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Abstract
Questions: Can a statistical model be designed to represent
more directly the nature of organismal response to multiple
interacting factors? Can multiplicative kernel smoothers be
used for this purpose? What advantages does this approach
have over more traditional habitat modelling methods?
Methods: Non-parametric multiplicative regression (NPMR)
was developed from the premises that: the response variable
has a minimum of zero and a physiologically-determined
maximum, species respond simultaneously to multiple eco-
logical factors, the response to any one factor is conditioned
by the values of other factors, and that if any of the factors is
intolerable then the response is zero. Key features of NPMR
are interactive effects of predictors, no need to specify an
overall model form in advance, and built-in controls on
overfitting. The effectiveness of the method is demonstrated
with simulated and real data sets.
Results: Empirical and theoretical relationships of species
response to multiple interacting predictors can be represented
effectively by multiplicative kernel smoothers. NPMR allows
us to abandon simplistic assumptions about overall model
form, while embracing the ecological truism that habitat fac-
tors interact.

Keywords: Habitat model; Kernel smoothing; Larix occi-
dentalis; Lobaria; Local model; Non-parametric multiplica-
tive regression; NPMR; Picea glauca; Picea mariana; Re-
gression; Species response surface; Spruce.

Abbreviations: GAM = Generalized additive model; GLM =
Generalized linear model; NPMR = Non-parametric multipli-
cative regression.

Non-parametric habitat models with automatic interactions

McCune, Bruce

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331  USA;
E-mail Bruce.McCune@science.oregonstate.edu

Introduction

Eugene Odum (1971) stated Shelford’s ‘law’ of
tolerance as follows: “The presence and success of an
organism depend upon the completeness of a complex
of conditions. Absence or failure of an organism can be
controlled by the qualitative or quantitative deficiency
or excess with respect to any one of several factors
which may approach the limits of tolerance for that
organism.”

This straightforward and manifest statement has de-
fied a correspondingly simple and general statistical
representation with the traditional tools used by ecolo-
gists. These tools are unnecessarily constrained by
additivity of model terms and a limited array of func-
tional forms. The problems in applying simple linear
and logistic models to species responses to multiple
interacting predictors have been clearly stated (Kaiser et
al. 1994; Huston 2002; Cade & Noon 2003). This paper
demonstrates how non-parametric multiplicative regres-
sion (NPMR) provides a simple, effective solution to
the problem of representing empirical species response
surfaces in a multidimensional niche space. Interactions
among predictors are accommodated automatically and
the overall form of the response surface need not be
specified.

Habitat models describe how variation in species
performance relates to one or more predictors. Meas-
ures of species performance include presence-absence,
abundance, physiological rates, and demographic pa-
rameters (e.g. nesting success). Commonly used predic-
tors include environmental variables (including biotic
variables), site characteristics, time since disturbance,
and other descriptors of disturbance regime.

Habitat models can take both conceptual and statis-
tical forms. Conceptual habitat models have been forma-
tive in ecological theory, for example, the Hutchinso-
nian niche, an n-dimensional hypervolume (Hutchinson
1957), and Whittaker’s diagrams of species responses
to environmental gradients (e.g. Whittaker 1956). Statis-
tical habitat models have been made for many species of
particular concern. These models describe the important
factors underlying a species’ distribution and abundance,
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inform management decisions for rare or threatened
species, and allow comparison of probable outcomes of
alternative management strategies.

Ecologists readily grant complex species response
functions in theory, but often use simplistic forms (lin-
ear or logistic; Rushton et al. 2004) that cannot hope to
capture the complexity of a species in relationship to its
habitat (Kaiser et al. 1994; Heglund 2002; Huston 2002).
These simple forms do not accommodate the widely-
accepted view that species have hump-shaped responses
to environmental gradients. These hump-shaped response
curves are implicit in Shelford’s law of tolerance. Of
course non-linear transformations of environmental gra-
dients, such as Gaussian logistic regression (Huisman et
al. 1993), can render hump-shaped response functions
within the framework of linear models, but still con-
strain the model to particular functional forms. General-
ized additive models (GAMs, e.g. Maravelias & Reid
1997; Mysterud et al. 2001; Begg & Marteinsdottir
2002) offer a more flexible approach by combining
smoothing functions, though interactions must still be
modelled explicitly (e.g. Ciannelli et al. 2004). Like-
wise, multivariate adaptive regression splines (MARS)
provide a flexible way to fit complex surfaces, including
the possibility of multiplicative basis functions that
should readily accommodate interactions (Friedman
1991; Hastie et al. 2001).

