
Non-Parametric Bayesian Dictionary Learning for
Sparse Image Representations

Mingyuan Zhou, Haojun Chen, John Paisley, Lu Ren, 1Guillermo Sapiro and Lawrence Carin
Department of Electrical and Computer Engineering

Duke University, Durham, NC 27708-0291, USA
1Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455, USA
{mz1,hc44,jwp4,lr,lcarin}@ee.duke.edu, {guille}@umn.edu

Abstract

Non-parametric Bayesian techniques are considered for learning dictionaries for
sparse image representations, with applications in denoising, inpainting and com-
pressive sensing (CS). The beta process is employed as a prior for learning the
dictionary, and this non-parametric method naturally infers an appropriate dic-
tionary size. The Dirichlet process and a probit stick-breaking process are also
considered to exploit structure within an image. The proposed method can learn
a sparse dictionary in situ; training images may be exploited if available, but they
are not required. Further, the noise variance need not be known, and can be non-
stationary. Another virtue of the proposed method is that sequential inference can
be readily employed, thereby allowing scaling to large images. Several example
results are presented, using both Gibbs and variational Bayesian inference, with
comparisons to other state-of-the-art approaches.

1 Introduction
There has been significant recent interest in sparse signal expansions in several settings. For ex-
ample, such algorithms as the support vector machine (SVM) [1], the relevance vector machine
(RVM) [2], Lasso [3] and many others have been developed for sparse regression (and classifica-
tion). A sparse representation has several advantages, including the fact that it encourages a simple
model, and therefore over-training is often avoided. The inferred sparse coefficients also often have
biological/physical meaning, of interest for model interpretation [4].

Of relevance for the current paper, there has recently been significant interest in sparse representa-
tions in the context of denoising, inpainting [5–10], compressive sensing (CS) [11, 12], and classifi-
cation [13]. All of these applications exploit the fact that most images may be sparsely represented
in an appropriate dictionary. Most of the CS literature assumes “off-the-shelf” wavelet and DCT
bases/dictionaries [14], but recent denoising and inpainting research has demonstrated the signif-
icant advantages of learning an often over-complete dictionary matched to the signals of interest
(e.g., images) [5–10, 12, 15]. The purpose of this paper is to perform dictionary learning using
new non-parametric Bayesian technology [16,17], that offers several advantages not found in earlier
approaches, which have generally sought point estimates.

This paper makes four main contributions:

• The dictionary is learned using a beta process construction [16, 17], and therefore the number of
dictionary elements and their relative importance may be inferred non-parametrically.
• For the denoising and inpainting applications, we do not have to assume a priori knowledge of the
noise variance (it is inferred within the inversion). The noise variance can also be non-stationary.
• The spatial inter-relationships between different components in images are exploited by use of the
Dirichlet process [18] and a probit stick-breaking process [19].

1



• Using learned dictionaries, inferred off-line or in situ, the proposed approach yields CS perfor-
mance that is markedly better than existing standard CS methods as applied to imagery.

2 Dictionary Learning with a Beta Process
In traditional sparse coding tasks, one considers a signal x ∈ <n and a fixed dictionary D =
(d1,d2, . . . ,dM ) where each dm ∈ <n. We wish to impose that any x ∈ <n may be represented
approximately as x̂ = Dα, where α ∈ <M is sparse, and our objective is to also minimize the `2
error ‖x̂−x‖2. With a proper dictionary, a sparse α often manifests robustness to noise (the model
doesn’t fit noise well), and the model also yields effective inference of α even when x is partially
or indirectly observed via a small number of measurements (of interest for inpainting, interpolation
and compressive sensing [5, 7]). To the authors’ knowledge, all previous work in this direction has
been performed in the following manner: (i) if D is given, the sparse vector α is estimated via a
point estimate (without a posterior distribution), typically based on orthogonal matching pursuits
(OMP), basis pursuits or related methods, for which the stopping criteria is defined by assuming
knowledge (or off-line estimation) of the noise variance or the sparsity level of α; and (ii) when
the dictionary D is to be learned, the dictionary size M must be set a priori, and a point estimate
is achieved for D (in practice one may infer M via cross-validation, with this step avoided in the
proposed method). In many applications one may not know the noise variance or an appropriate
sparsity level of α; further, one may be interested in the confidence of the estimate (e.g., “error
bars” on the estimate of α). To address these goals, we propose development of a non-parametric
Bayesian formulation to this problem, in terms of the beta process, this allowing one to infer the
appropriate values of M and ‖α‖0 (sparsity level) jointly, also manifesting a full posterior density
function on the learned D and the inferred α (for a particular x), yielding a measure of confidence
in the inversion. As discussed further below, the non-parametric Bayesian formulation also allows
one to relax other assumptions that have been made in the field of learning D and α for denoising,
inpainting and compressive sensing. Further, the addition of other goals are readily addressed within
the non-parametric Bayesian paradigm, e.g. designing D for joint compression and classification.

