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Non-parametric genetic prediction of complex
traits with latent Dirichlet process regression
models
Ping Zeng1,2 & Xiang Zhou2,3

Using genotype data to perform accurate genetic prediction of complex traits can facilitate

genomic selection in animal and plant breeding programs, and can aid in the development of

personalized medicine in humans. Because most complex traits have a polygenic architecture,

accurate genetic prediction often requires modeling all genetic variants together via polygenic

methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet

process regression model. Dirichlet process regression is non-parametric in nature, relies on

the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus

enjoys robust prediction performance across a broad spectrum of genetic architectures. We

compare Dirichlet process regression with several commonly used prediction methods with

simulations. We further apply Dirichlet process regression to predict gene expressions, to

conduct PrediXcan based gene set test, to perform genomic selection of four traits in two

species, and to predict eight complex traits in a human cohort.
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G
enome-wide association studies (GWASs) have identified
thousands of genetic loci harboring associated single-
nucleotide polymorphisms (SNPs) for many complex

traits and diseases, providing unprecedented insights into
the genetic basis of phenotypic variation1–8. The accumulation
of genetic data from existing association studies has led to a
growing interest in predicting traits and diseases using genetic
markers (in addition to using traditional environmental or
clinical variables)9. In animals or plants, accurate phenotype
prediction with genetic markers can assist the selection of
individuals with desirable breeding values and can improve
the effectiveness of breeding programs10. In humans, accurate
phenotype prediction with genetic markers can facilitate disease
prevention and intervention at early stages and can aid in the
development of personalized medicine by using genotype infor-
mation to customize the treatment and predict the outcome11.
Phenotype prediction has also been proposed recently as a key
step for integrating functional genomic sequencing studies
with GWASs: we can construct more powerful and interpretable
gene-set tests in GWASs by setting variant weights to be the
coefficients inferred from predictive models in expression
quantitative trait locus mapping studies12.

Progress toward accurate phenotype prediction requires the
development of statistical methods that can model all SNPs
jointly. Previous association studies have demonstrated that
most complex traits and common diseases have a polygenic
background and are each influenced by many genetic variants
with small effects. For instance, it is estimated that thousands
of causal variants influence human height13. Similarly, many
animal or plant traits are contributed by hundreds of causal
variants (e.g., maize-related traits, such as kernel oil and growing
degree days (GDDs)14, 15; and cattle-related traits, such as backfat

thickness, milk yield (MY) and hot carcass weight)16, 17. Because
most complex traits and common diseases have a polygenic
architecture, a handful of identified associated SNPs often only
capture a small proportion of the phenotypic variation and thus
cannot be used to yield accurate phenotype and risk prediction.
Instead, accurate phenotype prediction requires polygenic models
that can make use of all genome-wide SNPs9, 18–20. In the
past decade, successful development and application of many
polygenic models in the context of genomic selection has
revolutionized many animal breeding programs16, 21–23. More
recently, applications of polygenic models to human GWASs
have also yielded fruitful results11, 24–27.

Most existing polygenic models for prediction make an
assumption on the effect size distribution and different methods
differ mainly in such modeling assumption. For example, the
commonly used linear mixed model (LMM), also known as the
best linear unbiased predictor (BLUP), assumes that the effect
sizes from all variants follow a normal distribution9, 28. The Bayes
alphabetic (e.g., BayesA and BayesB) methods assume that the
variant effect sizes follow a t-distribution or its variation10, 18, 29.
The Bayesian lasso assumes a double exponential/Laplace
distribution30, 31. NEG generalizes the Bayesian lasso by assuming
a normal exponential gamma distribution32. BVSR and BayesCπ
assume a point-normal distribution29, 33. BSLMM assumes a
mixture of two normal distributions34 and is closely related to the
early reversible jump Markov Chain Monte Carlo (rjMCMC)
method20. BayesR35 assumes a three-component normal mixture
together with a point mass at zero. Given the large number of
modeling choices, one naturally wonders which method to use for
any given trait. Previous studies have suggested that accurate
prediction requires choosing a prior effect size distribution that
can closely match the shape of the true effect size distribution,
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Fig. 1 The induced non-parametric Dirichlet process (nonparametric DP) normal mixture prior on the effect sizes can be used to approximate a large

number of unimodal distributions. We either simulated 2000 values from a a standard t-distribution with df= 4; b a point-t mixture distribution with the

zero proportion being 0.2, or equivalently, 0.8 × t(df= 4) + 0.2 × δ0, where δ0 denotes a point mass at zero; c a four-component uniform step mixture

distribution 0.50 × U(−0.05,0.05) + 0.25 × U(−0.3,0.3) + 0.15 ×U(−0.8,0.8) + 0.05 ×U(−2,2), where U denotes a uniform distribution; or obtained d the

estimated marginal effect sizes from a linear mixed model in the cattle data with SCS (somatic cell score) as the phenotype. To make the first three data

comparable with the last data in d, we centered and scaled the values from the first three data for them to have a mean of zero and within the range of

(−0.3,0.3). We then fit each data with either our non-parametric distribution (red) or a normal distribution (blue), and displayed the fitted curves on top of

the sample distribution (black). Clearly, the non-parametric Dirichlet process normal mixture can approximate all these distributions well, while a simple

normal distribution cannot
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such that the inferred posterior can approximate well the
polygenic architecture of the given trait24, 35, 36. However, the
effect size distribution for any given trait or disease is unknown a
priori and varies for different diseases in terms of the number of
causal variants, their minor allele frequencies (MAFs), and
their individual effect sizes11. Therefore, to achieve robust
performance, it is important to design prior distributions that are
flexible enough to resemble the true effect distribution in many
traits as close as possible34, 35.

Up to now, almost all existing polygenic models are parametric
in nature and use a prior effect size distribution that is
characterized by a few parameters. From the information channel
perspective37, the number of parameters in a parametric model
determines model complexity and bounds the amount of
information in data that can be captured by the model37–40.
Therefore, using only a few parameters to characterize the effect
size distribution can limit the flexibility of the model37, 38

and impede its robust performance across a range of genetic
architectures. As an example, the commonly applied LMM uses a
normal distribution with one variance component parameter to
characterize the effect size distribution. For highly polygenic
traits, the assumed normal distribution can approximate the true
effect size distribution well, and as a result, LMM can achieve
good predictive performance34, 35. However, for traits with large
effect variants, the assumed normal distribution can no longer
capture the true effect size distribution well and the performance
of LMM decays34, 35.

