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1. Introduction. In the following we shall be concerned with the differen-
tial equation

(1.1) y"-F(x)y = 0,

where F(x) is a real-valued function defined for x>0 and belonging to
L(e, 1/e) for each e>0. A solution of (1.1) is a real-valued function y(x),
absolutely continuous together with its first derivative, which satisfies the
equation for almost all x, in particular at all points of continuity of F(x).

We shall say that the equation is non-oscillatory in (a, oo), oïïO, if no
solution can change its sign more than once in the interval. Since the zeros
of linearly independent solutions separate each other, it is sufficient that there
exists a solution without zeros in the interval in order that the equation be
non-oscillatory there. It is well known that (1.1) is non-oscillatory in (0, oo)
if F(x) 2:0, but it may also have this property when F(x) ^0 as is shown by
the example

(1.2) y" + yx~2y = 0

with

(1.3) fix) = dx" + Ctx*+,       p2 - p + t = 0.

This equation is oscillatory for y>\, but non-oscillatory for y^\. This ex-
ample will play an important role in the following.

In this note we shall study two distinct but related problems.
I. When does equation (1.1) have a solution which tends to a limit^O, »

when x—> oo ?
II. If F(x) = —f(x) where f(x) is non-negative, when is equation (1.1) non-

oscillatory in (a, oo ) for a sufficiently lar gel
It should be noted that if F(x) = —f(x) ^0, then a solution of Problem I is

also a solution of Problem II but not vice versa. The impetus to the present
investigation was given by a recent paper by Aurel Wintner ([10] in the ap-
pended bibliography) in which these problems were mentioned. Wintner
proved (loc. cit. pp. 96-97) that /(x)£L(l, oo) is a necessary condition for
both I and II; in studying problem I he restricted himself to the case in
which F(x)=f(x)^0. Example (1.2) shows, however, that the condition is
not sufficient in either case.

Problem I, though not trivial lies fairly close to the surface. Assuming
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NON-OSCILLATION THEOREMS 235

F(x) to be of constant sign at least for large values of x, it is not difficult to
strengthen Wintner's necessary condition to xF(x) £7,(1, ») and it is an easy
matter to show that this condition is also sufficient. Actually a special case of
Problem I was attacked by the present writer in 1924 [4, p. 491] in connec-
tion with the equation

(1.4) w" + [a2 -F(z)]w = 0

in which the perturbation term F(z) is supposed to be holomorphic in a right
half-plane and |,F(a;+i;y)| ^M(x) where M(x) is monotone decreasing and
satisfies a suitable condition of integrabilityC). The case which has a bearing
on Problem I is that in which ö = 0; assumingxil7(x) £7,(0, oo), I could prove
the existence of a solution W\{z) of (1.4) such that w\{z) = 1+0(1) for large
\z\. This is the exceptional or sub-dominant solution; assuming the stronger
condition x2M(x)£7,(0, oo), I could isolate a dominant solution w2(z)=z
+o(l) for large \z\. The proof is based upon the method of successive ap-
proximations and applies just as well if F(-) is defined only for real values of
the variable. The assumption that M(x) is monotone turns out to be super-
flous and it is an easy matter to show that xF(x)£7.(l, oo) suffices for the
existence of the exceptional solution. The details of the discussion are given
in §2 below.

Problem II on the other hand is much more refractory. Wintner's neces-
sary condition,/(x)£L(l, oo), can be strengthened to, for instance, x"f(x)
£7(1, oo) for each o-<l, but not for c = l. Example (1.2) shows that even
this stronger condition is not sufficient. More significant is the observation
that the function

(1.5) i(«) = x f   f(t)dt
J   X

stays bounded for large x if (1.1) is non-oscillatory. More precisely, if the
inferior and superior limits of g{x) for x—» oo are denoted by g* and g* respec-
tively, then g*^|, g* = l are necessary and g*<| sufficient conditions in
order that (1.1) be non-oscillatory for large x. Here all inequalities are sharp.
The proof of this result is given in §3, the necessary counter examples are
constructed in §4.

Example (1.2) was taken as the point of departure for a study of
Problem II by A. Kneser [5, pp. 414-418] in 1892(2). He proved that if

(') There is a considerable literature on this and related problems. Of recent papers, refer-
ence should be made to R. Bellman [l ] and N. Levinson [6]. The idea of reducing the study of
(1.4) to a singular integral equation which is solved by the method of successive approximations
goes back to É. Cotton [2]. The case a = 0, in which at most one solution can remain bounded,
seems to have been disregarded in the literature.

