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Abstract—Approximate joint diagonalization of a set of ma-

the “true set,” which is usually the mixing matrix (up to scaling

trices is an essential tool in many blind source separation (BSS) and permutation of columns). Intriguingly, an abundant variety

algorithms. A common measure of the attained diagonalization
of the set is the weighted least-squares (WLS) criterion. How-
ever, most well-known algorithms are restricted to finding an
orthogonal diagonalizing matrix, relying on a whitening phase
for the nonorthogonal factor. Often, such an approach implies
unbalanced weighting, which can result in degraded performance.
In this paper, we propose an iterative alternating-directions algo-
rithm for minimizing the WLS criterion with respect to a general
(not necessarily orthogonal) diagonalizing matrix. Under some

of such sets of “target matrices” have been proposed by various
authors, all seeking joint diagonalization. To name a few, fourth-

order joint-cumulants matrices were proposed by Cardoso [1]
(JADE) and have recently been generalized by Moreau [2] to

matrices of cumulants of any order greater or equal to three
(see also [3]-[5]); van der Veen and Paulraj proposed certain
algebraically derived matrices for the case of constant-modulus

mild assumptions, we prove weak convergence in the sense thatsources [6] (ACMA); Belouchraret al. proposed second-order

the norm of parameters update is guaranteed to fall below any
arbitrarily small threshold within a finite number of iterations.
We distinguish between Hermitian and symmetrical problems.

Using BSS simulations results, we demonstrate the improvement

in estimating the mixing matrix, resulting from the relaxation of
the orthogonality restriction.

Index Terms—Blind source separation (BSS), independent com-
ponent analysis (ICA), joint diagonalization.

I. INTRODUCTION

ONSIDER a set4 of K matricesA;,As,...Ax €

statistics matrices for separating sources with different spectra
[7] (SOBI) (see also [8]); Yeredor proposed second-derivative
matrices of the log characteristic function [9]. In the context
of convolutive mixtures, cross-spectral matrices (at various fre-
quencies), as well as higher order cross-lagged cumulant ma-

trices, have been proposed [10]-[13].

Many well-known algorithms using approximate joint diag-
onalization in the BSS context seek amhogonaldiagonalizer

B. Cardoso [1], [14] and Belouchragt al. [7] (see also Wax

[15]) used successive Givens rotations; van der Veen and Paulraj
[6] used a “super-generalized Schur decomposition.” The moti-

CN*N, The approximate joint diagonalization problenvation for using an orthogonal diagonalizer is twofold.

seeks a “diagonalizing matrixB ¢ CV*V and K associated
diagonal matriced\;, As, ... Ax € CV*¥ such that

K
COrs (B,A1 Az, Ax) = > will Ay — BABYE: (1)
k=1

is minimized, wherew;, w., ... wx € R are some positive

» The orthogonality constraint a# simplifies the problem
by commuting the transformations frafg, to A; without
changing the Frobenius norm.

« The nonorthogonal factor of the general diagonalizer can
often be approximated beforehand, using a preprocessing
“whitening” phase (e.g., [1],[2], [7]). The “whitening” op-
eration consists of decomposing a selected matrix: pos-

weights and wheré - ||%. denotes the squared Frobenius norm.
The daggerJr may denote either the transpose or the conjugate
transpose, depending on the application; we will elaborate on
this issue in the next section.

The problem of approximate joint diagonalization is instru-
mental in blind source separation (BSS) and independent com-
ponent analysis (ICA). Usually, the observed data is used for
constructing a “target set4, consisting of finite-sample esti-
mates of some “true set” that admits exact joint diagonaliza-
tion. Thus,B serves as an estimate of the true diagonalizer of

sibly (but not necessarily) one of the matricesAn say
A, into4 = WW! and }JsingW_1 to create a new
setd : A, = W t4,w!™ . When the orthogonal ap-
proximate joint diagonalizeB of the new set is found, the
nonorthogonal diagonalizer of the original set is given by
B = WB. (Usually, the selected matrix is the empirical
data correlation matrix, which turns into the identity ma-
trix under the transformation b —*, implying spatially
decorrelated data, hence, the term “whitening.”)

However, such a whitening phase can practically distort the

. . . _weighted least squares (LS) criterion. It would atteiactdi-
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deviate significantly from the desired solution. In fact, in [16], ¢ The AC (“alternating columns”) phase minimizes
it is shown that this “hard whitening” operation imposes a limit Crs(B, A1, Az, ... Ax) with respect to (w.r.t) a se-
on the attainable performance in the context of BSS, especially lected column ofB while keeping its other columns, as
in the presence of additive noise. well asAq, Ao, ... Ag, fixed.

