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pJon-overlapping Partitions, Continued Fractions, Bessel Functions 
and a Divergent Series 

PHILIPPE FLAJOLET AND RENE SCHO-IT 

The counting sequence of a special class of set partitions leads to special numbers called 
Bessel numbers. The corresponding ordinary generating function has a simple continued 
fraction expansion related to Bessel functions. We determine here the asymptotic form of 
Bessel numbers and discuss their relation to Bell numbers. The estimation problem is of some 
methodological interest as it is necessary to find the asymptotic form of coefficients in an 
asymptotic but divergent expansion. 

1. INTRODUCTION 

The number of ways of partitioning an n-set into equivalence classes is the familiar 
Bell number B, [2], with exponential generating function 

For reference, the first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140 and 
21 147. Expanding the generating function yields an exact infinite sum for Bell 
numbers, 

a formula first derived by Dobinski in 1877. Finally, using a combinatorial theory of 
algebraic continued fraction, Flajolet [7] derived for the ordinary-and divergent- 
generating function, a formal expansion 

, (3) 
1 

B(2)  = 2 B,z" = 
1 * z2 n a0 

1 - 1 . 2 -  
2 - z2 

3 * z2 
1 - 3 . z - p  

1 - 2 . 2 -  

. . .  
a formula closely related to classical results on Poisson-Charlier polynomials. 

This paper is concerned with a special class of partitions, called non-overlapping 
Partitions (NOP's). It is customary and convenient to identify the underlying n-set with 
the integer interval [l..n]. With the implied order structure, two blocks (classes) y, 6 
overlap if 

min( y )  < min( S) < max( y )  < max( S). 

For instance, in partition &I = ((1, 3, 4), (2, 5)),  the two blocks y = (1, 3, 4) and 
6 = (2, 5) overlap. A partition is then called non-overlapping if no pair of classes y, 6 
overlaps. Thus 

ii, = ((1, 3,9}, (2, 6,8) ,  (4,5,7), (lo), (11, 131, (12)) (4) 
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c3 s* eo- -0- 
1 2 3 ’ 4  5 6 7 8 9 10 11 1213 1 2 3 4 5 6 7 8 9 1011 1213 

(a  1 ( b )  

FIGURE 1. Two types of set partitions: (a) a non-overlapping partition; (b) a partition with overlaps. 

is non-overlapping. In other terms we call the support of block y the internal 
[min(y), max(y)]. In a NOP, supports have a nested structure: for any two (block) 
supports, either they are disjoint or one covers (contains) the other.? 

Let B,* denote the number of NOP’s over n elements. These numbers entertain close 
relations with Bessel functions. For this reason, we chose to call the B,* Bessel 
numbers. (In the same spirit, Bell numbers are sometimes called exponential numbers 
because of the shape of their generating function.) Our purpose here is to obtain an 
asymptotic form for Bessel numbers, our main results being summarized by Theorem 1 
and Proposition 4. 

Direct enumeration shows that the sequence of Bessel numbers starts with 

1, 1, 2, 5,  14, 43, 143, 509, 1922, 7651, 31965, 139685, 636712, 3020203, 

14878176, 75982829, 401654560, 2194564531 , 12377765239, 71980880885. 

(The difference between B4= 15 and B: = 14 is due to the unique overlapping 
partition for n = 4, namely 

At present, the authors do not know of a simple exponential generating function that 
would be the analogue of equation (1). In more combinatorial terms, NOP’s do not 
decompose as easily as unconstrained partitions that are simply ‘sets of sets of atoms’. 
(In fact the shape of our results strongly suggests that no simple expression is 
available.) 

The starting point for our treatment is a continued fraction analogue of (3), namely 

= ((1, 3}, (2, 4}}.) 

1 
B*(z )  = B,*z“ = , 

n>O 1 * z 2  
1 - 1 - z -  

1 * z2 
1 - 2 - 2 -  

1 z2 
1 - 3 - ~ - -  

which derives painlessly from earlier combinatorial works. The difference between (5) 
and (3) is that numerators are reduced from the integer sequence 1 , 2 , 3 , .  . . to 
1,  1 ,1 ,  . . . , a reflection of the fact that NOP’s have asymptotic density 0 amongst the 
class of all partitions of size n. 

t A somewhat related notion also appears in the literature [13]. Two classes y, 6 in a partition ‘cross’ if 
3 x ,  y E y and 32, t E 6 such that x < z < y  < t. Kreweras established that the number of non-crossing 
partitions of size n is the familiar Catalan number 

1 
n + l  C,  =- (?). 

