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Abstract—Real camera systems have a limited depth of field
(DOF) which may cause an image to be degraded due to
visible misfocus or too shallow DOF. In this paper, we present
a blind deblurring pipeline able to restore such images by
slightly extending their DOF and recovering sharpness in regions
slightly out-of-focus. To address this severely ill-posed problem,
our algorithm relies first on the estimation of the spatially-
varying defocus blur. Drawing on local frequency image features,
a machine learning approach based on the recently introduced
Regression Tree Fields is used to train a model able to regress a
coherent defocus blur map of the image, labeling each pixel by the
scale of a defocus point-spread-function. A non-blind spatially-
varying deblurring algorithm is then used to properly extend
the DOF of the image. The good performance of our algorithm
is assessed both quantitatively, using realistic ground truth data
obtained with a novel approach based on a plenoptic camera,
and qualitatively with real images.

Index Terms—Out-of-focus deblurring, extension of depth of
field, Regression tree fields, defocus blur map.

I. INTRODUCTION

THE usage of large sensors in compact camera designs for

acquiring high resolution images and videos has direct

consequences on the depth of field (DOF) that can be captured.

DOF refers to the distance around the image plane for which

the camera is focused and for which the objects in the scene

appear acceptably sharp in the resulting image. For a given

sensor size, the DOF is influenced by the focal length of the

lens, the distance of the object the camera is focused on, and

the aperture (f-number).

DOF plays a key role in selecting relevant scene information

to be conveyed by the image. To direct viewer attention

and emphasize the main subject, shallow DOF is often used

by allowing the foreground and background to be blurry.

While a limited DOF is desirable for aesthetic reasons, it

is also an important source of image degradation. Indeed,

such camera settings are more difficult to control and easily

produce images for which a small underlying defocus blur

affects even the main subject due to, e.g., a too shallow DOF

or a misfocus. This might further affect the performance of

many image processing and computer vision algorithms that

do not explicitly model this degradation.
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To restore such corrupted images, it is desirable to slightly

extend their DOF in order to recover sharpness in slightly

out-of-focus areas. The underlying inverse problem, known

as blind deblurring, looks to estimate and remove the effects

of the undesired defocus blur. To account for its spatially-

varying nature, the estimation of defocus blur can generally

be cast as a blur map estimation [1]–[4], for which the scale

parameter of a priori known defocus point-spread-functions

(PSF) model (disc, Gaussian) needs to be specified at each

pixel. This has proven hard to solve accurately, and, to this

date, most successful solutions for out-of-focus restoration are

thus techniques for which the blur kernels estimation is either

simplified or circumvented thanks to alterations in the optical

design (coded aperture [5], chromatic aberrations [6]) or the

presence of correctly focused images of the same scene [7].

This contrasts to camera shake deblurring, for which a broad

range of methods [8]–[16] effectively work based on a single

image recorded with a conventional camera.

In this paper, we introduce a blind deblurring pipeline,

similar to the one introduced by Couzinie et al. [2], for

the restoration of images subject to a too shallow DOF and

recorded with a conventional camera. Using a disc PSF model,

our algorithm first estimates a defocus blur map of the image

by inferring the appropriate radius of the disc PSF at each

pixel. To that end, we propose a learning-based approach

based on regression tree fields (RTF) [17] and improve upon

previous blur map estimations based on manually defined color

constraints [1]–[4] by proposing a non-parametric alternative

for which smoothness constraints are directly learned from

data. Learning an effective discriminative model, such as

RTF, that can provide good generalization without requiring

an overly large amount of training data is, however, a very

challenging task. In our first and main contribution, we show

that this problem can be overcome by training a model cascade

of RTFs [18] built on strong blur features extracted from local

frequency image statistics [3], [19]. Once a blur map is known,

a non-blind deconvolution algorithm is used to properly restore

the image. Based on sparse derivative priors, our algorithm can

not only deblur the entire image [2] (with similar limitations

as other existing approaches as blur or noise get larger) but

is also parametrizable towards slight extension of DOF, i.e. to

deblur only the parts of the image under a certain level of blur

while leaving strongly out-of-focus areas intact (see Fig. 1).

In order to carry out a meaningful quantitative evaluation

of our deblurring framework, another important contribution

of our work is to provide, based on a plenoptic camera, a

novel approach to remedy the lack of realistic ground truth
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Fig. 1: Blind deblurring pipeline for depth of field extension and example of results.

data in spatially-varying out-of-focus problems (Section V).

Using a synthetic yet realistic dataset acquired with a Lytro

camera, along with a small set of real images, quantitative and

qualitative experimental results show that our approach yields

state-of-the-art performance at restoring spatially-varying de-

focus blur from a single image.

II. RELATED WORK

Blind deblurring has proven hard to solve [20]. Mathemat-

ically, an image subject to any type of blur is commonly

modeled as

y[i] = (ki ∗ x)[i] + n[i] =
∑

m

ki[i−m]x[m] + n[i] , (1)

where y1 is the blurred image, x is a latent all-sharp image,

ki[m] is the local blur kernel (or PSF) at pixel i and n is

additive noise. For an ideal lens with a circular aperture, the

defocus PSFs can be modeled by the disc function [21], or

by a Gaussian when diffraction becomes significant for mild

defocus [22]. In this work, we discard the effect of diffraction

and use disc PSFs exclusively, but our approach is not limited

to this setup. Because one has considerably more unknowns

(x, {ki}i and n) than observations (y), recovering x is a

severely ill-posed problem that is generally best solved by

first estimating the most likely blur kernel(s) under a given

distribution of sharp natural images before applying a non-

blind deconvolution to recover the sharp image x [20].

In case of defocus blur, the depth dependency of the PSFs,

and hence the spatially-varying nature of the blur, makes the

sub-problem of estimating the blur kernels very challenging.

This problem has been extensively tackled in the context of

recovering 3D from 2D, for which defocus cues are used to

estimate the depth map of a scene (depth from defocus [23]–

[28] or depth from focus [29]–[31]). These methods however

require several input images with known focus settings and

contrast with our target of estimating a defocus blur map

from a single image. Methods have been proposed to estimate

spatially-varying defocus PSFs at the edges from a single

image, by measuring the effect of a Gaussian PSF on a

1Note that we remove a standard gamma correction of 2.2 before any
blur-related processing (deblurring, ground truth data generation) in order
to recover a physically coherent model of blur with linear intensities and
take advantage of the YCbCr color space to model and deblur the luminance
channel Y only, as the human visual system is not sensitive to high frequencies
in color differences.

step edge [1], [4], [32] or by predicting sharp edges [33].