Few algorithms that do not require the “hard whitening” have ¢« The DC (“diagonal centers”) phase minimizes
been proposed: In [17], Pham proposed an iterative algorithm Crs(B, A1, As,...Ak) w.rt. all the diagonal ma-
that minimizes an information theoretic (non-LS) criterion and  tricesA;, A,, ... Ax while keepingB fixed.
requires that all matrices it be positive definite. In [18],
van der Veen proposed a subspace-fitting algorithm that ugesAC Phase

Gauss—Newton-type iterations (this algorithm will be addressed, this phase, we minimiz€s w.r.t. theith column of B

in here later). o (1 <1< N).Cys can be expressed by
In this paper, we propose a convergent iterative algorithm,
where the diagonalizds € CY* is a general (not necessarily Crs (B,A1,As,... Ag)
orthogonal) matrix. The matrices id are not required to be K
positive definite. — ZwkHAk _ BAkBHII%
Note that generally(';,s does not have a unique minimizer T—1
since scaling and permutations of columnsBncan be ab- K N 2
sorbed into the\;’s. To circumvent these ambiguities, arbitrary = Z wy || A — Z M, b2 2)
scaling and ordering of diagonal values may be imposed. How- b1 el F

ever, since these ambiguities are immaterial to the solutions of
the related statistical problems, we refrain from explicitly imwherebd,, is thenth column of B = [b;b; - --by] and where
posing such artificial constraints. An’ is the @, n)th entry of Ay. The superscript denotes the

As mentioned earlier, we distinguish between two differegonjugate transpose. Defining, with respect to a specific choice
cases, depending on whether the dangmr (1) denotes the of {

transpose or the conjugate transpose. In Sections Il and Ill, we N
derive the minimization algorithm for the two cases, respec- A 2 A — 2 :)\[Mban ©)
tively. In Section IV, we address convergence and computational 1

issues, compared with the Gauss—Newton algorithm [18]. In s

Section V, we present some BSS simulations results, demqys have (using the fact that for the “Hermitian” problem all

strating the potential performance gain that results from thét! gre real valued, as is also evident in €’ phase, which
elimination of the “hard whitening” phase. Some concluding rggjows)

marks appear in Section VI.
Crs(B,A1, Ay, ... Ag)
II. MINIMIZATION ALGORITHM K

- _ . = wall A - \Ebb |
Before outlining the proposed algorithm, we address the issue P

of the daggefr in (1). The joint diagonalization problem arises

K
in applications belonging to two distinct families, which we =" w, T { [Ak _ )\Ek]blbﬂH [Ak _ )\E’“Jblbﬂ}
term “Hermitian” problems and “symmetrical” problems. k=1
In “Hermitian” problems, all the target matrices iA B i Ly B
are Hermitian, and the superscriptin (1) is interpreted as =C-Tr {ZWMEM |:Ak bib/” + bib]” Ak:|}
“conjugate transpose.” In addition, all the diagonal matrices k=1

A1, As, ... Ay are real valued. “Hermitian” problems usually K BINZ o oty i
occur when the target matrices are empirical correlation ma- +Tr Zwk ()‘1 ) bbb,
trices, such as in [7], or cumulants matrices such as in [1], [3]. ’“=11’
In “symmetrical” problems, all the target matrices.ihare B M2 | -
symmetric butnot Hermitian (when complex). Consequently, =C-b Zwk)‘l [Ak +A"} b
k=1

in that case, the superscribtin (1) is interpreted as “trans- K
Pose." Thg diiigonal matrices;, Ao, ... Ax may be complex: n (b{{bl)2 Z o ()‘Ek])Q @
Symmetrical” problems occur, e.g., when the target matrices

are second derivative matrices, such as in [9]. Of course, when

all the target matrices are real valued, the problem is both “symhereC is quantity that does not dependirand wherel»{ -}
metrical” and (in a degenerate sense) “Hermitian.” denotes the trace.

In this section, we will describe the algorithm for the more Decomposingd; into a real-valued scalé > 0 times a
prevalent “Hermitian” problem. In the next section, we will in-unit-norm vectorg (b; = b8 such thatﬂHﬂ = 1), (4) can be
dicate the differences for the “symmetrical” problem. reduced into

Our algorithm is given the acronymC — DC as it alternates
between the two following minimization schemes. Crs (b,8) = C —20°BY PR+ bp (5)

k=1
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whereP is the Hermitian matrix 3. If <0, set & =0; otherwise, set
K . B/
PEY wlia, ® " o
K
k=1 Z _q W A
o i (A1)
K (] 2
p:;wk ()‘l ) ) 7) If the largest eigenvalue occurs with multiplicity of more than

. o . _ ~one, then any of the associated eigenvectors (or any unit-norm
Differentiating w.r.t.b and equating zero yields the solutionsinear combination thereof) yields a possible solution.
b=20or
1 B. DC Phase