(2) I am indebted to a referee for calling my attention to the fact that Problem II goes
back to Kneser. A further search of the literature led to Riemann-Weber [7] where the discus-
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iimx~œx2f(x) = 7, then (1.1) is oscillatory for 7>i and non-oscillatory for
y<\. If 7 = | no conclusion can be drawn unless x2f(x) <J for all large x. In
§5 we shall exhibit an infinite sequence of differential equations which lead to
successive refinements of Kneser's criterion of a nature similar to the
logarithmic scale in the theory of convergence of infinite series. In this discus-
sion one may replace limits by inferior and superior limits, but no conclusion
can be drawn if J lies in the interval of indétermination of the critical ratio in
question.

In the study of Problem II the constant \ plays a peculiar role. It is the
value of 7 for which the quadratic equation p2—p +7 = 0 has equal roots.
This equation was noted above in (1.3) where it occurred as the indicial equa-
tion in the sense of Fuchs of equation (1.2). It plays a similar role for the
other equations of the logarithmic scale, but it also enters the argument in a
different way. The main tool in our study of Problem II is the associated
Riccati equation

y'
(1.6) v' + v2 + f(x) = 0,        B-— >

y

and the corresponding singular integral equation which in the non-oscillatory
case can be written in the form

/dt u2{t)-\- g(x),       u(x) = xv{x),
x                 t2

with g(x) defined by (1.5). This equation shows that the behavior of g(x) for
large x is decisive for that of u(x); in particular, lim u(x) — p can exist if and
only if lim g{x) =7 exists in which case p2—p +7 = 0 and 7^|. It is perhaps of
some interest to observe that here is a linear problem which, apparently, is
best studied by nonlinear methods.

Finally, in §6 we give a partial extension of Problem II to the complex
plane which also is based upon equation (1.7).

2. Problem I. Let F(x) be a real-valued function, defined for x>0 and
belonging to 7,(e, 1/e) for each e>0. We shall say that the differential equation

sion of oscillation theorems (pp. 53-72, 5th ed., omitted in the 7th Frank-v. Mises ed.) is based
on Kneser. The case in which f(x) —>0 is considered on pp. 60-62, but here the discussion goes
beyond Kneser. If 7 = 1, Weber puts y = xwr¡, £ = log x; this gives a new differential equation to
which Kneser's criterion may be applied. The resulting theorem is equivalent to our Theorem
10 below. Weber also indicates how the iteration of this process leads to an infinite chain of
conditions. The existence of this passage in Riemann-Weber had escaped my memory at the
time of deriving Theorems 10 and 11. Though these theorems are not essentially new, I have not
suppressed them from the text since they provide necessary background for the rest of the dis-
cussion. For further literature relating to Problem II, see also W. B. Fite [3, p. 343] and A.
Wiman [9, pp. 4-5]. Wiman has added much to our knowledge of the fine structure of the
solutions, but for the case of Problem II he does not go beyond Kneser, nor does he claim to do
so. [Revised September 9, 1947.]
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(2.1) y"-Fix)y = 0

has property I if it admits of a solution yi(x) such that

(2.2) lim yiix) = 1.
X—»oo

Lemma 1. If (2.1) has property I, then its general solution is of the form

(2.3) y(x) = d[l + É1(x)] + C,x[i + €,(*)],

where G and C¡ are arbitrary constants and limI_00ej;(x) =0.

Proof. By assumption there exists a solution yi(x) = l+ei(x). Let a be so
large that |ei(x) | <1 for x§ïa. Then

r       .,-,,    =   *|1   +  «2(X)J

exists and is also a solution of (2.1) as is well known and easily verified.

Lemma 2. If (2.1) has property I, then (2.1) is non-oscillatory for large x.
Moreover, if F(x) keeps a constant sign in (c, oo), c>0, ¿Äew every solution
y(x) is ultimately monotone and y'{x) tends to a finite limit when x—» oo. Further,
y(x)is ultimately convex or concave towards the x-axis according as F(x) S: 0 or
Fix)£0.

Proof. If a is chosen as above, then yi(x) ¿¿0 for x^a and no solution can
have more than one zero in (a, oo). Suppose that F{x) keeps a constant sign
for xïïc, say F(x)^0, and that a solution y(x) is positive for e^o^x. If
b^xi<x2< oo, then

/X2
F{t)y{t)dt

xl

is never negative. Hence y'(x) is never decreasing for x 2; b and tends to a limit
when x—>oo. This limit must be finite because y(x) <Kx for large x by (2.3).
The convexity properties are obvious.

Theorem 1. If F{x) keeps a constant sign for large x and if (2.1) has prop-
erty I, then xF(x)Ç_L(l,  oo).

Proof. We take G = 0, C2 = 1 in (2.3) and substitute in (2.4). Since the left
side tends to a finite limit when x2—>°°, so does the right, that is F{x)y{x)
(E.L(a, oo) because F(x)y(x) ultimately keeps a constant sign. But y{x)>\x
for large x and 7'(x)£L(l, a). Hence x7"(x)£L(l, oo).