In [1], [4], [32], full blur maps are obtained via interpolation

based on color similarity constraints. Our method improves

on these by making a dense estimation for the entire image

and not being limited to a Gaussian PSF. Probability-based

methods [2], [3] have also been proposed, in which local

frequency image features are used to model the likelihood

of a given PSF at any pixel. A coherent defocus blur map

is then estimated via the combination of likelihood estimates

and an energy minimization framework based on manually

defined color constraints. By drawing on RTFs, we improve

on these by discriminatively learning these constraints directly

in the model. In Shi et al. [34], finally, a dictionary learned

on sharp and slightly blur patches is used to decompose local

image patches into set of atoms. Sparsity blur features are

then proposed to detect small Gaussian PSFs at any pixel (or

what is called just noticeable blur in [34]), based on empirical

evidence that a strong correlation exists between the number

of dictionary atoms and the amount of Gaussian blur.

Once the blur parameters have been estimated, the non-blind

deconvolution step is also ill-posed in presence of noise. To

retrieve sharp images with little artifacts, sparse derivatives [5],

[35] and learning-based priors [18], [36] have been proposed

as regularization on sharp natural images. While an adapta-

tion of [18] may offer slightly superior results, the primary

motivation of our work is to provide a blur map estimation

accurate enough towards deblurring. A more conventional

regularization based on sparse derivatives is thus used.

III. DEFOCUS BLUR MAP ESTIMATION

A. Localized 2D frequency analysis

The analysis of the frequency spectrum of an image is

a natural cue for retrieving information about the blur. As

shown by Chakrabarti et al. [19] (motion blur) and Zhu et

al. [3] (defocus blur), spatially-varying blur with a priori

known PSF models can be well analyzed by means of local

frequency component analysis. Their model allows to compute

the likelihood of a small image window being blurred by a

given PSF and will be the start of our approach.

Let us assume that the blur kernels ki[m] are constant in

any small window η of size W × W . The local frequency

spectrum of an image can be approximated in such windows

as the responses of the image y to a set of M filters {fm}m
(same size as the analysis window η) of different well-chosen
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spatial frequencies. Concretely, a set of Gabor filters of the

form

fm[i] = w[i] exp
(

−2πj (i1ω
(m)
1 + i2ω

(m)
2 )

)

(2)

is generally used to represent those filters, where the pairs

{(ω
(m)
1 , ω

(m)
2 )}m encode the spatial frequencies, w[i] is a

Gaussian window aligned with the analysis window and

i = (i1, i2).
If the underlying gradient distribution of the latent sharp

image x is locally white Gaussian with (unknown) variance

si in a given window, it can be shown [19] that the responses

{y∇m[i]}m of the image derivative y∇ to the set of filters

{fm}m can be used to determine the likelihood of a specific

blur kernel k as

p
(

{|y∇m[i]|2}m|k, si
)

=
∏

m

Exp
(

|y∇m[i]|2; 1/
(

siσ
2
km + σ2

nm

))

,

(3)

where Exp is the exponential distribution, and following

[19], {σ2
km}m and {σ2

nm}m are, respectively, called the blur

spectrum and the noise spectrum, defined by

σ2
km =

∑

i

|(k ∗ fm)[i]|2 , σ2
nm = σ2

n

∑

i

|(∇ ∗ fm)[i]|2 .

(4)

Using this model, a defocus blur map b can be estimated

by performing a maximum likelihood estimation over a set

of different defocus PSFs for each pixel2 (ML blur map). A

ML decision is, however, prone to errors (Fig. 3 (c)) because:

(i) conventional camera PSFs (e.g. disc function) partially

share similar frequency responses at different scales [5] (ii)

the inherent trade-off between spatial and spectral resolution

limits the ability of the model to get localized boundaries

(especially when W gets large). To estimate a coherent

defocus blur map, a model which incorporates appropriate

constraints between neighboring pixels is therefore needed.

Existing approaches [2], [3] relied on color constraints to

get better blur boundaries estimation (blur discontinuities are

caused by depth discontinuities which generally align with

color discontinuities), but this typically fails in absence of

colors difference or with gradually changing blur. In this paper,

a learning-based alternative drawing on regression tree fields

(RTF) is therefore proposed to alleviate their need.

B. Regression tree fields

Introduced by Jancsary et al. [17], RTF belong to the

family of graphical models designed to solve image labeling

problems, where one is given an observed image y and wishes

to predict a labeled image b in a globally consistent way (the

labeled image is denoted by b to purposely match the notation

of a defocus blur map). From a high-level perspective, RTFs

consist of a simple Gaussian Conditional Random Field (CRF)

whose corresponding density p(b|y) ∝ e−E(b|y) is completely

specified by a quadratic energy of the form

E(b|y) =
1

2
bTΘ(y)b− bT θ(y) , (5)

2This in particular requires the estimation of si (besides σ2
n for which

several methods exist). An heuristic approach is to independently select the
optimal s∗ that maximizes (3) for each window. See [3], [19] for details.
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Fig. 2: Parametrization of a RTF model. Left, the representation of a Gaussian
CRF via a factor graph, for which local interactions have been grouped into
three factor types (one unary and two pairwise). Right, an illustration of how
regression trees are associated to the CRF to assign local model parameters
based on the local image content.

and for which the model parameters Θ(y) and θ(y) are

regressed from the observed image y. The power of the model

lies in its parametrization via regression trees, which assign

local model parameters depending on the image content and

render the approach non-parametric. Concretely, the global

energy E(b|y) is decomposed into local potentials relating

only one or two pixels, which are then regrouped into common

factors type f ∈ F sharing the same local parameters Θf and

θf

E(b|y) =
∑

f

∑

p∈P f

Ef (bp|y)

Ef (bp|y) =
1

2
bTp Θ

f
p(y)bp − bTp θ

f
p (y) , (6)

where P f is the set of pixels or pairs of pixels related to a

given factor type.