2 H
b” = pﬂ Pg. (®) In this phase, we minimiz€'; s w.r.t. the diagonal matrices

1, A2, ... Ag. Obviously, the minimization can be separated
“into K distinct minimization problems (fok = 1,2,... K),
' each minimizing

SinceP is Hermitian, (8) is real valued. Thus, if the right-han
side of (8) is positive, then the minimizirgis its square root
otherwise, it is zero (because thén= 0 minimizesCy,s(5)
sincep is positive ). Consequently, ifP is negative-definite, Cr (Ag) = HAk — BAkBHH; (10)
then minimization ofC7,s w.r.t. b; is attained byb; = 0. How-

ever, normally, this is not the case, and substitubhack into  Which is a linear LS problem in the parameters vectpr=

(5) reduces the problem into minimization w.gtof diag{ A }. To formulate this as such, we define= vec{ A}
1 ) (vec{-} denoting the matrix-to-vector conversion by concatena-
Crs(B)=C— - (ﬂHpﬂ) (9) tion of columns) and rewrite (10) as
p
Cr (M) = [a— HA )" [a — H) (11)

subject tog’8 = 1. The desired solution is attained as the
eigenvector ofP associated with the largegbdsitive eigen- where itis straightforward to show that the matkxs given by
value. Note, however, that the constrained maximization is in- .

sensitive to multiplication of by any unit-magnitude (arbitrary H=(B"©1)06(1oB) (12)

phase) complex scalar. This ambiguity is inherent in the "Hefzha e denotes Kronecker's product; denotes Hadamard's

r_nman" problem and can be resolved, e.g., by imposing that t?@lement-wise) product, denotes anV x 1 vector of 1 s, and

first nonz.ero.element o8 be real valued and pOS|f|ve. ... the superscript denotes conjugation (note that this expression
Following is a summary of thelC’ phase for the “"Hermitian” s s, metimes referred to as the Khatri-Rao produdgbfand

problem. B). The well-known minimizer of the linear LS problem is
AC phase (Hermitian version): A = [HHH]_lHHa (13)
Minimization of Crs w.rt. the Ith column
of B: where it is again straightforward to show that
Inputs: Hyp H )\ Jid
e Target matrices A Ay A H'H =(B"B) ©(B"B) (14)
e Diagonal matrices AL Ao, Ay and
(cEkeJnOHr]lg themdiagonal elements of A, as H"a =diag{B" 4, B} . (15)
i\l\/\’/é\?gf;t.sn)\gl);wg, wg If HYH is not invertible, then the LS minimizer is not
« Diagonalization matrix B = [bibs---byl; unique. In that case, any; that satisfiesH” H\,, = H" a is
e Selected column index I a minimizing solution. To eliminate the associated ambiguity,
Algorithm: the minimum-norm solution may be chosen. In other words,
1. Calculate Ax would always be determined &' a, where H' denotes
the pseudo-inverse @ .
K N Note that as is evident from (145" H is always real valued.
P=>" wiAlM | 4y — > e In addition, diag B” A, B} is also real valued sinc4;, is Her-
k=1 =t mitian. Consequently, the resultiig is always real valued, as
anticipated for the “Hermitian” problem. THeC' phase is sum-
2. Find the largest eigenvalue u and the marized in the following.
associated unit-norm eigenvector B of
P, with its_ arb_itrary phase determin_ed DC phase (Hermitian version):
such that its first nonzero element is Minimization of Crs WL A1, Ao, .. Ax:
real-valued positive. Inputs:
1p can be zero only if al\[*! are zero, in which cas€;. s is independent of ® Target matrices A, Az, Ay

b, so that anyb, is a “minimizer.” e Diagonalization matrix B;
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Algorithm: AC phase (symmetrical version):
1. Prepare Minimization of CrLs W.r.t. the {th column
G =[B"B)eB"B)! of B:
2. For k=12,...K, Inputs:
Set A, =diag {G diag {B” A.B}}. e Target matrices Ay Ay, .. Ag;
o Diagonal matrices A, As, . AR

(denoting the diagonal elements of Ay as
AN AR,

In the “symmetrical” problem, both thaC' andDC phases o weights — w,ws, ... wk;
are slightly changed, mainly due to the sensitivity@fs t0 o Diagonalization matrix B =[bby---by];
the complex phases of the columnsi®fin addition to the fact o Selected column index I.
thatA;, A,, ... A are no longer real valued. Equation (4) isajgorithm:

rewritten as 1. Calculate

Crs(B,A1, Ay, ... Ag)

lll. “SYMMETRICAL" PROBLEM

*

K N
P=>"w A" |4 - > AFbbE |
k=1

K ~ ‘ Hor. ‘
=3 wTr { A= A | Ay — 0] | } ; o
k=1
K 2. Find the largest eigenvalue # and the
=C — 2Real{b}f [Z wk)\g’“l}lf] bz} associated unit-norm eigenvector £ e R?Y of
k=1

