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Abstract— We propose an ultra-wideband-based (UWB) lo-
calization system that achieves high accuracy through non-
parametric estimation of measurement probability densities and
explicit modeling of antenna delays. This problem is difficult
because non-line-of-sight conditions give rise to multimodal
errors, which make linear estimation methods ineffective. The
primary contribution in this paper is an approach for both char-
acterizing these errors in situ and an optimization framework
that recovers both positions and antenna delays. We evaluate
our system with a network of 8 nodes based on the DecaWave
DWM1000 and achieve accuracies from 3 cm RMSE in line-of-
sight conditions to 30 cm RMSE in non-line-of-sight conditions.
Collecting measurements and localizing the network in this
manner requires less than a minute, after which the realized
network may be used for dynamic real-time tracking.

I. INTRODUCTION

Wireless sensor networks show promise for rapid, ac-

curate, and inexpensive deployment of localization in new

environments, especially compared to sensors such as LI-

DAR or motion capture. We use ultra-wideband (UWB)

radios because of their low cost and potential for high

accuracy measurements; specifically, we use the DecaWave

DWM1000. A key problem getting high accuracy with this

device is the characterization of an internal UWB parameter

called antenna delay, which is the combined time it takes

a signal to leave the generating hardware and be radiated

by the antenna and the similar delays on the receiver. For

the DWM1000, single-measurement error improves from

roughly 30 cm to 4 cm after the process of manual antenna

delay calibration [1]. Another problem is that the localization

accuracy of a robot or other moving UWB node depends

on knowing the positions of the fixed nodes, but manually

measuring these for a large network can be time consuming.

In order to achieve high accuracy and support rapid de-

ployment, we consider the joint problem of solving for both

antenna delays and node positions, using only the direct time

of propagation measurements (sum of the respective antenna

delays and time-of-flight) between nodes in the network.

This approach is difficult for several reasons. First, the

addition of antenna delays and lack of a priori known

anchors makes the problem less constrained. Second, in non-

line-of-sight (NLOS) conditions the signal strength for the

direct path is weakened and the timed signal will more likely

correspond to a non-direct reflected route, or multipath, that

will overestimate the true distance. Third, to compensate

for the weaker signal strength of the true path signal, the

The authors are with the Computer Science and Engineering De-
partment, University of Michigan, Ann Arbor, MI 48104, USA.
{acshikh,mkrogius,ebolson}@umich.edu

1 2 3 4
Data set

0.0

0.1

0.2

0.3

0.4

RM
SE

 (m
)

Our method
First peak
Max peak
Triangulation
Fixed delays
Manual delays

Fig. 1. Robustness of our method to increasingly non-line-of-sight (NLOS)
datasets. We show the distribution of RMSE of 7 UWB node locations
evaluated on 50 bootstrap samples from each dataset. First peak and max
peak methods, as predicted, are not robust to NLOS conditions (datasets 2,
3, 4). Triangulation, which does not perform non-linear optimization, has
higher RMSE. Fixed nominal and manual delay methods cannot achieve
as high accuracies on the low-NLOS datasets 1 and 2 as the full method,
and the manual values might be over-fit to calibration conditions. High
uncertainty in datasets 3 and 4 cause the full method to perform worse than
the constant delay methods because the system is less constrained.

UWB radio can be made more sensitive, but this increases

the likelihood of mistaking noise for the path signal and

underestimating the true distance [2]. The combination of the

previous effects leads to a measurement error model depen-

dent on unknown environment conditions with an unknown

number of modes and possible non-Gaussian noise. Finally,

the optimization problem is non-convex, has many local

minima, and can suffer from geometric flip ambiguities [3].

To solve for unknown antenna delays, we explicitly

model these delays and their prior probabilities. To account

for unknown error conditions, we directly approximate the

measurement probability density function (PDF) in a non-

parametric fashion. As the problem is non-convex, we use

gradientless non-linear optimization initialized with trilater-

ation through robust quadrilaterals [4].

The main contributions of this paper include:

• Explicit coupled modeling of node antenna delays and

locations in a maximum a posteriori formulation.

• A framework for incorporating non-parametric error

models, where the error models are built dynamically

based on empirical data for each pairwise radio link.

• Four open-access datasets which correspond to varying

levels of LOS and NLOS links, for comparisons with

our method.