As shown in Fig. 2, small connected neighborhoods around

each pixel are used to instantiate in a repetitive manner the

different factor types considered in the model, e.g. |F | = 3
for a 4-connected neighborhood (one unary factor and, due

to spatial symmetries, 2 pairwise factors). Each factor type is

associated to a regression tree, whose leaves store different

parametrizations of the local potentials. The image content

around each factor instantiation determines the actual leaf that

is attained and hence the local Gaussian model in effect. Once

the global energy has been shaped by the sum of all the local

potentials over the entire image, the prediction b∗ is given by

the mode of the Gaussian density p(b|y)

b∗ = [Θ(y)]−1θ(y) , (7)

which can be obtained by solving a system of linear equations

for which efficient methods exist.

C. RTF-based blur map estimation

We want to use RTF to regress a coherent defocus blur

map b, whose entry b[i] contains the radius parameter ri of

a disc PSF that matches the local PSF ki[m] at pixel i in

(1). While the RTF parametrization is powerful, the success

of its application relies, however, on the ability to learn

effective regression tree structures (e.g. , split functions, linear

regressors in the leaves) specific to our given image problem.
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Fig. 3: Comparison of blur map inference on a particular example of our validation set. RTF0 is trained with (normalized) likelihoods and Gabor filters as
features, RTF1 with sorted radii (see main text) and RTF3 extends RTF1 to the cascade model with three layers.

This not only requires a sufficient amount of training data for

which the ground truth labeled image is available, but also the

capacity of extracting meaningful image features for which

effective split functions can be learned.

Training data. We generate ground truth training data by

synthetically blurring a set of sharp natural images with var-

ious blur patterns, orientations and blur scales r. Concretely,

we have created synthetic random blur patterns composed by

a combination of two different types of regions: (i) gradually

changing blur regions, consisting in a gradient between two

radii; or (ii) uniform blur regions (constant radius) delimited

by sharp transitions that simulate depth discontinuities (e.g.

see Fig. 3 (b)). Parametrized by radii of our synthetic disc

PSF model in the interval [0.5, 5] pixels, these blur patterns

serve as ground truth blur maps for training. We use the

Berkeley segmentation dataset [37] to extract crops of all-

sharp natural images which are then synthetically blurred

with our ground truth blur maps. This approach is simplistic

because our blur patterns do not model the natural variation

of depth in the images (e.g. blur discontinuities do not align

with color discontinuities). It has, however, several advantages

towards generalization, because it allows to more easily control

the number of blur discontinuities, the orientations of the

blur patterns, the diversity of the blur scales, and finally

the content of the image patches (only regions with enough

texture are considered). This results in a carefully designed

training dataset consisting of 100 images of size 240×240.

We additionally gather 20 more images for validation.

Model selection. The high computational cost of RTF

training renders the use of validation methods robust against

over-fitting prohibitive and parameters have been therefore

empirically set. Specifically, we model connections in a 5×5

neighborhood (i.e. 12 different pairwise factors, as well as

one unary factor) and use regression trees of depth 10 for

both unary and pairwise factors. We moreover use probabilis-

tic training based on the maximization of the pseudolikeli-

hood [17] to learn the tree structures.

Features design and cascading. Features are N -

dimensional vectors where each dimension represents a dif-

ferent type of information about a given pixel (e.g. , filter

responses). In order to build effective regression trees which

can moreover be learned on a limited amount of training data,

it is of prime importance to extract features expressive enough

towards blur radius discrimination. To that end, our approach

is based on the likelihood model developed above (III-A) to

extract local spectral blur cues. Specifically, we estimate the

likelihoods of a set of defocus disc PSFs with blur radii in

R = {0.5, 0.75, 1, 1.25, ...., 6} at each pixel i, based on Eq.

(3) (using a sliding window W = 41)3. We then propose to

compute feature vectors Φi by sorting the blur radii based on

their likelihood

Φi =













r
(1)
i

r
(2)
i
...

r
(j)
i













, j = 1, 2, . . . , 23 (8)

where r
(j)
i is the radius with the j-th highest likelihood

computed at pixel i.
We briefly justify this proposed scheme, RTF1, by com-

paring it to a more straightforward model trained with plain

likelihoods and 60 Gabor filter responses as features (RTF0).

In Table I, we report training and validation errors for each

model as long as the ML decision. While both schemes RTF0

and RTF1 have almost equivalent training errors (both in MAE

and MSE), we can however observe that RTF0 generalize

considerably less to unseen data than RTF1. The explanation

for this result is that the dimensionality of the feature space

for RTF0 (83-dimensional) is simply too high for the relatively

small training set at disposition. Regression trees in RTF work

by thresholding one-dimensional feature responses (possibly

also taking the difference of two dimensions of the feature

space) so that deep trees and a large number of training data

are needed to learn on such a high dimensional complex

feature space. In comparison, it has been observed in [3] that

Training Set Validation Set
MAE MSE MAE MSE

ML 0.41 0.84 0.44 0.82
RTF0 0.19 0.10 0.51 0.87
RTF1 0.19 0.12 0.30 0.28
RTF3 0.10 0.04 0.23 0.21

TABLE I: Training and validation errors of different RTF models.

the right blur radius estimate can generally be found among

the first few local maxima of Eq. (3). By sorting the radii

in the feature vector for RTF1, and gathering the relevant

information in the same dimensions of the feature space,

3Note that we intentionally compute features for some radii larger than the
upper bound of the radius used to create our training data. The idea is that it
may help the training algorithm to more easily detect patches for which the
features are ambiguous (e.g. uniform areas in a sharp image) and therefore
allow the algorithm to make better decisions.
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we considerably ease the task of the training algorithm to

learn good splitting decisions by thresholding one dimensional

feature responses. In short, the sorting scheme in Eq. (8)

embeds the features into a lower dimensional feature space

with a higher predictive power, therefore greatly improving

generalization with a limited amount of training data.

While the features proposed for RTF1 carry meaningful

information to discriminate between blur radii, the shifts

introduced around blur boundaries due to the width of the

analysis window (W = 41) make it however difficult to

directly regress good local model parameters in these areas. To

address this issue, we train a cascade of three RTF models as

introduced in [18]. Each model stage of the final model, RTF3,

uses the output of all previous models as additional features

and can considerably increase accuracy at blur boundaries.