2.1 Beta process formulation

We desire the model x = Dα+ε, where x ∈ <n and D ∈ <n×M , and we wish to learn D and in so
doing infer M . Toward this end, we consider a dictionary D ∈ <n×K , with K → ∞; by inferring
the number of columns of D that are required for accurate representation of x, the appropriate
value of M is implicitly inferred (work has been considered in [20, 21] for the related but distinct
application of factor analysis). We wish to also impose that α ∈ <K is sparse, and therefore only
a small fraction of the columns of D are used for representation of a given x. Specifically, assume
that we have a training set D = {xi, yi}i=1,N , where xi ∈ <n and yi ∈ {1, 2, . . . , Nc}, where
Nc ≥ 2 represents the number of classes from which the data arise; when learning the dictionary we
ignore the class labels yi, and later discuss how they may be considered in the learning process.

The two-parameter beta process (BP) was developed in [17], to which the reader is referred for
further details; we here only provide those details of relevance for the current application. The BP
with parameters a > 0 and b > 0, and base measure H0, is represented as BP(a, b, H0), and a draw
H ∼ BP(a, b, H0) may be represented as

H(ψ) =
K∑

k=1

πkδψk
(ψ) πk ∼ Beta(a/K, b(K − 1)/K) ψk ∼ H0 (1)

with this a valid measure as K → ∞. The expression δψk
(ψ) equals one if ψ = ψk and is zero

otherwise. Therefore, H(ψ) represents a vector of K probabilities, with each associated with a
respective atom ψk. In the limit K → ∞, H(ψ) corresponds to an infinite-dimensional vector of
probabilities, and each probability has an associated atom ψk drawn i.i.d. from H0.

Using H(ψ), we may now draw N binary vectors, the ith of which is denoted zi ∈ {0, 1}K ,
and the kth component of zi is drawn zik ∼ Bernoulli(πk). These N binary column vectors are
used to constitute a matrix Z ∈ {0, 1}K×N , with ith column corresponding to zi; the kth row of
Z is associated with atom ψk, drawn as discussed above. For our problem the atoms ψk ∈ <n

will correspond to candidate members of our dictionary D, and the binary vector zi defines which
members of the dictionary are used to represent sample xi ∈ D.

2



Let Ψ = (ψ1,ψ2, . . . ,ψK), and we may consider the limit K → ∞. A naive form of our model,
for representation of sample xi ∈ D, is xi = Ψzi + εi. However, this is highly restrictive, as it
imposes that the coefficients of the dictionary expansion must be binary. To address this, we draw
weights wi ∼ N (0, γ−1

w IK), where γw is the precision or inverse variance; the dictionary weights
are now αi = zi ◦ wi, and xi = Ψαi + εi, where ◦ represents the Hadamard (element-wise)
multiplication of two vectors. Note that, by construction, α is sparse; this imposition of sparseness
is distinct from the widely used Laplace shrinkage prior [3], which imposes that many coefficients
are small but not necessarily exactly zero.