To allow for greater flexibility on the a priori effect size
distribution and to enable robust phenotype prediction
performance across a range of phenotypes, we develop a Bayesian

non-parametric model, which we refer to as the latent Dirichlet
process regression (DPR). DPR does not use any fixed parametric
distribution as the prior choice for the effect size distribution.
Instead, DPR relies on the Dirichlet process to assign a prior on
the effect size distribution itself and is thus capable of inferring an
effect size distribution from the data at hand. Effectively, DPR
uses infinitely many parameters a priori to character the effect
size distribution, and with such a flexible modeling assumption,
DPR is capable of adapting to a broad spectrum of genetic
architectures and achieves robust predictive performance across a
wide range of complex traits. We illustrate the benefits of DPR
with simulations and real data applications for gene expression
prediction, gene-based test via PrediXcan, genomic selection
for four traits in two species, as well as genetic prediction of eight
complex traits in a human cohort.

Results
Method overview. An overview of our method is provided
in the Methods section with details provided in the Supple-
mentary Note. Briefly, we use a Dirichlet process to introduce a
non-parametric effect size distribution that can robustly resemble
a large classes of unimodal distributions. Indeed, our prior effect
size distribution can be used to adaptively and accurately
approximate a t-distribution, a point-t mixture distribution, a
mixture of step functions, as well as the marginal effect sizes
estimated from a real data set; whereas a normal distribution
cannot (Fig. 1). Therefore, our prior distribution on the effect size
can adaptively approximate a wide range of possible effect size
distributions underlying complex traits. Since accurate modeling
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Fig. 2 Comparison of prediction performance of several methods with DPR.MCMC in simulations when PVE= 0.5. Performance is measured by R2

difference with respect to DPR.MCMC, where a negative value (i.e., values below the red horizontal line) indicates worse performance than DPR.MCMC.

The sample R2 differences are obtained from 20 replicates in each scenario. Methods for comparison include BVSR (cyan), BayesR (chocolate), LMM

(purple), MultiBLUP (green), DPR.VB (red), rjMCMC (black blue), and DPR.MCMC. Simulation scenarios include: a Scenario I, which satisfies the DPR

modeling assumption; b Scenario II, which satisfies the BayesR modeling assumption; c Scenario III, where the number of SNPs in the large effect group is

10, 100, or 1000; and d Scenario IV, where the effect sizes are generated from either a normal distribution, a t-distribution or a Laplace distribution. For

each box plot, the bottom and top of the box are the first and third quartiles, while the ends of whiskers represent either the lowest datum within 1.5

interquartile range of the lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. For DPR.MCMC, the mean predictive R2 in

the test set and the standard deviation for the eight settings are, respectively, 0.272 (0.031), 0.299 (0.026), 0.295 (0.026), 0.281 (0.030), 0.277 (0.035),

0.278 (0.030), 0.282 (0.025), and 0.273 (0.022)
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of the effect size distribution is a key to achieve accurate pre-
diction performance24, 34, 36, we expect our non-parametric
model to perform robustly well across a range of polygenic
architectures. Our method is implemented in the DPR software,
freely available at http://www.xzlab.org/software.html.

Simulations. We first compare the performance of DPR with
several other commonly used prediction methods using simula-
tions. A total of seven different methods are included for com-
parison: (1) BVSR29; (2) BayesR35; (3) LMM28; (4) MultiBLUP41;
(5) rjMCMC20; (6) DPR.VB, the variational Bayesian (VB)
version of DPR; and (7) DPR.MCMC, the Markov chain Monte
Carlo (MCMC) version of DPR. Note that both BayesR and
MultiBLUP have been recently demonstrated to outperform a
range of existing prediction methods; thus, we do not include
other prediction methods into comparison here.

To make our simulations as real as possible, we used genotypes
from an existing cattle GWAS data set17 with 5024 individuals
and 42,551 SNPs and simulated phenotypes. To cover a range of
possible genetic architectures, we consider eight simulation
settings from four different simulation scenarios with the
phenotypic variance explained (PVE) by all SNPs being either
0.2, 0.5, or 0.8 (details in Methods). In each setting for each PVE
value, we performed 20 simulation replicates. In each replicate,
we randomly split the data into a training data with 80%
individuals and a test data with the remaining 20% individuals.
We then fitted different methods on the training data
and evaluated their prediction performance on the test data
(i.e., Monte Carlo cross validation). We evaluated prediction
performance using either the squared correlation coefficient (R2)
or mean squared error (MSE). We contrasted the prediction
performance of all other methods with that of DPR.MCMC by
taking the difference of R2 or MSE between the other methods
and DPR.MCMC. Therefore, an R2 difference below zero or an
MSE difference above zero suggests worse performance than
DPR.MCMC. Figure 2 shows R2 differences for different methods
across 20 replicates in each of the eight simulation settings
for PVE = 0.5. Because Fig. 2 shows prediction performance
difference, a large sample variance of a method in the figure only
implies that the prediction performance of the method differs a
lot from that of DPR.MCMC, but does not imply that the method
itself has a large variation in predictive performance. Supple-
mentary Table 1 shows the standard deviation of absolute R2

values across cross variation replicates; various methods display
similar prediction variability. Supplementary Figs. 1 and 2 show
the R2 differences for PVE = 0.2 and PVE= 0.8, respectively.
The corresponding results for MSE differences are shown in
Supplementary Figs. 3–5. The R2 and MSE values of the baseline
method, DPR.MCMC, are shown in the corresponding figure
legend.

Overall, while each method works the best when their
individual modeling assumption is satisfied, DPR.MCMC is
robust and works well across all eight settings from four
scenarios. For example, if we rank the methods based on their
median performance across replicates, then when the total PVE is
moderate (e.g., PVE = 0.5, Fig. 2; note that for each PVE there are
a total of eight simulation settings for the four scenarios), DPR.
MCMC is the best or among the best in seven simulation settings
(i.e., scenario I, c= 10, 100, and 1000 in scenario III, and normal,
t and Laplace distributions in scenario IV; where “among the
best” refers to the case when the difference between the given
method and the best method is within± 0.001) and is ranked as
the second best in the rest one simulation setting (i.e., scenario II).
Similarly, when the total PVE is high (e.g., PVE= 0.8,
Supplementary Fig. 2), DPR.MCMC is the best or among the
best in seven simulation settings, and it is ranked as the second
best in scenario IV when the effect size follows a normal
distribution. Even when DPR.MCMC is ranked as the second best
method, the difference between DPR.MCMC and the best
method is often small. Among the rest of the methods, LMM,
MultiBLUP, and rjMCMC all work well in polygenic settings
(scenario I; c= 1000 in scenario III; scenario IV) but can perform
poorly in sparse settings (scenario II; c= 10 and c= 100 in
scenario III). The performance of LMM, MultiBLUP, and
rjMCMC in polygenic vs. sparse settings presumably stems from
their polygenic assumptions on the effect size distribution. In
contrast, because of the sparse assumption on the effect size
distribution, both BayesR and BVSR have an advantage in sparse
settings (scenario II; c= 10 or 100 in scenario III) but suffers in
polygenic settings (c= 1000 in scenario III; scenario IV). The
performance of BVSR is also generally worse than BayesR in the
challenging setting when PVE is either small or moderate,
presumably because of the much simpler prior assumption
employed in BVSR for the non-zero effects. Finally, the VB
version of DPR (i.e., DPR.VB) performs considerably less well
compared with the MCMC version of DPR (i.e., DPR.MCMC),
especially when PVE is high (Supplementary Fig. 2). However,
DPR.VB still compares favorably with the other methods when
PVE is small or moderate (Supplementary Fig. 1).

