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Non-Orthogonal Joint Diagonalization in the
Least-Squares Sense With Application in Blind

Source Separation
Arie Yeredor, Member, IEEE

Abstract—Approximate joint diagonalization of a set of ma-
trices is an essential tool in many blind source separation (BSS)
algorithms. A common measure of the attained diagonalization
of the set is the weighted least-squares (WLS) criterion. How-
ever, most well-known algorithms are restricted to finding an
orthogonal diagonalizing matrix, relying on a whitening phase
for the nonorthogonal factor. Often, such an approach implies
unbalanced weighting, which can result in degraded performance.
In this paper, we propose an iterative alternating-directions algo-
rithm for minimizing the WLS criterion with respect to a general
(not necessarily orthogonal) diagonalizing matrix. Under some
mild assumptions, we prove weak convergence in the sense that
the norm of parameters update is guaranteed to fall below any
arbitrarily small threshold within a finite number of iterations.
We distinguish between Hermitian and symmetrical problems.
Using BSS simulations results, we demonstrate the improvement
in estimating the mixing matrix, resulting from the relaxation of
the orthogonality restriction.

Index Terms—Blind source separation (BSS), independent com-
ponent analysis (ICA), joint diagonalization.

I. INTRODUCTION

CONSIDER a set of matrices
. The approximate joint diagonalization problem

seeks a “diagonalizing matrix” and associated
diagonal matrices such that

(1)

is minimized, where are some positive
weights and where denotes the squared Frobenius norm.
The dagger may denote either the transpose or the conjugate
transpose, depending on the application; we will elaborate on
this issue in the next section.

The problem of approximate joint diagonalization is instru-
mental in blind source separation (BSS) and independent com-
ponent analysis (ICA). Usually, the observed data is used for
constructing a “target set” , consisting of finite-sample esti-
mates of some “true set” that admits exact joint diagonaliza-
tion. Thus, serves as an estimate of the true diagonalizer of

Manuscript received June 11, 2001; revised March 1, 2002. Parts of this work
were presented at the International Conference on Independent Component
Analysis, Helsinki, Finland, June 2000. The associate editor coordinating the
review of this paper and approving it for publication was Dr. Hamid Krim.

The author is with the Department of Electrical Engineering—Systems,
Tel-Aviv University, Tel-Aviv, Israel (e-mail: arie@eng.tau.ac.il).

Publisher Item Identifier S 1053-587X(02)X11991-0.

the “true set,” which is usually the mixing matrix (up to scaling
and permutation of columns). Intriguingly, an abundant variety
of such sets of “target matrices” have been proposed by various
authors, all seeking joint diagonalization. To name a few, fourth-
order joint-cumulants matrices were proposed by Cardoso [1]
(JADE) and have recently been generalized by Moreau [2] to
matrices of cumulants of any order greater or equal to three
(see also [3]–[5]); van der Veen and Paulraj proposed certain
algebraically derived matrices for the case of constant-modulus
sources [6] (ACMA); Belouchraniet al.proposed second-order
statistics matrices for separating sources with different spectra
[7] (SOBI) (see also [8]); Yeredor proposed second-derivative
matrices of the log characteristic function [9]. In the context
of convolutive mixtures, cross-spectral matrices (at various fre-
quencies), as well as higher order cross-lagged cumulant ma-
trices, have been proposed [10]–[13].

Many well-known algorithms using approximate joint diag-
onalization in the BSS context seek anorthogonaldiagonalizer

. Cardoso [1], [14] and Belouchraniet al. [7] (see also Wax
[15]) used successive Givens rotations; van der Veen and Paulraj
[6] used a “super-generalized Schur decomposition.” The moti-
vation for using an orthogonal diagonalizer is twofold.

• The orthogonality constraint on simplifies the problem
by commuting the transformations from to without
changing the Frobenius norm.