Theorem 2. If xF(x)£L(l,  oo), then (2.1) has property I. Moreover

/OO

/1 Fit) | d*.
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Proof. Consider the integral equation

/CO

it - x)F(t)Y(t)dt

and define

Fo(x) = 1,        F*(x) - 1+f   it- x)Fit)Yk^it)dt.

We have obviously

/CO

it- x)\ Fit) | dt g G(x).

Using the fact that G'(x) = — x| Fix) | for almost all x, it is a simple matter to
verify the estimate

| Yk(x) - F,_x(x) | ^ — [Gix)]\ ft - 1, 2, 3, • ..'.
kl

From this it follows that F^x) converges to a limit F(x) uniformly for
x^e>0, and F(x) satisfies (2.5) and (2.6). Differentiating (2.6) twice with
respect to x, we see that F(x) satisfies (2.1) for almost all positive x. Thus
F(x) is the desired solution yi(x) and (2.1) has property I(3). This completes
the proof.

Corollary. If Fix) keeps a constant sign for large x, then xF(x) £7,(1, oo)
is necessary and sufficient in order that equation (2.1) have property I.

This is a solution of Problem I. The condition remains sufficient if F(x) is
allowed to be complex-valued, but the necessity is lost already when we drop
the assumption that 7"(x) keeps a constant sign for large x. This is shown by
the following simple example. The function

sin x
y(x) = 1-

x

satisfies a differential equation of type (2.1) with

(x2 — 2) sin x + 2x cos x
F^ =-u-:—Ñ-x\x — sin x)

as is shown by computing y"/y. The corresponding equation has property I

(3) Differentiation in (2.6) shows that y{ (*)—»0 when x—>oo and more precise information
is readily obtained from the equation if desired. Similarly, in the case of the dominant solution
yz{x) of Theorem 3 we have yl (x)—>1. It should be added that the estimates (2.5) and (2.11)
differ from the corresponding estimates on p. 491 of [4]. The difference is not essential, but may
conceivably be due to an error of calculation in the older estimates.
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1948] NON-OSCILLATION THEOREMS 239

but neither F(x) nor xF(x) belongs to 7,(1, oo).
For large values of x the inequality (2.5) may be replaced by the more

favorable estimate

|y,(aO - l| <F2(x)[l-F2(x)hl,

(2.7) FÁx) = j   it- x) | F(t) dt,

which is valid for 7"2(x) <1. This follows from the estimate | F*(x) — F*_i(x)|
< [F2(x)']* which is easily verified.

We shall say that the differential equation (2.1) has property I* if there
exists a solution y2(x) such that

(2.8) lim [y2(x) - x] = 0.
X—»oo

Theorem 3. Property I* implies property I but not vice versa. The equation
has property I* if x27"(x) £7,(1, oo) and, if Fix) keeps a constant sign for large
x, then the condition is necessary as well as sufficient.

Proof. If (2.1) has property I* then (as in the proof of Lemma 1)

(2.9) yi(x) = *(•) f °° [y,it) Y2dt -1 + 0 (—}

is a solution of (2.1), so that (2.1) has property I. In particular, if Fix) keeps
a constant sign for large x, we see that x,F(x)£T,(l, oo). This condition also
implies property I, but, as we shall see below, the stronger condition x2F(x)
£7,(1,  oo ) is required for property I* when 7"(x) keeps a constant sign.

In order to prove that x2F(x)£L(l, oo) is a sufficient condition for
property I*, we proceed as in the proof of Theorem 2, replacing (2.6) by the
new singular integral equation

/oo (l - x)Fit)Zit)dt.
X

The details can be left to the reader; we note, however, the resulting estimate

/OO

t21 Fit) | dt.
X

The proof of the necessity is more interesting. Suppose that F(x) keeps
a constant sign for large x and that (2.1) has property I*. As observed above,
it has also property I and if yi(x) denotes the solution defined by (2.9) we have
conversely

y2(x) = yx(x) f    [yi(t)]-*dt + Cy^x).
J a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



240 EINAR HILLE [September

Here we choose a so large that (i) sgn Fix) is constant and (ii) | yi(x) — 11 <$
for x>a. After a has been chosen, C is uniquely determined but its actual
value is of no importance for the following. We set

yi(x) = 1 + 7(x)

and expand [l+7(¿)]~2 in powers of yit), using two terms and the exact form
of the remainder. The result may be written

ysix) - (x - a) - C[l + y(x)] = | y(x)(x - a) - J     yit)dt

(2.12)
- [1 + 2«y(z) ] yit)dt + [1 + 7(x) ] ' dt.

da J a [I  + yit)\2

By assumption, the left side tends to the limit a — C when x—»oo so the right
member must also tend to the same limit. We shall show that this implies
that Jxayit)dt tends to a finite limit.