Real data applications. To gain further insights, we compare
the performance of DPR with the other methods in
several real data sets to (1) predict gene expression levels using
cis-SNPs; (2) conduct subsequent PrediXcan based gene set test;
(3) perform genomic selection in animal studies; and (4) predict
complex traits in humans.

Our first application is predicting gene expression levels using
cis-SNPs in the GEUVADIS data42. The GEUVADIS data
contains gene expression measurements on 15,810 genes and
465 individuals after quality control (Methods). These individuals

Table 1 Comparison of seven different methods in predicting gene expression levels in the GEUVADIS data

Threshold ENET BayesR BVSR LMM MultiBLUP rjMCMC DPR

VB MCMC

0.10 1061 809 486 1195 1098 1013 1163 1280

0.20 449 338 142 403 299 321 389 467

0.30 182 170 48 162 110 123 155 194

0.40 78 84 24 76 46 47 70 86

0.50 37 35 10 33 16 19 32 38

0.60 15 14 4 14 5 9 12 17

0.70 2 3 1 3 1 2 2 3

To compare prediction performance, we counted the number of genes whose median R2 across 20 replicates in the test set is above a given R2 threshold. A larger number thus indicates better

performance. For each given threshold, we colored the best method with red and the second best method with blue
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have their genotypes measured in the 1000 Genomes project43. In
the data, we first identified cis-SNPs that are within 100 kb of
each gene and obtained an average of 175 cis-SNPs per gene.
Then, for each gene in turn, we applied different methods to
predict gene expression levels using these cis-SNPs. To measure
prediction performance, we carried out 20 Monte Carlo cross
validation data splits as in simulations. In each data split, we fitted
methods in a training set with 80% of randomly selected
individuals and evaluated method performance using R2 in the
test set with the remaining 20% of individuals. In addition to the
seven methods used in the simulations (i.e., LMM, BVSR,
MultiBLUP, BayesR, rjMCMC, DPR.VB, and DPR.MCMC), we
also applied Elastic Net (ENET)44, which is the default method
used in the original PrediXcan paper12. Table 1 lists the number
of genes with a predictive R2 above different thresholds for
different methods. The predictive R2 obtained from DPR.MCMC
vs. various other methods across all genes is shown as scatter
plots in Supplementary Fig. 6, where each plot also lists the
number of genes for which DPR.MCMC performs better and the
number of genes for which DPR.MCMC performs worse.

The results are largely consistent with these in simulations.
Overall, DPR.MCMC generally achieves better predictive perfor-
mance than the other methods. For example, DPR.MCMC is able
to achieve a higher predictive R2> 0.10 in ~1300 genes, which is
~100 more than that by the second best method at this threshold
(i.e., LMM; Table 1). Similarly, compared with other methods,
not only does DPR.MCMC achieve a higher R2 for most genes;
the R2 improvement from DPR.MCMC can be large for many
genes (Supplementary Fig. 6). Among the rest of the methods, the
performance of LMM, DPR.VB, and ENET are comparable with
each other and are ranked right behind DPR.MCMC. On the
other hand, the two sparse models (i.e., BVSR and BayesR)
perform poorly in this data, especially for some genes whose
expression levels are highly predictive by the other methods
(Table 1, Supplementary Fig. 6).

The robust performance of DPR.MCMC in predicting gene
expression levels also translates to a relatively high power in the
subsequent PrediXcan gene set test. To perform PrediXcan gene
set test, we consider the seven common diseases from Wellcome
Trust Case Control Consortium (WTCCC)4 as in Gamazon
et al.12. For each disease and each gene in turn, we used the
estimated cis-SNP effect sizes on expression levels from
GEUVADIS as weights to construct gene set tests in WTCCC.
Following Gamazon et al.12, we focused on a set of 4343 genes
that had a predictive R2 above 0.01 from all methods. The results
are shown in Table 2, which lists the number of significant genes
identified by different methods for different diseases. In total,
DPR.MCMC identified 38 genes associated with different
phenotypes, more than that identified by any other methods.

The performance of DPR.MCMC is followed by DPR.VB and
subsequently LMM and rjMCMC. Supplementary Table 2 lists
the significant genes identified by DPR.MCMC, which are all
consistent with previous studies. We also note that, in general, a
higher gene expression predictive performance leads to a higher
power in the subsequent gene set analysis. In addition, consistent
with their relatively poor gene expression prediction perfor-
mance, the two sparse models (BayesR and BVSR) do not
perform well in the gene set test as well.

Finally, we compare the performance of DPR with the other
methods in predicting phenotypes in three GWAS data sets: (1) a
cattle study17, where we focus on three phenotypes: milk fat
percentage (MFP), MY, as well as somatic cell score (SCS); (2) a
maize study15, where we use GDD as the phenotype; (3) the
Framingham heart study (FHS) data45, where we focus on five
plasma traits that include low-density lipoprotein (LDL)
cholesterol, glucose (GLU), high-density lipoprotein (HDL)
cholesterol, total cholesterol (TC) and triglycerides (TGs), and
three anthropometric traits that include height, weight and body
mass index (BMI). As in simulations, for each phenotype, we
performed 20 Monte Carlo cross validation data splits. In each
data split, we fitted methods in a training set with 80% of
randomly selected individuals and evaluated method performance
using R2 or MSE in a test set with the remaining 20% of
individuals. We again contrasted the performance of the other
methods with that of DPR.MCMC by taking the R2 difference or
MSE difference with respect to DPR.MCMC. The results
are shown in Fig. 3 (R2 difference) and Supplementary Fig. 7
(MSE difference), with R2 and MSE of DPR.MCMC presented in
the corresponding figure legend. Supplementary Table 1 shows
the standard deviation of absolute R2 values across cross variation
replicates. Supplementary Fig. 8 also displays trace plots of the log
posterior likelihood from DPR.MCMC for all traits, suggesting
reasonable convergence of our method.

