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Abstract

In this work we show how permutation methods can be applied to combina-
tion analyses such as those that include multiple imaging modalities, multi-
ple data acquisitions of the same modality, or simply multiple hypotheses on
the same data. Using the well-known definition of union-intersection tests
and closed testing procedures, we use synchronised permutations to correct
for such multiplicity of tests, allowing flexibility to integrate imaging data
with different spatial resolutions, surface and/or volume-based representa-
tions of the brain, including non-imaging data. For the problem of joint
inference, we propose and evaluate a modification of the recently introduced
Non-Parametric Combination (NPC) methodology, such that instead of a
two-phase algorithm and large data storage requirements, the inference can
be performed in a single phase, with reasonable computational demands.
We also evaluate, in the context of permutation tests, various combining
methods that have been proposed in the past decades, and identify those
that provide the best control over error rate and power across a range of
situations. We show that one of these, the method of Tippett, provides a
link between correction for the multiplicity of tests and their combination.
Finally, we discuss how the correction can solve certain problems of mul-
tiple comparisons in one-way ANOVA designs, and how the combination
is distinguished from conjunctions, even though both can be assessed using
permutation tests. We also provide a common algorithm that accommodates
combination and correction.
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List of abbreviations

anova Analysis of variance
cca Canonical correlation analysis
cva Canonical variates analysis
cmv Classical multivariate test (e.g. manova, cca)
ctp Closed testing procedure

dti Diffusion tensor imaging
dtp Dual truncated product
ee Exchangeable errors
eeg Electroencephalography
fa Fractional anisotropy
fmri Functional magnetic resonance imaging
fdr False discovery rate
fwer Familywise error rate
glm General linear model

ica Independent component analysis
ise Independent and symmetric errors
iq Intelligence quotient
iut Intersection–union test

jnh Joint null hypothesis

lsd Least significant difference
manova Multivariate analysis of variance
mancova Multivariate analysis of covariance
md Mean diffusivity
mri Magnetic resonance imaging
mtp-i Multiple testing problem I

mtp-ii Multiple testing problem II

npc Non-parametric combination

palm Permutation Analysis of Linear Models
pet Positron emission tomography
rd Radial diffusivity
rtp Rank truncated product
sii Secondary somatosensory cortex
tfce Threshold-free cluster enhancement
tpm Truncated product method
ts Tail strength
tts Truncated tail strength
uit Union–intersection test

Those indicated bold are used more often throughout the paper.
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1. Introduction

In this paper we show that permutation tests can provide a common solu-

tion to seemingly disparate problems that arise when dealing with multiple

imaging measurements. These problems refer to the multiplicity of tests,

and to the combination of information across multiple modalities for joint

inference. We begin by describing each of these problems separately, then

show how they are related, and offer a complete and generic solution that can

accommodate a myriad of designs that can mix imaging and non-imaging

data. We also present an algorithm that has with amenable computational

demands for treating these problems.

1.1. Multiple tests — but not the usual multiplicity

Because in neuroimaging one statistical test is typically performed at

each of many thousands of imaging units (e.g., voxels or vertices), the prob-

lems related to such multiplicity of tests were recognised almost as early

as these techniques were developed (for pioneering examples, see Fox et al.,

1988; Friston et al., 1991). There is now a comprehensive body of literature

on multiple testing correction methods that include those based on the ran-

dom field theory, on permutation tests, as well as on other strategies that

control the familywise error rate (fwer) or the false discovery rate (fdr)

(for reviews, see Nichols and Hayasaka, 2003; Nichols, 2012). However, the

multiplicity of tests in neuroimaging can appear in other ways that are less

explicit, and most importantly, that have not been fully appreciated or made

available in software packages. In the context of the general linear model

(glm, Scheffé, 1959), these other multiple tests include:

a. Multiple hypotheses in the same model: Testing more than one hypoth-

esis regarding a set of explanatory variables. An example is testing the

effects of multiple variables, such as presence of a disease along with its

duration, some clinical score, age and/or sex of the subjects, on a given

imaging measurement, such as maps from functional magnetic resonance

imaging (fmri) experiments.

b. Multiple pairwise group comparisons: Often an initial global (omnibus)

test is performed, such as an F -test in the context of analysis of variance

(anova), and if this test is significant, subsequent (post hoc) tests are

performed to verify which pairwise difference(s) drove the global result,

thus introducing a multiple comparisons problem.
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c. Multiple models: Testing more than one set of explanatory variables

on one given dataset, that is, assembling and testing more than one

design matrix, each with its own set of regressors, which may differ

across designs, and each with its own set of contrasts. An example is

interrogating the effect of distinct seeds, one at a time, in a resting-state

fmri experiment; another is in an imaging genetics experiment, testing

multiple candidate polymorphisms.

d. Multiple modalities: Testing separately, in the same study, more than one

imaging modality as the response variable, such as fmri and positron-

emission tomography (pet), or different metrics from the same modal-

ity, such as various measurements from diffusion tensor imaging (dti),

as fractional anisotropy (fa), mean diffusivity (md), or radial diffusiv-

ity (rd), or the effect of various networks identified using independent

component analysis (ica).

e. Imaging and non-imaging: Testing separately, in the same study, imag-

ing and non-imaging measurements as response variables. An example

is studying group effects on fmri and on behavioural or cognitive scores,

such as iq, or disease severity scores, among countless other non-imaging

measurements.

f. Multiple processing pipelines: Testing the same imaging modality multi-

ple times, each time after a different processing pipeline, such as using

filters with different widths for smoothing, or using different strategies

for registration to a common space.

g. Multiple multivariate analyses: Testing more than one multivariate hy-

pothesis with the glm in repeated measurements designs, such as in pro-

file analyses, in which the same data allows various different hypotheses

about the relationships between explanatory and response variables.

In all these cases, the multiple tests cannot be assumed to be indepen-

dent, so that the simple fwer correction using the conventional Bonferroni

method risks a considerable loss in power. Modelling the degree of depen-

dence between these tests can be a daunting task, and be suboptimal by

invariably requiring the introduction of assumptions about the data, which,

if at all valid, may not be sufficient. By contrast, robust, generic, multi-step

procedures, which do not depend as much on assumptions, or on indepen-

dence among tests, such as the Benjamini–Hochberg procedure that controls

4
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the false discovery rate (fdr) (Benjamini and Hochberg, 1995; Genovese

et al., 2002), do not guarantee that the spatial relationship between voxels

or vertices within test is preserved when applied across these multiple tests,

therefore being not as useful as in other settings. More specifically, the

difficulty relates to correcting across various distinct imaging tests, while

maintaining control across space within any given test, as opposed to con-

trolling just within a single imaging test as commonly done. For the same

reason, various multiple testing approaches that are applicable to many par-

ticular cases, can hardly be used for the problems we discuss here; extensive

details on these tests can be found in Hochberg and Tamhane (1987) and in

Hsu (1996).

We call the multiple tests that arise in situations as those listed above

“multiple testing problem ii” (mtp-ii), to allow a distinction from the usual

multiple testing problem due to the many voxels/vertices/faces that con-

stitute an image, which we denote “multiple testing problem i” (mtp-i).

Methods that can be used in neuroimaging for the mtp-i not always can

be considered for the mtp-ii, a problem that has remained largely without

treatment; for two rare counter examples in which the mtp-ii was consid-

ered, we point to the studies by Licata et al. (2013) and Abou Elseoud et al.

(2014).

1.2. Combination of imaging modalities

Acquisition of multiple imaging modalities on the same subjects can

allow the examination of more complex hypotheses about physiological pro-

cesses, and has potential to increase power to detect group differences. Such

combination of modalities can refer strictly to data acquired from different

instruments (e.g., mri, pet, eeg), or more broadly, to data acquired from

the same instrument using different acquisition parameters (e.g., different

mri sequences, different pet ligands); for an overview, see Uludağ and Roe-

broeck (2014); Zhu et al. (2014), and for example applications, see Hayasaka

et al. (2006); Thomas et al. (2015). Irrespective of which the modalities are,

the options in the context of the glm rest in testing for a single multivariate

hypothesis, or in testing for a combination of multiple univariate hypothe-

ses. Single multivariate tests encompass various classical tests, known in

particular cases as multivariate analysis of variance (manova), multivariate

analysis of covariance (mancova), or canonical correlation/variates analysis

(cca/cva); these tests will be referred here as classical multivariate tests,

or cmv.
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The combination of multiple univariate hypotheses requires that each is

analysed separately, and that these results are grouped together to test, at

each voxel (or vertex, or face) a joint null hypothesis (jnh); in this context,

the separate tests are termed partial tests. Different criteria to decide upon

rejection of the jnh give rise to three broad categories of combined tests:

(i) reject if any partial test is significant; (ii) reject if all partial tests are

significant; and (iii) reject if some aggregate measure from the partial tests

is significant. The first of these can be traced back to Tippett (1931), and in

current terminology, could be defined as rejecting the joint null hypothesis

if any partial test is rejected at the fwer level using the Šidák correction

(Šidák, 1967); it also corresponds to a union–intersection test (uit, Roy,

1953). The second is the intersection–union test (iut, Berger, 1982), that

in neuroimaging came to be known as conjunction test (Nichols et al., 2005).

The third offers a trade-off between the two other approaches, and gives rise

to a large number of possible tests, each with a different rejection region,

and therefore with different sensitivity and specificity profiles; some of these

tests are popular in meta-analyses, with the method of Fisher (Fisher, 1932)

being one of the most popular, and new approaches are continually being

developed. A summary is shown in Table 1, and a brief overview of these

and yet other tests, along with bibliographic information, is in Appendix A.