By (2.6), which admits of yi(x) as its unique solution, we have

(2
/oo •» ooit - x)F(t)yi(t)dt,       y'(x) = -  I    F(t)yi(t)dt

X «^    X

so that sgn 7(x)=sgn F(x), sgn 7'(x) = —sgn F(x) for x>a and [7(*)| is
monotone decreasing to zero.

There are two cases to consider.
(i) F(x)^0 for x>a. In this case the first term in the right member of

(2.12) is negative while the third term does not exceed 0.567 times Jlyit)dt.
It follows that the latter integral must tend to a finite limit when x—» oo and
this implies that 7(x)£7,(l, oo).

(ii)  Fix) ^0 for x>a. In this case all three terms in the right member of
(2.12) are positive and the same conclusion holds.

But

rM i t (o i dt = r f " (s - o i *(s) i ViaSat
J a J a     J  t

exists if and only if

/>   OO       /%   00 1 /.  OOI     is - t) | F(s) | ¿s<« = — I     (i - a)21 F(î) | ds
a     v   t ¿Ja

exists, that is, if and only if x2F(x)£7,(l, oo). This completes the proof.
If (2.1) has property I* then

(2.14) lim [Ciyiix) + C2y2(x) - d - C2x] = 0.
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Expressed in geometrical language, this leads to the following.

Corollary. There is a one-to-one correspondence between the integral curves
of (2.1) and the non-vertical straight lines. Every integral curve has a unique
slanting asymptote, distinct integral curves having distinct asymptotes, and
every slanting straight line is the asymptote of a unique integral curve.

The theory of Bessel functions provides illustrations of the results of the
present section. If F(x) =x~2~a, then the corresponding equation has property
I for a>0 and property I* for a> 1. The corresponding subdominant solution
yi(x) is a constant multiple of

(li
x1/27i/J — x-«'2

V a

a result which goes back to Euler. Similarly if F(x) = —e~2x we have yiix)
= Joie~x). Dominant solutions involve functions of the second kind. See
G. N. Watson [8, pp. 96 and 99].

3. Problem II. Let/(x) be a non-negative function defined for x>0 and
belonging to 7,(e, 1/e) for each e>0. We shall say that the differential equation

(3.1) y" + /Wy-0
has the property 11 if it is non-oscillatory for large x.

Lemma 3. If (3.1) has property II and if y(x) is a solution which is positive
for xSïa, then y(x) is monotone increasing and concave downwards for x>a.
Further y'ix) is positive and monotone decreasing towards a limit ^0.

Proof. From (2.4) we get

/X2
fit)yit)dt

XI

which is non-positive for a<Xi<x2. It follows that y'ix) is never increasing
for a <x and y(x) is concave downwards. Since the graph of y = y(x) lies below
the curve tangent and does not intersect the x-axis for x>a, we must have
y'(x)>0.

Formula (3.2) shows that y(x)/(x)£7,(l, oo), but all that can be con-
cluded from Lemma 3 concerning the growth of y(x) is that |y(x)| ^Kx for
large x. If the converse inequality should hold for a particular y(x), then
x/(x)£7,(l, oo) as we know from the preceding discussion, but this property
is not necessary for the equation to have property II. For a further study of
this matter we resort to the associated Riccati equation

(3.3) v' + v2 + fix) = 0,        v = y'/y.

Lemma 4. If (3.1) has property II and if y(x)r^O for x^a, then

■
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(3.4) 0 < (x + c)d(x) g 1,    c = - a + l/i>(a),    t>(x) = y'(x)/y(x).

Proof. For x^a the function t/(x) is absolutely continuous and satisfies
(3.3) for almost all x. By Lemma 3,i>(x) >0 for x^a and Í3.3) shows that it is
a never increasing function of x. Moreover, v'-\-v2^0 whence it follows that

ir_±+x"u0
dx\_      v J

and
— l/n(x) + x g — l/f(ffl) + a, a ^ x,

which is (3.4).

Corollary. We have

(3.5) 0 ^ lim sup xvix) £ 1.
I—,00

Next we proceed to strengthen Wintner's necessary condition.

Lemma 5. If pix) is a positive never decreasing function, í/"/í(x)x_2£L(1, oo),
and if (3.1) has property II, then ju(x)/(x)£7,(l, oo).

Proof. We choose a as in Lemma 4, y(x) being a given solution of (3.1)-
We then multiply (3.3) by /x(x) and integrate between the limits a and b, ob-
taining after an integration by parts,

(3.6)

v(b)n(b) - via)pia) - j   K*)4p(0

/» 6 i-» 6
nit)v2it)dt + I    ¡iit)fit)dt = 0

a «J a

The assumptions on ju(x) together with (3.4) show that the second integral in
this formula tends to a finite limit when o—>oo and for the same reason
ju(o)z;(d)—>0. Further

f\it)d,it)^r^^=^--^± + r^-dt
Ja J a   t + c      b + c       a+c       J a  it + c)2. (I + cy

fJ aa+c       J a     it + c)2

It follows that the last integral in (3.6) also tends to a finite limit and the
theorem is proved.