Multiplicative kernel smoothers can also be used to
represent the complexity of species responses to multi-
ple interacting predictors. This kind of model provides
two important advantages over other approaches: it
automatically represents predictor interactions by com-
bining predictors multiplicatively, such that the effect of
one predictor can covary in a complex way with other
predictors, and it requires no assumptions about the
overall shape of the response surface. It accepts that
complex interactions may result in the response surface
in one part of the predictor space having no simple
functional relationship to responses elsewhere in the
predictor space. The chief disadvantages of multiplica-
tive kernel smoothers are that the response surface must
be fitted with a computationally intensive trial-and-
error method and the results do not include an equation
relating the response to the predictors. Instead, interpre-
tation must rely on graphical visualization, measures of
fit, and sensitivity analysis for individual predictors.
Using these models in an explorative way informs, but
does not preclude, parametric modeling. Having ex-
plored the response surface in a multidimensional space,
one can then sensibly choose an appropriate functional
form and proceed with non-linear regression or a gener-
alized linear model, if desired.

The extension of kernel smoothing multiplicatively
into many dimensions, and its combination with cross-

validation, provides an easy, intuitive way to fit parsi-
moniously a species response surface to multiple pre-
dictors. A few papers in the literature have used similar
smoothers, but differ in important ways from the method
proposed here. Gignac et al. (1991a, b) generated 3D
response surfaces for species abundance from gridded
abundance data along environmental gradients, using
distance-weighted means. Limitations to that approach
included an arbitrarily selected (rather than optimized)
search radius, arbitrary treatment of zeros and outliers,
and no cross-validation. Locally-weighted smoothing
(or regression) using the LOWESS method has been
applied to habitat models in two and three dimensions
(Huntley et al. 1989, 1995). These models were effec-
tive but had several drawbacks: (1) restriction to two or
three pre-selected predictors instead of a conducting a
free search for the best model using an indefinite number
of variables from a pool of available predictors, (2)
choosing the smoothing parameter for each predictor
arbitrarily, rather than simultaneously optimizing it in
all dimensions, and (3) fitting the model at fixed inter-
vals within the plane of predictors, with linear interpola-
tion between intervals, rather than fitting the model for
each data point.

Multiplicative models

Habitat models and other species response models
are most often additive, including those created by the
usual least-squares multiple linear regression, general-
ized linear models (GLMs, including logistic regres-
sion), and generalized additive models (GAMs). In the
latter two, using a log link function makes the log(mean)
an additive function of the predictors, but the mean is a
multiplicative function of the predictors. In GLMs and
GAMs, interactions are accommodated by terms includ-
ing more than one predictor. This paper proposes a form
of non-parametric multiple regression in which the re-
sponse is estimated from a multiplicative combination
of all predictors.

Consider an extreme hypothetical example where
we place an experimental population in the Antarctic,
with some amount of food and shelter. Our species
response variable, y, is the reproductive rate, x1 is food,
and x2 is shelter. The model y = b1x1 + b2x2 + b0 says that
the reproductive rate is increased by the availability of
food and shelter, and that increasing either of these alone
can increase the reproductive rate. The simple additive
model comes to the erroneous conclusion that reproductive
rates will be high if the population has abundant food but
no shelter. Likewise, the model says the population will
reproduce if given lots of shelter but no food. Interaction
terms in linear models represent the curved response
surfaces that we expect from interacting predictors, but
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these surfaces are relatively simple functions (in the
simplest case, hyperbolic paraboloids) applied over the
whole predictor space. We have no reason to expect that
surfaces representing interactions will take this limited
range in form.

The simplest GAM for this problem would be:
g[µ(x)] = α + f1(x1) + f2(x2), where f is an unspecified
smooth function and g is a link function of µ (for
example g(µ) = µ is the identity link, or g(µ) = log(µ) is
a log link). With the latter, the model is in one sense
multiplicative, in that µ = eα · e f