Both cases — a single multivariate test or the combination of multiple

univariate tests — can be assessed parametrically when the asymptotic dis-

tribution of the test statistic is known, which may sometimes be the case if

various assumptions about the data are met. These generally refer to the

the independence between observations and between tests, to the distribu-

tion of the error terms, and for brain imaging, to yet other assumptions

regarding the relationship, across space, between the tests. However, if the

observations are exchangeable, that is, if their joint distribution remains un-

changed after shuffling, then all such assumptions can be eschewed at once,

and instead, permutation tests can be performed. The p-values can then

be computed for either the classical multivariate tests, or for the combi-

Table 1: (page 7) Various functions are available for joint inference on multiple tests.
For each method, both its statistic (T ) and associated p-value, P are shown. These p-
values are only valid if, for each method, certain assumptions are met, particularly with
respect to the independence between tests, but sometimes also with respect to underlying
distributions. Under exchangeability, the p-values can be computed using permutation
tests, and the formulæ in the last column are no longer necessary. The tests are shown in
chronological order; see Appendix A for details and bibliographic information.
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nation of univariate tests; when used in the last case, the strategy corre-

sponds to Pesarin’s method of non-parametric combination (npc, Pesarin,

1990, 2001), discussed below. Exchangeability is assumed only for the ob-

servations within each partial test (or for the errors terms of the respective

models, see below); exchangeability is not assumed between the partial tests

for either cmv or npc. Moreover, non-independence does not need to be

explicitly modelled, either between observations, between partial tests, or

across space for imaging data, thus making such tests applicable to a wide

variety of situations.

1.3. Overview of the article

We show that a single, elegant permutation solution is available for all

the situations described above, addressing the comparisons of response vari-

ables when these can be put in comparable scale, the correction of p-values,

via adjustment to allow exact control over fwer in the various multiple

testing scenarios described above, and the combination of multiple imaging

modalities to allow for joint inference. The conjunction of multiple tests

is a special case in which the null hypothesis differs from that of a combi-

nation, even though it can be approached in a similar fashion; because the

distinction is quite an important one, it is also discussed.

In the next section we outline the notation used throughout the paper.

We then use the definition of union-intersection tests, closed testing pro-

cedures, and synchronised permutations to correct for multiple hypotheses,

allowing flexibility to mix in the same framework imaging data with differ-

ent spatial resolutions, surface and/or volume-based representations of the

brain, and even non-imaging data. For the problem of joint inference, we

propose and evaluate a modification of the npc, such that instead of two

phases and large data storage requirements, the permutation inference can

be performed in a single phase, without prohibitive memory needs. We also

evaluate, in the context of permutation tests, various combining methods

that have been proposed in the past decades, and identify those that pro-

vide the best control over error rate and power across a range of situations.

We also exemplify the potential gains in power with the reanalysis of the

data from a pain study. In the Appendix, we provide a brief historical review

of various combining functions, discuss criteria of consistency and admissi-

bility, and provide an algorithm that allows combination and correction in

a unified framework.
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2. Theory

2.1. Notation and general aspects

For a given voxel (or vertex, or face), consider a multivariate glm:

Y = Xβ + ǫ (1)

where Y is the N × K matrix of observed data, with N observations of

K distinct (possibly non-independent) variables, X is the full-rank N × R

design matrix that includes explanatory variables (i.e., effects of interest and

possibly nuisance effects), β is the R×K matrix of R regression coefficients

for each of the K variables, and ǫ is the N × K array of random errors.

Estimates for β can be computed by ordinary least squares, i.e., β̂ = X+Y,

where the superscript (+) denotes a pseudo-inverse. One generally wants to

test the null hypothesis that a given combination (contrast) of the elements

in β equals to zero, that is, H0 : C′βD = 0, where C is a R × S full-

rank matrix of S contrasts of coefficients on the regressors encoded in X,

1 6 S 6 R and D is a K ×Q full-rank matrix of Q contrasts of coefficients

on the dependent, response variables in Y, 1 6 Q 6 K. Often more than

one such standard multivariate hypothesis is tested, each regarding different

aspects of the same data, and each using a different pair of contrasts C

and D. Not uncommonly, even different sets of explanatory variables are

considered, sometimes arranged in entirely different designs. We denote the

set of such design matrices as X = {X}, the set of pairs of contrasts for each
hypothesis related to that design as CX = {(C,D)}, and the set of sets of

such contrasts as {CX}.
Depending on the values of K, Q, and S, H0 can be tested using various

common statistics. If K = 1, or if K > 1 and Q = 1, the problem reduces

to the univariate case, in which a t statistic can be used if S = 1, or an F -

statistic if S > 1. If K > 1 and Q > 1, the problem is a multivariate proper

and can be approached via cmv when respective multivariate Gaussian as-

sumptions are satisfied; in these cases, if S = 1, the Hotelling’s T 2 statistic

can be used (Hotelling, 1931), whereas if S > 1, various other statistics are

available, such as the Wilks’ λ (Wilks, 1932), the Lawley–Hotelling’s trace

(Lawley, 1938; Hotelling, 1951), the Roy’s largest root(s) (Roy, 1953; Kuh-

feld, 1986), and the Pillai’s trace (Pillai, 1955); the merits of each in the

parametric case are discussed in various textbooks (e.g., Christensen, 2001;

Timm, 2002; Anderson, 2003; Johnson and Wichern, 2007), and such tests

have been applied to neuroimaging applications (Chen et al., 2014).

9

Page 9 of 53

John Wiley & Sons, Inc.

Human Brain Mapping

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

The model in Equation 1 can be rewritten as Ỹ = Xβ̃ + ǫ̃, where

Ỹ = YD, β̃ = βD and ǫ̃ = ǫD. If Q = 1, this is a univariate model,

otherwise it remains multivariate, with Ỹ having K̃ = Q columns, and the

null hypothesis simplified as H0 : C′β̃ = 0. This null is equivalent to the

original, and can be split into multiple partial hypotheses H0
k̃
: C′β̃k̃ = 0,

where β̃k̃ is the k̃-th column of β̃, k̃ = 1, . . . , K̃. This transformation is

useful as it defines a set of separate, even if not independent, partial hy-

potheses, that can be tested and interpreted separately. We drop heretofore

the “∼” symbol, with the modified model always implied.

Non-parametric inference for these tests can be obtained via permuta-

tions, by means of shuffling the data, the model, the residuals, or variants

of these, in a direct extension from the univariate case (Winkler et al., 2014,

Table 2). To allow such rearrangements, some assumptions need to be made:

either of exchangeable errors (ee) or of independent and symmetric errors

(ise). The first allows permutations, the second sign flippings; if both are

available for a given model, permutations and sign flippings can be per-

formed together. We use generically the terms rearrangement or shuffling

when the distinction between permutations or sign flippings is not pertinent.

These are represented by permutation and/or sign flipping matrices Pj , j =

1, . . . , J , where J is the number of such rearrangements.

Another aspect that concerns permutation tests refers to the use of statis-

tics that are pivotal, i.e., that have sampling distributions that do not depend

on unknown parameters. Most statistics used with parametric tests (and all

the uni- and multivariate examples from the previous paragraph) are pivotal

if certain assumptions are met, especially homoscedasticity. Their benefits

in non-parametric tests are well known (Hall and Wilson, 1991), and for

neuroimaging, pivotal statistics are useful to allow exact correction for the

mtp-i.

2.2. Union–intersection and intersection–union tests

Consider the set of p-values {pk} for testing the respective set of partial

null hypotheses
{

H0
k

}

. A union–intersection test (uit, Roy, 1953) considers

the jnh corresponding to a global null hypothesis that all H0
k are true; if any

such partial null is rejected, the global null hypothesis is also rejected. An

intersection–union test (iut, Berger, 1982) considers the jnh corresponding

to a conjunction null hypothesis (also termed disjunction of null hypothe-

ses) that any H0
k is true; if all partial nulls are rejected, the conjunction

null hypothesis is also rejected. In the uit, the null is the intersection of
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Table 2: Joint hypotheses tested with union–intersection and intersection–union of K

partial tests. In the uit, the null is also called global null hypothesis, whereas in the iut,
the null is also called conjunction null hypothesis.

uit iut

Null hypothesis (H0)

K
⋂

k=1

H0
k

K
⋃

k=1

H0
k

Alternative hypothesis (H1)

K
⋃

k=1

H1
k

K
⋂

k=1

H1
k

the null hypotheses for all partial tests; the alternative is the union of the

alternatives. In the iut, the null is the union of the null hypotheses for all

partial tests; the alternative is the intersection of the alternatives. A uit

is significant if the smallest pk is significant, whereas an iut is significant if

the largest pk is significant. Figure 1 illustrates the rejection regions for uit

and iut cases based on two independent t-tests, in which the statistic larger

than a certain critical level is considered significant. Table 2 shows the null

and alternative hypotheses for each case.

Enlarging the number of tests affects uits and iuts differently. For the

uit with a given statistic threshold, more tests increase the chances of false

positives, and correction for this multiplicity needs to be applied. In fact, it

can be shown that a uit at a significance level α is equivalent to controlling

the fwer at α for the same tests. In other words, a union-intersection

procedure is an fwer procedure. For an iut, in contrast, the procedure does

not change with more tests. The conjunction null hypothesis is composite,

consisting of different parameter settings. For the extreme case that exactly

one partial null is true and K − 1 effects are real, an iut is exact for any

K; if two or more more partial nulls are true, an iut becomes increasingly

conservative with larger K.

The null hypothesis of the uit can be rejected if the smallest pk is sig-

nificant or, equivalently, its corresponding statistic, that is, the extremum

statistic. For tests in which larger statistics provide evidence against the null

hypothesis, the relevant extremum is the maximum. Conversely, for tests in

which smaller statistics provide evidence against the null, the extremum is
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the minimum. Clearly, if the most extreme statistic is significant, at least

one partial hypothesis is rejected, therefore the global null hypothesis can

be rejected without the need to continue testing the other K − 1 partial

hypotheses. The null hypothesis of the iut can be rejected if the largest

pk is significant or, equivalently, its corresponding least extreme statistic.

Clearly, if the least extreme statistic is significant, all partial hypotheses

can be rejected, therefore the conjunction hypothesis can be rejected with-

out the need to continue testing all other K − 1 partial hypotheses.