II. RELATED WORK

The use of sensor networks for localization is well studied

in literature. A variety of sensor types may be used, including

those based on WiFi access points [5], Bluetooth Low Energy

(BLE) devices [6], chirp spread spectrum (CSS) radios [7],

and ultra-wideband (UWB) radios [8]. While WiFi and BLE-

based methods often work opportunistically with existing

hardware, their dependence on received signal strength (RSS)

and fingerprinting metrics leads to relatively coarse location

estimates (on the order of meters). Furthermore, because

these techniques do not directly use range estimates, they

require a prior map of the localization environment.

When the node sensors are capable of taking range mea-

surements, the main problem is network localization, or the

localization of unknown node positions given the positions

of a priori known anchors.

Three existing methods for network localization are: sim-

ulated annealing, semidefinite programming, and multidi-

mensional scaling. When using simulated annealing localiza-

tion [9], the node position estimates are randomly perturbed

by progressively decreasing amounts which correspond to a

temperature parameter. Changes that lower the error function

are more likely to remain. At each temperature, all the nodes

are perturbed sufficiently for the system to enter a thermal

equilibrium before the temperature is lowered. When using

semidefinite programming [10], a suboptimal relaxation of

the weighted maximum likelihood estimate is used. This SDP

formulation is convex and provides a good initial estimate for

further refinement through a gradient search method. When

using multidimensional scaling [11], the objective function

is the least squares error between measured and expected

ranges. A gradient estimate is found that is exact when

the error is zero, which is then used with gradient descent.

Unlike our method, each of these uses known anchors and

was evaluated only in simulation, not taking into account

hardware complexities like antenna delay.

Graph realization is a subproblem of network localization

where all node positions are solved for with only range

measurements. Known anchors are not used. This subprob-

lem is less common in the literature. Di Franco et al. [12]

propose an MDS-based method with Gaussian mixtures

and expectation-maximization to solve the graph realization.

They evaluate their method with the SurePoint [13] UWB

hardware, which is also based on the DecaWave DW1000

UWB chip. They do not consider antenna delay characteri-

zation of their hardware.

Even with the use of UWB radios, there are multiple ways

to estimate range between devices. In one case, by using time

difference of arrival and wired synchronized clocks, a UWB

system achieved sub-millimeter accuracy [8]; however, this

need for wired time synchronization could make the system

infeasible in certain scenarios. In a more typical example of

synchronization-free time-of-flight (TOF) ranging, a UWB

system also based on the DWM1000 module achieved single

measurement error in the range of about 12 cm to 36 cm [14].

Once the graph realization is complete, the fixed UWB

nodes can be used for real-time tracking of dynamic objects.

Prior works in this area generally perform sensor fusion to

mitigate multipath effects and achieve higher update rates.

Hol et al. fuse inertial measurement unit (IMU) readings with

UWB time-of-arrival measurements from six synchronized

nodes [15]. Zwirello et al. assume a pedestrian model and

also fuse step length estimates in addition to IMU [16].

The area of graph realization for UWB networks has not

yet been extensively explored. Our key differences compared

to prior work include modeling of antenna delays and opti-

mization on an empirical error model.

III. APPROACH

This paper discusses use of UWB-based nodes using

standard double-sided two-way ranging (DS-TWR) time-of-

flight (TOF) measurements with the inexpensive DecaWave

DWM1000 UWB module. We also constrain the problem to

two dimensions because of a large dependence we found on

measurement error due to the varying angle of incidence

between antennas (Fig. 6 of [14]) and antenna radiation

patterns (Fig. 7 of [17]). By restricting to two dimensions, we

can orient the radios such that the antenna radiation patterns

have equal energy over angle of incidence.

A. Problem statement

We start with a set of UWB nodes that are scattered

through an environment. The size of this environment and

what kinds of LOS or NLOS conditions to expect are un-

known. We can attempt to take as many range measurements

between any two nodes as we like, but depending on the

distance between nodes and environmental conditions, it

might not be possible to take measurements between every

pair. Our goal is to find the coordinates and antenna delays

of all the nodes given the set of measurements that we are

able to make.