Overall, consistent with simulations, DPR.MCMC shows robust
performance across all traits and is ranked either as the best or the
second best method. In the cattle data (Fig. 3a), for MFP and MY,
both DPR.MCMC and BayesR perform the best. For SCS, DPR.
MCMC performs the best, followed by BayesR. rjMCMC performs
well for MFP and MY but poorly for SCS; while LMM and
MultiBLUP do not perform well for MFP and MY in the cattle data
but their performance improves for SCS. The relative performance
of BayesR vs. LMM and MultiBLUP in the cattle data is consistent
with the distinct genetic architectures that underlie the three
complex traits17, 46: while MFP and MY are affected by a few large
or moderate effect SNPs together with many small effect SNPs, SCS
is a highly polygenic trait influenced by many SNPs with small
effects. BVSR performs poorly for these three traits in the cattle
data. In the maize data (Fig. 3a), DPR.MCMC performs the best,

Table 2 Comparison of seven different methods in the PrediXcan gene set test in the WTCCC data

Disease ENET BayesR BVSR LMM MultiBLUP rjMCMC DPR

VB MCMC

T1D 21 22 16 23 22 24 26 25

CD 6 0 1 4 4 5 3 6

RA 7 1 5 9 8 7 8 7

BD 0 0 0 0 0 0 0 0

CAD 0 0 0 0 0 0 0 0

HT 0 0 0 0 0 0 0 0

T2D 0 0 0 0 0 0 0 0

Total 34 23 22 36 34 36 37 38

The table lists the number of genes passing the genome-wide significance threshold via Bonferroni correction (α= 1.15 × 10−5) in each of the seven common diseases. For each disease, we colored the

best method with red and the second best method with blue
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followed by BayesR, suggesting that GDD is influenced by a few
SNPs with large effects15. In the FHS data (Fig. 3b, c), DPR.MCMC
performs the best or among the best for LDL, GLU, TC, Weight,
and BMI. Its performance is comparable to BayesR and rjMCMC
for Height, and follows right behind BayesR for HDL and TG.
Besides DPR and BayesR, rjMCMC also performs well in FHS and
is often ranked as the third best method (e.g., for LDL, GLU,
Height, and Weight). In contrast to the relatively robust
performance of DPR.MCMC, however, all other methods can
perform poorly for certain phenotypes. In Fig. 3, for example,
BayesR is the second worst method for predicting GLU; LMM is the
second worst method for predicting LDL; MultiBLUP is the worst
method for predicting Weight and BMI; DPR.VB performs

among the worst for LDL and HDL; rjMCMC performs poorly
for HDL; while BVSR performs the worst for almost all traits except
for LDL, Height, and Weight. The poor performance of BVSR
presumably stems from its relatively simple and sparse assumption
on the effect sizes.

Because the FHS is a family based study, we use this data to
further examine the influence of individual relatedness on
prediction performance. To do so, we divided the FHS data into
two sub data sets (D1 and D2) with equal sample size but
different levels of relatedness (details in Methods): individuals in
D1 are more closely related to each other than those in D2. We
then compared method performance by performing cross
validation in each of the two data sets separately. While the
difference between methods becomes smaller due to smaller
sample size in the two sub data sets, the relative performance of
most methods for the eight traits are largely unchanged in
these two sub data sets as compared to that in the complete data
(Supplementary Fig. 9 vs. Fig. 3b, c). For example, DPR.MCMC is
ranked as the best method or among the best methods for six
traits in D1 and for four traits in D2. BayesR performs similarly
and is ranked as the best or among the best for four traits in D1
and for five traits in D2. LMM ranks right after DPR.MCMC and
BayesR, while the other methods do not perform well here. In
addition, all methods generally perform better in D1 than in D2
(Supplementary Fig. 10), suggesting that relatedness improves
prediction performance—a phenomenon that has been well
recognized by previous studies9, 23, 47–49. Besides cross validation
within each data set separately, we also performed cross
validation between D1 and D2 by predicting traits in one data
with parameters inferred from another. The results are again
largely consistent with the main results. In particular, DPR.
MCMC is ranked as the best or among the best for six traits in D1
to D2 prediction and for eight traits in D2 to D1 prediction.
BayesR is ranked as the best or among the best for six traits in D1
to D2 prediction and for eight traits in D2 to D1 prediction.
rjMCMC also performs reasonably well and follows right behind
DPR.MCMC and BayesR (Supplementary Fig. 11).

Computational time. Finally, we list the computational time of
the seven methods for the 12 traits in Table 3. Note that some
differences in computational time among methods may reflect
implementation issues, including the language environment in
which the methods are implemented, rather than fundamental
differences between algorithms. In addition, we only list in the
table the computation time in the fitting stage. Computation time
spent in the prediction stage by plugging in estimated coefficients
in the new data is almost ignorable and is thus not listed.
For sampling based methods (BVSR, rjMCMC, DPR.MCMC,
and BayesR), we measure the computational time based on a
fixed number of iterations. However, due to different convergence
properties of different algorithms (e.g., BVSR uses a Metropolis-
Hastings algorithm, rjMCMC uses a reversible jump
MCMC algorithm, while both DPR.MCMC and BayesR use a
Gibbs sampling algorithm), a fixed number of iterations in
different methods may correspond to different mixing
performance. Nevertheless, we can see that DPR.MCMC has a
similar computational cost as the other Gibbs based approach
(e.g., BayesR), though in the human data both these Gibbs based
approaches (DPR.MCMC and BayesR) can be slower than the
Metropolis-Hastings approach (BVSR) and the reversible jump
MCMC algorithm (rjMCMC) that effectively update only a small
subset of significant SNPs in each iteration. In contrast, DPR.VB
is orders of magnitude faster than its MCMC counterpart, and
is computationally as efficient as the other two non-MCMC based
approaches (LMM and MultiBLUP).
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Fig. 3 Comparison of prediction performance of several methods with DPR.

MCMC for twelve traits from three data sets. a Prediction performance for

MFP, MY and SCS in the cattle data, and for GDD in the maize data; b

Prediction performance for the five plasma traits in the FHS data; c

Prediction performance for the three anthropometric traits in the FHS data.