In brain imaging, the term conjunction refers to a test performed when

one wants to localise regions where there is signal in all partial tests, that

is, a logical and of all alternative hypotheses (Nichols et al., 2005), and is

synonymous with the iut. In noting the lack of power of such a proper

conjunction test, Friston et al. (2005) suggested a partial conjunction, in

which fewer than all alternatives need to intersect. Using the same notation

of Table 1, both approaches have the same statistic, T = max (pk), but

the p-value of the latter can be computed as TK−v+1, so that the test is

a conjunction of at least v alternative hypotheses; if v = K, it is an iut,

and if v = 1 the null is equivalent to that of a uit (such a test, however,

is inconsistent for a uit; see Appendix B). Benjamini and Heller (2008)

further generalised the procedure by allowing the combination of the largest

p-values using any of various possible combining functions, such as those we

present in Table 1 and in Appendix A.

2.3. Closed testing

In a closed testing procedure (ctp), each H0
k is rejected if, and only if, it

is significant in its own right at a certain level α, and if all possible sub-jnhs

that include the same H0
k and comprise some or all of the partial hypotheses

(that is, subsets of the global jnh formed by some of the partial tests) are

also rejected at α using a suitable test. Various such tests can be considered,

including cmvs and npc (next section).

A ctp guarantees strong control over fwer (Marcus et al., 1976). To

produce adjusted p-values, the original method requires that all 2K −1 sub-

jnhs are tested1, a requirement that is computationally onerous, even for

a moderate number of tests, a problem aggravated by the large number of

tests that are considered in an imaging experiment. There exists, however, a

particular test for the sub-jnhs that obviates the need for such a gargantuan

1From the Pascal triangle:
∑K

i=1

(

K
i

)

= 2K − 1.
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computational venture: the union–intersection test. In a uit using the ex-

tremum statistic, the most extreme of the global jnh that comprises all the

K partial tests is also the most extreme of any other sub-jnh that includes

that particular partial hypothesis, such that the other joint subtests can be

bypassed altogether. As a uit is also an fwer-controlling procedure, this

raises various possibilities for correction of both mtp-i and mtp-ii. While

such a shortcut can be considered for both parametric (Holm, 1979) and

non-parametric cases (Westfall and Young, 1993), for the non-parametric

methods using permutation, one additional feature is needed: that the joint

sampling distribution of the statistic used to test each of the sub-jnh is the

same regardless whether the null is true for all the K partial tests, or just

some of them. This property is called subset pivotality (Westfall and Young,

1993; Westfall and Troendle, 2008), and it constitutes the multivariate coun-

terpart to the univariate pivotality.

2.4. Non-parametric combination

The npc consists of testing each of the H0
k using shufflings that are per-

formed synchronously for allK partial tests. The resulting statistics for each

permutation are recorded, allowing an estimate of the complete empirical

null distribution to be constructed for each partial test. In a second stage,

the empirical p-values for each statistic are combined, for each permutation,

into a joint statistic. As such a combined joint statistic is produced from the

previous permutations, an estimate of its empirical distribution function is

immediately known, and so the p-value of the unpermuted statistic, hence of

the joint test, can be assessed. The method was proposed by Pesarin (1990,

1992), and independently, though less generically, by Blair et al. (1994); a

thorough description is available in Pesarin (2001) and Pesarin and Salmaso

(2010b). An early application to brain imaging can be found in Hayasaka

et al. (2006), its use to combine different statistics within the same modality

in Hayasaka and Nichols (2004), and a summary description and practical

examples are presented in Brombin et al. (2013). The jnh of the combined

test is that all partial null hypotheses are true, and the alternative that any

is false, which is the same null of a uit, although the rejection region may

differ widely from the example in Figure 1a, depending on the combining

function.

The only two requirements for the validity of the npc are that the partial

test statistics have the same direction suggesting the rejection of the null

hypothesis, and that they are consistent (see Appendix B). For the com-
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bining function, it is desirable that (i) it is non-decreasing with respect to

all its arguments (which are the p-values pk, or 1 − pk, depending on the

combining function), (ii) that it approaches its maximum (or minimum, de-

pending on the function) when at least one of the partial tests approaches

maximum significance (that is, when at least one p-value approaches zero),

and (iii) that for a test level α > 0, the critical significance threshold is

smaller than the function maximum value. These requirements are easily

satisfied by almost all functions shown in Table 1, which therefore can be

used as combining functions in the framework of npc (see Appendix B for

a discussion on the few exceptions).

One of the most remarkable features of npc is that the synchronised per-

mutations implicitly account for the dependence structure among the partial

tests. This means that even combining methods originally derived under an

assumption of independence, such as Tippett or Fisher, can be used even

when independence is untenable. In fact, modifications to these procedures

to account for non-independence (e.g., Brown, 1975; Kost and McDermott,

2002, for the Fisher method) are made redundant. As the p-values are

assessed via permutations, distributional restrictions are likewise not nec-

essary, rendering the npc free of most assumptions that thwart parametric

methods in general. This is why npc methods are an alternative to cmv

tests, as each of the response variables in a manova or mancova analysis

can be seen as an univariate partial test in the context of the combination.

2.5. Transformation of the statistics

While npc offers flexibility in a simple and uncomplicated formulation,

its implementation for brain imaging applications poses certain challenges.

Because the statistics for all partial tests for all permutations need to be

recorded, enormous amounts of data storage space may be necessary, a prob-

lem further aggravated when more recent, high resolution imaging methods

are considered. Even if storage space were not a problem, however, the

discreteness of the p-values for the partial tests becomes problematic when

correcting for multiple testing, because with thousands of tests in an image,

ties are very likely to occur among the p-values, further causing ties among

the combined statistics. If too many tests across an image share the same

most extreme statistic, correction for the mtp-i, while still valid, becomes

less powerful (Westfall and Young, 1993; Pantazis et al., 2005). The most

obvious workaround — run an ever larger number of permutations to break

the ties — may not be possible for small sample sizes, or when possible,
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requires correspondingly larger data storage.

However, another possible approach can be considered after examining

the two requirements for the partial tests, and also the desirable properties

(i)–(iii) of the combining functions, all listed earlier. These requirements

and properties are quite mild, and if the sample size is reasonably large and

the test statistics homogeneous, i.e., they share the same asymptotic permu-

tation distribution, a direct combination based not on the p-values, but on

the statistics themselves, such as their sum, can be considered (Pesarin and

Salmaso, 2010b, page 131). Sums of statistics are indeed present in combin-

ing functions such as of Stouffer, Lancaster, Winer, and Darlington–Hayes,

but not others listed in Table 1 and Appendix A. In order to use these other

combining functions, most of them based on p-values for the partial tests,

and under the same premises, the statistics need to be transformed to quan-

tities that behave as p-values. In the parametric case, these would be the

parametric p-values, computed from the parametric cumulative distribution

function (cdf) of the test statistic. If the parametric assumptions are all met

for the partial tests, their respective parametric p-values are all valid and

exact; if the assumptions are not met, these values are no longer appropriate

for inference on the partial tests, but may still be valid for npc, for satisfy-

ing all requirements and desirable properties of the combining functions. As

they are not guaranteed to be appropriate for inference on the partial tests,

to avoid confusion, we call these parametric p-values “u-values”.

Another reason for not treating u-values as valid p-values is that they do

not necessarily need to be obtained via an assumed, parametric cumulative

distribution function for the statistics of the partial tests. If appropriate,

other transformations applied to the statistics for the partial tests can be

considered; whichever is more accurate to yield values in the interval [0; 1]

can be used. The interpretation of a u-value should not be that of a probabil-

ity, but merely of a monotonic, deterministic transformation of the statistic

of a partial test, so that it conforms to the needs of the combining functions.

Transformation of the statistic to produce quantities that can be used in

place of the non-parametric p-values effectively simplifies the npc algorithm,

greatly reducing the data storage requirements and computational overhead,

and avoiding the losses in power induced by the discreteness of p-values. This

simplification is shown in Figure 2, alongside the original npc algorithm.

Regardless of the above transformation, the distribution of the com-

bined statistic, T , may vary greatly depending on the combining function,

and it is always assessed non-parametrically, via permutations. Different
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distributions for different combining functions can, however, pose practical

difficulties when computing spatial statistics such as cluster extent, clus-

ter mass, and even threshold-free cluster enhancement (tfce, Smith and

Nichols, 2009). Consider for instance the threshold used to define clusters:

prescribed values such as 2.3 or 3.1 (Woo et al., 2014) relate to the normal

distribution and are not necessarily sensible choices for combining functions

such as Tippett or Fisher. Moreover, for some combining functions, such as

Tippett and Edgington, smaller values for the statistic are evidence towards

the rejection of the null, as opposed to larger as with most of the others. To

address these practical issues, a monotonic transformation can be applied

to the combined statistic, so that its behaviour becomes more similar to, for

instance, the z-statistic (Efron, 2004). This can be done again by resorting

to the asymptotic behaviour of the tests: the combined statistic is converted

to a parametric p-value (the formulas are summarised in Table 1), which,

although not valid for inference unless certain assumptions are met, partic-

ularly with respect to the independence among the partial tests, are useful

to transform, at each permutation, the combined statistic to the z-statistic,

which can then be used for inference using cluster extent, mass, or tfce.

2.6. Directed, non-directed, and concordant hypotheses

When the partial hypotheses are one-sided, i.e., H0
k : C′βk > 0 or H0

k :

C′βk < 0, and all have the same direction (either), the methods presented

thus far can be used as described. If not all have the same direction, a subset

of the tests can be scaled by −1 to ensure a common direction for all.

If the direction is not relevant, but the concordance of signs towards

one of them (either) is, a new combining test can be constructed using one-

sided p-values, pk, and another using 1 − pk, then taking the best of these

two results after correcting for the fact that two tests were performed. For

example, for the Fisher method, we would have:

T = max

(

−2
K
∑

k=1

ln (pk) ,−2
K
∑

k=1

ln (1− pk)

)

(2)

where T is the combined test statistic, with its p-value, P , assessed via

permutations.

If direction or concordance of the signs are not relevant, two-sided (non-

directed) tests and p-values can be used before combining, that is, ignoring

the sign of the test statistic for the partial tests, or using a statistic that

is non-directional (e.g., with F -tests for the partial hypotheses). It worth
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mentioning, however, that it is not appropriate to simultaneously ignore

directions of the partial tests and use a combination that favours concordant

signs. Such a test would lack meaning and would be inadmissible, with

examples shown in Appendix C.