For simplicity we assume that the dictionary elements, defined by the atoms ψk, are drawn from a
multivariate Gaussian base H0, and the components of the error vectors εi are drawn i.i.d. from a
zero-mean Gaussian. The hierarchical form of the model may now be expressed as

xi = Ψαi + εi , αi = zi ◦wi

Ψ = (ψ1,ψ2, . . . ,ψK) , ψk ∼ N (0, n−1In)
wi ∼ N (0, γ−1

w IK) , εi ∼ N (0, γ−1
ε In)

zi ∼
K∏

k=1

Bernoulli(πk) , πk ∼ Beta(a/K, b(K − 1)/K) (2)

Non-informative gamma hyper-priors are typically placed on γw and γε. Consecutive elements
in the above hierarchical model are in the conjugate exponential family, and therefore infer-
ence may be implemented via a variational Bayesian [22] or Gibbs-sampling analysis, with
analytic update equations (all inference update equations, and the software, can be found at
http://people.ee.duke.edu/∼lihan/cs/ ). After performing such inference, we retain those columns
of Ψ that are used in the representation of the data in D, thereby inferring D and hence M .

To impose our desire that the vector of dictionary weightsα is sparse, one may adjust the parameters
a and b. Particularly, as discussed in [17], in the limit K → ∞, the number of elements of zi that
are non-zero is a random variable drawn from Poisson(a/b). In Section 3.1 we discuss the fact that
these parameters are in general non-informative and the sparsity is intrinsic to the data.

2.2 Accounting for a classification task

There are problems for which it is desired that x is sparsely rendered in D, and the associated
weight vector α may be employed for other purposes beyond representation. For example, one may
perform a classification task based on α. If one is interested in joint compression and classification,
both goals should be accounted for when designing D. For simplicity, we assume that the number
of classes is NC = 2 (binary classification), with this readily extended [23] to NC > 2.

Following [9], we may define a linear or bilinear classifier based on the sparse weights α and the
associated data x (in the bilinear case), with this here implemented in the form of a probit classifier.
We focus on the linear model, as it is simpler (has fewer parameters), and the results in [9] demon-
strated that it was often as good or better than the bilinear classifier. To account for classification,
the model in (2) remains unchanged, and the following may be added to the top of the hierarchy:
yi = 1 if θT α̂+ ν > 0, yi = 2 if θT α̂+ ν < 0, θ ∼ N (0, γ−1

θ IK+1), and ν ∼ N (0, γ−1
0 ), where

α̂ ∈ <K+1 is the same as α ∈ <K with an appended one, to account for the classifier bias. Again,
one typically places (non-informative) gamma hyper-priors on γθ and γ0. With the added layers for
the classifier, the conjugate-exponential character of the model is retained, sustaining the ability to
perform VB or MCMC inference with analytic update equations. Note that the model in (2) may
be employed for unlabeled data, and the extension above may be employed for the available labeled
data; consequently, all data (labeled and unlabeled) may be processed jointly to infer D.

2.3 Sequential dictionary learning for large training sets

In the above discussion, we implicitly assumed all data D = {xi, yi}i=1,N are used together to
infer the dictionary D. However, in some applications N may be large, and therefore such a “batch”
approach is undesirable. To address this issue one may partition the data as D = D1 ∪ D2 ∪
. . .DJ−1 ∪ DJ , with the data processed sequentially. This issue has been considered for point
estimates of D [8], in which considerations are required to assure algorithm convergence. It is
of interest to briefly note that sequential inference is handled naturally via the proposed Bayesian
analysis.

3



Specifically, let p(D|D,Θ) represent the posterior on the desired dictionary, with all other model
parameters marginalized out (e.g., the sample-dependent coefficients α); the vector Θ represents
the model hyper-parameters. In a Bayesian analysis, rather than evaluating p(D|D,Θ) directly, one
may employ the same model (prior) to infer p(D|D1,Θ). This posterior may then serve as a prior
for D when considering next D2, inferring p(D|D1 ∪ D2,Θ). When doing variational Bayesian
(VB) inference we have an analytic approximate representation for posteriors such as p(D|D1,Θ),
while for Gibbs sampling we may use the inferred samples. When presenting results in Section 5,
we discuss additional means of sequentially accelerating a Gibbs sampler.