Thus non-overlapping partitions lie somewhere between non-crossing and unconstrained partitions. We shall 
actually prove that C, << B,* << B,, with B,* the number of NOP’s of size n. 
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However, a difficulty awaits us, since B * ( z )  is defined by ( 5 )  only as a formal power 
‘es expansion. Series B * ( z )  is a purely divergent series: it has radius of convergence 

our first step. will therefore be to attach continued fraction ( 5 )  to special functions of 

sen 
0. 

analysis. It turns out that it is expressible in terms of the Bessel function J ,  

J Y ( 4  = c (-- 1)” (,),,+q 
m 2 0 m ! r ( m + ~ + 1 )  2 

and is also closely related to the Lommel polynomials [l]. We find the identity 

in the sense that the right-hand side asymptotically represents the function on the left, 

The problem is now to find the asymptotic form of coefficients in an asymptotic (and 
divergent) series. No Cauchy theorem will do for that purpose. 

Using an intuition that goes back at least to Mellin, we shall try to relate the 
expansion of the function in (6) as Y-+ +m to the geometry of its poles as v-+ -a. The 
key to doing this is a Mittag-Leffler expansion which generalizes, for meromorphic 
functions, the familiar partial fraction expansion of rational functions. 

In this manner, we obtain an exact form for the B,* which is, however, rather useless 
[IS such: it is expressed in terms of the indices Y of Bessel functions Jv that admit x = 2 
i\s a root. (Studies on zeroes of Bessel functions usually assume that parameter Y is 
kept fixed, and let x vary.) But, Nature helping, the geometry of these numbers is itself 
asymptotically simple, and we are lead to an asymptotic equivalent of B,*, 

as Y+ +ma 

an asymptotic analogue to Dobinski’s formula (2). This is our main result (Theorem 1). 
One of the ways of approaching the asymptotics of Bell numbers is through 

Dobinski’s expansion (2). A similar treatment can be inflicted on form (8)’ so that a 
hona fide expansion of the number of non-overlapping partitions can ultimately be 
derived. 

The reader is referred to a recent work of Fedou [6] for related combinatorial 
models involving Bessel functions, and interesting q-analogues. Also , non-overlapping 
partitions are of interest in the study of some data structures in computer science. They 
code all possible evolutions of a stack with ‘inspection’ or a symbol table under Knuth’s 
model. The corresponding problems of average case dynamic (or ‘amortized’) analysis 
19, 10, 121 of data structures provided the initial motivation for this investigation of 
Ron-overlapping partitions. 

2. CONTINUED FRACTIONS AND BESSEL FUNCTIONS 

General (set) partitions are in bijective correspondence with a class of so-called path 
Such a correspondence produces the continued fraction expansion (3) for the 

Ordinary generating function of Bell numbers.?- 

?The reader can either accept Proposition 1 as a starting point for our asymptotic treatment or else refer 
lo 17, 111 for detailed definitions of path diagrams and background information on combinatorial aspects of 
Continued fractions. 
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In essence, to a partition iT, of [l. .n],  we associate a path in the integer lattice as 
follows. Start from (0,O). Scan the integers j from 1 to n. Move by a' = (+ 1, + 1) when 
j is the minimal element of a non-singleton block in 6 ; move by d = (+ 1, - 1) when is 
the minimal element of a non-singleton block in 6; move by I =  ( + l ,  0) otherwise+, 
this last case, we encountered either an intermediate element of a block, or a singleton 
element. 

In this way we encode non-uniquely a partition by a path formed with ascents (z) 
descents (6) and level fl) steps. 

A complete encoding of an unconstrained partition 63 is obtained by supplementing a 
numerical sequence which connects intermediate and maximal elements to their 
respective classes, ordered for instance by age rank. (For this purpose, singletons will 
be treated as intermediate elements.) Thus when scanning j ,  if h blocks are open then a 
descent has h possibilities, and a level step has (h  + 1) possibilities-one more, because 
of singletons. The pair formed with the path and its number sequence determines the 
partition and is called a path diagram. 