Rejection regions for these three cases, for four different combining func-

tions, are shown in Figure 3, as functions of the partial p-values, for K = 2

partial tests.

2.7. The method of Tippett

From the various combining functions listed in Table 1, consider the

combining function of Tippett (1931), that has statistic T = min pk and,

when all partial tests are independent, a p-value P = 1−(1−T )K . This test

has interesting properties that render it particularly attractive for imaging:

– It defines a uit test: If the minimum p-value remains significant when all

tests are considered, clearly the global null hypothesis can be rejected.

– It controls the fwer: Controlling the error rate of a uit is equivalent to

an fwer-controlling procedure over the partial tests.

– If the partial tests are independent, it defines an exact fwer threshold:

The function is closely related to Šidák (1967) correction: set P = αfwer,

then T fwer = 1− (1− αfwer)
1
K ; one can retain only the partial p-values

that satisfy pk 6 T fwer. Adjusted p-values can be obtained similarly

through the Šidák procedure, that is pfwer
k = 1− (1− pk)

1
K .

– If the partial tests are not independent, it still defines an fwer threshold

and adjusted p-values: As a uit, the Tippett function can be used in

a closed testing procedure. Further, it is the function that makes ctp

with large K feasible in practice; adjusted p-values are obtained with the

distribution of the minimum p-value (or of the extremum statistic).

– Because it subsumes correction using the extremum statistic that is al-

ready in use in imaging to account for mtp-i, the correction for the mtp-ii

can be done by pooling the maximum statistics across both space and the

set of partial tests. This allows algorithmic advantages that we exploit in

the proposed implementation shown in Appendix D.

– It can be used as the combining function with npc, thus providing a

common procedure for correction and for combination of p-values.
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– It is fast to compute: Taking the extremum statistic or minimum p-value

is trivial compared to other functions that require cumulative sums or

products, multiple parameters, integrations, or that depend on Monte

Carlo simulations.

While the Tippett function is advantageous for all these reasons, note

that, even when other combining functions are used for npc, the extremal

statistic (equivalent to the Tippett combining function) is also used for the

mtp-i to control fwer over space.

2.8. A unified procedure

Armed with these concepts, and with the modifications to the original

npc algorithm, we are positioned to tackle the various problems identified

in the Introduction:

Combination of multiple modalities. With K modalities, all in register and

with the same spatial resolution, each is tested separately, using synchro-

nised permutations, and their statistics converted to u-values for each shuf-

fling. These are are combined using a suitable combining function, such as

one from those shown in Table 1. The p-values for the combined statistic

are produced using the same set of permutations used to assess each test

separately. This is the modified npc algorithm that we propose, shown in

Figure 2.

Correction for multiple modalities. With K modalities, which are not nec-

essarily in register, nor with the same resolution, nor of the same type (e.g.,

some from volumetric, some from surface representations of the brain), or

which may not necessarily be all related to imaging (e.g., some imaging

and some non-imaging data), each is tested separately using a suitable test

statistic. The permutation distribution of the extremum statistic across all

tests is produced and used to compute fwer-adjusted p-values that simul-

taneously address the mtp-i and mtp-ii.

Correction for multiple designs and contrasts. Each pair of contrasts defined

by (C,D) allows the corresponding design matrix to be partitioned into ef-

fects of interest and nuisance effects (Winkler et al., 2014, Appendix A), and

also the redefinition of the response variables (Section 2.1). Thus, multiple

designs and their respective contrasts can be tested separately. Differently

than for the correction for multiple modalities, however, with different con-

trasts, their respective statistics may possess different asymptotic behaviour
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(due to, e.g., the contrasts having different ranks, or the designs having dif-

ferent degrees of freedom), thus precluding the use of the distribution of the

extremum statistic. When known, the asymptotic behaviour can be used to

convert these statistics — univariate or multivariate — to a z-statistic. The

distribution of the maximum across the results of the various designs and

contrasts can then be computed and used for correction.

Correction for multiple modalities, designs and contrasts. Following the same

principles, it is also possible to account for the multiplicity of input modal-

ities, each tested with their respective design and set of contrasts, or each

tested versus all designs and contrasts. Each test is applied separately, statis-

tics converted to a z-statistic based on their asymptotic behaviour, and the

distribution of the extremum used to obtain adjusted p-values for all in a

ctp using a uit. It is not necessary that all are in register, neither that all

use the same kind of image representation of the brain (i.e., volume or sur-

face), nor that they are even all (or any) imaging-related, and can therefore

include clinical or behavioural, biomarkers, and other types of data.

Conjunctions. An iut can be assessed through permutations simply by com-

puting max (pk), which is, in its own right, the p-value of the iut, such that

there is no need for transformation into u-values for the assessment of the

combined statistic. In the context of imaging, such conjunctions can be used

with statistics at every voxel (or vertex or face), thus allowing also certain

spatial statistics such as tfce.

Since combinations and conjunctions are performed at each individual

image point, it is necessary that all images have been registered to the same

common space and possess similar spatial resolution (Lazar et al., 2002).

This can be accomplished through intra-subject and inter-subject registra-

tion and resampling. By contrast, correction for the multiplicity of tests

uses the maximum statistic across such tests, thus not requiring that the

tests match on space, or even that they are all related to imaging. However,

they explicitly require pivotal statistics (for pivotality in this context, see

Winkler et al., 2014), so that the extreme is taken from statistics that share

the same sampling distribution. The statistics used with cmv and npc are

all pivotal and therefore can be used. Spatial statistics, however, lack this

property and require similar search volumes and resolutions, even for correc-

tion. Moreover, by including information from neighbouring voxels, such as

using spatial smoothing or spatial statistics like tfce (Smith and Nichols,
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2009), subset pivotality is lost, meaning that strong control of fwer cannot

be guaranteed. In practice, though, the power gained by pooling informa-

tion over space is essential. In the Appendix D we provide an algorithm that

generically implements the combination and correction methods presented.

3. Evaluation methods

3.1. Validity of the modified npc

To assess the validity of the proposed modification to the npc, we con-

sider one of the simplest scenarios that would have potential to invalidate

the method and reduce power: this is the case of having a small number of

partial tests, small sample size, and with each partial test possessing sub-

stantially different distributions for the error terms. We investigated such

a scenario with K = 2, varying sample sizes N = {8, 12, 20, 30, 40, 50,
60, 70, 80, 120, 200}, and different error distributions. Using the notation

defined in Section 2.1, response variables were generated for each simulation

using the model Y = Xβ + ǫ, with Y sized N × K. Each modality was

simulated as having 500 points, these representing, for instance, voxels or

vertices of an image representation of the brain. The errors, ǫ = [ǫ1, ǫ2],

were simulated following either a Gaussian distribution with zero mean and

unit variance, or a Weibull distribution (skewed), with scale parameter 1 and

shape parameter 1/3, shifted and scaled so as to have expected zero mean

and unit variance. Different combinations of error distributions were used:

Gaussian for both partial tests, Weibull for both partial tests, or Gaussian

for the first, and Weibull for the second partial test.

The response data, Y, were constructed by adding the simulated effects,

Xβ, to the simulated errors, where β = [β1,β2], with βk = [β1, 0]
′, β1 being

either 0 (no signal) or t−1
cdf (1− α;N − rank (X))

/√
N (with signal), where

α = 0.05 is the significance level of the permutation test to be performed.

This procedure ensures a calibrated signal strength sufficient to yield an

approximate power of 50% for each partial test, with Gaussian errors, irre-

spective of the sample size; for non-Gaussian errors this procedure does not

guarantee power at the same level. The actual effect was coded in the first

regressor of X, constructed as a vector of random values following a Gaus-

sian distribution with zero mean and unit variance; the second regressor was

modelled an intercept. All four possible combinations of presence/absence

of effect among the K = 2 partial tests were simulated, that is, (1) with no

signal in any of the two partial tests, (2) with signal in the first partial test
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only, (3) with signal in the second partial test only, and (4) with signal in

both partial tests.

The simulated data was tested using the Tippett and Fisher methods.

The case with complete absence of signal was used to assess error rates, and

the others to assess power. The p-values were computed with 500 permuta-

tions, and the whole process was repeated 500 times, allowing histograms of

p-values to be constructed, as well as to estimate the variability around the

heights of the histogram bars. Confidence intervals (95%) were computed

for the empirical error rates and power using the Wilson method (Wilson,

1927). The p-values were also compared using Bland–Altman plots (Bland

and Altman, 1986), modified so as to include the confidence intervals around

the means of the methods.

3.2. Performance of combined tests

We also took the opportunity to compare the combining functions shown

in Table 1. While other comparisons have been made in the past (for a list of

references, see Appendix A), none included all these functions, nor explored

their performance under permutation or npc, and therefore, did not consider

the modifications that we introduce to the procedure to render it feasible

for imaging applications. In addition, we investigate the performance of

two classical multivariate tests, the Hotelling’s T 2, and the Wilks’ λ, both

assessed through permutations.

Four different simulation sets were conducted, named a–d; in all, the

number of partial tests being combined could vary in the rangeK = 2, . . . , 16,

and the number of partial tests containing true, synthetic signal could vary

in the range Ks = 0, . . . ,K. In simulation a, K varied, while Ks was held

fixed at 0, that is, no synthetic signal was added. In simulation b, K var-

ied, while Ks was held fixed at 1, that is, just one partial test had signal

added. In simulation c, K was held fixed at 16, while Ks varied. Finally,

in simulation d, K varied, and Ks was set as equal to K, that is, all partial

tests had synthetic signal added. Figure 4 shows graphically how K and Ks

varied in each simulation.

The response variables Y had size N ×K, N = 20, that is, simulating

measurements for 20 subjects, each with K image modalities (partial tests).