In Fig. 3, we illustrate the suitability of the proposed RTF3

by comparing to the more straight-forward training models

RTF0 and RTF1. We observe that only our guided approach

with cascading offers good generalization to unseen data,

dramatically improving upon a ML decision by regressing

a smoother blur map which is also better aligned with blur

discontinuities. In the rest of this paper, RTF3 is used whenever

we refer to the estimation of a blur map b.

IV. EXTENSION OF DOF

We now address the parametrization of the deblurring

algorithm towards slight extension of DOF. Following [38],

we first reformulate the blur model (1) into the matrix-vector

form

y = (K̂− ǫk)x+ n = K̂x− e+ n , (9)

where K̂ is the estimated blur matrix built from the blur map

estimation b (each row of K̂ contains the coefficients of a

local disc PSF) and ǫk models the residual blur matrix to

compensate for the errors in the estimate K̂. To achieve slight

extension of DOF, we construct a deblurring mask M

M[i] =

{

1 b[i] ≤ R

0 b[i] > R
, (10)

where R is the maximum blur radius one wants to remove

(R = ∞ means complete deblurring). Whenever M has a zero

entry at a given pixel i, we trick the imaging system not to

deblur the image at this pixel by assigning a delta blur kernel

δ[m] in the corresponding row of K̂, instead of the estimated

blur kernel.

By imposing sparse derivative priors to account for the

statistics of sharp natural images [5], [35] and assuming that

the error term e due to kernel estimation errors is sparsely

distributed (See section VI-A for justification), we extend the

DOF of the image by optimizing

minx,e ‖K̂x− e− y‖2

+ λ1 (||MDhx||
α
α + ||MDvx||

α
α)

+ λ2 ||e||1 ,

(11)

where Dh and Dv denote horizontal and vertical discrete

derivative operators, ||MDhx||
α
α with α ≤ 1 enforces sparse

derivatives exclusively on the parts of the image that are

actually deblurred and λ1 , λ2 are regularization parameters.

Using e = 0 as initialization, we minimize this energy

function by alternatively solving for x and e while keep-

ing the other variable fixed. Concretely, we use an Iterative

Reweighted Least Squares (IRLS) approach similar to [5] in

order to solve the non-convex subproblem of optimizing x

under α-norms with α ≤ 1. We solve for e by minimizing

‖e− (K̂x− y)‖2 + λ2||e||1, using soft-thresholding.

In order to avoid introducing unrealistic discontinuities in

the output image due to the thresholding operation towards

slight extension of DOF, a final stage of our algorithm com-

bines both the blurred image y and the deblurring output x̂

using a smooth version Ms of the original mask (e.g. , by

convolving it with a lowpass filter):

xfinal = Msx̂+ (I−Ms)y (12)

V. GROUND TRUTH DATA

Studies investigating spatially-varying defocus blur gener-

ally only resort to qualitative evaluation of their methods on

natural images [1], [3], [4] because of the lack of ground truth

(GT) data. While quantitative evaluation is performed in [2],

it is limited to a rather simplistic dataset based on manually-

defined blurred images.

In this paper, we aim to fill this gap and propose a

procedure to create realistic GT data (x, y, b) based on a

plenoptic camera. These cameras allow to compute, in one

single exposure, different images in various configurations

of focus distance and depth of field [39]. Images subject to

spatially-varying out-of-focus blur can thus be generated along

with their corresponding all-sharp images (by approximating a

pinhole camera). Such camera provides us thus with a baseline

to generate realistic GT image pairs (xp, yp). In the following,

we introduce a procedure to remedy the lack of GT blur map b
explaining the blurring process between xp and yp and obtain

realistic synthetic GT data (x, y, b).

A. Local estimation of a defocus PSF

To compute a realistic GT blur map b, we propose to blur

the all-sharp image xp with various disc PSFs k(r) and use

the image yp with a shallow DOF only as a template to

locally select the best radius explanation. Concretely, for each

radius r, we measure a patch-based mean squared error (MSE)

distance at each pixel i

d(i, r) =
1

l2

∑

j∈Ni

|yp[j]− yr[j]|
2 , yr = k(r) ∗ xp , (13)

where Ni is a very small neighborhood of size l × l around

a given pixel i. The GT blur map b of a realistic synthetic

blurred image ys can then be computed using a minimum

distance criterion

b[i] = r∗i = argmin
r

d(i, r) , ys[i] = yr∗
i
[i] . (14)

While ys optimally fits yp in a MMSE sense for a given set

of PSFs, the GT blur map created as such is, however, prone

to errors due to an over-fitting of the criterion to the template-

based image yp in various cases: (i) image content too uniform;
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(ii) rendering artifacts in yp or disc PSF not a good model of

the reality; or (iii) chromatic aberrations in yp. To work around

these limitations, we impose a regularization step that detects

pixels for which the distance criterion is of high-confidence

and propagates their estimation to the non-confident pixels.

B. Detection of high-confidence PSF estimation

Thresholds T1 and T2 are used to respectively detect: case

(i) when a clear minimum is visible; case (ii) when the

minimum distance is sufficiently small.

C1 = {i|

(

1

|R|

∑

r∈R

d(i, r)

)

−min
r

d(i, r) > T1}

C2 = {i|min
r

d(i, r) < T2}

(15)

To prevent wrong estimations due to chromatic aberrations,

the local estimation of a PSF is moreover performed over the

three color channels R, G and B separately and all pixels for

which the estimation is the same are confident.

C3 = {i|min
r

dR(i, r)=min
r

dG(i, r)=min
r

dB(i, r)} . (16)

We obtain a final set of confident pixels by intersecting the

three sets: C = C1 ∩ C2 ∩ C3.