Performance is measured by R2 difference with respect to DPR.MCMC,

where a negative value (i.e., values below the red horizontal line) indicates

worse performance than DPR.MCMC. Methods for comparison include

BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB

(red), rjMCMC (black blue), and DPR.MCMC. For each box plot, the bottom

and top of the box are the first and third quartiles, while the ends of whiskers

represent either the lowest datum within 1.5 interquartile range of the lower

quartile or the highest datum within 1.5 interquartile range of the upper

quartile. The sample R2 differences are obtained from 20 replicates of

Monte Carlo cross validation for each trait. For DPR.MCMC, the mean

predictive R2 in the test set and the standard deviation across replicates are

0.751 (0.011) for MFP, 0.624 (0.012) for MY, 0.551 (0.017) for SCS and

0.828 (0.012) for GDD, 0.081 (0.033) for LDL, 0.047 (0.017) for GLU,

0.153 (0.044) for HDL, 0.050 (0.020) for TC, 0.044 (0.015) for TG, 0.478

(0.031) for height, 0.169 (0.038) for weight, and 0.137 (0.037) for BMI.

The SNP heritability estimates are 0.912 (0.007) for MFP, 0.810 (0.012)

for MY, 0.801 (0.012) for SCS, 0.880 (0.013) for GDD, 0.397 (0.024) for

LDL, 0.357 (0.036) for GLU, 0.418 (0.024) for HDL, 0.402 (0.036) for TC,

0.334 (0.034) for TG, 0.905 (0.013) for height, 0.548 (0.022) for weight

and 0.483 (0.023) for BMI
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Discussion
We have presented a novel statistical method, DPR, for genetic
prediction of complex traits. DPR uses an infinitely many
parameters a priori to flexibly model the effect size distribution,
and represents the first non-parametric method developed
for modeling polygenic traits in genetic association studies.
By flexibly modeling the effect size distribution, DPR is capable of
adapting to the polygenic architecture underlying many complex
traits and enjoys robust performance across a range of pheno-
types. With simulations and applications to four real data sets, we
have illustrated the benefits of DPR.

We have focused on one application of DPR—genetic predic-
tion of phenotypes. Like some other polygenic methods34, 35, 50,
DPR can also be applied to many other polygenic applications.
For example, DPR can be used to estimate the proportion of
variance in phenotypes explained by all SNPs, a quantity that is
commonly referred to as SNP heritability28, 34. Because DPR
assumes a flexible effect size distribution that is adaptive to the
genetic architecture underlying a given trait, it has the potential to
provide accurate estimation of SNP heritability. As another
example, DPR can be applied to association mapping. There, we
can view the normal component with the smallest variance as the
polygenic background, and we can estimate the probability of a
SNP being in any normal components other than the smallest one
as the posterior inclusion probability (PIP). PIP computed in this
way measures SNP marginal association strength in the presence
of polygenic effects, and may represent a more powerful
association indicator than standard single SNP association test
statistics33, 50. An important feature of using PIP in the context
of Bayesian models is that PIP quantifies the uncertainty of
association strength33, 50, which is a desirable feature that is not
easily achieved by penalized frequentist counterparts51.

Here, we have restricted ourselves to applying DPR to
continuous phenotypes. For case control studies, we could follow
previous approaches of treating binary phenotypes as continuous
traits and apply DPR directly34, 35, 41. However, it would be
desirable to extend DPR to accommodate case control data or
other discrete data types in a principled way, by, for example,
extending DPR into the generalized linear model framework. In
particular, we could use a probit or a logistic link to extend DPR
to directly model case control data. We could use a Poisson or an
over-dispersed Poisson distribution to extend DPR to model
count data. Extending DPR to various discrete data types
would likely lead to wider applications of DPR beyond GWASs.
For instance, by modeling count data, DPR could be used to
perform differential expression analysis52 or expression QTL

mapping in RNA sequencing studies53, 54. Similarly, by modeling
proportional data, DPR could be used to perform differential
methylation analysis or methyl-QTL mapping in bisulfite
sequencing studies55. Extending DPR to modeling discrete data
types using the generalized linear model framework is thus an
important avenue for future research.

In the present study, while we used unrelated individuals for
GEUVADIS gene expression prediction and PrediXcan tests, we
used related individuals for the other two real data applications.
Related individuals not only share similar genetic background but
also are likely influenced by a common set of environmental
factors47, 56. In addition, untyped causal SNPs in related indivi-
duals can be more easily tagged by neighboring typed SNPs than
that in unrelated individuals, thanks to the relatively high linkage
disequilibrium (LD) in related data. Because both the shared
environmental factors and easy tagging of causal SNPs can
facilitate prediction, cross validation using related individuals
often results in better prediction performance than using
unrelated individuals9, 23, 47–49. However, we caution that the
prediction accuracy measured in the test data obtained with
cross-validation in related individuals are likely inflated if our
ultimate goal is to perform prediction in unrelated individuals
instead of related ones. In addition, the predictive model inferred
from related individuals may not generalize well to unrelated
individuals who are not necessarily influenced by the same set of
environmental factors and who do not share the same LD pattern
near the causal SNPs. We have attempted to tease apart the
influence of relatedness on prediction performance by splitting
the FHS data into two parts with different levels of relatedness.
Our results indeed show that, while the relative performance
of various methods remains largely the same, the absolute
performance of all methods do increase with individual related-
ness. Additionally, while our method performs well relative to the
other methods, we caution that DPR’s prediction accuracy is still
unlikely of practical use in human clinical setting. Studies on
unrelated individuals or studies using a fully independent
validation data are likely required to establish the practical utility
of prediction methods, which often have unsatisfactory perfor-
mance there9, 47, 57. Despite the practical importance of using
completely independent or cross-population studies for predic-
tion performance validation, however, we also want to point
out its potential caveat: using completely independent data for
cross-validation may fail to correctly characterize the relative
performance of different methods. In particular, a good method
that properly captures the signal in the training data may suffer in
the validation data due to different LD patterns between the two

Table 3 Mean computational time of the seven methods in the model fitting stage for 12 traits across three data sets

Data Traits BVSR rjMCMC BayesR LMM MultiBLUP DPR

VB MCMC

MFP 2.26 (0.49) 3.04 (0.24) 5.01 (0.75) 0.27 (0.05) 0.40 (0.12) 0.22 (0.11) 6.29 (3.07)

Cattle MY 2.51 (0.52) 2.95 (0.31) 5.95 (1.04) 0.27 (0.08) 0.46 (0.07) 0.21 (0.09) 4.01 (0.55)

SCS 4.56 (0.78) 3.15 (0.27) 6.17 (1.05) 0.24 (0.04) 0.27 (0.06) 0.20 (0.08) 5.23 (2.38)

Maize GDD 2.38 (0.72) 1.08 (0.11) 7.86 (1.57) 0.19 (0.05) 0.03 (0.01) 0.08 (0.01) 4.53 (1.29)

LDL 1.02 (0.17) 1.78 (0.15) 78.56 (27.78) 1.76 (1.15) 1.71 (0.33) 1.24 (0.79) 85.76 (18.22)

GLU 0.25 (0.14) 1.86 (0.18) 47.87 (17.86) 1.06 (0.52) 1.63 (0.13) 0.43 (0.12) 61.16 (23.46)