3 Denoising, Inpainting and Compressive Sensing
3.1 Image Denoising and Inpainting
Assume we are given an image I ∈ <Ny×Nx with additive noise and missing pixels; we here assume
a monochrome image for simplicity, but color images are also readily handled, as demonstrated
when presenting results. As is done typically [6, 7], we partition the image into NB = (Ny −
B + 1) × (Nx − B + 1) overlapping blocks {xi}i=1,NB

, for each of which xi ∈ <B2
(B = 8 is

typically used). If there is only additive noise but no missing pixels, then the model in (2) can be
readily applied for simultaneous dictionary learning and image denoising. If there are both noise
and missing pixels, instead of directly observing xi, we observe a subset of the pixels in each xi.
Note that here Ψ and {αi}i=1,NB

, which are used to recover the original noise-free and complete
image, are directly inferred from the data under test; one may also employ an appropriate training
set D with which to learn a dictionary D offline, or for initialization of in situ learning.

In denoising and inpainting studies of this type (see for example [6, 7] and references therein), it
is often assumed that either the variance is known and used as a “stopping” criteria, or that the
sparsity level is pre-determined and fixed for all i ∈ {1, NB}. While these may be practical in
some applications, we feel it is more desirable to not make these assumptions. In (2) the noise
precision (inverse variance), γε, is assumed drawn from a non-informative gamma distribution, and
a full posterior density function is inferred for γε (and all other model parameters). In addition,
the problems of addressing spatially nonuniform noise as well as nonuniform noise across color
channels are of interest [7]; they are readily handled in the proposed model by drawing a separate
precision γε for each color channel in each B × B block, each of which is drawn from a shared
gamma prior.

The sparsity level of the representation in our model, i.e., {‖αi‖0}i=1,N , is influenced by the
parameters a and b in the beta prior in (2). Examining the posterior p(πk|−) ∼ Beta(a/K +∑N

i=1 zik, b(K − 1)/K + N −
∑N

i=1 zik), conditioned on all other parameters, we find that most
settings of a and b tend to be non-informative, especially in the case of sequential learning (dis-
cussed further in Section 5). Therefore, the average sparsity level of the representation is inferred by
the data itself and each sample xi has its own unique sparse representation based on the posterior,
which renders much more flexibility than enforcing the same sparsity level for each sample.

3.2 Compressive sensing

We consider CS in the manner employed in [12]. Assume our objective is to measure an image
I ∈ <Ny×Nx , with this image constituting the 8 × 8 blocks {xi}i=1,NB

. Rather than measuring
the xi directly, pixel-by-pixel, in CS we perform the projection measurement vi = Φxi, where
vi ∈ <Np , with Np representing the number of projections, and Φ ∈ <Np×64 (assuming that xi

is represented by a 64-dimensional vector). There are many (typically random) ways in which Φ
may be constructed, with the reader referred to [24]. Our goal is to have Np � 64, thereby yielding
compressive measurements. Based on the CS measurements {vi}i=1,NB

, our objective is to recover
{xi}i=1,NB

.

Consider a potential dictionary Ψ, as discussed in Section 2. It is assumed that for each of the
{xi}i=1,NB

from the image under test xi = Ψαi + εi, for sparse αi and relatively small error
‖εi‖2. The number of required projections Np needed for accurate estimation of αi is proportional
to ‖αi‖0 [11], with this underscoring the desirability of learning a dictionary in which very sparse
representations are manifested (as compared to using an “off-the-shelf” wavelets or DCT basis).

For CS inversion, the model in (2) is employed, and therefore the appropriate dictionary D is learned
jointly while performing CS inversion, in situ on the image under test. When performing CS analy-

4



sis, in (2), rather than observing xi, we observe vi = ΦDαi +εi, for i = 1, . . . , NB (the likelihood
function is therefore modified slightly).

As discussed when presenting results, one may also learn the CS dictionary in advance, off-line,
with appropriate training images (using the model in (2)). However, the unique opportunity for joint
CS inversion and learning of an appropriate parsimonious dictionary is deemed to be a significant
advantage, as it does not presuppose that one would know an appropriate training set in advance.

The inpainting problem may be viewed as a special case of CS, in which each row of Φ corresponds
to a delta function, locating a unique pixel on the image at which useful (unobscured) data are
observed. Those pixels that are unobserved, or that are contaminated (e.g., by superposed text [7])
are not considered when inferring the αi and D. A CS camera designed around an inpainting
construction has several advantages, from the standpoint of simplicity. As observed from the results
in Section 5, an inpainting-based CS camera would simply observe a subset of the usual pixels,
selected at random.