C. Regularization

The regularization of the ground truth blur map b is finally

achieved by minimizing an energy function for multi-label

classification

E(b) =
∑

i

Di(ri) +
∑

(i,j)∈N

λi,jVi,j(ri, rj), (17)

where Di(ri) is a data-term encoding the cost of assigning a

particular PSF k(r) at pixel i, and Vi,j(ri, rj) is a smoothness

term used for regularization and parametrized by its strength

λi,j and the set of neighboring pixels N . To enforce that the

PSF estimations of the set of confident pixels C remain the

same, we set the data-term cost as follows

Di(ri) =











0 if i ∈ C and ri = r∗i
T if i ∈ C and ri 6= r∗i
1 if i /∈ C

, (18)

where T is a large cost especially enforcing that after regu-

larization, ri = r∗i , ∀i ∈ C. For non-confident pixels, the data

cost is set to the same value for each radius so that the output

is completely driven by the regularization. We subsequently

model the smoothness term by setting Vi,j(ri, rj) = |ri − rj |
with λi,j = 1, in order to favor neighboring pixels to have the

same blur radius.

D. Dataset Generation

Using a Lytro camera, a dataset of 22 blurred images of

size 360×360 was collected following this procedure4. In our

4Please note that while images of size 1080×1080 pixels are natively output
by a (first generation) Lytro camera, studies [40] have pointed out that the
sensor can in reality only output an effective spatial resolution of 380×380.
To yield sharp enough ground truth data in focused regions, we have therefore
downscaled the images by a factor 3, namely to 360×360 pixels.

(a) Synthetic blurred Image (b) GT All-sharp

(c) Intermediate blur map (d) Regularized GT blur map

Fig. 4: Example of ground truth data generation, with superimposition of noise
(σn=2.55) for the blurred image. (Best viewed zoomed-in in PDF)

implementation, the patch-based distance criterion of Eq. 13

is computed with patches of size 7×7 and disc PSFs in the

set of radii R = {0.5, 0.75, 1, 1.25, ...., 10}. Please note that

as we cannot know beforehand the largest blur in a given

image, the rationale is to choose the upper bound in R large

enough to be certain to capture all the potential blur scales.

Here it is set to 10 for safety, even if in practice the blur

scales in this dataset never exceed disc radius of size 5. For

regularization, we set T1 = 0.1, T2 = 0.03, T = 1000 and

use α-expansion [41] to minimize the energy of Eq. 17 in an

8-neighborhood. The generated GT data are exploited in the

rest of our experiments to perform a quantitative evaluation

of our algorithm in realistic scenarios, for which a Gaussian

noise (variance σn=1 and σn=2.55) will also be superimposed

on the blurred images. One sample of our dataset is shown

in Fig. 4, along with the intermediate blur map computed

using the MMSE criterion of Eq. 14. We can observe how the

MMSE blur map is grainy due to over-fitting, yielding locally

various blur scales despite of being at the same distance from

the camera. To that extent, our regularized ground truth blur

map more plausibly reproduce the physical reality than the

MMSE one. Please refer to the supplementary material for

more examples.

VI. EXPERIMENTS

In this section, a number of experiments are carried out to

test and evaluate the proposed deblurring framework.

A. Evaluation with realistic dataset and ground truth

Blur map estimation. We first quantitatively evaluate our

approach for blur map estimation on our dataset, using the

mean absolute error (MAE) and mean squared error (MSE) as

baseline quality metrics for blur maps. The complete list of

results for each image of our dataset is reported in Table II
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(f) Synthetic Blur (g) GT map (h) [4] (i) ML Map (j) Ours

Fig. 5: Examples of blur map estimation in realistic synthetic scenarios. Top: σn = 1, Bottom: σn = 2.55

and compared against the ML blur map (ML) as well as the

publicly available edge-based method of Zhuo and Sim [4].5

TABLE II: Quantitative evaluation of blur map estimation in realistic
scenarios. For each image of our dataset, we report the errors of the estimated
blur map compared to our ground truth blur map. For each entry x/y in the
table, x is the mean absolute error (MAE) and y the mean squared error
(MSE). Std. Dev. stands for the standard deviation per image.

Noise σn=1 Noise σn=2.55
[4] ML RTF [4] ML RTF

Im. 1 0.48/0.33 0.22/0.19 0.18/0.06 0.54/0.41 0.26/0.26 0.20/0.07
Im. 2 0.81/0.87 0.32/0.43 0.24/0.10 0.82/0.91 0.35/0.47 0.27/0.13
Im. 3 0.49/0.31 0.30/0.32 0.24/0.14 0.51/0.34 0.35/0.40 0.27/0.16
Im. 4 0.53/0.41 0.32/0.60 0.17/0.06 0.56/0.44 0.35/0.61 0.19/0.07
Im. 5 0.39/0.18 0.42/0.80 0.19/0.10 0.40/0.19 0.54/1.22 0.29/0.25
Im. 6 0.67/0.59 0.26/0.44 0.17/0.06 0.71/0.67 0.33/0.50 0.20/0.07
Im. 7 0.45/0.26 0.28/0.38 0.19/0.08 0.48/0.28 0.34/0.47 0.22/0.10
Im. 8 1.21/2.33 0.32/0.44 0.22/0.11 1.33/2.86 0.41/0.57 0.25/0.14
Im. 9 0.72/0.58 0.20/0.32 0.13/0.04 0.76/0.64 0.27/0.48 0.17/0.09
Im. 10 0.52/0.37 0.21/0.18 0.19/0.06 0.56/0.43 0.26/0.25 0.21/0.06
Im. 11 0.77/0.75 0.25/0.51 0.20/0.20 0.80/0.81 0.27/0.50 0.22/0.22
Im. 12 1.07/1.42 0.20/0.13 0.17/0.05 1.17/1.77 0.25/0.18 0.19/0.06
Im. 13 0.50/0.35 0.35/0.61 0.17/0.05 0.55/0.42 0.42/0.68 0.25/0.10
Im. 14 0.64/0.53 0.61/1.15 0.49/0.44 0.64/0.54 0.60/1.10 0.50/0.49
Im. 15 1.00/1.17 0.18/0.19 0.16/0.08 1.03/1.26 0.18/0.17 0.17/0.08
Im. 16 0.58/0.56 0.18/0.08 0.18/0.06 0.60/0.64 0.19/0.08 0.18/0.06
Im. 17 1.12/1.48 0.36/0.52 0.24/0.12 1.22/1.81 0.41/0.58 0.27/0.14
Im. 18 0.64/0.53 0.24/0.25 0.17/0.07 0.67/0.58 0.25/0.25 0.18/0.07
Im. 19 0.69/0.62 0.46/0.77 0.30/0.18 0.70/0.68 0.53/0.88 0.32/0.21
Im. 20 0.71/0.68 0.27/0.30 0.20/0.11 0.78/0.84 0.28/0.29 0.21/0.10
Im. 21 0.69/0.58 0.37/0.87 0.18/0.06 0.72/0.63 0.41/0.91 0.21/0.09
Im. 22 1.21/1.77 0.43/0.87 0.20/0.09 1.33/2.16 0.46/0.83 0.23/0.11