Admissible choices of yu(x) are given by the functions

x",    a < 1; «(log x)-1-"; x(log a:)-1 (log log x)"1-",        a > 0.
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In particular we may take ju(x) = 1 ; this leads to the integral equation

/OO f%  00v2it)dt+ I    fit)dt,
x J  X

which is basic for the following discussion.

Theorem 4. Equation (3.1) has property  II if and only if the integral
equation (3.7) has a solution for sufficiently large values of x.

Proof. The necessity has already been proved. Suppose that there is a
finite a such that (3.7) has a solution for x^a. From the form of the equation
it follows that î>2(x)£7,(a, oo) and i/(x) is a positive, monotone decreasing,
absolutely continuous function. Differentiation with respect to x shows that
vix) satisfies Í3.3) for almost all x. Hence if we put

y(x) = exp J   vit)dt\,
then y(x) satisfies (3.1) for almost all x and for x^a we have y(x) ^ 1 so that
(3.1) has property II.

For the discussion of (3.7) let us introduce the following notation

/OO

fit)dt

in terms of which (3.7) becomes

/dt u2it) — + gix).
x P

We also write

sup lu* sup lg*
(3.10) lim   . ;«(*) = \     , lim   . %(x) = f .

inf \u* inf lg*

Theorem 5. If (3.1) has property II, then g*^land g*iSl. Both estimates
are the best possible of their kind.

Proof. Since (3.1) is assumed to have properly II, equation (3.9) has solu-
tions for large values of x and by the corollary of Lemma 4 we have O^w*
^m*^1. The first term on the right of (3.9) is positive so that

(3.11) &á«„        g*á«*,
and the second inequality gives g* ;£ 1 as asserted. Since

dt/dt u2it) — á («*)' + «
x t
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for x^x£, (3.9) also shows that

(3.12) m* ^ (w*)2 + I,,        u* ^ iu*)2 + g*.

The first of these inequalities requires that g* g \ ; it then gives

(3.13) i - (i - g*)1'2 ^ w* ^ i + (i - g*)1'2.

The second inequality under (3.12) is true for all u* if g*=^J. It imposes a re-
striction on u* if g* < | in which case it shows that either

(3.14) u* g § - (i - g*)1'2    or    I + Q - g*)1'2 ^ «*.

This completes the proof of the inequalities. Example (1.2) with y = \ shows
that g* may equal \ when the equation has property II. An example with
g* = 1 will be constructed in §4.

Theorem 6. If (3.1) has property II and if for a particular solution yi(x)
of (3.1) the corresponding function Wi(x) tends to a limit p when x—»oo, £&e«
lim.x.,xgix) =7 exí'sís awd p2—p+7 = 0. Further lim^ooWÍx) exists for every solu-
tion of (3.1) and is either p or 1—p. There exists a solution for which the limit
equals 1 —p.

Proof. The first assertion is an immediate consequence of equation (3.9)
and the latter also shows that if limx^xuix) exists for any other solution of
(3.1), then the limit is either p or 1 —p. But to prove the existence of the limit
requires a more elaborate argument than one would expect at first sight. The
crux of the proof lies in showing the existence of a solution y2(x) with lim m2(x)
= 1 —p. There are two distinct cases according as [yi(x) ]_2£7,(a, oo ) or not.
The first case is present, for a suitable choice of a, if |<p^l, the second if
0¿p<J, while p = | may belong to either case. We shall carry through the
argument in the first case. We form

/OO

[y,it)Y2dt,
X

which exists and is a solution of (3.1) under the present assumptions provided
x>a. Logarithmic differentiation or use of the Wronskian yields

w2(x) = iti(x) — x/F(x),        F(x) = yi(x)y2(x).

But an integration by parts gives

p(x) = [yi(x)]2 Cbm-'At
J x

/OO

= - x+ 2pP(x) + o[Pix)\
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since %(/)—»p when t—»oo. Hence

x/F(x) = 2p - 1 + o(l), p 2: 1/2,

and lim m2(x) = 1 —p. If we set y2(x)/yi(x) =F(x), then limx<coi?(x) =0. Hence,
if y(x) = Ciyi(x) + C2y2(x) where G^O, then

Ci«i(x) + C2w2(x)F(x)
m(x) =-> p.

Cx + C2F(x)

Thus the limit of w(x) always exists and equals p unless Ci = 0 in which case
it becomes 1—p. We note that if p = § so that the two limits coincide, then
yi(x) and y2(x) are still linearly independent solutions of (3.1).