We pose this as a maximum a posteriori problem, expand-

ing the prior on the parameters to include the probability of

being able to measure a certain distance as well as that of

encountering a certain antenna delay time:

θopt = argmax
θ

p(θ|M) (1)

= argmax
θ

p(M |θ)p(θ) (2)

= argmax
θ

∏

ij∈E

(

p(||Xi −Xj ||)p(Mij |θ)
)

×

∏

i

p(delayi) (3)

Optimization parameter θ includes both coordinates X and

antenna delays; M includes all measurements taken on each

edge in E (see symbol key in Table I).

We face a variety of problems making this formulation

tractable. First, the individual measurements of any edge

are not independent because they are conditioned on an

unknown environment. For example, while LOS conditions

generally result in a unimodal Gaussian distribution, NLOS

conditions may lead to an arbitrary number of arbitrarily



TABLE I

SYMBOL KEY

c speed of light, in m/µs
M set of all measurements t for all edges ij
E set of all measured edges ij in the network
X set of all estimated coordinates (2 or 3-D) Xi

f Gaussian probability density function
delay set of all antenna delays delayi
µdelay nominal antenna delay value
σdelay nominal antenna delay standard deviation
θ optimization parameters {X, delay}
tofij time of flight for edge ij
propij propagation time estimate for edge ij
dij distance estimate for edge ij
G(Mij) convolution-estimated PDF for edge ij
pdfij table of estimated PDF for edge ij

spaced Gaussians that may not even include one centered on

the true distance, depending on the environment.

Second, the need to perform computations on individual

measurements may pose computational problems when there

are many measurements. Third, finding the correct prior

probabilities for distances that can be measured (since the

hardware devices have limits to their range) and for the

antenna delays also increases the complexity of the problem.

Without further constraints on the coordinates and net-

work, the maximal solution will not be unique. At the

very least, the coordinate system requires a fixed origin and

coordinate axes. This leaves a solution that should differ from

the ground truth by at most one translation, rotation, and

mirroring operation. However, especially in NLOS condi-

tions, node connectivity might be low enough and uncertainty

high enough that it is possible for a network topology to

emerge with flip ambiguities that result in multiple optimal

solutions [4] [3]. A flip ambiguity is when a network has

multiple unique exact solutions. The simplest example occurs

when a node has connectivity of only two and its position

could be on either side of the two connected nodes. Even if

the solution is unique, conditions close to a flip ambiguity

may contribute to various local minima, so a good initial

estimate will be necessary to find the best solution.

One of the key ideas in this paper is to build a proba-

bilistic model of range measurements in terms of a density

estimation problem, viewing each of these individual mea-

surements as data that informs the model. Our approach is

to essentially convolve each measurement with a Gaussian

corresponding to the intra-modal error (which we character-

ize under controlled testing conditions before the fact) and

then compute the sum over the Gaussians. For simplicity, we

also disregard the prior probability for distances on measured

edges, p(||Xi −Xj ||), as it is likely uniform in the basin of

convergence of the optimal solution.

We take p(Mij |θ) to be the sum of the measurement prob-

abilities, with f the Gaussian PDF, M t
ij the measurement t

of edge ij, propij(θ) the propagation time estimated from

parameters θ including coordinates X and antenna delays,

and σ2 the nominal intra-modal measurement variance:

p(Mij |θ) ≈
∑

t

f(M t
ij ; propij(θ), σ

2)

:= G(Mij , propij(θ)) (4)

We recognize that this is essentially a convolution between

Mij and a Gaussian with propij(θ) specifying the location

of the result in that convolution. This means we only need to

calculate that convolution once in the method’s initialization.

We treat G as an estimate of the probability density function

(PDF) of Mij . This operation is effectively the same as

calculating the kernel density estimate with a Gaussian

kernel.

This leaves us with our final form of the optimization

problem:

θopt = argmax
θ

F (θ) (5)

F (θ) =
∏

ij∈E

G(Mij , propij(θ))
∏

i

p(delayi) (6)

To solve the problem of the arbitrary origin, rotation,

and mirroring, we make use of the fact that our intended

application is robot localization. Our algorithm can first

assign these arbitrarily during triangulation. Later, we can

have the robot drive in a small loop, redefining the origin as

the robot’s initial location and the x-axis as the direction of

its first motion. We can then resolve the mirroring ambiguity

by coercing the winding order of the robot’s estimated

trajectory to match the known winding order of the path.