Average 0.72/0.76 0.31/0.47 0.21/0.11 0.77/0.88 0.35/0.53 0.24/0.13
Std. Dev. 0.25/0.55 0.11/0.28 0.07/0.09 0.28/0.68 0.11/0.30 0.07/0.10

Quantitatively, our approach clearly outperforms [4] both

in MAE and MSE at each noise level. While the subpar

performance of [4] may be a bit overestimated due to the PSF

conversion, the qualitative comparison in Fig. 5 clearly shows

the greater ability of our approach to catch the blur trend,

without being dependent on the image content. This can be

explained by the fact that our method does not primarily rely

5Please note that we map the Gaussian PSF in [4] to a disc PSF by
measuring the closest fit when blurring a step edge and that we use the true
noise level for extracting likelihoods of the ML map or the features of RTF.
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Fig. 6: Empirical log-distribution of the residual term e = ǫkx (Eq. 9)
computed over our whole dataset.

on edges for blur estimation, but instead use average spectral

statistics that are not dependent to the image structure, hence

regressing more coherent blur maps. By efficiently removing

large artifacts, our approach makes moreover significant quan-

titative improvements upon the ML estimation (especially in

MSE) and results in low-error blur maps for which the blur

scales are overall estimated accurately. This is corroborated

qualitatively (Fig. 5) by the great ability of our method to

catch blur trends, such as gradually changing blur (Fig. 5 (e))

and to handle several levels of blur.

Statistical characterization of RTF-based blur map es-

timation errors. It is well known that even small errors

in the estimation of blur kernel(s) can easily have dramatic

effects on the quality of deblurring algorithms (e.g. ringing

artifacts). By exploiting our realistic synthetic dataset, we

additionally provide a meaningful statistical evaluation of the

errors made by our RTF-based blur map estimation towards

deblurring. Concretely, based on Eq. 9, we want to estimate

the distribution of the term e due to kernel errors. Using the

GT data of our dataset, we therefore compute, for each image,

the term ǫk = K− K̂ using our GT blur map and then derive

e = ǫkx using our latent GT sharp image. In Fig. 6, we

plot the empirical error distribution of the term e, evaluated

over our whole dataset. We can observe that the distribution

is typically sparse around its mode (0). This precious prior
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(a) Ground Truth Sharp (b) Blurred (PSNR=24.92 dB) (c) Deblurred (PSNR=27.73 dB)

Fig. 7: Example of deblurring result in a realistic synthetic scenario (σn = 1). (Best viewed zoomed-in in PDF) More examples can be found in supplementary
material.

knowledge about kernel errors justifies the model used for

deblurring, as it indeed invites to use regularizers of the form

||e||ββ with β < 1 in the deconvolution, or an approximation

with β = 1 for computational efficiency.

Spatially-varying deblurring. We now quantitatively eval-

uate the performance of our deblurring algorithm by estimat-

ing the all-sharp images using our blur map estimations. In

the following, we set α=0.8 to enforce sparse derivatives,

λ1=2·10−4 (σn=1) or λ1=5·10−4 (σn=2.55) and λ2=2·10−3

as parameters of the deblurring algorithm (Eq. 11). In order to

estimate the all-sharp images, i.e. to deblur the images entirely,

we do not use any deblurring mask here and set R = ∞ in

Eq. 10.

TABLE III: Quantitative evaluation of spatially-varying deblurring in realistic
scenarios. For each image of our dataset, we report the PSNR value when
deblurring with various blur map estimations by comparing to our ground truth
all-sharp image. Only our blur map estimation allows significant deblurring.

σn=1 σn=2.55
Blurred [4] ML RTF Blurred [4] ML RTF

Im. 1 26.70 25.67 28.83 29.32 26.12 26.30 27.86 28.07
Im. 2 25.76 25.49 26.38 27.31 25.28 25.75 26.14 26.53
Im. 3 25.09 25.22 26.64 27.32 24.56 25.44 26.07 26.49
Im. 4 24.87 26.59 26.40 28.42 24.64 26.50 26.60 27.61
Im. 5 27.69 25.93 27.01 30.31 26.88 27.09 27.43 29.04
Im. 6 25.30 24.13 25.93 27.15 25.07 24.83 25.86 26.70
Im. 7 28.43 28.11 29.53 30.67 28.14 28.64 29.10 29.80
Im. 8 24.90 25.81 26.53 27.10 24.72 25.50 25.80 26.03
Im. 9 23.93 22.99 25.82 26.40 23.80 23.61 25.10 25.41
Im. 10 25.34 24.60 26.71 27.14 25.05 25.22 25.96 26.21
Im. 11 24.86 24.59 26.08 26.21 24.65 24.98 25.59 25.73
Im. 12 25.22 25.25 27.93 27.93 25.04 25.42 26.82 26.83
Im. 13 29.57 26.05 27.62 30.75 29.21 27.58 28.30 29.77
Im. 14 26.00 25.69 26.58 28.25 25.82 26.13 26.89 27.44
Im. 15 21.72 21.03 23.87 24.04 21.58 21.51 23.09 23.19
Im. 16 25.24 24.68 27.46 27.61 24.98 25.27 26.55 26.63
Im. 17 25.60 23.58 22.65 25.19 25.31 24.38 23.48 25.18
Im. 18 23.97 23.73 25.33 27.14 23.78 24.12 25.38 26.34
Im. 19 25.61 25.57 26.97 28.43 25.41 25.93 27.22 27.75
Im. 20 23.58 22.88 23.93 24.75 23.39 23.24 23.76 24.30
Im. 21 27.08 26.57 25.76 28.72 26.85 26.96 26.37 28.01
Im. 22 25.36 24.48 24.92 27.06 25.22 25.02 25.29 26.44

Average 25.54 24.94 26.31 27.60 25.25 25.43 26.12 26.80
Gain n/a -0.6 +0.77 +2.06 n/a +0.18 +0.87 +1.55

In Table III, we compare the PSNR value of each origi-

nal blurred image of our dataset to the ones obtained after

deconvolution with the different blur map estimations (Edge-

based [4], ML, Ours). We observe that only our RTF-based

blur map estimation allows to significantly and consistently

improve the PSNR, with average gains of 2.06 ± 0.83 dB

(σn=1) and 1.55 ± 0.67 dB (σn=2.55). To put the relative

small margin obtained in perspective, one has to consider the

complexity of the scene and that typical disc defocus PSFs

cannot be properly inverted (zeros in its Fourier Transform).