4 Exploiting Spatial Structure

For the applications discussed above, the {xi}i=1,NB
come from the single image under test, and

consequently there is underlying (spatial) structure that should ideally be exploited. Rather than
re-writing the entire model in (2), we focus on the following equations in the hierarchy: zi ∼∏K

k=1 Bernoulli(πk), and π ∼
∏K

k=1 Beta(a/K, b(K − 1)/K). Instead of having a single vector
π = {π1, . . . , πK} that is shared for all {xi}i=1,NB

, it is expected that there may be a mixture of π
vectors, corresponding to different segments in the image. Since the number of mixture components
is not known a priori, this mixture model is modeled via a Dirichlet process [18]. We may therefore
employ, for i = 1, . . . , NB ,

zi ∼
K∏

k=1

Bernoulli(πik) πi ∼ G G ∼ DP(β,
K∏

k=1

Beta(a/K, b(K − 1)/K)) (3)

Alternatively, we may cluster the zi directly, yielding zi ∼ G, G ∼ DP(β,
∏K

k=1 Bernoulli(πk)),
π ∼

∏K
k=1 Beta(a/K, b(K − 1)/K), where the zi are drawn i.i.d. from G. In practice we imple-

ment such DP constructions via a truncated stick-breaking representation [25], again retaining the
conjugate-exponential structure of interest for analytic VB or Gibbs inference. In such an analysis
we place a non-informative gamma prior on the precision β.

The construction in (3) clusters the blocks, and therefore it imposes structure not constituted in the
simpler model in (2). However, the DP still assumes that the members of {xi}i=1,NB

are exchange-
able. Space limitations preclude discussing this matter in detail here, but we have also considered
replacement of the DP framework above with a probit stick-breaking process (PSBP) [19], which
explicitly imposes that it is more likely for proximate blocks to be in the same cluster, relative to
distant blocks. When presenting results, we show examples in which PSBP has been used, with
its relative effectiveness compared to the simpler DP construction. The PSBP again retains full
conjugate-exponential character within the hierarchy, of interest for efficient inference, as discussed
above.

5 Example Results

For the denoising and inpainting results, we observed that the Gibbs sampler provided better perfor-
mance than associated variational Bayesian inference. For denoising and inpainting we may exploit
shifted versions of the data, which accelerates convergence substantially (discussed in detail be-
low). Therefore, all denoising and inpainting results are based on efficient Gibbs sampling. For CS
we cannot exploit shifted images, and therefore to achieve fast inversion variational Bayesian (VB)
inference [22] is employed; for this application VB has proven to be quite effective, as discussed
below. The same set of model hyper-parameters are used across all our denoising, inpainting and
CS examples (no tuning was performed): all gamma priors are set as Gamma(10−6, 10−6), along
the lines suggested in [2], and the beta distribution parameters are set with a = K and b = N/8
(many other settings of a and b yield similar results).

5



5.1 Denoising

We consider denoising a 256×256 image, with comparison of the proposed approach to K-SVD [6]
(for which the noise variance is assumed known and fixed); the true noise standard deviation is
set at 15, 25 and 50 in the examples below. We show results for three algorithms: (i) mismatched
K-SVD (with noise standard deviation of 30), (ii) K-SVD when the standard deviation is properly
matched, and (iii) the proposed BP approach. For (iii) a non-informative prior is placed on the
noise precision, and the same BP model is run for all three noise levels (with the underlying noise
levels inferred). The BP and K-SVD employed no a priori training data. In Figure 1 are shown
the noisy images at the three different noise levels, as well as the reconstructions via BP and K-
SVD. A preset large dictionary size K = 256 is used for both algorithms, and for the BP results
we inferred that approximately M = 196, 128, and 34 dictionary elements were important for noise
standard deviations 15, 25, and 50, respectively; the remaining elements of the dictionary were used
less than 0.1% of the time. As seen within the bottom portion of the right part of Figure 1, the
unused dictionary elements appear as random draws from the prior, since they are not used and
hence influenced by the data.