P { Real {P} —Imag {P}}
—Ilmag{P} —Real {P} |’

+ (o b1)2 EI: wy [\

2
| (16) | |
=1 3.If u < 0, set & = O0; otherwise, parti-
tion £ as
where now
. N £= m
A2 A= AMp bl (17) 6
g where v,6 € RV, and set
Decomposingy, = b3 again, withb > 0 (real valued) and (v +76)\/1n
Hpo : b=
B7 B = 1, we now obtain . ]
~ 21 Wk ‘)‘l ‘
Crs(b,B) = C — 2b2Rea|{ﬂTPﬁ} Ty (18)
with Note that in this case, there’s no phase ambiguitg ifun-
K ’ less the largest eigenvalue occurs with multiplicity of more than
PES wM A (19) one).
k=1 As for the DC phase, we now have (preserving the notations
and of Section II-B)
K 2
pzzwk\xﬁ’ﬂ\ . (20) H=(B21)®(1eB) (23)
k=1 (or the Khatri-Rao product dB with itself) so that
To maximize Redl3* PB} (w.r.t. B, subject toB” g = 1), H"H =(B"B) » (B B) (24)
we decomposg = v+ jé andP = Q + jR, wherej = /—1, and
7,86 € RY, and@, R € RY*Y and observe that - _ - .
H" a =diag{B" A, B"}. (25)
T T T
Real{ﬁ Pﬂ} =7 Qv-8'Q5— 7 R§— 8" Ry The resultingDC' phase follows.
=[4767] [ Q —R} [’Y} (21) DC phase (symmetrical version):
-R -Q]||¢ Minimization of CLs W.IL. A Ao, Ay
. . . T Inputs:
whereas the unity norm constraint translates iffte + 6* 6 = e Target matrices AL Ay, .. A
1. Thus, the solution can be extracted from the eigenvector ISDiagonalization matrix Y B
sociated with the largest (positive) eigenvalue of the matrix 4 Igorithm:
1. Prepare
- » | RealP} —Imag{P} o =1
P= {—Imag{P} —Reall P} |- (22) ¢ =[B"B)o (B"B)

2. For k=1,2,...K,
The AC phase therefore assumes the following form. Set A =diag {@ diag {B” A.B*}}.
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As before, if(BY B) ® (B B) is not invertible, the min-  In Appendix A, we show that for each iteratioAq or DC),
imum-norm solution may be chosen among all possible mirthe above-mentioned uniqueness conditions imply3aat> 0
mizing solutions. such that

Ve € (0,60)36 >0:V0 € ©

IV. INTERLACING THE AC' AND DC PHASES CONVERGENCE ] [n+1] [n]
AND COMPUTATIONAL |SSUES CLs (0’(7) ) —CLs (0 ¢ ) <6
The “natural” objective of thedC' — DC algorithm is to al- = H9 —gintl H <e (28)

ternate between minimization w.rA;, As, ... Ax and mini- ) ) L
mization w.r.t. B. Although the former is attained via a singl¢ SSuming further that there exists a positive infimato all t[h]e
DC run, the latter requires consecutid€ “sweeps” over allv  €o-S (of all iterations), we can conclude by substitutthg 6™
columns ofB (i.e., forl = 1,2, .. N but not necessarily in that 'N (28) and using (26) that

order). Thus, in principle, eacRC phase is to be followed by _ ) H ] _ [nH]H

an “infinite” number of AC' sweeps before the neXtC phase Vee (0,6) 3N |16 0 <evn>N (29)

IS run. which implies that a parameter-monitoring stopping condition

Alternatively, any fixed number ofiC’ sweeps (or even in- myst be met. It has to be stressed, however, that strictly
complete sweeps) may interladeC' runs, without attaining speaking, this does not imply convergence of the parameters,
“true” minimization w.r.t. B between true minimizations w.r.t. e it does not imply that the sequence of parameter estimates
A, Ay, Ay is a convergent sequence; it merely implies that the change in

Nevertheless, with either stratedyy s is guaranteed not to estimated parameters is guaranteed to fall below any arbitrarily
increase (usually to decrease) with ealeti/ DC iteration; thus  smal| fixed threshold. However, it has been observed empiri-
(because it is bounded below), convergenc€’gk is guaran- ca|ly that the parameters indeed converge, but we have not been
teed. Explicitly stated able to provide a rigorous proof of that property.