Although a direct comparison with [2] was not possible, we

can compare their gains (+0.76 dB with σn=1) on their dataset

with our gains (+2.06 dB (σn=1), +1.55 dB (σn=2.55)) on

a more complex and realistic dataset. Without being able

to draw further conclusions, these figures confirm the good

performance of our method in comparison to the state of the

art. Fig. 7 illustrates the kind of deblurring results obtained in

synthetic scenarios of our dataset. Substantially more examples

can be found in the supplementary material.

B. Application to real data

Defocus blur map estimation. In order to show the appli-

cability of our method to real images, a small dataset subject to

real out-of-focus blur has been acquired with a Nikon D7100.

A subset of blur map estimation results is shown in Fig.

8. It is qualitatively compared to the recent dictionary-based

approach of Shi et al. [34], which tackles ”just noticeable

blur” detection. We can see that our method has the greatest

advantage of handling the estimation of larger blur scales

than [34]. Indeed, even if the sparsity features of [34] in

Fig. 8 (d)-(f) may catch the blur trend for the whole image,

the method however breaks down for standard deviation larger

than σ = 2 (Gaussian PSF) when converting to an exact blur

strength. This is in particular critical towards our deblurring

target scenario, for which an exact estimation of the blur scales

is needed. Qualitatively, our results are also more coherent

with the natural depth variation in the images, in particular

for the almost uniformly blurred image in Fig. 8 (a) or the

detection of the left post in Fig. 8 (c).

In Fig. 9, an additional comparison with Zhu et al. [3] on

real images shows that our method performs similarly well

or slightly better in case of weak color boundaries and is

typically better in gradually changing blur. See for example

how the smooth blur progression is more accurately captured
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Fig. 8: Blur map estimation examples. Comparison with Shi et al. [34] on real images. The sparsity features of [34] ((d)-(f)) are converted to a Gaussian
PSF following the formula provided in their paper, and subsequently to a disc PSF for visualization comparison with our approach (by measuring the closest
fit when blurring a step edge). Please note that the conversion of sparsity features is only valid up to a Gaussian PSF with standard deviation σ = 2. Regions
with larger blur strengths (or not enough texture) which do not produce an estimation of the blur scale with [34] are marked in uniform gray in (g)-(i).
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Fig. 9: Blur map estimation examples. Comparison with Zhu et al. [3] on real images. Please note that our method has not been trained to handle the large
blur in the region marked by (*).
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(a) Misfocused image (b) Restored focused

(c) Very Shallow DOF (d) Slight Extension of DOF

Fig. 10: Slight extension of DOF with real images. Top: restoration of a misfocused image. Bottom: restoration of an image subject to a too shallow DOF.
(Best view zoomed-in in PDF) More examples can be found in supplementary material.

by our method, in the top left corner and right part of Fig.

9 (e) versus (f). Our simple learning-based approach remains

however limited around blur boundaries aligned with good

image contrast, which may not be as sharp as models based

on strong color constraints [2], [3].

Depth of field extension on real images. Based on the

same images gathered for blur map estimation, we now target

our final deblurring application. A subset of DOF extension

results is first reported in Fig. 10. We can see that, despite

the lack of calibration of our PSF model to real cameras, our

method is able to significantly deblur the images locally. For

example, Fig. 10 (a) shows an image wrongly focused on the

background of the scene instead of the central stone statue in

the foreground. By applying our spatially-varying deblurring

algorithm with R = ∞ in Eq. 10 (i.e. complete deblurring

or infinite DOF), the stone statue is brought back to focus by

recovering a decent level of sharpness in the restored image of

Fig. 10 (b), while the background, already focused, is correctly

left unchanged. In Fig. 10 (c), the image is focused on the

post on the right part of the image and shot with a really

shallow DOF so that the left post is already out-of-focus. Note

how our method is able to slightly extend the DOF in Fig.

10 (d) (using R = 2.5 in Eq. 10), bringing the left post to

focus, without over-sharpening in-focus areas and leaving the

background out-of-focus.

In Fig. 11, we provide additional results that are compared

to the ones obtained using the blur maps of Shi et al. [34]

shown in Fig. 8 (but using the original Gaussian PSF for de-

convolution). For the misfocused image in (a) (almost uniform

blur), only our method is able to recover sharpness over the

whole image, while [34] misestimates the regions around the

windows and leaves them out of focus. In the second image

in (b), subject to a very shallow DOF and gradually changing

blur, our restoration algorithm (R = 3) is able to slightly

extend the DOF over the whole monument. In comparison,

the result of [34] is limited to one half of the monument and

is prone to over-sharpening (middle part). Overall, it is clear

that towards deblurring, our method seems to be more stable

while having the advantage of being able to handle larger blurs

than [34].

Video Deblurring. We finally perform a real experiment

in the context of video deblurring. It is based on the HEVC

DASH dataset [42], which is a real-life professional edit

of several sequences shot for the 4Ever project [43]. Two

(cropped) frames of the subsequence we have used are shown

in Fig. 12 (a) and (g). This scene is particularly interesting

because it displays a so shallow DOF that the only focused

region is the middle of the interviewee’s face. His ear and shirt

are already slightly blurred, the background is completely out

of focus and some frames also display some slight motion

blur, such as the face moving on frame 125 (Fig. 12 (g)).