Each modality was simulated as having 500 points, these representing, for

instance, voxels or vertices. The errors were simulated following either a

Gaussian distribution with zero mean and unit variance, or a Weibull distri-

bution, with scale parameter 1 and shape parameter 1/3, shifted and scaled
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so as to have expected zero mean and unit variance. The response data were

constructed by adding to the errors the simulated effects — either no signal,

or a signal with strength callibrated to yield an approximate power of 50%

with Gaussian errors, irrespective of the sample size, as described above for

the simulations that tested the validity of the modified npc; for the Weibull

errors, the signal was further decreased, in all these four simulations, by a

factor 5/8, thus minimising saturation at maximum power in simulation d.

The actual effect was coded in the first regressor only, which was constructed

as a set of random values following a Gaussian distribution with zero mean

and unit variance; the second regressor was modelled as an intercept.

The simulated data was tested using 500 shufflings (permutations, sign-

flippings, and permutations with sign-flippings). For all the simulations, the

whole process was repeated 100 times, allowing histograms of p-values to be

constructed, as well as to estimate the variability around the heights of the

histogram bars. Confidence intervals (95%) were computed for the empirical

error rates and power using the Wilson method.

3.3. Example: Pain study

While the proposed correction for the mtp-ii has a predictable conse-

quence, that is, controlling the familywise error rate at the nominal level,

the combination of modalities, designs, and contrasts may not be quite as

obvious. In this section we show a re-analysis of the data of the pain study

by Brooks et al. (2005). In brief, subjects received, in separate tests, painful,

hot stimuli in the right side of the face (just below the lower lip), dorsum

of the right hand, and dorsum of the right foot. The objective was to inves-

tigate somatotopic organisation of the pain response in the insular cortex

using fmri, and the complete experimental details, stimulation and imaging

acquisition protocols, analysis and conclusions can be found in the original

publication. Here we sought to identify, at the group level, in standard

space, areas within the insula that jointly respond to hot painful stimuli

across the three topologically distinct body regions. We used the modified

npc, comparing the combining functions of Tippett, Fisher, Stouffer and

Mudholkar–George, as well as the Hotelling’s T 2 statistic, and an iut (con-

junction). At the group level, the design is a one-sample t-test, for which

only sign flippings can be used to test the null hypothesis. We used twelve of

the original subjects, and performed exhaustively all the 4096 sign flippings

possible.
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4. Results

A large number of plots and tables were produced and are shown in the

Supplementary Material. The Figures below contain only the most repre-

sentative results, that are sufficient to highlight the major points.

4.1. Validity of the modified npc

Both the original and the modified npc methods controlled the error

rates at exactly the level of the test. Such validity was not limited to α =

0.05, and the histograms of uncorrected p-values under complete absence

of signal were flat throughout the whole [0, 1] interval for both the original

and modified npc methods, using either the Tippett or the Fisher combining

functions. A representative subset of the results, for the Fisher method only,

and for sample sizes N = {8, 12, 20, 40}, is shown in Figure 5.

When considering the uncorrected p-values, the modified npc yielded

a mostly negligible increase in power when compared to the original npc,

with the difference always within the 95% confidence interval. Although this

slight gain can be hardly observed in the histograms and Bland–Altman plots

for the uncorrected p-values, they are clearly visible in the Bland–Altman

plots for the p-values corrected across the 500 tests. In these plots, the

predominance of smaller (towards more significant) p-values can be seen as

a positive difference between the original and modified npc p-values. A

representative subset of the results is shown in Figure 6.

4.2. Performance of combined tests

Representative results demonstrating the performance of the methods

of Tippett, Fisher, Stouffer, Mudholkar–George, as well as Hotelling’s T 2,

is shown in Figure 7. The remaining results are browseable in the Supple-

mentary Material. In the absence of signal (simulation a), all combining

functions controlled the error rate at the level of the test or below it, never

above, thus confirming their validity. With normally distributed (Gaussian)

errors, most functions yielded uniformly distributed p-values, although some

functions seemed to converge towards uniformity only as the number of par-

tial tests is increased; this was the case for the methods of Wilkinson, Zaykin,

Dudbridge–Koeleman (dtp) and Jiang. With skewed (Weibullian) errors,

the error rate was controlled at the test level with the use of permutations;

with sign-flippings or permutations with sign-flippings, the combined results

tended to be conservative, and more so for the Hotelling’s T 2 statistics (and

likewise the Wilks’ λ).
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With signal added to just one of the partial tests (simulation b), the

method of Tippett was generally the most powerful, followed by the meth-

ods of Fisher and Dudbridge–Koeleman (both rtp and dtp variants). As

the number of tests was increased, predictably, the power was reduced for all

tests. The method of Stouffer did not in general have good performance with

skewed errors, presumably because the dependence on z-statistics strength-

ens the dependence on the assumption of normality of the statistics for the

partial tests in the modified npc. The cmv did not deliver a good perfor-

mance either, being generally among the least powerful.

With the number of partial tests held fixed, as the number of tests with

signal was increased (simulation c), the power of the method of Fisher in-

creased more quickly than of the other methods, although when most of

the partial tests had signal, most of the combining functions reached similar

power, all close to 100% for both normal or skewed errors. Hotelling’s T 2

test was the considerably less powerful than any of the combining functions

used with the modified npc.

As the total number of partial tests and the number of partial tests with

signal were both increased (simulation d), almost all combined tests had

similar power, and reached saturation (100% power) quickly, particularly

for the Weibullian errors, in which the calibration, even after reduction

with the 5/8 factor, yielded power above 50% for each partial test. With

Gaussian errors, in which calibration ensured average 50% power, two tests

had considerably lower sensitivity: Tippett’s and Hotelling’s T 2, the last

with the remarkable result that power reached a peak, then began to fall as

the number of tests kept increasing.

4.3. Example: Pain study

Using a conventional, mass univariate voxelwise tests, assessed through

sign flippings, and after correction for multiple testing (mtp-i), only a few,

sparse voxels could be identified at the group level for face, hand, and

foot stimulation separately, in all cases with multiple distinct foci of ac-

tivity observed bilaterally in the anterior and posterior insula. However, the

joint analysis using the modified npc with Fisher, Stouffer and Mudholkar–

George evidenced robust activity in the anterior insula bilaterally, posterior

insula, secondary somatosensory cortex (sii), and a small focus of activity

in the midbrain, in the periaqueductal gray area. The combining function

of Tippett, however, did not identify these regions, presumably because this

method is less sensitive than the others when signal is present in more than
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a single partial test, as suggested by the findings in the previous section.

The Hotelling’s T 2 was not able to identify these regions, with almost

negligible, sparse, single-voxel findings in the anterior insula, bilaterally. The

conjunction test, that has a different jnh, and searches for areas where all

partial tests are significant, identified a single, barely visible, isolated voxel

in the right anterior insula.

The above results are shown in Figure 8. Cluster-level maps that can

directly be compared to the original findings of Brooks et al. (2005) are

shown in the Supplementary Material.

5. Discussion

5.1. Validity of the modified npc

The modified npc combines u-values, which are simply parametric p-

values here renamed to avoid confusion. The renaming, however, empha-

sises the fact that the conversion to u-values via a parametric approximation

should only be seen as a data transformation, in which the interpretation

as a p-value is not preserved due to untenable assumptions. The combi-

nation method continues to be non-parametric as the combined statistic is

assessed non-parametrically. More importantly, irrespective of the validity of

parametric assumptions, any dependence between the tests is accounted for,

implicitly, by the combination procedure, without the need of any modelling

that could, at best, introduce complex and perhaps untenable assumptions,

and at worst, be completely intractable.

The results suggest that, even in the cases in which the modified npc

could have failed, i.e., with small sample sizes and different distributions,

the combined statistic controlled the error rate at the level of the test. This

control, maintained even in such difficult scenarios, suggests that the mod-

ified npc controls the error rates in general. The results also suggest that

the modification increases power, even if such increase is minute in some

scenarios. The Bland–Altman plots indicate that gains in sensitivity are

more pronounced in the results corrected for the mtp-i, suggesting that the

modified method is appropriate not merely due to its expediency for imag-

ing applications, but also for having increased sensitivity compared to the

original npc.

5.2. Performance of combined tests

The results also demonstrate that the npc method is more powerful than

the Hotelling’s T 2. The superiority of combined permutation tests when
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compared to classical multivariate tests has been observed in the literature

(Blair et al., 1994), and the fact that power increases as the number of partial

tests with signal increases is one of its most remarkable features. While cmv

depends on the positive-definiteness of the covariance matrix of the vectors

of residuals, such limitation does not apply to npc (Pesarin and Salmaso,

2010a). As a consequence, although in the comparisons only the Hotelling’s

T 2 and the Wilks’ λ statistics were used (in the simulations, rank (C) = 1),

and had their p-values assessed through permutations, similar behaviour

can be expected when using other cmvs, such as Pillai’s trace (and with

rank (C) > 1). With effect, npc can be used even when the number of

variables equals or even greatly exceeds the number of observations, that

is, when K > N . In the results shown in Figure 7, this can be noted as a

reduction in power that can be seen with the Hotelling’s T 2, particularly for

simulation d, and this is the case even considering that the test is assessed

through permutations.

Regarding the different combining functions, the simulations show that

the method of Tippett is the most powerful when signal is present in only

a small fraction of the partial tests. For other cases, other combining func-

tions, particularly that of Fisher, tend to be considerably more powerful.

The results also indicate that the use of sign flipping when the errors are

not symmetric (a violation of assumptions) tends to produce a conservative

test, with error rates below the nominal level, even if the power eventually

remained unaltered when compared with permutations. While permutations

together with sign flippings did alleviate conservativeness, at least for the

Tippett method, the error rate remained below the nominal level. In general,

if the errors are known to be skewed, only permutations should be used; if

sign flippings are used, the error rate can be expected to be below the

nominal level.

5.3. Interpretation of combined tests

The key aspect of the npc is that these tests seek to identify, on the

aggregate of the partial tests, a measure of evidence against the jnh, even

if only some or none of them can be considered significant when seen in

isolation, just as originally pointed out by Fisher (1932):

When a number of quite independent tests of significance have

been made, it sometimes happens that although few or none can

be claimed individually as significant, yet the aggregate gives an

impression that the probabilities are on the whole lower than
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would often have been obtained by chance. It is sometimes desired

(. . . ) to obtain a single test of the significance of the aggregate.