It is now easy to see, on associated path diagrams, the rule defining NOP's: if an 
element is maximal in its block, it has to close the most recently opened class. In this 
way, the number of possibilities for a descent is reduced to 1, while the number of 
possibilities for a level step remains equal to (h  + 1). For the non-overlapping partition 
that we considered earlier (4), the encoding is 

t 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2 1 3  
a a l a l l d d d  1 a I d  
- -  0 - 2 1 - - -  0 -  1 -  

(Age ranks are numbered from older to younger, starting from 0.) 
From the combinatorial theory (Thm. 1 and Prop. 7 of [7]), the generating function 

of a class of path diagrams admits a continued fraction expansion, where the number of 
possibilities for a level step appears in the denominators, while the possibilities for 
ascents and descents appear in the numerators. It follows that the change in the 
possibility rule for path diagrams (from unconstrained partitions to non-overlapping 
partitions) is exactly reflected by the change from (3) to (5). 

PROPOSITION 1. The ordinary generating function of non-overlapping partitions, 
B * ( z )  = Cna0 B,*z" admits the formal continued fraction expansion: 

(9) 
1 

B * ( z )  = 
z2 

1 - 1 . 2 -  
z2 

z2 
1 - 3 . t  -- 

1 - 2 - 2 -  

. . .  

We now move to the world of Bessel functions, of which, however, we shall only use 
the most basic properties. From their defining equation (6), the fundamental 
recurrence follows: 

To prime the continued fraction pump, rewrite this relation as 
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1 
2(Y + 1)x-l- 

1 
2(Y + 2)x-1- 

Jv +2(x ) / Jv + 3 (x ) 
If we repeat the process ad infinitum, and further substitute x = 2, we obtain 

J v 4 )  - 1 

JV (2) 1 
-Y- , 

Y + l -  

1 
v + 2 -  

1 
v + 3 - -  . . .  

the shape of which closely resembles (9). The formal derivation above is also valid 
analytically, as was shown by Hurwitz (cf. [15], Sec. 9.65]), and equation (11) remains 
valid for all complex Y. 

The continued fraction expansion of equation (11) admits itself an asymptotic 
expansion in descending powers of Y. The connection between (11) and (9) is achieved 
by the correspondence Y ++ -2-l. We have thus obtained: 

PROPOSITION 2. The asymptotic expansion, as v+ +m, of a quotient of consecutiue 
Bessel functions is expressed using Bessel numbers by 

Thus, the quotient Jv-1(2)/(~Jv(2)) plays the role of an ordinary generating function 
of the Bessel numbers B,*. 

3. THE MITTAG-LEFFLER EXPANSION 
For ease of notation, we define 

Jv- l(2) 
YJV (2) - j (v)  =Jv(2) and h ( v )  = (13) 

We propose to investigate? first the geometry of zeroes of function j(v) which 
provides the poles of h ( v ) .  By a local analysis, we determine the simple elements that 
compose h ( v ) .  Putting these elements together yields the partial fraction expansion of 

The geometry of the zeroes of j(v) is amazingly regular. From numerical computa- 
tions, we find that the first few zeroes (with modulus at most 10) are negative reals that 
are extremely well approximated by negative integers: 

w. 

1;1= -0.25380 58170, 
1;4 = -3.99604 79973, 
1;7 = -6.99999 97949, 
1;9 = -8.99999 99999 45511, 

1;2 = - 1.78932 13526, 
1;5 = -4.99977 43198, 
c g  = -7.99999 99961, 

1;3 = -2.96105 88806, 
1;6 = -5.99999 18413, 

= -9.99999 99999 99380. 

t Most results in this and the next section are derived from a few simple key observations followed by trite 
real analysis. We shall thus limit ourselves to indicating the main steps in the proofs. 
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1 
r !  ( r  - l)! 

c , . = - r +  (14) 

This lemma is a quantitative version of a result of Coulomb, who first observed that 
the zeroes of J,,(x), with x fixed, are asymptotic to the negative integers [3]. 

PROOF. We start from the equation defining j ( v ) :  

. . .  1 + 1 - 1 
i (Y)  = I ' (Y + 1) l! I ' (Y  + 2)  2! I ' (Y  + 3) 

(15) - - [l- + 1 - . . .]. 1 
l! (Y + 1) 2! (Y + l ) ( Y  + 2) r ( Y  + 1) 

From the first form, no negative integer can be a root of j(v). The basic observation for 
the proof is the following. When Y = -r  ( r  E N), cancellation of the series expansion of 
j (  Y) comes predominantly from cancellation of two terms. 

and we denote this expression by f (Y). We may also freely assume that r > 10 since 
zeroes of modulus less than 10 have been characterized. 