1
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1
) ∑ e f

2
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2
), but it is still

additive in that the effects of food and shelter are added
independently to estimate the log of the reproductive
rate. In biological terms this means that the effect of
food on log(µ(x)) does not depend on shelter and vice-
versa. It makes only slightly more sense for the log of
the mean response to be an additive result of food and
shelter than for the mean to be an additive result. On the
other hand, if our interest is in µ rather than log(µ), then
in the multiplicative form, if x1 is highly unfavourable,
differences in x2 will have little effect on µ. A more
direct GAM for the Antarctic example is g[µ(x)] = f(x1,
x2), with the constant set to zero (no reproduction) and
using a non-parametric smoothing function combining
x1 and x2 interactively and multiplicatively. GAM with
interaction terms is challenging (e.g. see Ciannelli et al.
2004), out of reach for most of the grassroots practition-
ers of habitat modeling. A simpler, more intuitive ap-
proach uses multiplicative kernel smoothers to allow the
effect of each predictor to depend on the value of other
predictors, without needing to specify those interac-
tions. This is non-parametric multiplicative regression
(NPMR). The method is implemented in easy-to-use
software in HyperNiche (McCune & Mefford 2004).

Non-parametric models

Ecological theory does not reliably inform us as to
how a particular species responds to a particular habitat
factor, much less to combinations of interacting factors.
In general, however, we expect species responses to
multiple factors to be complex, including non-linear,
asymmetric, and multimodal responses. While these
challenges are readily addressed in models of species
response to a single factor, the problem becomes
exponentially more difficult as the dimensionality of the
data increases. This is the ‘curse of dimensionality’
(Bellman 1961).

Yet assumptions about the shape of a species re-
sponse to environmental variables are central to any
predictive parametric model (Austin 2002). NPMR cir-
cumvents this; predictive modeling can be effective with-
out making any assumptions about the shapes of species
responses to ecological factors or to their interactions.

Non-parametric multiplicative regression

This section derives the logic for using a multiplica-
tive kernel smoother from basic biological principles.
The goal is to provide an intuitive biological basis for
the statistical approach. The method is then compared
with additive models in three examples.

We seek to describe or predict an organism’s per-
formance in relationship to its environment. An organ-
ism’s ‘environment’ includes not just abiotic factors,
but also its biotic environment, including competition,
predation, and disease. Assume further that we are meas-
uring organismal or population performance in relation
to environmental variables, and that performance has a
minimum of zero and increasing into the positive real
numbers. Some examples are population density, areal
cover, rate of reproduction, and rate of respiration. The
following treatment pertains to this class of variables
representing organismal performance.

Axioms

1. Performance of a species has a maximum set by
physiology and morphology. The maximum is
fuzzy, rather than a set value, because of genetic
variation among individuals. This axiom refers to
short, ecological time scales, excluding the possi-
bility of evolution.

2. As environmental factors weaken performance, a
population collapses (its organisms die) and per-
formance is minimized at zero.

3. Organisms respond simultaneously to many envi-
ronmental factors.

4. If any single factor or combination of factors is
intolerable, then the organisms in a population die
and performance is zero, regardless of the values of
other environmental variables.

Definitions

Environmental space: A multidimensional space, the
m coordinates of the space defined by the m measured
environmental variables, including both biotic and abi-
otic variables. A particular point v in this environmental
space is thus the vector defining the value of each of the
m variables: [v1, v2 ... vm], where v can be any real
number. In habitat modeling, the environmental space is
used as the predictor space. It can be used as an opera-
tional definition of a niche space.

Species performance (yv): The performance of an indi-
vidual or population of individuals at point v in environ-
mental space, where yv ≥ 0.
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Environmental measurement (xij): The value of predic-
tor j for data point i.

Interaction: Response to predictor j depends on values
of other predictors.

Describing species performance in relationship to
environment

Usually we are interested in species performance
over a range of multiple environmental factors. We
collect a sample of species performance, along with
measured environmental factors (predictors) for n data
points in the environmental space. We build a response
surface of y from its relationship to m predictors in X.

y f x x xi m= ( )1 2, ,..., (1)

A multiplicative kernel smoother allows all predic-
tors to interact: the effect of each xj can vary with the
others, and the response surface in one region of envi-
ronmental space need not bear any relationship to the
response surface in other regions of that space.

We need to use data from near target point v to help
estimate the response at that point because (1) all of our
measurements have error, (2) we need to interpolate
between data points, and (3) we wish to borrow infor-
mation from nearby points to help estimate a response at
a particular target point, because in most data sets no
two cases will occupy the same point in environmental
space.