Convergence of all the parameters implies in turn (by con-
struction) that the derivatives @, s w.r.t. all the parameters
vanish simultaneously, and hence, a true stationary point is at-
tained. Note, however, that although the stationary point is min-
DC iteration). We will use the term “full iteration” to refer to theirnurn with respect_to _each param_eters_ §ubset individually, this
combination of aDC phase and one or more fullC’ sweeps. does not neces_sarlly_ imply that it is minimum W.r.t_. aII_ the pa-

. . . : rameters combined (in other words, the second derivative matrix

One possible stopping condition for the algorithm would be

. . . of Crs w.r.t. all the parameters consists of block-positive defi-
to monitor changes i’ s and stop when they are sufficiently . ; Do L . o
o . nite matrices along its diagonal, but it is not necessarily positive
small, say, below an arbitrarily fixed valide Evidently, the al- definite)

gorithm is guaranteed to meet such a stopping condition after B ese arguments are somewhat weakened whenever our as-
f

finite number of iterations. However, in general, convergence 0 . . . . S
- sumption (that alAC/DC iterations have unique minimizers)
Cr.s does not necessarily imply convergence of the parameters PN . . .
. . Ishot satisfied, i.e., when multiple largest eigenvalues occur in
B andA;, A, ... Agk. An alternative, more “parameters-ori-

n AC iteration or whenH" H is positive semi-definite in a

ented,” stopping condition would be to monitor the norm o% . . . - e
; . . iteration. However, in such cases, additional artificial con-
change in the parameters, compared with another arbitrary sm ﬁ

. s ) straints on the parameters (such as minimum norm) may be used
threshold as a stopping condition. We will now show that under mep .( . ) may

. : : . 0 that uniqueness can still be imposed.
some mild assumptions, the algorithm is guaranteed to meet t?1

. . » . - . A possible intelligent initialization would be to sé& to the
alternative stopping condition (in a finite number of full itera,, L . ) .
tions) as well (exact) joint diagonalizer of any two matrices.i) say,4; and

To this end, we now assume momentarily that in edchit- .AQ’ €.g. via dlagonal|zat.|on Oil.A2 (assummgAQ IS invert
X . : : . ible). The AC — DC algorithm will then start with & C phase.
eration, the largest eigenvalue is unique and that in dach

. : . Iternatively, if an intelligent guess as to the anticipated diag-
H ’
iteration H~ H has full rank. In that case, the solution of eac@nal values is available, theh, , A,, ... A can be initialized

AC/I_)C iteration is the unique glopal minimizer w.r.t. the re-?1 c?rdingly, and thelC'— DC algorithm will start with anAC
spective parameters subset. Denoting this parameter subsep:q%se

thenth iteration) byd"" !l and all other parameters @/, we
have

v6>03N:cll—clil < svn> N (26)
whereO[L"; denotes the value @f} s afterr iterations. By “it-
eration” in this context, we refer to any single (isolated) or

In Fig. 1, we demonstrate typical convergence patterns of
Cs (in the Hermitian case) for one and for twid” sweeps in-
terlaced between eadhC phase. The “true” setl, of ten Her-
mitian 4 x 4 matrices was generated by drawing at random the
elements of the tru® (independent, complex normal standard
where® denotes the set of all “valid” minimizers. For ti&C random variables) and of the diagonals of the thyg(indepen-
phase, this is simplR"Y (for eachk = 1,2,...K); for the dent, uniformly distributed iff0, 1]). Then, the perturbed target
AC phase, we eliminate the phase ambiguity in the Hermitiaet.4 was generated by noising (conjugate symmetrically) all el-
version by defining® to be the set of all vectors i6" whose ements of the matrices id, with independent complex normal
first nonzero element is real valued and positive. random variables with zero mean and standard deviation (std)

6"+ = arg min Cp 5 (0, qﬁ["J) 27)
0co
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Fig. 1. Typical convergence patterns@f s for randomly generated matrices Fig. 2. Median of the required number of full iterations versus the matrices’
with 1 and 2 full AC sweeps per iteration. dimensionV for two noise conditions: std. of 0.2, 0.02 for the Hermitian and
symmetrical cases. The number of matrices Was= 10. Each result reflects
. . . the median of 400 trials.
0.02. The patterns show that with twt”’ sweeps in each iter-

ation, the convergence rate is nearly two times faster. Since the

associated computational load per iteration is nearly two tim@eep reduces back @(K N?) (we assume that the load for

higher, there is no distinct preference for either strategy in tfigmputing the largest eigenvalue and the associated eigenvector

example. is O(IV3) and is, hence, negligible). The overall computational
To demonstrate the statistical behavior of the algorithm, viead per iteration is therefor@( K N?).

repeated the experiment with matrix orde¥sranging from As mentioned in the introduction, a subspace-based joint di-

N = 2to N = 10, with 400 independent trials per order, runagonalization algorithm using Gauss—Newton iterations was re-

ning two AC sweeps per full iteration. We maintainéd= 10 ~ cently proposed in [18]. When that algorithm converges, its con-

matrices in all experiments. In Fig. 2, we plot the median of théergence rate is substantially faster than thatiét — DC.