This is the logic and interpretation of all of these combining statistics, with

the exception of the conjunction inference. Combination is known to be

able to answer questions that could otherwise not be answered be at all,

or be answered less accurately if each information source were considered

separately (Draper et al., 1992). Here the simulations and the pain study

exemplify these aspects, and the improved sensitivity compared to each

partial test when seen in separate.

As they depend on fewer assumptions than classical multivariate tests,

npc can be considered whenever the validity of the former cannot be guar-

anteed. Even when parametric cmv assumptions hold, note that the npc

can have superior power when sample size is small and prevents precise

estimation of a covariance.

It should be noted that the aggregation of information follows a differ-

ent principle than using different measurements separately to interrogate

particular aspects of the brain (or of any other experiment or physiological

phenomenon). Used judiciously, npc provides a complete framework that

can be used for both the aggregate and for the correction of tests separately,

with the valuable feature of being based on minimal assumptions.

5.4. Correction over contrasts and over modalities

Correction over contrasts using synchronised permutations provides a

novel solution to the multiple comparisons problem for certain common ex-

perimental designs, in particular, for the popular one-way anova layout,

that is, when the means of multiple groups are compared. The classical

Fisher’s protected least significant difference (lsd), that consists of per-

forming an omnibus F -test and only proceeding to the group-wise post hoc

tests if this initial test is significant, is known to fail to control the error rate

if there are more than just three groups (Hayter, 1986; Hsu, 1996; Meier,

2006), and the failure can be by a wide margin, that grows as the number

of groups being compared increases. Even though the same may not hap-

pen with other correction methods (e.g., Tukey’s range test, Tukey, 1949),

the correction done non-parametrically also renders these older, parametric

methods, redundant.

The correction over contrasts further obviates methods that are based

on what has been termed “logical constraints” among hypotheses (Shaffer,

1986; Hochberg and Tamhane, 1987), as the dependencies among the tests
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are implicitly taken into account by the correction using the distribution of

the extremum across contrasts, with or without concomitant combination or

correction across multiple K variables. In fact, the use of an omnibus F -test

as a way to guard against multiple testing becomes quite unnecessary.

In the same manner, while combination across multiple modalities is

a powerful substitute for classical multivariate tests as shown earlier, the

correction across such modalities can replace the post hoc tests that are

usually performed after significant results are found with cmvs.

5.5. Pain study

Joint significance is an important consideration when trying to interpret

data such as these, that are distinct in some aspects (here, the topogra-

phy of the stimulation), but similar in others (here, the type of stimulation,

hot and painful), strengthening the case for distinct representations in some

brain regions, but not in others. In terms of identifying areas with signifi-

cant joint activity, the results suggest involvement of large portions of the

anterior insula and secondary somatosensory cortex. The Fisher, Stouffer

and Mudholkar–George combining functions were particularly successful in

recovering a small area of activity in the midbrain and periaqueductal gray

area that would be expected from previous studies on pain (Reynolds, 1969;

Petrovic et al., 2002; Tracey et al., 2002; Roy et al., 2014), but that could

not be located from the original, non-combined data.

5.6. Relationship with meta-analysis

Most of the combining functions shown in Table 1 were originally defined

based on p-values, and some of them are popular in meta-analyses, such as

those of Fisher and Stouffer (Borenstein et al., 2009). Although there are

commonalities between these meta-analytical methods and npc, it is worth

emphasising that the two constitute distinct approaches to entirely different

problems. In the npc, the objective is to interrogate joint significance across

the multiple observed variables (or multiple designs and contrasts if these are

instead combined) when the data for each individual observation is readily

available to the researcher. Meta-analyses methods based on p-values, while

sometimes using the same combining functions, attempt to identify a joint

effect across multiple studies that not have necessarily been performed on the

same experimental units, and when the data for the individual observations

are not available. Moreover, the p-value of the combined statistic in the

npc is produced through permutations, a procedure that is not available for

ordinary meta-analytical methods.
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The fact that npc and meta-analysis form different approaches to sepa-

rate problems also imply that certain criticisms levelled at the use of certain

combined functions in the context of meta-analysis do not extend trivially

to npc. As the simulations show, various of the combining functions more

recently developed did not in general outperform older combining methods,

such as Fisher and Stouffer, even though these were developed precisely for

that purpose, in the context of meta-analyses, or for problems framed as

such.

6. Conclusion

We proposed and evaluated a modified version of Non-Parametric Com-

bination that is feasible and useful for imaging applications, and serves as

a more powerful alternative to classical multivariate tests. We presented

and discussed aspects related multiple testing problems in brain imaging,

and proposed a single framework that addresses all these concerns at once.

We showed that combination and correction of multiple imaging modalities,

designs, and contrasts, are related to each other in the logic of their imple-

mentation, and also through the use of the simplest and the oldest of the

combining functions, attributed to Tippett.

Appendix A. Brief overview of combining functions

Below are a few details and references for the methods shown in Table 1,

plus a few others, presented in chronological order. A number of stud-

ies comparing some of these functions in various scenarios have been pub-

lished (Birnbaum, 1954; van Zwet and Oosterhoff, 1967; Oosterhoff, 1969;

Rosenthal, 1978; Berk and Cohen, 1979; Westberg, 1985; Lazar et al., 2002;

Loughin, 2004; Whitlock, 2005; Wu, 2006; Won et al., 2009; Bhandary and

Zhang, 2011; Chen, 2011; Zaykin, 2011; Chang et al., 2013). Some of these

are permutationally equivalent to each other, that is, their rejection region

under permutation is the same, and it becomes immaterial which is chosen.

Tippett. This is probably the oldest, the simplest, and the most intuitive of

the combination methods, having appeared in the first edition of Tippett’s

book The Methods of Statistics (Tippett, 1931, page 35). The combined test

statistic is simply the minimum p-value across all partial tests, and Tippett

shows its distribution has a simple closed form.
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Fisher. This method appeared in the fourth edition of Statistical Methods

for Research Workers (Fisher, 1932), and follows the idea of treating the

joint probability as the intersection of all partial tests, which is given by

their product
∏

k pk. This product, however, is not uniformly distributed,

even if the global null hypothesis is true. Using a few properties of the

uniform distribution, Fisher showed that twice the negative logarithm of

the products follows a χ2 distribution, with degrees of freedom 2K.

Stouffer. This method appeared in footnotes in the report of the large so-

ciological study conducted among veterans of the World War ii by Stouffer

et al. (1949, page 45, footnote 15, and page 151, footnote 14). The idea is

to sum z-scores, normalise the variance of this sum, and from this statistic

obtain a p-value for the joint hypothesis.

Wilkinson. The probability of observing r significant p-values at the level

α can be computed using a binomial expansion, as proposed by Wilkinson

(1951). The statistic is therefore simply r, and the probability does not

depend on the actual p-values for the partial tests, but only on r and α.

Good. A generalisation of the Fisher method that assigns arbitrary, un-

equal positive weights wk for each of the partial tests, was suggested by

Good (1955). The weights are defined according to some criteria, such as

the sample size for each of the partial test, the number of degrees of free-

dom, or some other desirable feature, such as ecological or internal validity

(Rosenthal, 1978).

Lipták. Another generalised combined statistic can be produced using the

inverse cdf, F−1, of the pk, summing the values of the statistics, and com-

puting a new p-value for the global null using the cdf G of the sum of the

statistics, a method proposed by Lipták (1958). Each summand can be ar-

bitrarily weighted, as in the Good method. In principle, any continuously

increasing function with support in the interval [0, 1] can be used for F ,

albeit a more obvious choice is the cdf of the normal distribution, which can

be used as both F and G, and which equals the approach to the Stouffer

method if all weights are 1.

Lancaster. While the Lipták method generalises combining strategies such

as Fisher and Stouffer, the Lancaster method (Lancaster, 1961) further gen-

eralises the Lipták approach by allowing different F−1
k for each partial test.

Choices for F−1
k include, for instance, the cdf of the gamma distribution
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with scale parameter θ = 2, possibly with different shape parameters taking

the place of the weights for each partial test. If the weights are all positive

integers, the p-values can be assessed from the cdf of a χ2 distribution with

degrees of freedom ν = 2
∑

k wk (Berk and Cohen, 1979).

Winer. A combination strategy that resembles the Stouffer method, but

uses the Student’s t statistic, was proposed by Winer (1962, page 44), albeit

not found in later editions of the book. The idea is to sum the t statistics for

all the partial tests, then normalise the sum so that the resulting statistic

follows a standard normal distribution. The normalisation is based on the

fact that the variance of the t distribution can be determined from its degrees

of freedom ν as ν/(ν − 2). The method cannot be applied if νk 6 2 for any

of the partial tests. Moreover, νk should not be too small for the normal

approximation to be reasonably valid (e.g., νk > 10). The Winer method is

a particular case of the Lancaster method.

Edgington. The probability of observing, due to chance, a value equal or

smaller than the sum of the partial p-values was proposed by Edgington

(1972) as what would be a more powerful alternative to the Fisher method.

The method however, lacks consistency (see Appendix B).

Mudholkar–George. It is possible to use a simple logit transformation to

compute a statistic that approximates a scaled version of the Student’s t

distribution, as shown by Mudholkar and George (1979). If the scaling is

taken into account, the combined statistic follows a t distribution.

Darlington–Hayes. In a discussion about pooling p-values for meta-analysis,

Darlington and Hayes (2000) raised a number of limitations of these meth-

ods, and proposed a modification over the method of Stouffer that would

address some of these concerns. The modified method, called by the authors

as Stouffer-max, uses as test statistic the mean of the r highest z-scores,

rather than the normalised sum of all the z-scores as in the original method.

When r = 1, it is equivalent to the Tippett method, whereas when r = K, is

equivalent to the original Stouffer. The p-values for intermediate values of r

can be computed through Monte Carlo simulation, and the authors provided

tables with critical values.