• The nonorthogonal factor of the general diagonalizer can
often be approximated beforehand, using a preprocessing
“whitening” phase (e.g., [1], [2], [7]). The “whitening” op-
eration consists of decomposing a selected matrix: pos-
sibly (but not necessarily) one of the matrices in, say

, into and using to create a new

set . When the orthogonal ap-
proximate joint diagonalizer of the new set is found, the
nonorthogonal diagonalizer of the original set is given by

. (Usually, the selected matrix is the empirical
data correlation matrix, which turns into the identity ma-
trix under the transformation by , implying spatially
decorrelated data, hence, the term “whitening.”)

However, such a whitening phase can practically distort the
weighted least squares (LS) criterion. It would attainexactdi-
agonalization of the selected matrix at the possible cost of
poor diagonalization of the others. Such an operation is equiv-
alent to setting to infinity the corresponding weight in (1).
Since the weights reflect the desired “sharing” of misdiagonal-
ization between all the matrices in, the attained solution may
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deviate significantly from the desired solution. In fact, in [16],
it is shown that this “hard whitening” operation imposes a limit
on the attainable performance in the context of BSS, especially
in the presence of additive noise.

Few algorithms that do not require the “hard whitening” have
been proposed: In [17], Pham proposed an iterative algorithm
that minimizes an information theoretic (non-LS) criterion and
requires that all matrices in be positive definite. In [18],
van der Veen proposed a subspace-fitting algorithm that uses
Gauss–Newton-type iterations (this algorithm will be addressed
in here later).

In this paper, we propose a convergent iterative algorithm,
where the diagonalizer is a general (not necessarily
orthogonal) matrix. The matrices in are not required to be
positive definite.

Note that generally, does not have a unique minimizer
since scaling and permutations of columns incan be ab-
sorbed into the ’s. To circumvent these ambiguities, arbitrary
scaling and ordering of diagonal values may be imposed. How-
ever, since these ambiguities are immaterial to the solutions of
the related statistical problems, we refrain from explicitly im-
posing such artificial constraints.

As mentioned earlier, we distinguish between two different
cases, depending on whether the daggerin (1) denotes the
transpose or the conjugate transpose. In Sections II and III, we
derive the minimization algorithm for the two cases, respec-
tively. In Section IV, we address convergence and computational
issues, compared with the Gauss–Newton algorithm [18]. In
Section V, we present some BSS simulations results, demon-
strating the potential performance gain that results from the
elimination of the “hard whitening” phase. Some concluding re-
marks appear in Section VI.

II. M INIMIZATION ALGORITHM

Before outlining the proposed algorithm, we address the issue
of the dagger in (1). The joint diagonalization problem arises
in applications belonging to two distinct families, which we
term “Hermitian” problems and “symmetrical” problems.

In “Hermitian” problems, all the target matrices in
are Hermitian, and the superscriptin (1) is interpreted as
“conjugate transpose.” In addition, all the diagonal matrices

are real valued. “Hermitian” problems usually
occur when the target matrices are empirical correlation ma-
trices, such as in [7], or cumulants matrices such as in [1], [3].

In “symmetrical” problems, all the target matrices inare
symmetric butnot Hermitian (when complex). Consequently,
in that case, the superscriptin (1) is interpreted as “trans-
pose.” The diagonal matrices may be complex.
“Symmetrical” problems occur, e.g., when the target matrices
are second derivative matrices, such as in [9]. Of course, when
all the target matrices are real valued, the problem is both “sym-
metrical” and (in a degenerate sense) “Hermitian.”

In this section, we will describe the algorithm for the more
prevalent “Hermitian” problem. In the next section, we will in-
dicate the differences for the “symmetrical” problem.

Our algorithm is given the acronym as it alternates
between the two following minimization schemes.

• The (“alternating columns”) phase minimizes
with respect to (w.r.t.) a se-

lected column of while keeping its other columns, as
well as , fixed.

• The (“diagonal centers”) phase minimizes
w.r.t. all the diagonal ma-

trices while keeping fixed.

A. Phase

In this phase, we minimize w.r.t. the th column of
( ). can be expressed by

(2)

where is the th column of and where
is the ( )th entry of . The superscript denotes the

conjugate transpose. Defining, with respect to a specific choice
of

(3)

we have (using the fact that for the “Hermitian” problem all
are real valued, as is also evident in the phase, which

follows)

(4)

where is quantity that does not depend onand where
denotes the trace.