The tolerance (sj) of a species to a continuous
predictor j defines how broadly we borrow informa-
tion from nearby areas in the predictor space, while
attempting to estimate the value at a target point. If a
species is broadly tolerant to that factor, then we use
information from a large neighbourhood of data points,
while a species with narrow tolerance to that factor is
better represented by using only data points that are
close to the target point in the predictor space. A
smooth way of representing the neighbourhood of the
target point is to use a Gaussian weighting function
centred on the target point v, the function expressing
the weight (w) given to each sample point i in estimat-
ing the response at point v, based on the difference
between xi and v, scaled by the standard deviation
(tolerance) to that predictor:

w eij

x v sij j j
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2

2
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This univariate weighting function (the kernel; Bow-
man & Azzalini 1997; Hastie et al. 2001) specifies the
weight (wij) for an observation of a single predictor j
at sample unit i, drawn from the matrix X of n obser-
vations for m predictors. This weighting can take

various forms, but this Gaussian function is simple
and intuitive. The standard Gaussian probability den-
sity function was modified so that the peak height is
always one and the area under the curve varies. Note
that use of Gaussian weights does not limit the global
model to Gaussian forms; the weighting function is
largely independent of the global model. Other
weightings can be used, for example, a uniform weight
of one within an observational window of a specific
optimized width, and zero weight outside the window
(McCune et al. 2003), but this gives a relatively
rough response surface.

With categorical predictors a different approach
is needed. The simplest method is to apply binary
weights: an observation is given full weight for a
given predictor if xij and the target point were as-
signed to the same category (wij = 1 if xij = vj);
otherwise, that observation is given zero weight in
estimating the response at point v (wij = 0 if xij ≠ vj).
An intriguing refinement would be to allow fuzzy
categories, such that weights between zero and one
are allowed for categorical predictors.

The multiplicative local mean estimator

We can then estimate the response y at target point v
as:

ŷ
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This is a local mean estimator extended multipli-
catively to m dimensions. In words, the estimate of the
response is an average of the observed values, each
value weighted by its proximity to the target point in the
predictor space, the weights being the product of weights
for individual predictors. The model allows interac-
tions, because weights for individual predictors are com-
bined by multiplication rather than addition. A key
biological feature of the model is that failure of a popu-
lation with respect to any single dimension j of the
predictor space results in failure at point i, because the
product of the weights for point i is zero if any wij = 0.

If point v is one of the n sample points, from which
the response is estimated, we can reduce overfitting by
excluding point i when it is the same as point v:
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The notation i ≠ v indicates that if the target point v is
one of the calibration data points, then it is excluded
from the basis for the estimate of yv. This is the funda-
mental equation for cross-validated local mean NPMR.
Local linear NPMR is the same except that it is based on
a locally weighted linear relationship (App. 1), rather
than a local mean. The local model can take other forms,
such as logistic or more complex polynomials.

With multiple categorical predictors, an observation
is given full weight only if the target point matches all
categorical predictors, otherwise the observation is given
zero weight. With mixed categorical and quantitative
predictors, the weights are multiplied as usual.

Multiplicative kernel smoothers are not new (e.g.
Bowman & Azzalini 1997; Hastie et al. 2001), but this
special form is noteworthy for ecologists modeling abun-
dance or other performance variables with zero as a
natural lower bound. It simply represents the axiom that
organisms must simultaneously meet all environmental
challenges or die.

NPMR is, therefore, a particular class of smoothing
functions, in which an estimate for a particular target
point in predictor space is made by combining informa-
tion from observations nearby in the predictor space.
The closer a data point is to the target point, the more
weight is given to information from that point. How
rapidly weights diminish with distance can be tuned for
each predictor with a smoothing parameter, in this case
the standard deviation of the Gaussian curve (‘toler-
ance’ sj to a predictor j). Selecting a large standard
deviation is comparable to having a broad window;
conversely a small standard deviation gives appreciable
weight only to observations that are very close to the
target point in the predictor space. The Gaussian func-
tion is scaled to the predictor by arbitrarily setting one
standard deviation equal to one sixth of the range of the
predictor, thus representing a Gaussian curve with ± 3
standard deviations over the range of the predictor.
Then for each predictor, sj is set to maximize fit, subject
to model fitting constraints described below.

For every point estimate of the response variable one
can calculate a neighbourhood size (nv*), the amount of
data bearing on that particular estimate:
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where 0 < n* ≤ n for a Gaussian kernel. If n* = 0, as is
possible with some other kinds of kernels, then no
estimate is possible for that point because no data apply
to it. Setting a minimum n* required for an estimate
protects against estimating a response in a region of the
predictor space with insufficient data.