To solve both the problem of flip ambiguities and of a

good initial estimate, we make use of trilateration with robust

triangles [4]. This method will also identify whether the

network is such that flip ambiguities cannot be distinguished.

We run the robust trilateration with a series of different

initial measurement values drawn from the distribution G

of each edge. This gives us a variety of initial conditions

across different possible modes of the data. We choose the

trilateration with the lowest residual to further optimize.

We also repeat the entire process of choosing an initial

estimate and further optimizing it several times to choose

the best solution (see Algorithm 1).

B. Estimating probability density functions

We approximate the PDF of each link in the network by

convolving the measurements with a Gaussian of nominal

standard deviation σ = 1.3× 10−4 µs (see Figure 2). The

convolution is stored in a table over a range from minj pj −
6σ to maxj pj + 6σ with a spacing of 2.5× 10−6 µs, or

approximately 0.075 cm.

We estimate this nominal standard deviation empirically

as the standard deviation of measurements between a pair of

our nodes under ideal unimodal LOS conditions.

We use quadratic interpolation to read out probabilities

from each table. For queries beyond the 6σ range, we approx-

imate the result with a Gaussian centered at the mean of the

distribution with a standard deviation of σ = 1.3× 10−4 µs
again.

C. Robust quadrilateral trilateration

We find our initial localization estimate by assuming a

fixed antenna delay value (µdelay) for every node and fixed

propagation times drawn from the measurement PDFs.



Algorithm 1:

Input: number of total attempts A
number of random initializations L
measurements M
edges E

Output: best solution θopt

for ij ∈ E do
pdfij ← EstimatePDF(Mij)

end

delay0 ← {µdelay, µdelay, . . .}
for a← 1 to A do

for l← 1 to L do
prop← DrawFromPDFs(pdf)
d← EstimateDistances(prop, delay0)
X0l ← RobustTrilateration(d)

end

X0 ← argminl Residual(X0l, delay0)
θa ← argminθ F (θ)

θ0 = {X0, delay0}
end

θopt = argmina Residual(θa)

With these assumptions, we have a single distance mea-

surement for each link to use in the trilateration:

tofij = propij − 0.5(delayi + delayj) (7)

= propij − µdelay (8)

dij = c× tofij − bias(c× tofij) (9)

The bias function is a range bias characterized by the

manufacturer that we have smoothed with quadratic inter-

polation [18]. From this point, the method is performed as

described by Moore et. al. [4].

D. Minimization of the non-parametric objective function

In order to capture the full complexity of our mea-

surements, we are building non-parametric error models of

each link at run time. As this precludes use of analytic

gradients, we optimize logF (θ) with the generalized Gauss-

Newton method and calculate both the gradient and Hessian

numerically.

We use optimization parameter θ = {X, delay}, where

X includes both x and y coordinates. Extension to higher

dimensions is trivial at this point.

logF (θ) =
∑

ij∈E

−logG(Mij , propij(θ))+ (10)

∑

i

−log p(delayi)

propij(θ) = tofij(θ) + 0.5(delayi + delayj) (11)

tofij(θ) =
(

dij + bias(dij)
)

/c (12)

dij = ||Xi −Xj || (13)

p(delayi) = f(delayi;µdelay, σ
2

delay) (14)
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Fig. 2. Estimated probability distributions (Bottom) from 1024 UWB
node-to-node measurements (Top) with varying line-of-sight conditions.
A unimodal line-of-sight link (Left) could be easily approximated by a
single Gaussian and the multimodal measurements (Center) could be fairly
well represented by 3 or 4 Gaussians, but the heavily non-line-of-sight
measurements (Right) are not Gaussian. Our non-parametric error modal
preserves the distribution in all three cases.

We use σdelay = 3.3× 10−4 µs, which is derived from

the manufacturer’s antenna delay calibration note citing a 3-

sigma variation of 30 cm[1]. Unfortunately, the manufacturer

did not include a mean antenna delay, so we performed the

manual calibration described in that document for 8 of our

UWB nodes, and took µdelay = 0.516 µs as the mean.