Decomposing into a real-valued scale times a
unit-norm vector ( such that ), (4) can be
reduced into

(5)



YEREDOR: NON-ORTHOGONAL JOINT DIAGONALIZATION IN THE LEAST-SQUARES SENSE 1547

where is the Hermitian matrix

(6)

and

(7)

Differentiating w.r.t. and equating zero yields the solutions
or

(8)

Since is Hermitian, (8) is real valued. Thus, if the right-hand
side of (8) is positive, then the minimizingis its square root;
otherwise, it is zero (because then, minimizes (5)
since is positive1 ). Consequently, if is negative-definite,
then minimization of w.r.t. is attained by . How-
ever, normally, this is not the case, and substitutingback into
(5) reduces the problem into minimization w.r.t.of

(9)

subject to . The desired solution is attained as the
eigenvector of associated with the largest (positive) eigen-
value. Note, however, that the constrained maximization is in-
sensitive to multiplication of by any unit-magnitude (arbitrary
phase) complex scalar. This ambiguity is inherent in the “Her-
mitian” problem and can be resolved, e.g., by imposing that the
first nonzero element of be real valued and positive.

Following is a summary of the phase for the “Hermitian”
problem.

phase (Hermitian version):
Minimization of w.r.t. the th column
of :
Inputs:

Target matrices ;
Diagonal matrices

(denoting the diagonal elements of as
);

Weights ;
Diagonalization matrix ;
Selected column index .

Algorithm:
1. Calculate

2. Find the largest eigenvalue and the
associated unit-norm eigenvector of

, with its arbitrary phase determined
such that its first nonzero element is
real-valued positive.

1p can be zero only if all� are zero, in which case,C is independent of
bbb so that anybbb is a “minimizer.”

3. If , set ; otherwise, set

If the largest eigenvalue occurs with multiplicity of more than
one, then any of the associated eigenvectors (or any unit-norm
linear combination thereof) yields a possible solution.

B. Phase

In this phase, we minimize w.r.t. the diagonal matrices
. Obviously, the minimization can be separated

into distinct minimization problems (for ),
each minimizing

(10)

which is a linear LS problem in the parameters vector
diag . To formulate this as such, we define vec
(vec denoting the matrix-to-vector conversion by concatena-
tion of columns) and rewrite (10) as

(11)

where it is straightforward to show that the matrixis given by

(12)

where denotes Kronecker’s product, denotes Hadamard’s
(element-wise) product, denotes an vector of 1 s, and
the superscript denotes conjugation (note that this expression
is sometimes referred to as the Khatri–Rao product ofand

). The well-known minimizer of the linear LS problem is

(13)

where it is again straightforward to show that

(14)

and

diag (15)

If is not invertible, then the LS minimizer is not
unique. In that case, any that satisfies is
a minimizing solution. To eliminate the associated ambiguity,
the minimum-norm solution may be chosen. In other words,

would always be determined as , where denotes
the pseudo-inverse of .

Note that as is evident from (14), is always real valued.
In addition, diag is also real valued since is Her-
mitian. Consequently, the resulting is always real valued, as
anticipated for the “Hermitian” problem. The phase is sum-
marized in the following.

phase (Hermitian version):
Minimization of w.r.t. :
Inputs:

Target matrices ;
Diagonalization matrix ;
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Algorithm:
1. Prepare

2. For ,
Set diag diag .

III. “S YMMETRICAL” PROBLEM

In the “symmetrical” problem, both the and phases
are slightly changed, mainly due to the sensitivity of to
the complex phases of the columns of, in addition to the fact
that are no longer real valued. Equation (4) is
rewritten as

Real

(16)

where now

(17)

Decomposing again, with (real valued) and
, we now obtain

Real (18)

with

(19)

and

(20)

To maximize Real (w.r.t. , subject to ),
we decompose and , where ,

, and and observe that

Real

(21)

whereas the unity norm constraint translates into
. Thus, the solution can be extracted from the eigenvector as-

sociated with the largest (positive) eigenvalue of the matrix

Real Imag
Imag Real

(22)

The phase therefore assumes the following form.

phase (symmetrical version):
Minimization of w.r.t. the th column
of :
Inputs:

Target matrices ;
Diagonal matrices

(denoting the diagonal elements of as
);

Weights ;
Diagonalization matrix ;
Selected column index .

