 289.02 294.01 294.96 534.19 538.18 539.20 401.01 402.51 403.37

B. NOCI Matrix Elements

The main substance of NOCI can be found in References 39 and 46, but the theory is

summarized here. The intention is to build and diagonalize the Hamiltonian in a basis of

non-orthogonal Slater determinants, or basis states. This renders the equation a generalized
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eigenvalue problem. The mathematical method for computation of the overlap and Hamil-

tonian between two generally non-orthogonal basis states is described in detail by Thom

and Head-Gordon46.

To obtain the orbitals, we use the orbitals of Amos and Hall47,48, alternately called

Löwdin-Paired orbitals49. After these biorthogonal states have been obtained, generalized

Slater-Condon rules46,47 are used to compute the H matrix elements and the generalized

eigenvalue problem is solved.

One further element of note is that the paper of Sundstrom and Head-Gordon39 contains

an error in the derivation of the S2 matrix elements. This was corrected by Levine and

Head-Gordon50.

C. Computational Implementation

The code for NOCIS was implemented in a development version of Q-Chem 5.051 utilizing

the Armadillo linear algebra library52. All molecular geometries were obtained from Curtiss

et al.53 The ROHF optimizations were performed using the Newton Minres algorithm54, and

the NOCI code was a modified version of previous code developed by Sundstrom39. The

maximum overlap method (MOM) is used to keep the core-hole from collapsing55.

The approximate scaling of this code is N4. Each NOCI element requires a 2-electron

integral build, which is a source of computational bottleneck. One solution, which has been

implemented, is to calculate these integrals in batches instead of individually, but this also

causes a significant increase in memory use. The code can be further accelerated by noting

that many matrix elements share a common orbital basis, but this remains a further project.

However, even in its current unoptimized state, NOCIS does not use any large intermediates

that require disk storage, an advantage over ADC and EOM-CCSD methods, where the

unknowns are as large as fourth-rank tensors.

III. RESULTS

The NOCIS calculations were tested using both ROHF and UHF methods for the cation

optimization. Although the UHF method provided slightly more accurate energies, they

were not spin-pure. Since S2 values are vital to identifying XAS states, we decided to move

8

http://dx.doi.org/10.1063/1.5023051


TABLE II. Comparisons of K-edge calculation errors for several molecules using CIS, ∆-SCF,

∆-DFT, and NOCIS with experimental values, along with the mean signed error (MSE) and root-

mean-squared error (RMSE). Calculations were done in the aug-cc-pCVTZ58–60 basis and all results

are in eV.