IV. EVALUATION

In all of our experiments, we configured our DWM1000

module to transmit on channel 1 at 850kbps with a 64MHz

pulse repetition frequency (PRF), 512 symbol preamble,

the DecaWave-optimized start-of-frame delimiter (SFD), and

with smart transmit power control, according to the DW1000

user manual [19]. We used NLOS-optimized threshold set-

tings, LDE CFG1: 0x67, LDE CFG2: 0x0004 [2].

For each dataset, we placed eight UWB nodes in our lab

space as in Figure 3, with the antennas oriented vertically.

As we intended to later localize the robot by use of the seven

fixed nodes, we did not collect a ground truth location for

the robot. However, measurements between the robot and the

other seven nodes were still included in the graph realization.

Dataset 1 was taken as shown in Figure 3 (Top), so that

LOS would exist between all nodes. Dataset 3 was taken as

shown in 3 (Bottom). Datasets 2 and 4 had fewer and greater

obstructions than dataset 3, respectively.

While we perform these experiments with known Z co-

ordinates (mostly zero), the method should in principle

extend to higher dimensions. However, a full 3D solution

is inherently more sensitive to the geometry of the network

and the number of measurements.

To take data for evaluation of our method, we attempted

to collect 1024 measurements for each of the 28 possible

links. As some NLOS links might be completely blocked,



Fig. 3. Layout of our 7 fixed-location UWB radios, in line-of-sight
conditions dataset 1 (Top), and non-line-of-sight dataset 3 (Bottom). Nodes
are circled, but are only approximate in the bottom image. We made our
datasets progressively non-line-of-sight by surrounding the nodes with boxes
and other clutter.

we would give up if we could not collect that many mea-

surements in under 10 seconds. Links with LOS conditions

typically collected 1024 measurements in about 7 seconds.

For all of our evaluations, we first process the data slightly

to remove any measurements of less than 0.5 µs as obviously

representing invalid negative ranges, and any measurements

more than 4 standard deviations from the mean. This prevents

the PDF tables from becoming needlessly large in an attempt

to include outlier noise. In most of our evaluations, we do

not use the full number of measurements taken, and so we

take a random bootstrap sample of the desired number of

measurements. We evaluate each condition with the same 50

distinct random seeds, so that each configuration is compared

against the same 50 random subsets of measurements. We

report the root mean square error between solved positions

of the 7 fixed non-robot nodes and ground truth after finding

the translation, rotation, and mirroring that minimizes this

error. Ground truth was determined by placing nodes only at

the corners of 1ft-by-1ft floor tiles.

Unless otherwise specified, we performed all of our eval-

uations with total method attempts A = 20, random trilat-

eration initializations L = 250, µdelay = 0.516 µs, σdelay =
3.3× 10−4 µs, and a maximum of 256 measurements per

link.

We did not further investigate A or L because we found

those values to be relatively insensitive, and performance did

not seem to increase for larger values. We performed param-

eter sweeps over the variables describing the prior on antenna

delay due to their significance to the method, and over the

number of measurements because taking measurements is the

dominant factor in the total time taken for graph realization.

The results are in Figures 4, 6, and 7.

Finally, we evaluate the performance of our method by

ablation analysis. In the first peak version of the algorithm,

we construct the PDF with a single Gaussian of mean µ
centered on the lowest peak (local maxima) of the full

PDF G, with standard deviation fit to minimize the least-

squares error. This method follows the intuition that because

incorrect multipath measurements are too long by definition,

the first peak most likely represents the direct path. The max

peak version is similar, but uses the highest amplitude peak

of the full PDF, following the intuition that multipath or

noise-based peaks will be lower in strength. The rest of the

algorithm in both methods is unchanged. In the triangulation

version, the algorithm skips the non-linear minimization of

F (antenna delays remain at nominal values). In the fixed

delays version, the non-linear minimization is only over the

coordinates, leaving the antenna delay times constant at the

prior mean value. The manual delays version is similar, but

we manually calibrate the values in LOS conditions with

LOS optimized thresholds [2]. We place the nodes three at

a time in an equilateral triangle with 10-foot long sides and

take 1000 measurements between each pair. We use the mean

values and compute the least squares solution for the antenna

delays [1]. The results of the total ablation analysis are in

Figure 1.
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Fig. 4. Graceful degradation of our method’s accuracy when supplied with
an incorrect antenna delay prior mean µdelay. Each additional nanosecond
difference from the empirical mean of 0.516 µs (vertical line) is a 30 cm
biased error on each measurement. The DWM1000 manufacturer specifies
an antenna delay standard deviation of 3.3× 10−4 µs (dashed lines) [1].