Algorithm:
1. Calculate

2. Find the largest eigenvalue and the
associated unit-norm eigenvector of

Real Imag
Imag Real

3. If , set ; otherwise, parti-
tion as

where , and set

Note that in this case, there’s no phase ambiguity in(un-
less the largest eigenvalue occurs with multiplicity of more than
one).

As for the phase, we now have (preserving the notations
of Section II-B)

(23)

(or the Khatri–Rao product of with itself) so that

(24)

and

diag (25)

The resulting phase follows.

phase (symmetrical version):
Minimization of w.r.t. :
Inputs:

Target matrices ;
Diagonalization matrix ;

Algorithm:
1. Prepare

2. For ,
Set diag diag .
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As before, if is not invertible, the min-
imum-norm solution may be chosen among all possible mini-
mizing solutions.

IV. I NTERLACING THE AND PHASES, CONVERGENCE

AND COMPUTATIONAL ISSUES

The “natural” objective of the algorithm is to al-
ternate between minimization w.r.t. and mini-
mization w.r.t. . Although the former is attained via a single

run, the latter requires consecutive “sweeps” over all
columns of (i.e., for but not necessarily in that
order). Thus, in principle, each phase is to be followed by
an “infinite” number of sweeps before the next phase
is run.

Alternatively, any fixed number of sweeps (or even in-
complete sweeps) may interlace runs, without attaining
“true” minimization w.r.t. between true minimizations w.r.t.

.
Nevertheless, with either strategy, is guaranteed not to

increase (usually to decrease) with each iteration; thus
(because it is bounded below), convergence of is guaran-
teed. Explicitly stated

(26)

where denotes the value of after iterations. By “it-
eration” in this context, we refer to any single (isolated) or

iteration). We will use the term “full iteration” to refer to the
combination of a phase and one or more full sweeps.

One possible stopping condition for the algorithm would be
to monitor changes in and stop when they are sufficiently
small, say, below an arbitrarily fixed value. Evidently, the al-
gorithm is guaranteed to meet such a stopping condition after a
finite number of iterations. However, in general, convergence of

does not necessarily imply convergence of the parameters
and . An alternative, more “parameters-ori-

ented,” stopping condition would be to monitor the norm of
change in the parameters, compared with another arbitrary small
threshold as a stopping condition. We will now show that under
some mild assumptions, the algorithm is guaranteed to meet this
alternative stopping condition (in a finite number of full itera-
tions) as well.

To this end, we now assume momentarily that in eachit-
eration, the largest eigenvalue is unique and that in each,
iteration has full rank. In that case, the solution of each

iteration is the unique global minimizer w.r.t. the re-
spective parameters subset. Denoting this parameter subset (at
the th iteration) by and all other parameters by , we
have

(27)

where denotes the set of all “valid” minimizers. For the
phase, this is simply (for each ); for the

phase, we eliminate the phase ambiguity in the Hermitian
version by defining to be the set of all vectors in whose
first nonzero element is real valued and positive.

In Appendix A, we show that for each iteration ( or ),
the above-mentioned uniqueness conditions imply that
such that

(28)

Assuming further that there exists a positive infimumto all the
-s (of all iterations), we can conclude by substituting

in (28) and using (26) that

(29)

which implies that a parameter-monitoring stopping condition
must be met. It has to be stressed, however, that strictly
speaking, this does not imply convergence of the parameters,
i.e., it does not imply that the sequence of parameter estimates
is a convergent sequence; it merely implies that the change in
estimated parameters is guaranteed to fall below any arbitrarily
small fixed threshold. However, it has been observed empiri-
cally that the parameters indeed converge, but we have not been
able to provide a rigorous proof of that property.