Zaykin et al. This method, called truncated product method (tpm) was pro-

posed by Zaykin et al. (2002) as a way to combine features of the Fisher

and Wilkinson methods. The statistic is the product of only the partial
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p-values that are significant at the level α, whereas in the Fisher method,

all p-values are used. If α = min (pk), the approach is equivalent to the Tip-

pett method. If max (pk) 6 α 6 1, the approach is equivalent to the Fisher

method. An expression for the p-values that produces exact values was pro-

vided by the authors. The expresion, however, is prone to over/underflows

for certain combinations of large K and α, and when p-values cannot be

obtained analytically, Monte Carlo methods can be used.

Dudbridge–Koeleman. While the Zaykin method combines only the partial

tests that are significant at the level α, it is also possible to create a statis-

tic that combines only the most r significant tests, where r is specified in

advance. This method was proposed by Dudbridge and Koeleman (2003)

and called rank truncated product (rtp). The main benefit of this strategy

is that it depends only on a predetermined number of partial tests to be re-

jected, rather than on their p-values, which are random quantities. As with

the Zaykin method, for certain combinations of r and large K, the p-values

need to be computed through Monte Carlo methods. In the same article, the

authors also introduced a combination of the tpm and rtp, and named it

rank-and-threshold truncated product or dual truncated product (dtp). The

statistic is the largest of either if these two, and its p-value can be computed

analytically or via Monte Carlo methods.

Taylor–Tibshirani. If the p-values are sorted in ascending order, these ranked

p-values can be compared to their expectations under the global null hypoth-

esis. Large deviations from the expected values suggest the presence of the

effect among the tests. Taylor and Tibshirani (2006) suggested that a mea-

surement of this deviation could be used to infer the overall significance of

the tests. The corresponding statistic was termed tail strength (ts), and

under the assumptions that the global null is true and that the tests are

independent, it follows a normal distribution with zero mean and a variance

that can be approximated as 1/K for large K, from which the p-value can

be assessed. When these assumptions are not met, non-parametric methods

can be used.

Jiang et al. The statistic of the Taylor–Tibshirani method has a variance

that depends asymptotically only on the number of tests. However, the

value of the statistic can be small when effect is truly present in only a

few partial tests, therefore potentially reducing power. By analogy to the

Zaykin method, Jiang et al. (2011) proposed to compute the tail strength
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using only partial tests with p-values smaller than a certain level α. The

method is called truncated tail strength (tts). The analytical form for the

distribution is not known, and the authors propose computing the p-value

using Monte Carlo or permutation methods.

Li–Tseng. Li and Tseng (2011) proposed a modification of the Fisher method

that is used not to test the jnh (hence not shown in Table 1), but to iden-

tify which of the partial tests contribute the most to the resulting combined

statistic. The authors define a quantity AW = −∑K
k=1wk ln pk, where wk

is a weight that can be either 0 or 1. All possible 2K − 1 non-trivial com-

binations W = [w1, . . . , wK ] are evaluated to produce a value for AW . The

respective p-values pW are computed via permutations, and the W that

yields the smallest such p-value over all possible combinations of weights, is

the one that identifies the subset among the K tests that contributes the

most to the combined p-values.

Appendix B. Consistency of combined tests

A hypothesis test is said to be consistent if, for a fixed test level, its

power goes to unity as the sample size increases to infinity. The use of a

non-consistent combining function to form an npc test is problematic, as

the rejection region may not be reached even if the p-value for one or more

of the partial tests approach zero, thus violating the second of the three

desirable properties of the combining functions, presented in Section 2.4.

Among the functions shown in Table 1, the notable non-consistent com-

bining functions are the Edgington and Wilkinson (see Appendix A). Also, it

should be noted that functions that define conjunctions (iut), such as those

based on max (pk), are likewise not consistent in the context of npc, as the

latter serves to test the global null hypothesis. Figure 9 shows rejection

regions for some inconsistent combining functions, and variants, similarly as

for the (consistent) shown in Figure 3.

Appendix C. Admissibility of combined tests

A combined hypothesis test is said to be admissible if there exists no

other test that, at the same significance level, without being less powerful to

all possible alternative hypotheses, is more powerful to at least one alterna-

tive (Lehmann and Romano, 2005). This can be stated in terms of either of

two sufficient conditions for admissibility: (i) that rejection of the null for a
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given p-value implies the rejection of the null for all other p-values smaller

or equal than that, or (ii) that the rejection region is convex in the space of

the test statistic.

Combinations that favour tests with concordant directions (Section 2.6),

if used with of non-directional partial tests, create tests that are inadmis-

sible, that is, tests that are not optimal in the sense that there exist other

tests that, without being less powerful to some true alternative hypotheses,

are more powerful to at least one true alternative. Inadmissibility implies

that the test cannot be used, as certain combinations of partial tests lead

to nonsensical results, such as rejecting the jnh for some partial p-values,

and failing to reject for some p-values that are even smaller. Figure 10

shows rejection regions of inadmissible versions of the combining functions

considered in Figures 3 and 9; clearly none of the two conditions above are

satisfied. The particular combining function shown in Equation 2 was sug-

gested by Pearson (1933) and used by David (1934), but after a paper by

Birnbaum (1954), it was for decades thought to be inadmissible. However,

it is in fact admissible (Owen, 2009).

Admissibility is important in that it allows, for more than just two par-

tial tests, combined tests that favour alternative hypotheses with the same

direction. Other possibilities favouring alternatives with common direction,

such as multiplying together the partial test statistics to produce a combined

statistic, work for two partial tests only (Hayasaka et al., 2006).

Appendix D. Implementation

A unified algorithm for combination and correction that is amenable for

use with imaging applications is shown below. It has many similarities with

the randomise algorithm (Winkler et al., 2014), with various modifications

to accommodate combination and correction. The p-values adjusted for the

multiplicity of tests are computed using the distribution of the extremum

statistic, which can be collapsed across modalities and/or designs and con-

trasts for each case, rendering the algorithm simpler. The notation below is

slightly different than that used throughout the paper. The inputs are:

– Y: The input data for each of the K modalities and image points. Each

column vector of N observations for the k-th modality is accessed as

Y[k,v], where v = [x, y, z] is used to specify the point position in space;

this is so without loss of generality for non-imaging data.
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– X : The set of design matrices X.

– {CX}: The set of sets of contrasts for each design matrix X. Each element

of each subset is a pair of multivariate contrasts (C,D). This definition

allows each design to be tested with multiple such pairs of contrasts, and

allows various designs to be tested with the same input data.

– B: Definition of multi-level exchangeability blocks, used to define valid

shufflings that respect the data structure (Winkler et al., 2015, in press).

– V: Definition of the variance groups, useful to compute statistics that are

robust to heteroscedasticity.

– ee, ise: Boolean flags (true/false) indicating whether errors can be treated

as exchangeable (ee), allowing permutations, independent and symmetric

(ise), allowing sign-flippings, or both.

– J : Number of permutations to be performed.

– npcmod, npccon: Boolean indicating whether combination should be

performed respectively across modalities, across designs and contrasts, or

both.

– fwemod, fwecon: Boolean indicating whether familywise error rate cor-

rection should be performed respectively across modalities, across designs

and contrasts, or both.

The output of interest is the p-value. For simplicity, as shown, the output

is always fwer-adjusted across the image points indexed by v, and for

the non-combined, further adjusted based on the contrasts and modalities;

these are shown in the algorithm topped by a tilde, that is, as “p̃-value”, as

opposed to simply “p-value”. Also for simplicity, p-values for combination

of modalities are not shown adjusted for multiple contrasts, nor vice-versa.

These can also be obtained following the same logic used for the fwer-

adjustment of the non-combined statistics. Uncorrected p-values, useful for

correction using false discovery rate (fdr, Benjamini and Hochberg, 1995)

can be obtained with trivial modifications.

Algorithm 1: Unified algorithm. See the main text for details.

Require: Y,X , {CX},B,V, ee, ise, J,npcmod,npccon, fwemod, fwecon.
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1: P ← sync perms(X , {CX},B, ee, ise, J − 1) ⊲ Define the permutation set.
2: P ← {I,P} ⊲ Ensure first permutation is no permutation.
3: for j = 1, . . . , J do ⊲ For each shuffling.
4: c← 1 ⊲ Counter for the number of designs and contrasts.
5: for all X ∈ X do ⊲ For each design matrix.
6: for all (C,D) ∈ CX do ⊲ For each pair of contrasts.
7: Y ← YD ⊲ Redefine the data, discard D.
8: X∗ ← PjX ⊲ Shuffle the model.
9: for all k ∈ {1, . . . ,K} do ⊲ For each partial test.

10: for all v do ⊲ For each image point.
11: β̂ ← (X∗)+Y[k,v] ⊲ Estimated regression coefficients.
12: Ê← Y[k,v]−X∗β̂ ⊲ Estimation residuals.
13: G← pivotal(X∗, β̂, ǫ̂,C,V) ⊲ Test statistic.
14: U[j, k, c,v]← transform(G) ⊲ Transform to u-value.
15: if j = 1 then ⊲ In the first permutation (no permutation).
16: U0[k, c,v]← U[1, k, c,v] ⊲ Keep the unpermuted u-value.
17: end if

18: end for

19: Ue[j, k, c]← extremum(U[j, k, c, ·]) ⊲ Extremum across space.
20: end for

21: c← c+ 1 ⊲ Increment counter for the number of designs and contrasts.
22: end for

23: end for

24: C ← c ⊲ Keep the total number of designs and contrasts for later use.
25: if npcmod ∧ ¬ npccon then ⊲ Combine modalities only.
26: for all c ∈ {1, . . . , C} do ⊲ For each design/contrast.
27: for all v do ⊲ For each image point.
28: T[c,v]← combine(U[j, ·, c,v]) ⊲ Combined statistic.
29: end for

30: Te[j, c]← extremum(T[c, ·]) ⊲ Distribution of the extrema across tests.
31: end for

32: else if npccon ∧ ¬ npcmod then ⊲ Combine designs/contrasts only.
33: for all k ∈ {1, . . . ,K} do ⊲ For each design/contrast.
34: for all v do ⊲ For each image point.
35: T[k,v]← combine(U[j, k, ·,v]) ⊲ Combined statistic.
36: end for

37: Te[j, k]← extremum(T[k, ·]) ⊲ Distribution of the extrema across tests.
38: end for