number of full iterations required to reach convergence, wher@wever, it requires ad(N*)-fold higher computational cost

convergence was defined as the state where the absolute ch@@gdteration, namely)(K N7). Additionally, as is typical for

in each estimated in the DC phase falls below 0.001. TheseGauss-Newton type algorithms, it may occasionally diverge, de-

experiments were also repeated with stronger noise (with std@ginding on initialization and/or selection of a step-size param-

0.2) and then (with the same noise levels) for the symmetricier, whereadC' — DC'is guaranteed to meet the stopping con-

case as well (for which symmetrical noisy matrices were genélition, regardless of initialization.

ated). It is seen, as could be expected, that the (median) number

of required full iterations is generally higher for the higher noise V. SIMULATION RESULTSWITH JADE

levels. However, there seem to be some inherent differences be- : : .
- . . : 0 demonstrate the potential performance improvement in
tween the Hermitian and symmetrical cases in the behavior as a S ; .
. i -, . € context of BSS, we present in Fig. 3 some simulations re-
function of N: For the Hermitian case, the required number o . o . . o
. ) . . sults by applying Cardoso’s joint approximate diagonalization
full iterations increases withv only up toN = 4 and then re- : : . ‘
: . f eigen-matrices (JADE) algorithm [19] to ax33 noisy BSS
mains roughly constant, whereas for the symmetrical case, this . ; . o
. . problem. We will not go into detail describing the JADE algo-
number seems to increase monotonically for upvte= 8 for

the low noise level and up & = 10 (or higher) for the higher rithm here. We only mention that it is based on the joint diag-

. . . . ; onalization of empirical fourth-order cumulant matrices of the
noise level. In addition, the required number of full iterations for . L
. | . observed (mixed) data. The standard application of JADE re-
the symmetrical case is generally higher than that of the Herm-: o e
tian case for fixedV and noise level quires a prewhitening phase, followed by orthogonal joint diag-

Addressing the issue of computational load per iteration, Vgenallzanon of the transformed matrices using an extended Ja-

will now assume, for simplicity, that eachC' phase consists CObi algorithm [14]. This algorithm is computationally cheaper

of a single full sweep. The computational load for the” (per full iteration) thanAC — DC since it has a computational

2y- ; i
phase (in terms of the number of complex multiplicationsI ad of O(K N*); however, as we will demonstrate, it may be

is O(KN?). As for the AC phase, the calculation oP Inferior to theAC — DC algorithm in terms of the resulting sep-

; N aration performance.
requires O(K N3) multiplications and formally has to be : . _ .
repeatedV’ times, which would amount t@(K N4). Note, As an alternative, we applied theC' — DC algorithm to the

N \[Kly o H entire set (which is real valued here so that the “Hermitian” and
however, that the Sunz’f;} Anbnb,, can be expressed as“‘symmetrical” algorithms coincide). Conventional JADE was
BAB” — \MpplT, and it suffices to compute thi€ matrices  applied to each data set, followed by applicatiomaf — DC

BA,B" just once per sweep so that the load for the entite the same data, with three different combinations of weights
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EF ' —— Whitened JADE trices and/or source signals. It is evident, for example, that
ACDC w_=0.1
w,=0. . . . . .
23 3 acocw=t ] mere scaling of the signals is equivalent to a relative change
e ACDGw,=10 of weights since the estimated correlation matrix involves

second-order powers of the signals, whereas the estimated
cumulants matrices involve the fourth-order powers thereof.
Whitened JADE 1 The performance oAC — DC may be further improved by

/ proper choice of the entire set of relative weights, possibly
considering the statistics of the estimation errors, such as by
the approach taken in [8]. However, such considerations are
beyond the scope of this paper.

ISR [dB]

29} ACDC, w,=0.1

=30} ACDC, w =1
VI. CONCLUSION
=31+ ACDC, w,=10
We proposed an iterative algorithm for approximate joint di-
-321 . . . . . .
agonalization of a given set of matrices in the weighted LS sense
v 5050 10600 with arbitrary positive weights. The algorithm is applicable both

T in the “Hermitian” framework, when all the target matrices are
Fig. 3. Average ISR for a 83 BSS problem versus the observationHerm't""“”'’_and in the symmetncal framework, Wh?n all the.
length T', using the JADE algorithm. Simulation results are presented féarget matrices are symmetric. Convergence to a stationary point
conventional (whitened) JADE as well as f&C' — DC with three different  of the LS criterion is guaranteed under mild conditions.
weightscombinations. Each point reflects the average of 500 trials. All . “ . L,
algorithms operated on the same estimated matrices. Performance improvement over “hard whitening” followed
by orthogonal diagonalization can be attained by proper selec-

wy,. All the weights associated with the estimated cumulant@n of the weights, which enables a more balanced distribution
matrices were set to unity, whereas the weightassociated of the deviations from exact diagonalization among all the ma-

with the estimated correlation matrix was varied between thrE¥€s- . .
different values, namely, 0.1, 1, and 10. Each application of Finally, note that the proposed algorithm may be easily
AC—DC used the conventional JADE output as an initial guesggapted to f|n(_1l the “reduced” joint diagonalization with smaller
The simulation setup was the following: The three sourdi@gonal matrices\;, A,,... Ak € CMXfw' whereM < N
signals were generated as independent samples, uniformly §@-that the diagonalizing matriB < CY*Mis not square.