Convergence of all the parameters implies in turn (by con-
struction) that the derivatives of w.r.t. all the parameters
vanish simultaneously, and hence, a true stationary point is at-
tained. Note, however, that although the stationary point is min-
imum with respect to each parameters subset individually, this
does not necessarily imply that it is minimum w.r.t. all the pa-
rameters combined (in other words, the second derivative matrix
of w.r.t. all the parameters consists of block-positive defi-
nite matrices along its diagonal, but it is not necessarily positive
definite).

These arguments are somewhat weakened whenever our as-
sumption (that all iterations have unique minimizers)
is not satisfied, i.e., when multiple largest eigenvalues occur in
an iteration or when is positive semi-definite in a

iteration. However, in such cases, additional artificial con-
straints on the parameters (such as minimum norm) may be used
so that uniqueness can still be imposed.

A possible intelligent initialization would be to set to the
(exact) joint diagonalizer of any two matrices in, say, and

, e.g., via diagonalization of (assuming is invert-
ible). The algorithm will then start with a phase.
Alternatively, if an intelligent guess as to the anticipated diag-
onal values is available, then can be initialized
accordingly, and the algorithm will start with an
phase.

In Fig. 1, we demonstrate typical convergence patterns of
(in the Hermitian case) for one and for two sweeps in-

terlaced between each phase. The “true” set of ten Her-
mitian 4 4 matrices was generated by drawing at random the
elements of the true (independent, complex normal standard
random variables) and of the diagonals of the true(indepen-
dent, uniformly distributed in ). Then, the perturbed target
set was generated by noising (conjugate symmetrically) all el-
ements of the matrices in with independent complex normal
random variables with zero mean and standard deviation (std)
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Fig. 1. Typical convergence patterns ofC for randomly generated matrices
with 1 and 2 full AC sweeps per iteration.

0.02. The patterns show that with two sweeps in each iter-
ation, the convergence rate is nearly two times faster. Since the
associated computational load per iteration is nearly two times
higher, there is no distinct preference for either strategy in this
example.

To demonstrate the statistical behavior of the algorithm, we
repeated the experiment with matrix orders ranging from

to , with 400 independent trials per order, run-
ning two sweeps per full iteration. We maintained
matrices in all experiments. In Fig. 2, we plot the median of the
number of full iterations required to reach convergence, where
convergence was defined as the state where the absolute change
in each estimated in the phase falls below 0.001. These
experiments were also repeated with stronger noise (with std of
0.2) and then (with the same noise levels) for the symmetrical
case as well (for which symmetrical noisy matrices were gener-
ated). It is seen, as could be expected, that the (median) number
of required full iterations is generally higher for the higher noise
levels. However, there seem to be some inherent differences be-
tween the Hermitian and symmetrical cases in the behavior as a
function of : For the Hermitian case, the required number of
full iterations increases with only up to and then re-
mains roughly constant, whereas for the symmetrical case, this
number seems to increase monotonically for up to for
the low noise level and up to (or higher) for the higher
noise level. In addition, the required number of full iterations for
the symmetrical case is generally higher than that of the Hermi-
tian case for fixed and noise level.

Addressing the issue of computational load per iteration, we
will now assume, for simplicity, that each phase consists
of a single full sweep. The computational load for the
phase (in terms of the number of complex multiplications)
is . As for the phase, the calculation of
requires multiplications and formally has to be
repeated times, which would amount to . Note,
however, that the sum can be expressed as

, and it suffices to compute the matrices
just once per sweep so that the load for the entire

Fig. 2. Median of the required number of full iterations versus the matrices’
dimensionN for two noise conditions: std. of 0.2, 0.02 for the Hermitian and
symmetrical cases. The number of matrices wasK = 10. Each result reflects
the median of 400 trials.

sweep reduces back to (we assume that the load for
computing the largest eigenvalue and the associated eigenvector
is and is, hence, negligible). The overall computational
load per iteration is therefore .

As mentioned in the introduction, a subspace-based joint di-
agonalization algorithm using Gauss–Newton iterations was re-
cently proposed in [18]. When that algorithm converges, its con-
vergence rate is substantially faster than that of .
However, it requires an -fold higher computational cost
per iteration, namely, . Additionally, as is typical for
Gauss-Newton type algorithms, it may occasionally diverge, de-
pending on initialization and/or selection of a step-size param-
eter, whereas is guaranteed to meet the stopping con-
dition, regardless of initialization.