Molecule Experiment CIS ∆-SCF ∆-DFTa ∆-DFTb TDDFTc NOCIS

C2H4 C(1s) 284.761 15.58 10.44 -4.50 2.10 3.26 1.70

C2H2 C(1s) 285.961 16.68 9.97 -1.93 4.62 2.49 1.26

H2CO C(1s) 28663 20.29 4.94 -0.70 0.71 -0.48 2.01

C2N2 C(1s) 286.373 10.07 7.07 -5.05 1.50 0.17 1.75

HCN C(1s) 286.3768 17.07 2.77 -0.46 0.93 0.11 1.71

C2H6 C(1s) 286.961 12.86 7.48 -4.88 1.70 0.45 0.52

CO C(1s) 287.466 19.14 -0.34 -1.01 0.40 -1.34 1.70

CH3OH C(1s) 287.9267 17.15 0.70 0.07 1.59 0.58 1.07

CH4 C(1s) 288.162 14.68 -1.17 -1.60 -0.13 0.03 -0.83

CO2 C(1s) 290.864 18.56 3.90 1.48 3.46 -1.06 2.12

C2N2 N(1s) 398.973 12.73 10.74 -5.45 2.26 0.38 1.13

HCN N(1s) 399.768 21.63 2.59 -0.71 0.64 0.21 1.04

NH3 N(1s) 400.869 15.29 -0.13 -0.60 0.84 0.72 0.30

N2 N(1s) 400.9670 23.93 16.45 -1.07 1.77 -0.45 1.16

N2O Nt(1s) 401.165 22.04 3.09 -1.11 0.19 0.10 1.09

N2O Nc(1s) 404.865 22.28 5.12 -1.52 -0.19 -0.70 1.14

H2CO O(1s) 530.863 25.53 3.65 -0.75 0.35 0.07 0.70

H2O O(1s) 53469 22.17 -0.38 -0.76 0.52 0.48 0.15

CH3OH O(1s) 534.0767 21.91 -0.40 -0.62 0.64 0.73 0.22

CO O(1s) 534.266 25.76 -1.44 -1.18 -0.14 0.10 0.11

N2O O(1s) 53571 22.41 1.20 -1.30 -0.30 0.58 -0.05

CO2 O(1s) 535.371 18.75 12.28 -0.29 1.04 1.79 0.80

HF F(1s) 682.272 29.52 4.20 4.16 5.20 4.40 4.87

F2 F(1s) 686.572 10.66 7.17 -5.32 -2.72 -5.45 -2.90

MSE 19.03 4.58 -1.46 1.12 0.30 0.95

RMSE 19.64 6.55 2.62 1.97 1.77 1.63

a B3LYP
b SRC1-R1
c SRC1-R1
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TABLE III. A comparison of NOCIS values with the ADC calculations of Reference 28 for the first

three excited states, all done in the aug-cc-pVQZ basis.74,75

CO C 1s CO O 1s NH3 N 1s

States ωex (eV) States ωex (eV) States ωex (eV)

Basis set 1 2 3 1 2 3 1 2 3

NOCIS 289.13 294.11 295.07 534.32 538.31 539.33 401.10 402.60 403.46

Error 1.73 1.61 1.67 0.22 0.49 0.47 0.44 0.27 0.60

ADC-CVS(3) 287.80 293.75 294.83 538.38 544.32 545.86 403.61 405.17 406.17

Error 0.4 1.25 1.43 4.28 5.52 6.06 2.95 2.84 3.31

Experiment 287.464 292.564 293.464 534.164 538.864 539.864 400.6669 402.3369 402.8669

forward with the spin-pure ROHF calculations.

We first assess the basis set convergence of NOCIS calculations on the 3 lowest allowed

singlet core-excited states of CO (1s C and 1s O) and NH3. The results are shown in Table

1 for the standard sequence of Dunning correlation consistent basis sets56 as well as the

sequences augmented with diffuse and/or tight functions. The use of diffuse functions, as

expected, becomes more important for states higher than the lowest, which contain some

Rydberg character in the particle levels that become partly occupied in the transition. Use

of the CV augmentation, on the other hand, helps accelerate basis set convergence of the

core hole. The largest improvement, however, is when both an augmented and core-polarized

basis set is used. This is reasonable, as including core correlated functions as well as diffuse

functions should result in a more accurate result for a core excitation. Looking more in-

depth at the aug-cc-pcVXZ basis sets, the balance of error reduction and efficiency suggests

that a good basis set for both efficiency and accuracy is aug-cc-pCVTZ. These conclusions

are generally consistent with the recent basis set assessment of Fouda and Besley57.

Having selected the aug-cc-pCVTZ basis, we next consider the comparison of the NOCIS

method to three other methods, as shown in Table 2, which shows the results of CIS, ∆-SCF,

∆-DFT, TDDFT, and NOCIS calculations expressed as deviations from experimental values.

As expected, the CIS method performs very poorly due to its lack of orbital relaxation and

correlation, with a RMS error of 19.64 eV. The ∆-SCF method, which includes orbital

relaxation but not dynamic correlation, is a large improvement on CIS methods, with a
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RMS error of 6.55 eV. Notably, ∆-SCF calculations perform worse in cases such as N2

where there is a problem of static correlation as a result of core orbitals with the same

energy. Static correlation will be discussed in more depth later.

The ∆-DFT methods, which include both orbital relaxation and dynamic correlation,

perform even better, as expected, with RMS errors of 2.62 eV and 1.97 eV respectively for

B3LYP and SRC1-R1. The TDDFT methods perform extremely well, with an RMS error of

1.77. This is likely due to the fact that the SRC1-R1 functional76 was specifically designed

for core excitations in TDDFT. This result shows the importance of correlation in obtaining

an accurate core-excitation energy. However, TDDFT is extremely functional dependent,

and performing it with other functionals produces results that vary considerably in accuracy.