If [yi(x)]-2 is not in 7,(a, oo) for any a, we modify the definition of y2(x),
replacing the integral from x to oo by one from a to x having the same
integrand. The proof then goes through as in the first case.

The theorem shows that a necessary condition for the existence of lim m(x)
for any solution y(x) of (3.1) is the existence of lim g(x) which is then nec-
essarily ^j. We shall prove in Theorem 8 below that, conversely, the exist-
ence of lim g(x) implies that of lim m(x) provided the first limit is <¿.

We shall now prove a comparison theorem which leads to sufficient condi-
tions for property II.

Theorem 7. Given the differential equations

(3.15) Y" +Fix)Y = 0,       G(x) = x f   F(t)it,
J  x

(3.16) y" +fix)y = 0,        g(x) = x f   fit)dt.
J   X

If the first equation has property II and if G(x) É^g(x) for x^a, then the second
equation also has property II.

Proof. By Theorem 4 the integral equation

rx        dt
(3.17) U(x) = x j     <72(0 — + G(x)

J x t2

has a solution Z7(x), defined for x^& say. We now consider equation (3.9) for
x è c = max (a, b) and define successive approximations by

/"   2         dtUn-lit)-h g(x).
x                        t

Here

/'CO d£ .»00 ^¿£f2(0 — + g(,x) g x j     U2it) — + G(x) = t/(x) = «o(x).
I /2 J x t2
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Since

/°°r 2 2 dt[w„-i(/) — m„_2(/)] —>
* t2

we see that m„_i(x) ^m,(i) ==ig(x) for all x and all n. Hence lim w„(x) =m(x)
exists and satisfies (3.9). Using Theorem 4 once more we see that equation
(3.16) = (3.1) has property II as asserted.

Corollary 1. Equation (3.1) has property II if gix) ^\for x^a. This holds,
in particular, if g* < J.

For Gix)=l corresponds to F(x)=|x-2 and F(x) =x1/2(Ci+C2 log x) so
that the corresponding equation (3.15) has property II. Another sufficient
condition will be proved in §5 (Theorem 12).

Corollary 2. If Í7(x) is any solution of (3.17) defined for x^c, and if
Gix) ^g(x) for x^c, then there exists a solution w(x) of (3.9) with w(x) g Uix)
for x è (c).

This was proved above.

Theorem 8. 7f limx-.«,g(x) =7 ext'sís a«¿ i/" 7<|, then limx^xuix)
= limx.ooXy'(x)/y(x) exists for every solution y(x) of (3.1), y(x)^0.

Proof. By Theorem 6 it is sufficient to prove the existence of a single solu-
tion Mi(x) of (3.9) such that lim Wx(x) exists. We shall base the proof on Corol-
lary 2. Given an e>0, we can find an a such that 7 — egg(x) ^7+e for x^a.
If 7 = 0 we may replace y—e by 0; we may also suppose that 7+e^|. Con-
sider the quadratic equation u2 — «+g = 0 with g =y — e or 7+« and denote
the smaller of its roots by p and 0 respectively so that p <<r ^ \. Together with
(3.9) we consider the two auxiliary equations obtained by replacing g(x) by
7 —e and 7+e respectively, that is,

/dt L\t) — + 7 - «,

/(ii
i/2W-r- 7 + «•

1             ¿2

The first equation has two constant solutions p and 1— p; every solution
tends to a limit when x—»00 and the limit is 1—p unless 7,(x)=p. The same
description holds for the second equation if we replace p by 0.

By Corollary 2 there is a solution of (3.9), w(x) say, such that w(x)
¿ Uix)=ff, and there is a solution T-(x) of (3.18) with 7,(x) ^w(x). But Z(x)
tends to a limit when x—»00 ; the limit being <§, it must be p. Hence 7,(x) =p
and p^m(x) ^0 when xïîa. Since 0— p^2e1/2 we see that limx..0<)w(x) must ex-
ist and the theorem is proved.
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Another application of the ideas underlying Theorem 7 will be given in §6.
4. Counter examples. In order to show that the results proved in §3 are

not capable of essential improvement we shall exhibit some counter examples.
A. There exists a differential equation having property II for which g*=0,

g* = l.
Construction. If y = y(x) is a positive, monotone increasing function whose

graph is concave downwards, and if y'(x) is continuous, then y(x) satisfies a
differential equation of type (3.1) having property II. The corresponding
function fix) is easily found. In the following example the graph T of y(x) is
made up of arcs of parabolas of higher order and straight line segments fitted
together so that y(x) and y'ix) are continuous. The function/(x) can then be
read off from formula (1.2). Varying the orders of the parabolas and the
relative lengths of the arcs, we can modify the properties of g(x) as desired.
This is the general idea, the details follow.