Model fitting and evaluation

Fitting an NPMR model requires simultaneous se-
lection of predictors and their tolerances from a pool of
available predictors, so as to maximize a measure of fit
while satisfying criteria for parsimony. This demands
an iterative search through a potentially enormous
number of possible models, which is accomplished with
the software HyperNiche (McCune & Mefford 2004).
Variables are added in forward stepwise fashion, at each
step making a grid search of variables and their toler-
ances. Variables already in the model are simultane-
ously evaluated for removal or change in tolerances
with the addition of a new variable.

Using leave-one-out cross-validated statistics for fit
reduces overfitting and results in more realistic error
estimates. Incorporating the cross-validation into not
just model evaluation but also model fitting expedites
the search for a parsimonious model. For quantitative
data, model fit can be evaluated by the size of the
residual sum of squares (RSS) in relationship to the total
sum of squares (TSS):
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This ‘cross R2’ differs from the traditional R2 because
data point i is excluded from the basis for estimating ŷi .
Consequently, with a weak model, it is not uncommon
for RSS > TSS and xR2 < 0. This method is similar to the
use of G-values (Agterberg 1984; Gotway et al. 1996;
Guisan & Zimmerman 2000).

For binary response data (presence-absence) a meas-
ure of fit was sought that could be applied to any method
of estimating likelihood of occurrence and would avoid
the arbitrary conversion of continuous estimates of prob-
ability of occurrence into a statement of ‘present’ or
‘absent’ (Fleishman et al. 2003). The xR2 is inappropri-
ate in this case because the goal is to estimate probabili-
ties from presence-absence data, rather than producing
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estimates that exactly match the data. Log likelihood
ratios met these criteria, expressing model improvement
over a ‘naïve model’. A naïve model is simply that our
best estimate of the probability of encountering a species
in a study area is the average frequency of occurrence of
that species in the data. The ratio of the likelihood of the
observed values (y = y1, y2, … yn) under the fitted model
(M1) to the likelihood of the result under the naïve
model (M2) is given by:

B
p M

p M12
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=
( )
( )
y

y (7)
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and ŷi  corresponds to the fitted values for the likelihood
of occurrence under each model, Mj, j = 1,2.

Formal hypothesis testing with log-likelihood ratios
requires that the parameters for one model be nested
within the other and incorporates the difference in de-
grees of freedom between the two models. Log10B is
applied here, however, as a descriptive statistic in the
sense of ‘weight of evidence’, similar to a Bayes factor
(Kass & Raftery 1995), rather than a formal hypothesis
test. LogB differs from a Bayes factor in that a Bayes
factor is based on the marginal distribution of y given
the prior model (the naïve model in this case), while
logB is a simple log likelihood ratio for the two models,
inverted so that as the weight of evidence increases,
logB increases. Values of logB reported here from NPMR
models are based on cross-validated estimates from the
M1 using a leave-one-out strategy. LogB can be inter-
preted as the ratio of the likelihood of cross-validated
estimates from the fitted model to estimates from the
naïve model expressed in powers of ten. LogB is nega-
tive when cross-validated estimates from the fitted model
are worse than the naïve model. The same rationale can
be applied to the difference between logB values calcu-
lated for each of two competing models of interest.
Because logB is unbounded, it can be quite large when a
strong relationship is modelled with a very large data
set. The average contribution of a sample unit to logB,
10(logB)/n, can be used to describe the strength of rela-
tionship, independent of sample size.

Controlling flexibility and parsimony

Selecting the best model from the multitude of mod-
els with many predictors can lead to overfitting the data.
Overfitting is particularly problematic with small data
sets, a large number of predictors relative to the sample

size, or clumped sampling from the predictor space. The
NPMR models presented here control overfitting in
several ways simultaneously: built-in cross validation
during model fitting, a flexibility control, and setting
parsimony criteria to control inclusion of predictors.
Each control restricts a different aspect of overfitting.
Flexibility of the response surface can be controlled by
setting a minimum acceptable average neighbourhood
size, N*, where N* is the average of ni*. Stiff curves
(large N*) are needed with small data sets or clumped
data distribution along important habitat dimensions.
More flexibility is allowable with large high-density
data sets. A reasonable starting point is to set minimum
N* = 0.05(n).

Parsimony in number of predictors is partly control-
led by cross-validation and partly by the minimum N*.
It can be further controlled by setting an improvement
criterion, expressed as a percentage improvement in
model fit when a new predictor is added. This criterion
is particularly important for parsimonious models with
large data sets. One can also set a minimum
data:predictor ratio, an effective criterion for small
data sets. For quantitative responses, the data:predictor
ratio is the number of sample units divided by the
number of predictors in the model. For binary re-
sponses, the data:predictor ratio is the number of obser-
vations in the least represented category (presences or
absences) divided by the number of predictors in the
model. Some suggest a minimum ratio of 10 for binary
data (Harrell et al. 1996). Using all four parsimony
criteria simultaneously is effective because each con-
trols different aspects of overfitting. With a forward
stepwise search, as soon as any one of the criteria cannot
be met, the search for additional predictors stops.