tributed between-v/3 andv/3 (thus having zero mean and unitSuch an application occurs, e.g., in blind source separation with
variance). The true mixing matrix was more sensors than sources. The only required modification (for

. both the Hermitian and symmetric versions) is in the AC phase,
1.9 3 —-0.5 . . .
where each occurrence df in the algorithm specification
Byg=|-0.2 04 -0.1 .
02 —03 09 should be replaced with/.
’ ’ ’ A MATLAB ® package for the algorithm is available at

I samples from each observed signal were used to obtain Y |cA-Central  web-site:http://tsi.enst.fri~cardosolicacen-
biased estimates of the correlation and cumulants matrices. Tlr?f?/Algos/yeredor.

AC — DC algorithm was applied directly to the estimated ma-
trices. Conventional (whitened) JADE was applied as follows.
Rather than whiten the entire data set and re-estimate the ma-

APPENDIX
EXISTENCE OF “UNIQUE NEIGHBORHOODS” FOR

trices, we gpplied the Wh_itenir_lg to the already-estimated cumu- UNIQUE AC/DC MINIMA
lants matrices (as described in the Introduction) and then used _ ) ) )
the orthogonal joint diagonalization algorithm of [14]. Certain assumptions (to be restated shortly) imply unique-

The results are measured in terms of the average interfégss of the minimizers in eachC/DC single iteration. We
ence to signal ratio (ISR) implied by the estimate of the mixin\g’i” now show that under these assumptions, these minimizers
matrix. The ISR per trial is calculated as follows: First, th@re notonly unique but also have “unique neighborhoods” in the
composite separation matr® ' B, (whereB is the estimated Sense that small changes in the valu€’gk must imply small
diagonalizing matrix) is calculated; then, all its elements afdanges in the parameters. Explicitly stated, in each iteration
squared:; the ISR in each row is the sum of all (squared) elglC or DC), 3¢ > 0 such that

ments in the row except for the largest, divided by the largest; Ve € (0,60)36 >0:V0 € ©
the average ISR is the average of all the row ISRs. ] (1] 4[]
In Fig. 3, we demonstrate the resulting average ISR (in deci- Crs (0’ ¢ ) —Crs (0 P ) <$é
bels) versus the number of samplEdor conventional JADE - Ha _ gln+1] H <e (30)

as well as forAC — DC with the three different weight com-

binations. The most significant improvement over conventionahere® denotes the set of all valid parameters for the mini-

JADE is attained withs; = 1. mization,8"**! denotes the minimizing parameters at tth
We stress that the optimum with respectu is attained iteration, andp!™! denotes all the other, irrelevant parameters

aroundw; = 1 with this specific setup but may be attained [tl] _ oo ( [n1)

by essentially different weighting for different mixing ma- 0 o arg}}:g Crs (0:¢7) - (31)
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To simplify the notation, we will drop references to the iter-  Proof: Using (37), the Lemma’s condition implies

ation indexn and to the irrelevant parametep&"’ and denote (1= )22 = & > (b— bo)? + 2bbo (1 — )

the minimizem!" ! simply asf,. With this simplified notation, =< 0 0 '

we intend to show an equivalent statement, namely, that in each > (b - bo)? = <1 _ ﬁ) 2 (39)
iteration,3deq > 0 such that bo

from whichb > b, follows immediately (recall that, by > 0).

Ve € (0,60) 3 >0:¥6 € ©, Observe now from (5) and (9) thét(#) is given by

|6 — || >c = C(0) — C (0o) > ¢ (32)

N

whereC(#) is shorthand foC's(6, ¢™). C(0) =C = 20°B"PB+b'p = C = 2* > i |ova|* + b7p
For the DC phasé® is simplyR" (for eachk = 1,2, ... K). n=1

The required uniqueness assumption isHdf H [of either (14) L . (40)

or (24)] to have full rank, in which cas€;(8) is a quadratic and the minimized’(6,) is given by

function of @ with a positive-definite constant Hessian. Conse- C(00) = € — M (41)

quently, denoting £ 6 — 6, we have p

C0)=C(0y+e)=C () + [HHH] e (33) whereC andp are some constants depending on irrelevant pa-
rameters. In addition, we have, using &)= 11 /p. We there-

so that (32) is actually satisfietty > 0 with § = pumine?, Where :
(32) y 0 Hmin? fore obtain

itmin denotes the minimal (positive) eigenvalueHSf{ H since

N 5
C6) — C(0y) =€ [H"H] & > puinllel”.  (34)  C(6) — € (B) =bp — 26> > jun fal® + %