A. The approximate equation. We propose to analyze the zero off (Y) which lies in 
the vicinity of -r and let 5;: denote that zero. Set = - r  + E, with E = o(1) as r+cQ. 
Using the complement formula for the Gamma function, f (Y) transforms into 

(-1Y n 
f ( Y )  = 1 -- 

r!  sin ~VI'( - Y)I'( Y + r + I) ' 
so that E is a root of 

sin n~ 1 -- - 
n r !  I'(1 + E ) r ( r  - E )  

(1  + O(ET)). 
1 

r !  ( r  - l)! 
- - 

From this relation, we find that &-and hence c:--exists and I;: satisfies 

1 
r !  ( r  - l)! c : = - r +  

B.  The exact equation. Considering again function f (Y) 
terms that compose the expansion of j (v )  are small, we find 
the interval [ - r  - 2q, - r  + 2q],  where q = l/(r! ( r  - l)!). 
plementary function 

and noting that the other 
that j (v)  has a real root in 
Now introduce the corn 

(-V 
g(y )=  m , o , r m ! ( ~ + 1 ) ( ~ + 2 ) . . . ( ~ + m ) '  c 

so that f (v)  +g(v) = r(v + l)j(v). Elementary asymptotic expansions show that, 00 
the circle centered at - r  and with radius 2q, we have Ig(v)I < If(v)I. Thus, by 
Rouchd's theorem, f (Y) and j(v) have the same number of zeroes inside this circle. 
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The possible zeroes of j(v) around the negative integers have been thus 
localized. Clearly, g(Y) = -Y-' + O ( Y - ~ )  as Y+ --oo. A simple modification of the 

in Part A then reveals that 

c. There are no o t h e r  zeroes. A detailed proof is given in [3], so that we just 
the essence of the argument in our context for completeness. The only way 

that j ( v ) r ( v  + 1) can be zero is if one of the terms in the expansion becomes large 
enough to cancel the leading term, 1, in (15). This can only happen if one of the 
quantities (Y + l), (Y + 2), . . . becomes small, Le. if Y is close enough to a negative 
real number; but zeroes in these regions have already been characterized by the 
argument of part B. 

LEMMA 2. When Y+ C,, we have 

Furthermore, the coeficients c, satisfy for r + +-oo: 

c, = -l (1+0(!)). 
( r  - l)! r !  

PROOF. The first part is obvious. The second part follows from the values of C,, the 
series definition of Bessel functions (15), and elementary growth properties of the 
Gamma function. 

Considerj(-r) andj'(-r). The first r terms of the expansion of j ( - r )  reduce to 0, so 
that j ( - r )  = (-l),/r! + (-l),+'/(l! ( r  + l)!) + - - * . Since the residue of T(s )  at s = -m 
(rn a positive integer) is equal to (-l)m/m!, we find that j ' ( - r )  is driven by its first 
terms, j ' ( - r )  = (-I),-'(r - I)! - e  - . . In summary, 

j ( - r )  = - (-')' (1 + O(!)) and j ' ( - r )  = (-l),-'(r - l)! 
r !  

Similar calculations reveal that since C, is very close to -r, then j'(C,) is closely 
approximated by j ' (  - r ) ,  and actually j ' (v) is fairly stationary around negative integers. 
Once this has been established, the asymptotic value of j ( C r  - 1) is derived from the 
near equality 

j (  Cr - 1) - j (  Cr+1)  ( C r  - 1 - C r + I ) j ' ( - r  - 1). 

In this way, we gather the estimates 

(-')'+' (1 + O(:)) and j'(C,.) = (-l),-'(r - l)! (1 + .(A)). (19) 
r a r  - 1) = ( r  + l)! 

From there, the asymptotic form of c, follows. 

It only remains to collect elements representing the local behaviour of h(v) around 
its poles. To take care of the pole at 0, define co = j ( - l ) / j (O)  and go = 0. Next, 
consider the sum 
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Due to the fast decrease of coefficients c,, h * ( v )  is well defined and meromorphic for 
all v. Thus the function 

d ( v )  = h ( v )  - h * ( v )  

in an entire fu&tion of v. 
We observe that h * ( v )  tends to 0 along large circles of radius R = r + $ with r E iv. 

On such circles, from the series defining Bessel functions, we see that j(v - l ) / ( ~ j ( ~ ) )  
tends to 1 .  Thus d(v) is an entire function that is bounded on a family of arbitrarily 
large circles centered at the origin. Therefore, by Liouville's theorem, d ( v )  is a 
constant (actually, d(v) = d(+m) = 1) .  We have thus established: 

LEMMA 3. The function h ( v )  admits the Mittag-Lefler expansion 

where 
1 

c, = ( r  - -' l)! r !  (1+0(:)) and I;,=-?-+ (22) 

The existence of a Mittag-Leffler expansion was first derived by Maki [14, Th. 5.11 
as a consequence of general considerations on orthogonal polynomials. Our lemma 
thus also constitutes a quantitative version of Maki's result. 