Sensitivity analysis

Here ‘sensitivity analysis’ evaluates the relative im-
portance of particular predictors within a model. This is
particularly important in non-parametric regression, be-
cause we have no fixed coefficients or slopes to compare.

A general way to evaluate the importance of indi-
vidual predictors is to nudge up and down observed
values for individual predictors, and measure the result-
ing change in the estimated response for that point. By
accumulating those sensitivities across all data points,
one can evaluate the sensitivity of the model to each
predictor. The greater the sensitivity, the more influence
that variable has in the model.

The change in the response can be measured as a
fraction of the observed range of the response variable,
|ymax –ymin|. Scaling the differences in response and
differences in predictors to their respective ranges al-
lows a sensitivity measure (Qj for predictor j) that is a
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ratio, independent of the units of the variables:

Q
y y y y

n y yj

i i
i

n

i
i

n

=
− + −

−

+
=

−
=

∑ ∑ˆ ˆ ˆ ˆ

max min

1 1

2 ∆
(9)

where ŷi+  and ŷi−  are the estimates of the response

variable for case i, having increased or decreased, re-
spectively, the predictor by an arbitrarily small value ∆
(here ∆ = 0.05, i.e. 5% of the range of predictor j). With
the formula above, a Q = 1.0 means that on average,
nudging a predictor results in a change in response of
equal magnitude; Q = 0.0 means that nudging a predic-
tor has no detectable effect on the response. Sensitivity
can also be calculated in a similar way from the root
mean square of the differences, rather than the absolute
differences.

Statistical significance

Statistical significance of a model derived by NPMR
can be evaluated by a randomization test obtained when
the vector of response values is shuffled, randomly
reassigning their relationships to the predictor matrix.
This is a simple, readily justified approach for multiple
regression, though other kinds of randomizations are
needed for particular experimental designs (Manly 1997,
pp. 156-157). Bootstrap methods could also be applied,
but more assumptions are made and caution is needed
with small sample sizes (Westfall & Young 1992, p.
142-143; Manly 1997). The following procedure tests
the null hypothesis that the fit of the selected model is no
better than could be obtained by chance alone, given an
equal number of predictors selected from the same pool
of variables. The relationship between predictors and
the response variable is destroyed by shuffling the val-
ues of the response variable, then repeating the same
model fitting procedure as used with the unshuffled
data, then calculating the fit. The same pool of predic-
tors is used, but with the additional constraint that the
model with the randomized data should have no more
predictors than the model being evaluated. After repeat-
ing this many times, the proportion of randomization
runs that results in an equal or better fit is used as the p-
value for the test.

Example with synthetic data

Fitting models to data sets with known underlying
structure provides insights into the performance of dif-
ferent modeling approaches. The following example
combines simple responses to two predictors. NPMR
models were fit with HyperNiche (McCune & Mefford

2004); logistic and linear models were fit with SPSS
ver. 11.5; GAM with S-PLUS ver. 6.2. The response
function simulates the known response of biomass of
nitrogen-fixing lichens (primarily Lobaria oregana) in
western Oregon to elevation and stand age.

Biomass of Lobaria has a sigmoid response to stand
age. Slow to establish in clear-cut or burned forests,
Lobaria increases on optimum sites to a plateau averag-

Fig. 1.A. Hypothetical response surface from combined
Gaussian and sigmoid functions (Eq. 10), representing bio-
mass of epiphytic nitrogen-fixing lichens in relation to eleva-
tion and stand age on the west slope of the Cascade Range.
B. Multiple linear regression (MLR) model fit to a random
sample of the hypothetical response surface. The model has
two main predictors, a quadratic elevation term, and interac-
tions between stand age and the two elevation terms (adj. R2 =
0.43). C. Local mean NPMR model fit to the same random
sample (xR2 = 0.97).  The small dropout from the surface had
insufficient local data to fit the model.
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ing about 1.5 T/ha by about age 200 years (McCune
1993; Berryman 2002). Lobaria has the classic hump-
shaped response to elevation, being rare at low eleva-
tions and dropping out completely at high elevations,
but abundant between 500-1000 m (McCune et al. 2003).