HDL 0.49 (0.16) 1.83 (0.14) 80.45 (38.23) 3.39 (1.26) 1.74 (0.11) 1.28 (0.56) 84.38 (10.61)

FHS TC 0.24 (0.13) 1.92 (0.12) 51.17 (16.72) 1.05 (0.48) 1.62 (0.37) 0.42 (0.11) 51.69 (11.77)

TG 0.25 (0.17) 1.98 (0.15) 59.41 (17.72) 0.99 (0.35) 1.91 (0.46) 0.45 (0.13) 50.78 (10.72)

Height 0.68 (0.16) 1.75 (0.16) 71.14 (13.80) 2.27 (1.12) 4.13 (1.18) 1.56 (0.18) 71.62 (11.89)

Weight 0.59 (0.13) 1.61 (0.15) 72.66 (12.15) 2.28 (1.11) 1.95 (0.34) 1.61 (0.10) 79.67 (15.04)

BMI 0.47 (0.10) 1.71 (0.13) 76.08 (15.28) 2.31 (1.13) 2.35 (0.27) 1.57 (0.17) 75.15 (14.91)

The computational time is in hours. Values in parentheses are standard deviations. Mean and standard deviation are calculated based on 20 replicates. For MCMC-based methods (rjMCMC, BVSR,

BayesR, and DPR.MCMC), the computational time is based on 50,000 iterations of Metropolis Hastings steps for BVSR, reversible jump steps for rjMCMC, and Gibbs steps for BayesR and DPR.MCMC
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data sets. Similarly, a poor method that fails to capture the signal
in the training data may perform well in the validation data where
such signal is no longer relevant. Therefore, using training and
validating data that are both representative of the study popula-
tion is important to not only ensure a proper comparison among
methods but also to ensure the clinical relevance and wide
applicability of the prediction methods. Exploring the use of such
data is an important direction for future research.

DPR is not without its limitations. Perhaps the biggest
limitation is its computational cost. Like any other MCMC-based
approaches34, 35, 58, our Gibbs algorithm for fitting DPR is
computationally slow and can only be applied to moderate-sized
GWAS studies. To make DPR widely applicable, we have
explored the use of VB approximation for fitting DPR. VB
approximation obtains an approximate posterior distribution
through optimization59 and represents a much faster alternative
to MCMC sampling. Indeed, DPR.VB is orders of magnitude
faster than DPR.MCMC. However, despite its faster computa-
tional speed, the VB algorithm is less accurate than MCMC
when SNP heritability is large, sometimes by quite a large margin
(e.g., PVE= 0.80 in simulations). The loss of accuracy in VB
is not unexpected because our VB assumes that the posterior
distributions of the SNP effect sizes are independent from each
other. Posterior independence is an unrealistic assumption given
that SNP genotypes are correlated through LD. Therefore, it is
important to explore alternative VB algorithms to incorporate the
posterior correlation among effect sizes, by, for example, adapting
algorithms developed elsewhere60, 61. It would be ideal if we could
develop algorithms that can achieve a high predictive perfor-
mance as DPR.MCMC but incurs a small computational cost as
DPR.VB. Certainly, besides developing alternative algorithms to
MCMC, there is still room for improvement on our MCMC
algorithm. For example, we could use all individuals to compute
some quantities while use only a subset of individuals to compute
other quantities, as in our previous MQS method62, in order
to reduce the computational burden while maintaining the
accuracy of the algorithm. In any case, developing efficient and
accurate algorithms likely represents a key step to adapt existing
polygenic methods to association studies that are orders of
magnitude larger.

Methods
Overview of DPR. We provide a brief overview of DPR here. Detailed methods
and algorithms are provided in the Supplementary Note. To model the relationship
between phenotypes and genotypes, we consider the following multiple regression
model

y ¼ Wαþ Xβ þ ϵ; ϵ � N 0; σ2e In
� �

; ð1Þ

where y is an n-vector of phenotypes measured on n individuals; W is an n by c
matrix of covariates including a column of 1 s for the intercept term; α is a c-vector
of coefficients; X is an n by p matrix of genotypes; β is the corresponding p-vector
of effect sizes; ε is an n-vector of residual errors where each element is assumed to
be independently and identically distributed from a normal distribution with
variance σ2e .

Like many previous methods9, 19, 28, 34, 41, we assume that the effect size of
ith SNP, βi, follows a normal distribution with variance σ2, i.e., βi ~N(0, σ2).
Unlike previous methods, however, we specify a non-parameter prior on the hyper-
parameter σ2 to induce a non-parametric prior on βi. To motivate our prior choice
for σ2, it helps to provide a brief review of the previous polygenic prediction
methods. Among the many polygenic prediction methods developed recently, a
surprisingly large number of them assume a priori that the effect sizes follow a
particular class of prior distribution—the scale mixture of normal distributions63.
Specifically, these methods assume that each effect size βi follows a normal
distribution βi ~N(0, σ2), with the variance parameter (i.e., the scale parameter) σ2

following another distribution p(σ2). The prior distribution on σ2, p(σ2), thus
differentiates many different predictive methods. For example, LMM assumes a
flat prior p(σ2) that is proportional to a constant9, 28. The Bayes alphabetic
methods assume that σ2 follows an inverse gamma distribution to induce a t-prior
on βi

10, 18, 64. The Bayesian lasso assumes that σ2 follows a Rayleigh distribution to
induce a double exponential distribution (a.k.a. Laplace distribution) on βi

30, 58.

NEG assumes an exponential gamma distribution on σ2 to induce an NEG prior on
βi
32. BVSR and BayesCπ assume a mixture of a point mass at zero with another flat

prior to induce a point-normal distribution on βi
29, 33. BSLMM assumes a mixture

of two point masses to induce a normal mixture distribution on βi
34. While BayesR

assumes a three point masses together with another point mass at zero on σ2 to also
induce a normal mixture distribution on βi

35.
The scale mixture of normal distributions is flexible because different

distributions on the scale parameter σ2 can be used to induce many smooth
unimodal distributions on βi. However, existing predictive methods explicitly make
a parametric prior assumption on σ2, which necessarily relies on a limited number
of parameters to characterize the distribution on σ2. Consequently, the induced
effect size distribution on βi from a parametric prior on σ2 can be restrictive and
may sometimes fail to resemble closely the unknown truth effect size distribution
underlying complex traits. Motivated by the potential drawback of parametric
priors on σ2, we instead develop a non-parametric prior distribution on σ2 to
induce a more flexible distribution on βi. Because a non-parametric distribution is
characterized by effectively infinitely many parameters, our induced effect size
distribution on βi has the potential to resemble a wide range of genetic
architectures and achieve robust predictive performance across a variety of traits.