V. SIMULATION RESULTSWITH JADE

To demonstrate the potential performance improvement in
the context of BSS, we present in Fig. 3 some simulations re-
sults by applying Cardoso’s joint approximate diagonalization
of eigen-matrices (JADE) algorithm [19] to a 33 noisy BSS
problem. We will not go into detail describing the JADE algo-
rithm here. We only mention that it is based on the joint diag-
onalization of empirical fourth-order cumulant matrices of the
observed (mixed) data. The standard application of JADE re-
quires a prewhitening phase, followed by orthogonal joint diag-
onalization of the transformed matrices using an extended Ja-
cobi algorithm [14]. This algorithm is computationally cheaper
(per full iteration) than since it has a computational
load of ; however, as we will demonstrate, it may be
inferior to the algorithm in terms of the resulting sep-
aration performance.

As an alternative, we applied the algorithm to the
entire set (which is real valued here so that the “Hermitian” and
“symmetrical” algorithms coincide). Conventional JADE was
applied to each data set, followed by application of
to the same data, with three different combinations of weights
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Fig. 3. Average ISR for a 3�3 BSS problem versus the observation
length T , using the JADE algorithm. Simulation results are presented for
conventional (whitened) JADE as well as forAC � DC with three different
weightscombinations. Each point reflects the average of 500 trials. All
algorithms operated on the same estimated matrices.

. All the weights associated with the estimated cumulants
matrices were set to unity, whereas the weightassociated
with the estimated correlation matrix was varied between three
different values, namely, 0.1, 1, and 10. Each application of

used the conventional JADE output as an initial guess.
The simulation setup was the following: The three source

signals were generated as independent samples, uniformly dis-
tributed between and (thus having zero mean and unit
variance). The true mixing matrix was

samples from each observed signal were used to obtain un-
biased estimates of the correlation and cumulants matrices. The

algorithm was applied directly to the estimated ma-
trices. Conventional (whitened) JADE was applied as follows.
Rather than whiten the entire data set and re-estimate the ma-
trices, we applied the whitening to the already-estimated cumu-
lants matrices (as described in the Introduction) and then used
the orthogonal joint diagonalization algorithm of [14].

The results are measured in terms of the average interfer-
ence to signal ratio (ISR) implied by the estimate of the mixing
matrix. The ISR per trial is calculated as follows: First, the
composite separation matrix (where is the estimated
diagonalizing matrix) is calculated; then, all its elements are
squared; the ISR in each row is the sum of all (squared) ele-
ments in the row except for the largest, divided by the largest;
the average ISR is the average of all the row ISRs.

In Fig. 3, we demonstrate the resulting average ISR (in deci-
bels) versus the number of samplesfor conventional JADE
as well as for with the three different weight com-
binations. The most significant improvement over conventional
JADE is attained with .

We stress that the optimum with respect to is attained
around with this specific setup but may be attained
by essentially different weighting for different mixing ma-

trices and/or source signals. It is evident, for example, that
mere scaling of the signals is equivalent to a relative change
of weights since the estimated correlation matrix involves
second-order powers of the signals, whereas the estimated
cumulants matrices involve the fourth-order powers thereof.
The performance of may be further improved by
proper choice of the entire set of relative weights, possibly
considering the statistics of the estimation errors, such as by
the approach taken in [8]. However, such considerations are
beyond the scope of this paper.

VI. CONCLUSION

We proposed an iterative algorithm for approximate joint di-
agonalization of a given set of matrices in the weighted LS sense
with arbitrary positive weights. The algorithm is applicable both
in the “Hermitian” framework, when all the target matrices are
Hermitian, and in the “symmetrical” framework, when all the
target matrices are symmetric. Convergence to a stationary point
of the LS criterion is guaranteed under mild conditions.

Performance improvement over “hard whitening” followed
by orthogonal diagonalization can be attained by proper selec-
tion of the weights, which enables a more balanced distribution
of the deviations from exact diagonalization among all the ma-
trices.