A noiseless response surface was designed that in-
corporates these two predictors, elevation and stand age.
The surface multiplies a sigmoid function by a Gaussian
function (Fig. 1A):

y
e

e
e

a b x

a b x

a x b=
+

⎛

⎝⎜
⎞

⎠⎟ ( )
− +

− +
− −( )

1 1 1

1 1 1

2 2 2
2

1 (10)

The first term is the sigmoid response to stand age (x1)
and the second term is the humped response to elevation
(x2). I then selected parameters to give a reasonable
surface for elevation in meters and stand age in years (a1
= 5, b1 = 0.03, a2 = .00001, b2 = 700), and multiplied by
1.52 to set ymax = 1.5 T/ha. This surface was randomly
sampled with 200 points and the response at each point
calculated with this equation. With this model, if either
stand age or elevation is unfavourable, then the species
is absent or nearly so.

A series of least-squares multiple linear regression
(MLR) models illustrates the difficulty of representing
even this simple two-predictor system with some tradi-
tional statistical tools, while the surface is easily fit by
GAM and NPMR. The hazards of the more commonly
used linear models are well known by statisticians but
often not appreciated by ecologists. The simplest and
most naïve model relating biomass to elevation and stand
age is a MLR with two terms and a constant: y = b1x1 +
b2x2 + b0. The fit of this model, a tilted plane, to the data is
expectedly poor (adj. R2 = 0.210), yet the terms for both
stand age and elevation differ significantly from zero.
With an interaction term, y = b1x1 + b2x2 + b3x1 x2 + b0, but
the fit is still poor (adj. R2 = 0.245). A residual plot reveals
the hump-shaped relationship with elevation that is not
being fit. Accommodating this with a quadratic term for
elevation and the interaction of the quadratic term with
stand age, we have
y = b1x1 + b2x2 + b3x2

2 + b4x1 x2 + b5x1 x2
2 + b0,

yielding an improved, yet weak model (adj. R2 = 0.428).
The resulting surface (Fig. 1B) starts to resemble our
known underlying model, but still leaves much to be
desired, as shown by the residuals plotted against stand
age and elevation (App. 2).

In contrast, both GAM and non-parametric multipli-
cative regression (NPMR) with a local mean and
Gaussian kernel easily captured almost all of the varia-
tion in the response variable using the two predictors,
elevation and stand age. The GAM (Poisson family, log
link, spline smoother) readily captures the response
surface (R2 > 0.99), because the log link effectively

decomposes the two multiplied underlying functions
and the smoothing splines capture their shapes. NPMR
closely reproduced the original response surface (Fig.
1C; xR2 = 0.975) and had no major problems in the
residuals (App. 2). Using other local models with NPMR
made little difference in fit (local mean with rectangular
kernel, xR2= 0.983; local linear with Gaussian kernel,
xR2= 0.988). The local linear model resulted in slightly
higher sensitivity to stand age (Q = 0.37 vs. Q = 0.24)
and slightly lower sensitivity to elevation (Q = 1.14 vs.
Q = 1.35) than did the local mean.

Example with real data

A second example illustrates a model fitting binary
(presence-absence) data for the tree Larix occidentalis
(Anon. 1999) to a suite of climate variables (Daly et al.
1994): mean January, July, and annual temperatures;
mean January, July, and annual precipitation; mean
relative humidity in January and July; and ‘wetdays’,
the mean number of wet days in a year. Larix occidentalis,
endemic to western North America, has a fairly small
geographic range (Fig. 2A). Presumably its range would
be more vulnerable to climate change than many other
tree species, as it appears to have relatively tight cli-
matic tolerances. The grids of climatic data and associ-
ated distribution data were randomly sampled with 2500
points between 43-49 °N and between 112-122 °W,
which includes the entire distribution of L. occidentalis
in the U.S. Similar climatic data were not available for
the Canadian portion of the range of the species.

NPMR using a local mean, Gaussian weights, and a
minimum N* = 100 found a two-predictor model with
logB = 261. The strongest predictors were wetdays (s =
9.1 days/year, Q = 1.54) and mean annual temperature (s
= 0.67 °C, Q = 1.10). The need for a hump-shaped
model appears in the distribution of occupied points in
this 2D slice through the sample space (Fig. 2B). The
best three-predictor model improved the fit to logB =
314. The two predictors remained with their previously
stated tolerances and average relative humidity in July
(s = 1.9%, Q = 0.65) was added. Including relative
humidity decreased the sensitivity to wetdays and tem-
perature to 1.22 and 1.06, respectively.