Technically, we assume σ2 follows a Dirichlet process (DP) prior37–40

σ2 � G;G � DP H; λð Þ; ð2Þ

where H is the base distribution, and λ is the concentration parameter that
describes how the distribution on σ2, G, deviates from the base distribution. Here,
we use an inverse gamma distribution as the base distribution and set the two
parameters in the inverse gamma distribution to small values to keep the prior
relatively uninformative. We treat the concentration parameter λ as an unknown
hyper-parameter and intend to infer it from the data at hand. Because we use the
Dirichlet process as a prior for the latent variance parameter σ2 we refer to our
regression model based on Eqs. (1) and (2) as the latent Dirichlet Process
Regression, or DPR. The induced marginal distribution on βi (after integrating
out σ2) is also non-parametric and can robustly resemble a large classes of
unimodal distributions. Indeed, the distribution on βi can be used to adaptively and
accurately approximate a t-distribution, a point-t mixture distribution, a mixture of
step functions, as well as the marginal effect sizes estimated from a real data set;
whereas a normal distribution cannot (Fig. 1). Therefore, our prior distribution on
the effect size can adaptively approximate a wide range of possible effect size
distributions underlying complex traits. Since accurate modeling of the effect size
distribution is a key to achieve accurate prediction performance24, 34, 36, we expect
our non-parametric model to perform robustly well across a range of polygenic
architectures.

It is important to point out that our modeling assumption on the effect sizes βi
is also mathematically equivalent to a Dirichlet process normal mixture, which is a
mixture of normal distributions with infinitely many normal components.
Specifically, using the stick-breaking constructive representation of the Dirichlet
process59, we can re-write our modeling assumption on βi in an equivalent form as

βi �
P

þ1

k¼1

πkN 0; σ2k
� �

;

πk ¼ νk

Q

k�1

l¼1

ð1� νlÞ; νk � Beta 1; λð Þ;

ð3Þ

where λ is the same concentration parameter as in Eq. (2), and determines the
number of normal components in the model and subsequently the model
complexity59. Each σ2k in the above equation follows the base distribution H.
From the normal mixture equivalence aspect, our method effectively generalizes
many previous methods18, 34, 35 that use a fixed, often small, number of normal
components to using infinitely many normal components a priori. Although the
prior number of normal components in our model is infinite, the posterior number
of components for any given data set will be finite, and can be automatically
inferred based on the data at hand. Therefore, our model has the potential to adjust
the model complexity according to the data complexity, and has the potential to
adapt to a wide range of polygenic architectures.

To fit our model, we develop two complementary algorithms: one is based on
the MCMC algorithm, and the other is based on the VB approximation. The
MCMC sampling algorithm, which we refer to as DPR.MCMC, is accurate but
computationally slow. The VB algorithm, which we refer to as DPR.VB, is
computationally fast, but, as we will show in the results, is often less accurate. The
two algorithms provide users the choice of speed vs. accuracy. The details of the
two algorithms are provided in Supplementary Note.

Simulations. We used genotypes from an existing cattle GWAS data set17 with
5024 individuals and 42,551 SNPs and simulated phenotypes. To cover a range of
possible genetic architectures, we consider eight simulation settings from four
different simulation scenarios to cover a range of possible genetic architectures:

Scenario I satisfies the DPR modeling assumption, where all SNPs are causal
and SNPs in different effect-size groups have different effects. Specifically, we
randomly selected 10 group-one SNPs, 100 group-two SNPs, 1000 group-three
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SNPs, and set the remaining SNPs as group-four SNPs. We simulated SNP effect
sizes all from a standard normal distribution but scaled their effects in each group
separately so that the proportion of genetic variance explained by the four groups
are 0.05, 0.15, 0.20, and 0.60, respectively. We set the total proportion of
phenotypic variance (PVE; i.e., SNP heritability) to be either 0.2, 0.5, or 0.8,
representing low, moderate, and high heritability, respectively. This simulation
scenario consists of one simulation setting for each PVE.

Scenario II satisfies the BayesR modeling assumption, where a small proportion
of SNPs are causal. These causal SNPs come from three effect-size groups. The
simulations were similar to scenario I with the only exception that the group-four
SNPs have zero effects. Here, the proportion of PVE by the three groups are 0.1,
0.2, and 0.7, respectively. Again, we set the total PVE to be either 0.2, 0.5, or 0.8.
This simulation scenario consists of one simulation setting for each PVE.

Scenario III is similar to Scenario I except that SNPs come from two effect-size
groups, thus representing a simpler scenario than I. In particular, we selected
either c= 10, 100, or 1000 SNPs as group-one SNPs and set the remaining SNPs as
group-two SNPs. We simulated their effect sizes from a standard normal
distribution and scaled their effects in each group separately so that the proportion
of PVE by the two groups are 0.2 and 0.8, respectively. Again, we set the total PVE
to be either 0.2, 0.5, or 0.8. This simulation scenario consists of three simulation
settings for each PVE (c= 10, 100, or 1000).

Scenario IV is related to the assumption made in LMM and MultiBLUP. Here,
all SNPs have non-zero effects and their effect sizes come from either a normal
distribution, a t-distribution with four degrees of freedom, or a Laplace
distribution. We scaled their effect sizes further so that the total PVE equals 0.2,
0.5, or 0.8. This simulation scenario consists of three simulation settings for each
PVE (normal, t, or Laplace).

In each setting, we performed 20 simulation replicates. In each replicate,
we randomly split the data into a training data with 80% individuals and a test
data with the remaining 20% individuals. We then fitted different methods on
the training data and evaluated their prediction performance on the test data
(i.e., Monte Carlo cross validation).

GEUVADIS data. The GEUVADIS data42 contains gene expression measurements
for 465 individuals from five different populations: CEPH (CEU), Finns (FIN),
British (GBR), Toscani (TSI), and Yoruba (YRI). Following previous studies65, we
focused only on protein coding genes and lincRNAs that are annotated from
GENCODE66 (release 12). We removed lowly expressed genes that have zero
counts in at least half of the individuals and obtained a final set of 15,810 genes.
Afterwards, following previous studies67, we performed PEER normalization to
remove confounding effects and unwanted variations. In order to remove potential
population stratification, we quantile normalized the gene expression measure-
ments across individuals in each population to a standard normal distribution, and
then quantile normalized the gene expression measurements to a standard normal
distribution across individuals from all five populations. In addition to the gene
expression data, all individuals in GEUVADIS also have their genotypes sequenced
in the 1000 Genomes Project. Among the sequenced genotypes, we filtered out
SNPs that have a Hardy-Weinberg equilibrium (HWE) p-value < 10−4, a genotype
call rate < 95%, or an MAF< 0.01. We retained a total of 7,072,917 SNPs for
analysis. We intersected these SNPs with imputed SNPs from WTCCC data4

(see below; for the purpose of performing gene set tests) and kept a final set of
2,793,818 overlapping SNPs for analysis. Then, for each gene in turn, we obtained
its cis-SNPs that are located within either 100 kb upstream of the transcription
start site or 100 kb downstream of the transcription end site, resulting in an average
of 175 cis-SNPs per gene.