Note that K-SVD works well when the set noise variance is at or near truth, but the method is un-
dermined by mismatch. The proposed BP approach is robust to changing noise levels. Quantitative
performance is summarized in Table 1. The BP denoiser estimates a full posterior density func-
tion on the noise standard deviation; for the examples considered here, the modes of the inferred
standard-deviation posteriors were 15.57, 25.35, and 48.12, for true standard deviations 15, 25, and
50, respectively.

To achieve these BP results, we employ a sequential implementation of the Gibbs sampler (a batch
implementation converges to the same results but with higher computational cost); this is discussed
in further detail below, when presenting inpainting results.

Figure 1: Left: Representative denoising results, with the top through bottom rows corresponding to noise
standard deviations of 15, 25 and 50, respectively. The second and third columns represent K-SVD [6] results
with assumed standard deviation equal to 30 and the ground truth, respectively. The fourth column represents
the proposed BP reconstructions. The noisy images are in the first column. Right: Inferred BP dictionary
elements for noise standard deviation 25, in order of importance (probability to be used) from the top-left.

Table 1: Peak signal-to-reconstructed image measure (PSNR) for the data in Figure 1, for K-SVD [6] and the
proposed BP method. The true standard deviation was 15, 25 and 50, respectively, from the top to the bottom
row. For the mismatched K-SVD results, the noise stand deviation was fixed at 30.

Original Noisy K-SVD Denoising K-SVD Denoising Beta Process
Image (dB) mismatched variance (dB) matched variance (dB) Denoising (dB)

24.58 30.67 34.32 34.44
20.19 31.52 32.15 32.17
14.56 19.60 27.95 28.08

5.2 Inpainting
Our inpainting and denoising results were achieved by using the following sequential procedure.
Consider any pixel [p, j], where p, j ∈ [1, B], and let this pixel constitute the left-bottom pixel in
a new B × B block. Further, consider all B × B blocks with left-bottom pixels at {p + `B, j +

6



0 8 16 24 32 40 48 56 64
5

10

15

20

25

30

Learning round

P
S

N
R

Figure 2: Inpainting results. The curve shows the PSNR as a function of the B2 = 64 Gibbs learning rounds.
The left figure is the test image, with 80% of the RGB pixels missing, the middle figure is the result after 64
after Gibbs rounds (final result), and the right figure is the original uncontaminated image.

mB} ∪ δ(p− 1){Ny −B + 1, j + mB} ∪ δ(j − 1){p + `B, Nx −B + 1} for ` and m that satisfy
p + `B ≤ Ny − B + 1 and j + mB ≤ Nx − B + 1. This set of blocks is denoted data set Dpj ,
and considering 1 ≤ p ≤ B and 1 ≤ j ≤ B, there are a total of B2 such shifted data sets. In the
first iteration of learning Ψ, we employ the blocks in D11, and for this first round we initialize Ψ
and αi based on a singular value decomposition (SVD) of the blocks in D11 (we achieved similar
results when Ψ was initialized randomly). We do several Gibbs iterations with D11 and then stop
the Gibbs algorithm, retaining the last sample of Ψ and αi from the previous step. These Ψ and αi

are then used to initialize the Gibbs sampler in the second round, now applied to the B × B blocks
in D11 ∪ D21 (for D21 the neighboring αi is used for initialization). The Gibbs sampler is now run
on this expanded data for several iterations, the last sample is retained, and the data set is augmented
again. This is done B2 = 64 times until at the end all shifted blocks are processed simultaneously.
This sequential process may be viewed as a sequential Gibbs burn in, after which all of the shifted
blocks are processed.

Theoretically, one would expect to need thousands of Gibbs iterations to achieve convergence. How-
ever, our experience is that even a single iteration in each of the above B2 rounds yields good results.
In Figure 2 we show the PSNR as a function of each of the B2 = 64 rounds discussed above. For
Gibbs rounds 16, 32 and 64 the corresponding PSNR values were 26.78 dB, 28.46 dB and 29.31 dB.
For this example we used K = 256. This example was considered in [7] (we obtained similar results
for the “New Orleans” image, also considered in [7]); the best results reported there were a PSNR of
29.65 dB. However, to achieve those results a training data set was employed for initialization [7];
the BP results are achieved with no a priori training data. Concerning computational costs, the in-
painting and denoising algorithms scale linearly as a function of the block size, the dictionary size,
the sparsity level, and the number of training samples; all results reported here were run efficiently
in Matlab on PCs, with comparable costs as K-SVD.