In this experiment, we have tried to slightly extend the DOF

of the images in order to recover sharpness around the ear

and shirt. To showcase the strengths and weaknesses of our

approach, we compare our results to the recent and state-of-

the-art deblurring method of Kim and Lee [44], which handles

various sources of spatially-varying blur in videos (camera

shake, motion blur, depth variation). Deblurring results for

both approaches are shown in Fig. 12, along with a subset

of the pixel-wise varying kernels of [44] and our defocus blur
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map overlaid with the original image.

Despite minor errors (mainly around uniform regions of

the face for which no deblurring is needed), our blur map

accurately estimates the different blur levels: (i) absence of

blur around the middle of the face; (ii) slight defocus blur

for the ear and shirt collar; and (iii) strong defocus blur for

the background. As a result, as shown in Fig. 12 (c) and (i),

our method is able to deblur the slightly defocused areas,

recovering image details and sharpness around the ear and

shirt collar as desired. One can however notice the sensitivity

of our defocus blur map to motion blur, on the face part of

Fig. 12 (l). This is due to the fact that small disc PSFs more

closely match the slight motion blur PSFs than a delta kernel

(no blur) in presence of motion, and tends to degrade the

quality of the deblurring result because the estimated kernel

does not perfectly correspond to the real motion blur kernel.

In comparison, standard spatially-varying deblurring methods

addressing motion blur, such as [44], are not tailored to handle

defocus blur. As we can see on the pixel-wise blur kernels of

Fig. 12 (e) and (k), [44] is indeed not able to detect defocus

blur and estimates delta kernels (no blur) in absence of motion

blur. While their method brightly deblurs the slight motion

blur that our approach does not handle, we also observe that

it cannot be applied for our target scenarios since it has no

effect on defocus blur.

In short, this experiment showcases the contribution of

our work towards handling spatially-varying defocus blur

and DOF extension in videos. We also note that the frame-

by-frame deblurring approach followed in this experiment

is overly simplistic as no mechanism to ensure temporal

coherency is considered, which has the undesired effect of

introducing flickering artifacts in the final video. To apply

our approach for serious video processing applications, future

work should therefore be focused on addressing both the

problem of motion blur and temporal consistency.

C. Limitations

In this work, we have shown how even a naive training

of RTF, based on randomly synthetically generated blur data,

can be useful to solve the task of deblurring spatially-varying

out-of-focus images. One current limitation of our approach

is the limited performance of our learned model around blur

kernel boundaries (depth boundaries). This can in particular be

observed when the surrounding region of a sharp or slightly

blurred region is completely out-of-focus (e.g., near the inter-

viewee’s ear in Fig. 12). In this work, we have relied on the

smart regularization of our deblurring algorithm, especially the

modeling of blur kernel estimations errors inspired by [38], to

avoid unpleasant ringing artifacts.

Better training models could however be built to estimate

kernel boundaries more accurately. In particular, we currently

do not model the natural variation of depth in our naive

training data (e.g., blur discontinuities do not align well with

color discontinuities), as it was more straightforward to use

randomly generated blur data to obtain a dataset large enough

for training. This forces RTF to make blur boundary decisions

based on gradient and spectral characteristics only (mainly to

correct the shifts incorporated in the input features). While

this has shown to work in some cases (for example in Fig.

3 (f)), this remains suboptimal and prone to errors. Further

work should therefore focus on using more properly formed

training data, where in particular blur boundaries correspond

to depth/color boundaries. This will obviously require to

incorporate color informations as features in Eq. 8 to let the

new model learn changes in defocus blur beyond the spectral

features. One possible direction is definitely to use the method

presented in Section V to create spatially-varying ground truth

training data which are realistic. The use of the first generation

of the Lytro camera we have used in this work makes it

difficult to easily build a suitable large training dataset due

to the limited image quality and the small sensor size, which

does not allow to easily capture images with the required very

shallow DOF or sufficient blur.

VII. CONCLUSION

We introduced a blind deblurring pipeline for the restoration

of images with too shallow Depth-of-Field (DOF). At its core

is the estimation of a defocus blur map, based on a model cas-

cade of Regression Tree Fields (RTF). We showed how even

simple training data, manually generated by synthetic blur map

patterns, can be combined with local spectral blur cues to

train a discriminative model able to regress accurate defocus

blur maps. Their successful application for restoring spatially-

varying out-of-focus blurred images is demonstrated through

various experiments with both synthetic and real images. To

that end, based on a plenoptic camera, a novel approach to

remedy the lack of realistic ground truth data in spatially-

varying out-of-focus problems has also been proposed in

order to provide a quantitative evaluation of our framework.

We believe that a promising area for further research will

be their use as training data for learning-based approaches.

The success of such algorithms is intrinsically linked to the

ability of reproducing real conditions during training, and such

realistic spatially-varying ground truth data may considerably

help learning better models.
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(a) Misfocused image (b) Very Shallow DOF

(c) Restored Focus, [34] (d) Slight Extension of DOF, [34]

(e) Restored Focus, Ours (f) Slight Extension of DOF, Ours.

Fig. 11: Deblurring examples. Comparison with Shi et al. [34] on real images. From top to bottom: Blurred image, [34], Ours. Left: restoration of a misfocused
image. Right : restoration of an image subject to a too shallow DOF. See how our method is more stable in order to to restore focus over the whole misfocused
image (e) or to extend the DOF over the whole monument shot with a shallow DOF (f). (Best viewed zoomed-in in PDF)
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(a) Frame 224, shallow DOF (b) Kim and Lee [44] (c) Ours

(d) Close-ups (e) Pixel-wise varying kernels of [44] (f) Our defocus blur map

(g) Frame 125, shallow DOF + slight motion blur (h) Kim and Lee [44] (i) Ours

(j) Close-ups (k) Pixel-wise varying kernels of [44] (l) Our defocus blur map

Fig. 12: Sample video deblurring and comparison with Kim and Lee [44], based on 238 frames extracted from the HEVC DASH dataset [42]. The frames
125 and 224 of our subsequence are shown. For each frame, from left to right, top to bottom: image with shallow DOF (original frame), deblurred image
by [44], slight extension of DOF (Ours), close-ups corresponding to the boxes shown in red (from top to bottom: Original frame, [44], Ours), subset of
spatially-varying kernels estimated by [44], our defocus blur map overlaid with the image. Only our method is suitable towards our DOF extension scenario.