We observe first that if the parabola y = C(x — s)1'" goes through the point
(xo, yo) with the slope p<¡, then Cn = nyô~1po, s=Xo—yo/inpo). The curve P
consists of arcs T„ and line segments X„ following each other in the order
To, Xi, Ti, ■ ■ ■ , r„_i, X„, r„, • • • and X„ is tangent to Tn-i and Tn. Here T0
is an arc of y = x112 starting at x = 0 and ending at x = öi while T„ is an arc of
y = Cn(x —s„)1/u+2) starting at x = an+bn and ending at x=an+u where
o„<a„+0n<a„+i and the values of o, and bn will be chosen later. The line
segment X„ belongs to the straight line

y = C_i(o» - w)-<«+»/«**> \an - 5„_t +-(x - a»)I.
L w+ 2 J

The values of C„ and sn are uniquely determined by those of an and o„; the
value of C„ is immaterial but we need to know that

s" = Z, -—r °k-
¿-i k + 2

We have

»+ 1
/(x) = 1—T^7 (x ~ ■s»)-2'        an + bn < x < 0„+1,

in + 2)2

and zero elsewhere.
We shall now specialize a„ and o„. We choose

an = 2«2,        bn = 2»2+»

and find that

« +   1 2        r I
sn =-2"+"[l +0(2-2")j.

n + 2
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If 2»2gx^2"2 + 2"2+", then

/.

o « + 1
fit)dt =-2-"2-"[l + 0(2-»)].

n + 2

It follows that

g(2»2) = 0(2"»),        g(2"2+») = ^44 t1 + Oil-«)].
n + 2

Hence g* =0 and g* = 1 as asserted.
Among the further properties of this particular function the following

should be noted. For 2"2(l+2") ^xg2<"+1)2 we have

x
m(x) =-•

in + 2)(x — sn)

A simple computation shows that m(x) decreases from

1      .
1 + 0(2-")    to    - [1 + 0(2-») J

w+ 2

in this interval. Hence w*=0 and u* = i which are the extreme limits of in-
détermination of a function w(x) belonging to a differential equation of prop-
erty II. In view of the discussion in §5 it is also worth noting that

(4.1) lim inf x2/(x) = 0, lim sup x2/(x) = <».
X—>oo x—»w

This concludes the discussion of example A.
B. g* =0 does not imply property II.
Construction. We define y(x) for x^O by its graph which is made up of

cosine arcs and horizontal line segments chosen in the following manner.

yix) = 1, 0 ^ x <: 1,
y(x) - (- l)"+\ 2"2+! ^ x ^ 2<"+1>2,            n = 0, 1, 2, • • » ,

yix) = (- 1)" cos (2-»Vx), 2"2 g x g 2"2+1.

Here

fix) = 2-2"V2,        2"2 :g x g 2»2+!,

and zero elsewhere. Further

g(2»2+!) = 2-2"x2[l +0(2-")]

so that g* =0. Since y(x) has infinitely many zeros, the equation cannot have
property II.

C. g* = \ does not imply property II.
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Construction. We take

(4.2) yix) = x^fdGog x)« + C2(log x)1-']

where p and 1 —p are the two roots of the quadratic u2 — w+7i = 0 and 7i>j.
Here

(4.3) fix) =-+-,
4x2       (x log x)2

so that g* = g* = l- Since p is complex, the solutions are oscillatory and the
equation does not have property II.

5. Extensions of the theorem of Kneser. As observed in the Introduction,
A. Kneser used the methods of Sturm and example (1.2) to derive conditions
under which equation (3.1) has property II. With a slight extension, we can
formulate his result as follows.

Theorem 9. Let

sup (y*
(5.1) lim x2/(x) = <     .

inf I7*

The solutions of (3.1) are non-oscillatory for large x if 7*<|, oscillatory if
7* > i and no conclusion can be drawn if either 7* or 7* equals \.

The proof of the first two assertions follows familiar lines and may be
omitted here. Example C at the end of §4 is one in which 7* =7* = | ; the solu-
tions are non-oscillatory if 71S i and oscillatory if 7X > J.

Example C suggests a further extension of Kneser's theorem. Cf. Rie-
man-Weber [7, p. 61] for Theorems 10 and 11.

Theorem 10. Let

(5.2) lim  SUP (x log x)2|/(x)-1 =  {inf L 4x2J       I

*
7i.

7i*-

The solutions 0/ (3.1) are non-oscillatory for largex ify*<\, oscillatory if 71* > f,
and no conclusion can be drawn if either 7* or 71+ equals \.

The theorem is proved by the usual methods of Sturm using example C
as comparison. The limiting cases require further counter examples.