Finally, note that the proposed algorithm may be easily
adapted to find the “reduced” joint diagonalization with smaller
diagonal matrices , where
so that the diagonalizing matrix is not square.
Such an application occurs, e.g., in blind source separation with
more sensors than sources. The only required modification (for
both the Hermitian and symmetric versions) is in the AC phase,
where each occurrence of in the algorithm specification
should be replaced with .

A MATLAB ® package for the algorithm is available at
the ICA-Central web-site:http://tsi.enst.fr/~cardoso/icacen-
tral/Algos/yeredor.

APPENDIX

EXISTENCE OF “UNIQUE NEIGHBORHOODS” FOR

UNIQUE MINIMA

Certain assumptions (to be restated shortly) imply unique-
ness of the minimizers in each single iteration. We
will now show that under these assumptions, these minimizers
are not only unique but also have “unique neighborhoods” in the
sense that small changes in the value of must imply small
changes in the parameters. Explicitly stated, in each iteration
( or ), such that

(30)

where denotes the set of all valid parameters for the mini-
mization, denotes the minimizing parameters at theth
iteration, and denotes all the other, irrelevant parameters

(31)
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To simplify the notation, we will drop references to the iter-
ation index and to the irrelevant parameters and denote
the minimizer simply as . With this simplified notation,
we intend to show an equivalent statement, namely, that in each
iteration, such that

(32)

where is shorthand for .
For the DC phase, is simply (for each ).

The required uniqueness assumption is for [of either (14)
or (24)] to have full rank, in which case, is a quadratic
function of with a positive-definite constant Hessian. Conse-
quently, denoting , we have

(33)

so that (32) is actually satisfied with , where
denotes the minimal (positive) eigenvalue of since

(34)

For the AC phase, the proof is a little more involved. We con-
sider the Hermitian case here, but the proof can also be similarly
derived for the symmetrical case. The setof valid minimiza-
tion vectors is defined as all vectors in whose first nonzero
element is real valued and positive. The uniqueness condition
for the AC phase minimizer is for the largest eigenvalue of
[which is defined in (6)] to be unique. Specifically stated, if we
denote ’s eigenvalues as in descending
order, there exist some positivesuch that .

As was done in Section II-A, we decompose the vectorof
the minimization parameters into , where is a
non-negative scale, and is a unit-norm vector ( ),
whose phase is arbitrarily determined such that its first nonzero
element is real valued positive. We also denote the minimizing
solution as . Consequently, we have

(35)

We further define vectors and as follows. Let
denote the eigenvalue decomposition of the

Hermitian matrix such that (where denotes
the identity matrix), and diag .
Using , we now define

(36)

where is the first column of (and the right-hand side
equality holds since is the eigenvector corresponding to).
Thus, (the first element of ) so that

(37)

We can always select the arbitrary phases ofs columns such
that is real valued and non-negative. This would enable sub-
stitution of the notation simply with . Note fur-
ther that since is also a unitary vector, we would always have

.
We now introduce the following Lemma.
Lemma 1: Let denote an arbitrary constant, and

define . Then

(38)

Proof: Using (37), the Lemma’s condition implies

(39)

from which follows immediately (recall that, ).
Observe now from (5) and (9) that is given by

(40)
and the minimized is given by

(41)

where and are some constants depending on irrelevant pa-
rameters. In addition, we have, using (8), . We there-
fore obtain

(42)

We can now use the following inequality:

(43)

to conclude that

(44)

Our ultimate goal is now to prove the following claim.
Lemma 2: , the condition , which, from

(37), is equivalent to

(45)

implies that by im-
plying

(46)

and using (44). is related to the arbitrary constant via
Lemma 1.

Proof: Using Lemma 1 and the relation , the condi-
tion (45) implies that . We will now show that the claim
in Lemma 2 holds in each of the two possible cases:
and (naturally, the latter may sometimes be
nonexistent, depending, , and the arbitrary choice of).
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Assume first that . We restate the Lemma’s condi-
tion as

(47)

and use this inequality to obtain

(48)

where the last inequality results from the assumption
.

Conversely, assuming that , we restate the
Lemma’s condition as

(49)

leading to

(50)

Evidently, in either case, (46) is satisfied.
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