For the AC phase, the proof is a little more involved. We con- n=1

sider the Hermitian case here, but the proof can also be similarly p1 )2 N
. . S —p (02— L) L op? _Z o |*

derived for the symmetrical case. The &bf valid minimiza- p K1 Hn |G
tion vectors is defined as all vectors@i" whose first nonzero ) ) n=l
element is real valued and positive. The uniqueness condition =p (b+0o)” (b —bo)
for the AC phase minimizer is for the largest eigenvalud’of N )
[which is defined in (6)] to be unique. Specifically stated, if we + 1 Hn |Cn,
denoteP’s eigenvalues ag; > po > --- > py in descending oon=l .
order, there exist some positivesuch thafu; = p2 + . We can now use the following inequality:

As was done in Section II-A, we decompose the vegtof N ) ) N )
the minimization parameters inth = b3, whereb > Oisa  #1— Y i lanl” = — paad =Y fin ||

n=1 n=2

non-negative scale, an@lis a unit-norm vectorg’g8 = 1),
whose phase is arbitrarily determined such that its first nonzero 2
element is real valued positive. We also denote the minimizing =HL T RS T 2 Z "

N

solution as®ly = bof,. Consequently, we have n=2 ~
0= 60l =12 5 — b (850 + B/B) . (35) e R s
n=1

We further define vectorse and ag as follows. Let 5
P = VMV* denote the eigenvalue decomposition of the = (= pr2) (1= o)

Hermitian matrix? such thaV !V = Iy (wherely denotes 2k (1= o) (43)
the N x N identity matrix), andM = diag{.1, 2, ---ptx}.  to conclude that

Using V, we now define C@) — C(80) > pl2 (b —bo)2 + 22k (1 —ar).  (44)
SVIB =V, =e (36) : : . .
@ ’ 0 0 Our ultimate goal is now to prove the following claim.
wheree; is the first column ofl 5 (and the right-hand side Lemma 2: Ve < ¢, the condition|@ — @|| > ¢, which, from

equality holds sinc@, is the eigenvector correspondingtp).  (37), is equivalent to
Hop _ _H, __ i
Thus,8” 8 = a" a = «; (the first element of) so that (b= bo)® + 2bbo (1 — ) > €2 (45)

2 _42 32
16— o[ =07 + by y 2bbo Real {or } implies thatC(0) — C(0y) > 6§ = min{pboe?, kve?} by im-
=(b—bo)” +2bbo (1 — Real{c1}). (37) plying
We can always select the arbitrary phase¥ efcolumns such 5 2%k ) 9 KY o
thata is real valued and non-negative. This would enable sub- (b—bo)" + oo (1 —a1) > min {6 ’pTOe } (46)
stitution of the notationfical{c. } simply with a;. Note fur- 50y ysing (44)«, is related to the arbitrary constantvia
ther that sincex is also a unitary vector, we would always havg s yma 1.
0oy < 1 . Proof: Using Lemma 1 and the relatian< ¢y, the condi-
We now ||?troduce the following Lemma. tion (45) implies thab > ~b,. We will now show that the claim
Lemma 1:Let0 <~ < 1 denote an arbitrary constant, ang, | emma 2 holds in each of the two possible cases: i, /x
defineco = (1 —v)bo. Then and~by < b < u1/k (naturally, the latter may sometimes be
[|@ — ]| < 0= b > o (38) nonexistent, dependifg, 11, ~ and the arbitrary choice of).
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Assume first thab > 1, /<. We restate the Lemma’s condi-

tion as
(b—bo)? > €2 — 2bbg (1 — ay) (47)
and use this inequality to obtain
20°
(b—bo)® + =2 (1— )
PYo
2 2
262 — 2bb0 (1 — Oél) + i (1 — Oél)
pbo
2 Kb 2
=" +20(l—aq)|— —bo| > ¢ (48)
pbo

(6]

(7]

(8]

(9]
(10]

(11]

(12]

where the last inequality results from the assumption

b > p1/k = pbd/k.

Conversely, assuming thaty < b < p1/x, we restate the

Lemma’s condition as

2 _ 2
2b6(1— ) > M (49)
bo
leading to
225 Kb €2 — (b—by)®
b— Do)+ l—a)>b-by)? + -0
(b—bo) o ( 1) 2 (b —bo) o oo
kb o 2 Kb
= —_ 1 —_——
e o= (1= 77)

b b
>y B0 BV 2 (50)
H1 H1 PYo
Evidently, in either case, (46) is satisfied.
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