5.3 Compressive sensing

We consider a CS example, in which the image is divided into 8× 8 patches, with these constituting
the underlying data {xi}i=1,NB

to be inferred. For each of the NB blocks, a vector of CS measure-
ments vi = Φxi is measured, where the number of projections per patch is Np, and the total number
of CS projections is NpNB . In this example the elements of Φ were constructed randomly as draws
from N (0, 1), but many other projection classes may be considered [11, 24]. Each xi is assumed
represented in terms of a dictionary xi = Dαi + εi, and three constructions for D were considered:
(i) a DCT expansion; (ii) learning of D using the beta process construction, using training images;
(iii) using the beta process to perform joint CS inversion and learning of D. For (ii), the training
data consisted of 4000 8×8 patches chosen at random from 100 images selected from the Microsoft
database (http://research.microsoft.com/en-us/projects/objectclassrecognition). The dictionary was
set to K = 256, and the offline beta process inferred a dictionary of size M = 237.

Representative CS reconstruction results are shown in Figure 3, for a gray-scale version of the
“castle” image. The inversion results at left are based on a learned dictionary; except for the “online
BP” results, all of these results employ the same dictionary D learned off-line as above, and the
algorithms are distinguished by different ways of estimating {αi}i=1,NB

. A range of CS-inversion

7



algorithms are considered from the literature, and several BP-based constructions are considered as
well for CS inversion. The online BP results are quite competitive with those inferred off-line.

One also notes that the results based on a learned dictionary (left in Figure 3) are markedly better
than those based on the DCT (right in Figure 3); similar results were achieved when the DCT was
replaced by a wavelet representation. For the DCT-based results, note that the DP- and PSBP-based
BP CS inversion results are significantly better than those of all other CS inversion algorithms.
The results reported here are consistent with tests we performed using over 100 images from the
aforementioned Microsoft database, not reported here in detail for brevity.

Note that CS inversion using the DP-based BP algorithm (as discussed in Section 4) yield the best
results, significantly better than BP results not based on the DP, and better than all competing CS
inversion algorithms (for both learned dictionaries and the DCT). The DP-based results are very
similar to those generated by the probit stick-breaking process (PSBP) [19], which enforces spatial
information more explicitly; this suggests that the simpler DP-based results are adequate, at least
for the wide class of examples considered. Note that we also considered the DP and PSBP for
the denoising and inpaiting examples above (those results were omitted, for brevity). The DP and
PSBP denoising and inpainting results were similar to BP results without DP/PSBP (those presented
above); this is attributed to the fact that when performing denoising/inpainting we may consider
many shifted versions of the same image (as discussed when presenting the inpainting results).

Concerning computational costs, all CS inversions were run efficiently on PCs, with the specifics
computational times dictated by the detailed Matlab implementation and the machine run on. A
rough ranking of the computational speeds, from fastest to slowest, is as follows: StOMP-CFAR,
Fast BCS, OMP, BP, LARS/Lasso, Online BP, DP BP, PSBP BP, VB BCS, Basis Pursuit; in this
list, algorithms BP through Basis Pursuits have approximately the same computational costs. The
DP-based BP CS inversion algorithm scales as O(NB ·Np ·B2).