4. ASYMPTOTIC FORMS 

The Mittag-Leffler expansion (21) yields an asymptotic expansion of h ( v )  as 
v+ +a. To see it, start with the identity 

U n + 2  

- 1 + u + u2 + * e * un+l +- 
1 - u  1 - u '  
-- 1 

so that ( r  > 0) 
1 1 1 n+l CY . C:+2 

Combining these expansions leads to the identity 

The last sum is clearly O ( V - ~ - ~ )  as v-+ +m. This provides an exact form for the 
coefficients in the asymptotic expansion of h ( v ) ,  which by (12) are the Bessel numbers. 

PROPOSITION 3. Bessel numbers are expressible in terms of the 
function j(v) by 

zeroes 5;, of Bessel 

(23) 

By Lemmas 1, 2 and 3, all quantities entering equation (23) have known asymptotic 
forms, whence: 

THEOREM 1. Bessel numbers asymptotically satisfy 
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PROOF. Lemma 1 provides a very accurate expression for C,. Lemma 2 contains an 
estimate of coefficients c,, where the relative error term in approximation (19) is 
O(r-'). Thus, we find 

Letting S n  denote the sum appearing in (24), we thus have B,* = S,, + 0(Sn- ' ) .  But by 
our next proposition, we have Sn-1= o(S,), and the result follows. 

Numerically, the error of approximation (24) is 22% when n = 50 and 10% when 
n = l O O .  A more orthodox asymptotic form can also be produced. Apart from 
&-exponential factors, Bessel numbers grow like 

BE=( n "  ) .  
2e log n 

PROPOSITION 4. Bessel numbers have the asymptotic form 

where o - n/(2 log n) is the positive root of equation n + 2 = 2 o  log o. 

PROOF. We only need to estimate the sum S,, appearing in the right-hand side of 
equation (24). In passing, we shall also check that Sn-l=o(Sn). The proof follows 
closely the asymptotic analysis of Bell numbers using the Laplace method for sums as 
detailed in De Bruijn's book [4], so that we need only indicate the main steps. 

By Stirling's formula, the general term in the sum (24) roughly equals 

(2mk)-l exp(t(k)), where t(k) = (n + 2) log k - 2k log k + 2k. 

By cancelling t'(k), we find that the index k,,, of the largest term in S, is close to o, 

The second derivative t"(k) is -(n + 2)k-2 - 2k-', so that an interval Ik - k,,,I < n1 

In this way, we find for S, the approximate form 

where o satisfies n + 2 = 2 o  log o. Observe that o - n/(2 log n). 

provides the dominant contribution to the sum. 

u exp( t (4 )  
2mo 

This concludes the proof of the theorem. 

Notice also that a full asymptotic expansion of o = o ( n )  can be obtained and then 
Plugged into (25). In this way, we obtain 

1 log log n 
-log B,* = log n - log log n - log(2e) + O( ). n log n 
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size n without singletons. A modified form of our basic continued fraction (5) 
reSSeS the ordinary generating function of the 2B;  as of 

exP 
1 c 

9 

1 * z2 
1 - o . z -  

1 . z 2  
1 - 1 - z -  

1 * z2 
1 - 2 . z - -  . . .  

From (11), we see that Jv(2)/Jv-1(2) now acts as an ordinary generating function for 
these numbers, and the asymptotic analysis can be developed accordingly. It is 
z-associated Bessel numbers that are most directly relevant to computer science 
,pplications. 
4. Values of Hankel determinants are known to be related to coefficients of 

continued fraction expansions. For instance, we have here 

5. Congruence properties modulo prime numbers also derive from such expansions 
[8]: in contrast to Bell numbers, Bessel numbers are not eventually periodic modulo 
any prime. For instance, setting fn = B,* mod 2, we find 

fo = 1, f 2 n + l  = 1, &+2 = 1 - fn .  

In other words, the sequence is 2-automatic in the sense of [5] .  
6. Dynamic analysis of data structures requires investigating the distribution of 

‘altitudes’ in a random NOP. Analytically, this requires finding the speed of 
convergence of zeroes of Lommel polynomials to zeroes of Bessel functions. The 
authors plan to examine this problem in a companion paper. 
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