The NOCIS calculations, which include orbital relaxation and static correlation but not

dynamic correlation, perform remarkably well, even when compared to the DFT methods

mentioned above, outperforming both ∆ and TDDFT in RMSE. One particular area of

strength for this calculation is its ability to account for static correlation, specifically exci-

tations from core orbitals of the same type, as in C2H2. This is accomplished through Boys

localization44 on the relevant core orbitals, and the non-orthogonal interactions between

them. The addition of this element significantly improved the calculation results, often by

several eV. In the cc-pCVDZ basis set, the errors on C2H2, N2, CO2 O, and F2 were reduced

by 6.53, 8.03, 10.24, and 7.61 eV, respectively relative to non-localized NOCIS calculations.

The NOCIS results together with ∆-SCF and standard CIS give interesting insight into the

relative roles of orbital relaxation and configuration interaction in core excitation energies.

It is clear that both are essential in cases where there are multiple equivalent nuclei, although

the orbital relaxation effect is dominant in cases where only a singly nucleus is core-excited

(eg. H2CO). Cases where ∆-SCF performs better than NOCIS may well be due to fortuitous

error cancellation. A further note is that none of these methods include relativistic effects,

and thus the larger the atom, the more poorly the method performs, as shown in the F2

and HF calculations.

Table 3 features NOCIS calculations compared with ADC calculations from Reference 28.

While ADC performed better with the CO C 1s, NOCIS performed better for the CO O

1s and the NH3 N 1s, which is consistent with the fact that ADC has been shown to

overestimate energies for heavier atoms28. This shows that NOCIS is at least competitive

with ADC, and with its smaller scaling, more efficient. Additionally, in some smaller basis
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State 1 State 2 State 3

CIS 0.280 0.015 0.014

ADC-CVS(3)28 0.159 0.005 0.013

NOCIS 0.155 0.003 0.009

Experiment77 0.167 0.003 0.008

TABLE IV. A comparison of the oscillator strengths of the first 3 singlet excited states of the C 1s

orbital in CO, all done in the aug-cc-pVQZ basis,74,75 between ADC, CIS, NOCIS, and experiment.

sets, ADC does not provide the second and third excited states for these molecules, while

NOCIS provides reasonable estimates for these states even in smaller basis sets. The fact

that NOCIS, a method without dynamic correlation, is competitive with ADC-CVS(2),

which includes it, shows the value of treating orbital relaxation via NOCI. Formulating a

dynamic correlation to NOCIS looks to be potentially very worthwhile.

We also verified these k-edges by computing oscillator strengths in a method identical to

that of the STEX method42. It is worth noting that this has been done in an early version of

STEX in the aug-cc-pVTZ basis set78. For NOCIS, in all cases, the lowest singlet excitation

energy produced the largest oscillator strength, confirming our results. The results are

shown in table 4. The NOCIS results are competitive with or better than the ADC results,

and vastly out-perform the CIS results. We believe that this once again illustrates the

importance of orbital relaxation.

IV. CONCLUSIONS

This paper describes and benchmarks a new NOCI method specifically designed for core-

excited states. Unlike standard NOCI, this non-orthogonal CIS method is well-defined, using

a precise number of configurations that depends only on the molecular composition and the

basis set. This method compares favorably to all current methods of calculating core excita-

tions in both efficiency and accuracy. However, the implementation is still preliminary, and

some work is needed before we can claim a truly efficient method for the robust identification

of XAS peaks. In this vein, a further effort for this project is to construct output in such a

way that it can be used to identify spectroscopic peaks. This will be done by implementing
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oscillator strength calculations as well as explicitly connecting orbital transitions to their

energies.

There is also further theoretical and computational work to be done on NOCIS. As

previously mentioned, it does not contain dynamic correlation, so a possible next step would

be implementing something like NOCI-MP241 in the construction of the matrix elements. A

different direction is to include relativistic effects in NOCI calculations so that it can better

calculate core-excitations for larger atoms such as silicon, which is beyond the capability

of non-relativistic core-excited calculations. Computationally, the code can be sped up by

implementing batching for the 2-electron integrals as described in the previous section, which

reduces the prefactor and thus the total computation time.

Overall, NOCIS is a very promising method for calculating core excitations. Even without

dynamic correlation, it still has a high level of accuracy, and it has been shown to deal well

with static correlation. With multi-state return (in contrast to ∆ methods) and competitive

scaling, NOCIS provides a convenient path to obtain accurate calculations that can be used

to simulate an XAS spectrum.
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