WTCCC data. The WTCCC4 1 data consists of about 14,000 cases from seven
common diseases and 2938 shared controls. The cases include 1963 individuals
with type 1 diabetes (T1D), 1748 individuals with Crohn’s disease (CD), 1860
individuals with rheumatoid arthritis (RA), 1868 individuals with bipolar disorder
(BD), 1924 individuals with type 2 diabetes (T2D), 1926 individuals with coronary
artery disease (CAD), and 1952 individuals with hypertension (HT). We obtained
quality controlled genotypes from WTCCC and imputed missing genotypes using
BIMBAM68. We obtained a total of 458,868 SNPs shared across all individuals. We
then further imputed SNPs using the 1000 Genomes as the reference panel with
SHAPEIT and IMPUTE269. We filtered out SNPs that have a HWE p-value < 10−4,
a genotype call rate < 95%, or an MAF < 0.01 to obtain a total of 2,793,818 imputed
SNPs. For PrediXcan analysis12, as in the GEUVADIS data (see above), we focused
on the same 15,810 genes. As in ref. 12, we further restricted our association
analysis on a set of 4343 genes that have a predictive R2 above 0.01 by all predictive
methods.

Cattle data. The cattle data17 consists of 5024 samples and 42,551 SNPs after
removing SNPs that have a HWE p-value < 10−4, a genotype call rate <95%, or an
MAF< 0.01. For the remaining SNPs, we imputed missing genotypes with the
estimated mean genotype of that SNP. We analyzed three traits: MFP, MY, and
SCS. All phenotypes were quantile normalized to a standard normal distribution
before analysis.

Maize data. The maize data15 consists of 2267 inbred accessions and 98,385 SNPs
after removing SNPs that have a HWE p-value< 10−4, a genotype call rate <95%,
or an MAF < 0.01. For the remaining SNPs, we imputed missing genotypes with
the estimated mean genotype of that SNP. We used the GDDs to silking as the
phenotype in genomic selection. GDD was calculated using climate data from
weather stations located near the farms15, and was quantile normalized to a
standard normal distribution before analysis.

FHS data. The FHS data contains genotype data on 6950 individuals and 394,174
SNPs. We filtered out SNPs that have a HWE p-value < 10−4, a genotype call rate
<95%, or an MAF< 0.01 to obtain a final set of 387,741 SNPs. For these SNPs, we
imputed missing genotypes with the estimated mean genotype of that SNP. We
performed analysis on eight traits: five commonly used plasma traits that include
LDL cholesterol, GLU, HDL cholesterol, TC, and TGs; and three anthropometric
traits that include height, weight, and BMI. Each trait was quantile normalized to a
standard normal distribution before analysis. Note that the FHS data is a family-
based study where individuals are genetically related. To tease apart the influence
of individual relatedness on prediction performance among methods, we also
divided the samples in FHS into two separate data sets with different levels of
relatedness. Specifically, we first used genotypes to compute the genome-wide
genetic relatedness matrix. We then ordered individual pairs based on their genetic
relatedness values. From top to bottom of the ordered individual pair list, we
selected individuals from individual pairs with high levels of relatedness into a data
set D1, and continued this process until the sample size of D1 was half of the full
data. We then kept the remaining individuals from individual pairs with low
levels of relatedness into a data set D2. The relatedness threshold for separating
individual pairs between the two data sets was 0.151. Nevertheless, the majority
pairs in D1 and D2 have genetic relatedness values close to zero: 99.6% of pairs in
D1 and 99.9% of pairs in D2 have a genetic relatedness value between +/−0.01.
As another way of measuring relatedness, we also computed the effective number
of chromosome segments (Me)

49 in the two data. Me is a crucial parameter that
measures the effective number of independent SNPs and is also closely related to
the effective number of independent individuals: Me is small in a data with related
individuals and is large in a data with unrelated individuals. A small value of Me

often correlates to high prediction accuracy48, 49, 70. With 20 cross-validation
replicates, we estimated Me in D1 and D2 sub data to be 34541.39 (sd= 140.87)
and 81786.01 (sd = 651.52), respectively.

Other methods. We compared the performance of DPR.MCMC and DPR.VB
mainly with five existing methods: (1) LMM28 as implemented in the GEMMA
software (version 0.95alpha); (2) BVSR29 as implemented in the GEMMA software
(version 0.95alpha); (3) MultiBLUP41 as implemented in the LDAK software
(version 4.9); (4) BayesR35 as implemented in the bayesR software; (5) rjMCMC20

as implemented in the gwas_rjmc1.163 software. We used default settings to fit
all these methods. For rjMCMC, because it requires us to provide a variance
component parameter, we used LMM to estimate the variance component first in
all analyses. In addition, rjMCMC does not output parameter estimates. Therefore,
for the PrediXcan analysis, we first merged the GEUVADIS and WTCCC files
for every gene, labeled WTCCC individuals as having missing phenotypes, and
then ran rjMCMC on these files to obtained predicted gene expression values
using the WTCCC genotype data. The same strategy was also applied to perform
cross-validation prediction between D1 and D2 sub data sets in FHS. For gene
expression prediction and PrediXcan analysis, following the original PrediXcan
paper12, we also used ENET44, which is implemented in the R package glmnet
(version 1.9-5). For ENET, following12, we set one penalty parameter (i.e., α) to be
0.5 and selected the other one using 100-fold cross validation in the training data.

Code availability. Our method is implemented in the DPR software, freely
available at http://www.xzlab.org/software.html.

Data availability. No data were generated in the present study. The GEUVADIS
gene expression data is publicly available at http://www.geuvadis.org. The genotype
data from the 1000 genomes project is publicly available at http://www.
internationalgenome.org. The WTCCC genotype and phenotype data is publicly
available at https://www.wtccc.org.uk. The genotype and phenotype data from the
cattle and maize studies are available from the authors upon reasonable request and
with permission of Prof. Xiaolei Liu at the HuaZhong Agriculture University
(xiaoleiliu@mail.hzau.edu.cn). The FHS genotype and phenotype data is available
in dbGaP (https://www.ncbi.nlm.nih.gov/gap) with accession number phs000007.
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