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Measurements

R
el

at
iv

e 
R

ec
on

st
ru

ct
io

n 
E

rro
r

PSBP BP
DP BP
Online BP
BP
BCS
Fast BCS
Basis Pursuit
LARS/Lasso
OMP
STOMP-CFAR

Number of CS Measurements (x 104)

R
el

at
iv

e 
R

ec
on

st
ru

ct
io

n 
E

rr
or

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Measurements

R
el

at
iv

e 
R

ec
on

st
ru

ct
io

n 
E

rro
r

PSBP BP
DP BP
BP
BCS
Fast BCS
Basis Pursuit
LARS/Lasso
OMP
STOMP-CFAR

Number of CS Measurements (x 104)

R
el

at
iv

e 
R

ec
on

st
ru

ct
io

n 
E

rr
or

Figure 3: CS performance (fraction of `2 error) based on learned dictionaries (left) and based on the DCT
(right). For the left results, the “Online BP” results simultaneously learned the dictionary and did CS inversion;
the remainder of the left results are based on a dictionary learned offline on a training set. A DCT dictionary
is used for the results on the right. The underlying image under test is shown at right. Matlab code for Basis
Pursuit, LARS/Lasso, OMP, STOMP are available at http://sparselab.stanford.edu/, and code for BCS and Fast
BCS are available at http://people.ee.duke.edu/∼lihan/cs/. The horizontal axis represents the total number of
CS projections, NpNB . The total number of pixels in the image is 480× 320 = 153, 600. 99.9% of the signal
energy is contained in 33, 500 DCT coefficients.

6 Conclusions
The non-parametric beta process has been presented for dictionary learning with the goal of image
denoising, inpainting and compressive sensing, with very encouraging results relative to the state
of the art. The framework may also be applied to joint compression-classification tasks. In the
context of noisy underlying data, the noise variance need not be known in advance, and it need not
be spatially uniform. The proposed formulation also allows unique opportunities to leverage known
structure in the data, such as relative spatial locations within an image; this framework was used to
achieve marked improvements in CS-inversion quality.

Acknowledgement
The research reported here was supported in part by ARO, AFOSR, DOE, NGA and ONR.

8



References
[1] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge

University Press, 2000.
[2] M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine

Learning Research, 1, 2001.
[3] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society, Series B, 58, 1994.
[4] B.A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy

employed by V1? Vision Research, 37, 1998.
[5] M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD: An algorithm for designing overcomplete

dictionaries for sparse representation. IEEE Trans. Signal Processing, 54, 2006.
[6] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over

learned dictionaries. IEEE Trans. Image Processing, 15, 2006.
[7] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE

Trans. Image Processing, 17, 2008.
[8] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In

Proc. International Conference on Machine Learning, 2009.
[9] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. In

Proc. Neural Information Processing Systems, 2008.
[10] M. Ranzato, C. Poultney, S. Chopra, and Y. Lecun. Efficient learning of sparse representations

with an energy-based model. In Proc. Neural Information Processing Systems, 2006.
[11] E. Candès and T. Tao. Near-optimal signal recovery from random projections: universal en-

coding strategies? IEEE Trans. Information Theory, 52, 2006.
[12] J.M. Duarte-Carvajalino and G. Sapiro. Learning to sense sparse signals: Simultaneous sensing

matrix and sparsifying dictionary optimization. IMA Preprint Series 2211, 2008.
[13] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma. Robust face recognition via sparse

representation. IEEE Trans. Pattern Analysis Machine Intelligence, 31, 2009.
[14] S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Trans. Signal Processing,

56, 2008.
[15] R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught learning: transfer learning

from unlabeled data. In Proc. International Conference on Machine Learning, 2007.
[16] R. Thibaux and M.I. Jordan. Hierarchical beta processes and the indian buffet process. In Proc.

International Conference on Artificial Intelligence and Statistics, 2007.
[17] J. Paisley and L. Carin. Nonparametric factor analysis with beta process priors. In Proc.

International Conference on Machine Learning, 2009.
[18] T. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1,

1973.
[19] A. Rodriguez and D.B. Dunson. Nonparametric bayesian models through probit stickbreaking

processes. Univ. California Santa Cruz Technical Report, 2009.
[20] D. Knowles and Z. Ghahramani. Infinite sparse factor analysis and infinite independent com-

ponents analysis. In Proc. International Conference on Independent Component Analysis and
Signal Separation, 2007.

[21] P. Rai and H. Daumé III. The infinite hierarchical factor regression model. In Proc. Neural
Information Processing Systems, 2008.

[22] M.J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby
Computational Neuroscience Unit, University College London, 2003.

[23] M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian
process priors. Neural Computation, 18, 2006.

[24] R.G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24, 2007.
[25] J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4, 1994.

9