V. DISCUSSION

We use the ablation analysis in Figure 1 to examine the

performance of our method under the increasing NLOS con-

ditions from datasets 1 through 4. We find that under the most

LOS conditions, the more naive first/max peaks methods

have equivalent performance, but the disparity grows rapidly

as the conditions become increasingly NLOS. We also find

that the benefit of modeling antenna delays seems to fall
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Fig. 5. Robustness of our method’s ability to solve for antenna delays with
an incorrect prior mean (aggregated over all UWB nodes and datasets). If
our method did nothing to improve on the given prior, each violin plot
would have its posterior mean centered on the given prior (dotted red line).
If our method were perfect, each plot would have the posterior centered
on the known true mean (solid horizontal line). Because the prior standard
deviation is small (dashed red lines), the optimization faces a high cost
to move the posteriors away from the given prior. We see that under all
conditions, our method produces posterior antenna delays significantly better
than the supplied prior.

off under NLOS conditions. We recognize that with only 8

nodes, our complete problem is only barely fully constrained,

having 8 × 7/2 = 28 equations and 8 × 3 = 24 unknowns.

As the uncertainty in the NLOS links increases, the overall

system would need to be more over-determined to accurately

solve for all the unknowns. As a result, in high NLOS

cases we cannot solve for the antenna delays to a higher

accuracy than the 0.516 µs prior. However, on the most well

constrained LOS case, modeling of the antenna delays cuts

RMSE from 6.2 cm to 3.0 cm.

Examining the sensitivity of our method to the prior on the

antenna delays, we find from Figure 4 that the prior mean

µdelay is significant to the performance of our method, but

looking at Figure 5 we see that our method is able to return

antenna delay values that are many standard deviations more

accurate than the values provided by the incorrect priors.

Looking at the prior on standard deviation σdelay, we find the

method to be far less sensitive. In the most NLOS case where

the antenna delays are least constrained, we find that the too-

large standard deviations are particularly harmful. Values in

the range of about 1× 10−4 µs to 5× 10−4 µs seem to work

best. Smaller values effectively prevent the antenna delays

from moving away from the mean, reducing the algorithm

to the fixed delay simplification, while larger values leave

the choice of antenna delay too unconstrained.

The total time necessary for the graph realization and

calibration in a new environment is dominated by the time

needed to take measurements across all possible edges. With

our evaluation setup, taking 128 measurements per link

would take a maximum of 35 seconds for the 8 nodes.

Execution of the complete algorithm took half a second on

the author’s laptop in the worst case, leading to less than one

minute for the complete localization process.
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Fig. 6. Our method has low sensitivity to antenna delay standard deviation
prior σdelay. Dataset 1 has low uncertainty and so is well constrained,
making it insensitive to choice of σdelay. Datasets 2, 3, and 4 have
increasing uncertainty from non-line-of-sight conditions, making them more
sensitive. Values below the nominal of 3.3× 10−4 µs (dashed vertical line)
essentially make the method perform as if the antenna delays are fixed.
Datasets 3 and 4 are not quite constrained enough to solve for antenna
delays well, so their RMSE grows the most for larger σdelay (compare the
full method with the fixed antenna delay version in Figure 1).
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Fig. 7. Convergence rate of our method on varying line-of-sight conditions.
The fewer the measurements needed, the less time required to localize and
characterize the network. In datasets 3 and 4, accuracy continues to improve
until about 128 measurements per edge. In datasets 1 and 2, however,
low measurement uncertainty allows even just one measurement per link
to suffice.

VI. CONCLUSION

In summary, we have found that our non-parametric error

modeling makes our method robust to NLOS conditions, and

our modeling and simultaneous calibration of antenna delays

leads to very high accuracy is LOS conditions. We found

that only 16 to 128 measurements are necessary per link and

that a network of 8 UWB nodes requires less than a minute

for both the collection of measurements and execution of

the algorithm. On this network we achieved accuracies of

3 cm RMSE in the LOS dataset 1, and 30 cm in the NLOS

dataset 4. Our datasets and source code files can be found

at https://osf.io/pkbq4/.
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