39: else if npcmod ∧ npccon then ⊲ Combine modalities & designs/contrasts.
40: for all v do ⊲ For each image point.
41: T[v]← combine(U[j, ·, ·,v]) ⊲ Combined statistic.
42: end for

43: Te[j]← extremum(T[·]) ⊲ Distribution of the extrema across tests.
44: end if

45: if j = 1 then ⊲ In the first permutation (no permutation).
46: T0 ← T ⊲ Keep the unpermuted combined statistic.
47: end if

48: end for

49: if npcmod ∧ ¬ npccon then ⊲ Combine modalities only.
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50: for all c ∈ {1, . . . , C} do ⊲ For each design/contrast.
51: for all v do ⊲ For each image point.
52: p-value[c,v]← data pval(T0[c,v],Te[·, c]) ⊲ Combined p-value.
53: end for

54: end for

55: else if npccon ∧ ¬ npcmod then ⊲ Combine designs/contrasts only.
56: for all k ∈ {1, . . . ,K} do ⊲ For each design/contrast.
57: for all v do ⊲ For each image point.
58: p-value[k,v]← data pval(T0[k,v],Te[·, k]) ⊲ Combined p-value.
59: end for

60: end for

61: else if npcmod ∧ npccon then ⊲ Combine modalities & designs/contrasts.
62: for all v do ⊲ For each image point.
63: p-value[v]← data pval(T0[v],Te[·]) ⊲ Combined p-value.
64: end for

65: end if

66: if fwemod ∧ ¬ fwecon then ⊲ Correct over modalities only.
67: for all c ∈ {1, . . . , C} do ⊲ For each design/contrast.
68: for all j ∈ {1, . . . , J} do ⊲ For each shuffling.
69: U′

e[j, c]← extremum(Ue[j, ·, c]) ⊲ Distribution of the extrema.
70: end for

71: for all k ∈ {1, . . . ,K} do ⊲ For each modality.
72: for all v do ⊲ For each image point.
73: p̃-value[k, c,v]← data pval(U0[k, c,v],U

′

e[·, c]) ⊲ Adjusted p-value.
74: end for

75: end for

76: end for

77: else if fwecon ∧ ¬ fwemod then ⊲ Correct over designs/contrasts only.
78: for all k ∈ {1, . . . ,K} do ⊲ For each modality.
79: for all j ∈ {1, . . . , J} do ⊲ For each shuffling.
80: U′

e[j, k]← extremum(Ue[j, k, ·]) ⊲ Distribution of the extrema.
81: end for

82: for all c ∈ {1, . . . , C} do ⊲ For each design/contrast.
83: for all v do ⊲ For each image point.
84: p̃-value[k, c,v]← data pval(U0[k, c,v],U

′

e[·, k]) ⊲ Adjusted p-value.
85: end for

86: end for

87: end for

88: else if fwemod ∧ fwecon then ⊲ Correct over modalities & des./contr.
89: for all j ∈ {1, . . . , J} do ⊲ For each shuffling.
90: U′

e[j]← extremum(Ue[j, ·, ·]) ⊲ Distribution of the extrema.
91: end for

92: for all k ∈ {1, . . . ,K} do ⊲ For each modality.
93: for all c ∈ {1, . . . , C} do ⊲ For each design/contrast.
94: for all v do ⊲ For each image point.
95: p̃-value[k, c,v]← data pval(U0[k, c,v],U

′

e[·]) ⊲ Adjusted p-value.
96: end for

97: end for

98: end for
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99: end if

Within the algorithm, the functions are:

– sync perms: This function produces a set P of permutation and/or sign

flipping matrices that can be performed sychronously to test a joint null

hypotheses about the input data. The synchronisation is always neces-

sary to allow combination/correction over modalities, and it may also be

necessary across multiple designs and/or contrasts if these are to be com-

bined/corrected as well. If synchronisation is not necessary for designs

and/or contrasts, the algorithm can be modified so that P can be defined

inside the for-loops that iterate over designs and contrasts.

– transform: This converts the test statistic into a u-value, thus rendering

the npc method feasible for imaging applications. If no combination is to

be performed, the algorithm can be modified to skip this step and work

directly with the test statistic.

– extremum: For statistics in which larger values are evidence against the

null hypothesis, this function takes the maximum. For statistics in which

smaller values are indication against the null, this takes the minimum. In

either case, it is always the most extreme towards evidence favouring the

alternative. This function effectively implements a ctp using an iut.

– combine: This combines the inputs (p- or u-values) into a new, combined

statistic. Any of the combining functions from Table 1 can be considered.

For the method of Tippett, combine and extremum are the same.

– data pval : This function produces a p-value based on a set of empirical

values for the test statistic after shuffling. This works by computing the

fraction of the test statistics after shuffling that is larger or equal than

the unpermuted test statistic, while taking care of ties.

The algorithm has four major parts: the first consists of the loop that

begins in line 5 of the pseudocode above, and which consists of a simplified

version of the randomise algorithm. The second begins with the conditional

structure in line 27, which performs the combination and computes distri-

bution of the extremum statistics for each case of npc, thus also treating

the mtp-i. These initial two parts are repeated for each shufflong, in the
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loop that begins in line 3. The third part begins with the conditional in

line 51, that is, once all rearrangements have been performed; in this part,

the distributions are used to compute the combined p-values. Finally, the

fourth part begins with the conditional in line 68, in which the mtp-ii is

addressed.

As shown, the algorithm is simplified so as to emphasise the most im-

portant aspects of combination and correction. However, various modifica-

tions and improvements can be applied for particular circumstances, and for

speed, including the partitioning discussed in the Appendix A of Winkler

et al. (2014). An open-source working implementation, that can be executed

in Matlab (The MathWorks Inc., 2013) or Octave (Eaton et al., 2014), is

available in the tool Permutation Analysis of Linear Models (palm), avail-

able for download at www.fmrib.ox.ac.uk/fsl.
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Figure 1: (a) Rejection region of a union–intersection test (uit) based on two independent
t-tests. The null is rejected if either of the partial tests has a statistic that is large enough
to be qualified as significant. (b) Rejection region of an intersection–union test (iut) based
the same tests. The null is rejected if both the partial tests have a statistic is large enough
to be qualified as significant.
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Figure 2: The original npc algorithm combines non-parametric p-values and, for imag-
ing applications, requires substantial amount of data storage space. Two modifications
simplify the procedures: (i) the statistic tk for each partial test k is transformed into a
related quantity uk that has a behaviour similar to the p-values, and (ii) the combined
statistic is transformed to a variable that follows approximately a normal distribution, so
that spatial statistics (such as cluster extent, cluster mass, and tfce) can be computed
as usual. The first simplification allows the procedure to run in a single phase, without
the need to retrieve data for the empirical distribution of the partial tests.
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Figure 3: Upper row: Rejection regions for the combination of two partial tests using four
different combining functions, and with the p-values assessed parametrically (Table 1).
The regions are shown as function of the p-values of the partial tests (pk). Middle row:
Rejection regions for the same functions with the modification to favour alternative hy-
potheses with concordant directions. Lower row: Rejection regions for the same functions
with the modification to ignore the direction altogether, that is, for two-tailed partial
tests.
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Figure 4: The simulations a–d. Each was constructed with a set of K partial tests, a
number of which (Ks) had synthetic signal added.
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Figure 5: Histograms of frequency of p-values for the simulation without signal in either
of the two partial tests (upper panel, blue bars) or with signal in both (lower panel, green
bars). The values below each plot indicate the height (in percentage) of the first bar, which
corresponds to p-values smaller than or equal to 0.05, along with the confidence interval
(95%, italic). Both original and modified npc methods controlled the error rates at the
nominal level, and produced flat histograms in the absence of signal. The histograms
suggest similar power for both approaches. See also the Supplemental Material.
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Figure 6: Bland–Altman plots comparing the original and modified npc, for both un-
corrected and corrected p-values, without signal in either of the two partial tests (upper
panel, blue dots) or with signal in both (lower panel, green dots). The values below each
plot indicate the percentage of points within the 95% confidence interval ellipsoid. For
smaller sample sizes and non-Gaussian error distributions, the methods differ, but the
differences become negligible as the sample size increases. In the presence of signal, the
modification caused increases in power, particularly for the corrected p-values.
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Figure 7: Performance of the modified npc with four representative combining functions
(Tippett, Fisher, Stouffer, and Mudholkar–George) and of one cmv (Hotelling’s T 2), using
normal or skewed errors, and using permutations (ee), sign flippings (ise), or both. All
resulted in error rates controlled at or below the level of the test. The Tippett and Fisher
were generally the most powerful, with Tippett outperforming others with signal present
in a small fraction of the tests, and with Fisher having the best power in the other settings.
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Figure 8: Without combination, and with correction across voxels (mtp-i), no significant
results were observed at the group level for any of the three tests. Combination using the
methods of Fisher, Stouffer and Mudholkar–George (M–G), however, evidenced bilateral
activity in the insula in response to hot, painful stimulation. A classical multivariate
test, Hotelling’s T 2, as well as the Tippett method, failed to identify these areas. An
intersection-union test (conjunction) could not locate significant results; such a test has
a different null hypothesis that distinguishes it from the others. Images are in radio-
logical orientation. For cluster-level results, comparable to Brooks et al. (2005), see the
Supplementary Material.
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Figure 9: Examples of inconsistent combining functions for testing the global null hy-
pothesis: (a) Addition of p-values for the partial tests (Edgington, 1972); (b) Maximum
of p-values for the partial tests, with the p-value computed as TK (Friston et al., 1999,
2005); (c) Maximum of p-values for the partial tests, but with the p-value computed as
T (Nichols et al., 2005). While the last is not appropriate for testing the global null, it is
appropriate for the conjunction null.
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Figure 10: Upper row: Inadmissible versions of the four consistent combining functions
shown in Figure 3 (in the same order). Lower row: Inadmissible versions of the three in-
consistent combining functions shown in Figure 9 (in the same order). These inadmissible
functions arise if one attempts to favour alternatives with the same sign while performing
two-tailed partial tests.
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