As a matter of fact, examples (1.2) and C are merely the first instances of
an infinite sequence of critical comparison equations which form a kind of
logarithmic scale. To simplify the formulas, let us introduce some condensed
notation. We write

(5.3) 70(x) = x,       LPix) = Lp-iix) logp x, p = 1, 2, 3, ■ • • r

where
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log2 x = log log x, logp x = log logp_i x.

Further we set

(5.4) S M = ¿ [7*(x)]-2,

and define ex = e, e* = exp (ej,_i). Then the functions

(5.5) y(x) = [L^i{x)Y'*]PiQog9 at)' + C2(logp *)»-"],

where p and 1—p are the two roots of the quadratic equation u2 — u+yp = 0,
satisfy a differential equation of type (3.1) with

(5.6) fix) = ISp-iix) + yp[LPix)]-2, x > ep_i.

This observation leads to

Theorem 11. Let
*

(5.7) lim SUP [7p(x)]2{/(x) - iSr-iin))  = j7p'
inf iTp*.

Die solutions of (3.1) ore non-oscillatory for large x if yP*<^, oscillatory if
7p*>!. o«¿ wo conclusion can be drawn if either y* or yp* equals J.

The proof follows the same lines as the preceding theorems. None of these
theorems is particularly good because the limits involved are too much af-
fected by irregularities in fix). Cf. formula (3.1). These irregularities are
smoothed out, to some extent at least, by an integration process which leads
to more powerful criteria. Thus, combining the ideas of Theorems 7 and 11, we
get

Theorem 12. Equation (3.1) has property II if

/OO

SPit)dt

for x sufficiently large.

Corollary 1 of Theorem 7 is the special case p = 0 of this theorem.
6. An extension to the complex domain. The use of the singular Riccati

integral equation (3.9) is not restricted to real variables. It can also be used
to prove non-oscillation theorems in the complex domain. The results ob-
tainable in this manner, though of a somewhat special nature, appear to be
basically different from those derived by the present writer in the early nine-
teen twenties. The following is a sample of what can be done.

Theorem 13. Let /(z) be holomorphic in a sector S: — fA<arg z<02 of the
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complex plane and suppose that

(6.1) giz) =zj   fit)dt

is well defined in S when the integral is taken along a line parallel to the real
axis. Finally, suppose that |g(z)| Sy<\for z£S. Then there exists a solution
w(z) of the differential equation

(6.2) w" + fiz)w = 0

which has no zeros in S.

Proof. It is understood that O<0i, 02<7r. We choose a so that ya = \ sin a
and denote by Sa the intersection of 5 with the sector 0 < | z\ < oo, | arg z| <a.
Using the method of successive approximations we then construct a solution
of

/dt »'(*) — + giz)
t

for z£.S«. The path of integration is taken parallel to the real axis. We set

rM i        dt
Uoiz)   =  27, Uniz)   =  Z   I       W„_i(¿)-h giz).

J z t2

Suppose that max |m„(z)| =Bn for z£5a. Then

(6.4) £„ is ^—¿Li + 7,
sin a

where we have used the formula

1 e
rea + s \~2ds =

J 0 sin 0

In view of the value of Bo and the definition of a, we conclude from (6.4) that
Bn^2y for all n. Thus the functions m„(z) are holomorphic in Sa and uni-
formly bounded. If z=x is real, a simple computation shows that

I W„(x)  — Mn-l(x) I   =S  47 I M„_i(x)  — W„_2(x) | .

Hence the sequence |m„(z) } converges on the positive real axis. By the theo-
rem of Vitali, limn<oo«n(z) =w(z) exists and is holomorphic everywhere in Sa.
Further tt(z) satisfies (6.3).

If Sa exhausts S, we are through. If not, the fact that | w(z) | is bounded in
Sa enables us to modify the path of integration in (6.3). Let 0O be real,
10o I <max (a, B\, 02), and replace the path of integration arg (<— z)=0 by
arg (/ — z) =0o. Consider the sector Sa(0o) which is the intersection of 5 with
I arg z— 0oI <a, 0< \z\ < 00. In 5nSa(0o) the function m(z) satisfies both the
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original integral equation and the new one with the modified path. The con-
vergence proof then shows that the same sequence of approximations con-
verges to a holomorphic function in Sa(0o). By a suitable repetition of this
process, we can extend w(z) analytically throughout S.

Once we have a solution m(z) of (6.3) which is holomorphic in S, we see that
viz)=uiz)/z satisfies the Riccati equation i>'+»2+/(z) =0 everywhere in S,
and placing w(z) =exp [flv(t)dt] we have a solution of (6.2) which is different
from zero everywhere in S. This completes the proof.

It is natural to ask if the value zero is of low frequency in S for every
solution of (6.2). This is certainly true in simple cases; whether or not it is
generally true requires further investigation.
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