Because the sample size was so large, the cross-
validation penalty to logB was tiny. This resulted in an
asymptotic logB as predictors were added, rather than
the ultimate decline in cross-validated fit expected of
small data sets.

The response surface for the two-predictor model
showed a distinct interaction between wetdays and tem-
perature, as indicated by the diagonal ridge in the re-
sponse surface (Fig. 2D). The ridge was asymmetric,
with slopes varying from steep on the warm-wet side to



- Non-parametric habitat models with automatic interactions - 827

Fig. 2. A. Distribution of Larix occidentalis (green) in western North America and points used in the random sample. B. 2D slice
through the predictor space; Larix was present at solid points (black), absent at + (red). C. Response surface from two-predictor
GAM; gradient from black to green indicates likelihood of occurrence, with the greenest shade indicating the most favorable habitat.
D. Response surface from two-predictor NPMR model. E. Estimated probability of occurrence of L. occidentalis superimposed on
distribution map (black lines show range; gray lines are state boundaries).  Deeper green indicates a higher probability of occurrence.
Blue ellipses indicate areas where L. occidentalis is absent but potentially present, based on recent climate.
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gentle on the warm-dry and cool sides.
A GAM (binomial family, logit link, spline smoother)

with the two best predictors fit worse than NPMR with
the same predictors (logB for GAM vs. naïve model =
241, logB for NPMR vs. GAM = 20). Adding an interac-
tion term to the GAM gave only slight improvement.

Logistic regression (LR) of the same data set pro-
duced markedly poorer fits for a given number of pre-
dictors than did NPMR or GAM. Local mean NPMR
with three predictors yielded logB = 314. In contrast, LR
with forward stepwise selection from a pool of the nine
untransformed climatic variables yielded a three-pre-
dictor model with logB = 169 (calculated from omnibus
χ2 statistic in SPSS as log10B = χ2 / 4.60517). Including
two-way interactions among the four best predictors
improved this to logB = 210. Adding quadratic terms for
all predictors to the pool of predictors improved the best
three-predictor LR model to logB = 211. Further im-
provements might be had with LR, but the point is not
that a parametric model is impossible; rather that NPMR
provides an effective, rapid, model-free assessment of
the response surface, automatically allowing for inter-
actions. NPMR can be used as the final model, or it can
help to guide the design of an appropriate non-linear
model, GLM, or GAM by studying 2D or 3D slices of
the response surface.

Although the estimated likelihood of occurrence from
NPMR and the actual distribution of Larix corresponded
well (Fig. 2E), some differences emerged, suggesting
disequilibrium between its current distribution and mod-
ern climates. One can readily identify where Larix is
missing from areas that appear climatically favourable
for it – for example the east slope of the Cascades in
northern Washington. Most likely some factors other
than modern climate, perhaps historical climates or dis-
turbance regimes or both, have excluded the species.

Example with non-linear dynamics

Even a simple deterministic simulation model for two
species and one environmental factor can produce a re-
sponse surface that cannot be easily represented by stand-
ard habitat modelling tools. This is illustrated with a
dynamic model of Picea mariana (Black spruce) and
Picea glauca (White spruce) along a moisture gradient
(Apps. 3 and 4). In the model, P. mariana and P. glauca
increase in logistic fashion, following stand-replacing
disturbance. P. mariana has a broader tolerance to mois-
ture than does P. glauca, but P. glauca outcompetes P.
mariana on mesic sites. This results in a bimodal realized
niche for P. mariana, dominating on very dry and very
wet sites (Curtis 1959; Loucks 1962). I used difference
equations (App. 4) to generate a response surface on a
grid of 10 dates × 11 steps on a moisture gradient, then

used NPMR and GAM to fit statistical models to the
noiseless response surface.

In this case GAM performs worse than NPMR (de-
tails in App. 3) because no single curve shape permeates
either of the dimensions in the predictor space. In other
words, GAM appears to fall short when parallel slices of
the response surface along a given predictor have funda-
mentally different shapes, for example sigmoid on wet
sites and hump-shaped on mesic sites. With NPMR, on
the other hand, the curve shapes in one part of the multi-
dimensional response surface need not bear any relation-
ship to the shapes in other parts of the response surface.

Extensions to community analysis

So far NPMR has been applied only to problems
with a single response variable. NPMR opens a door,
however, to future improvements in multivariate analy-
ses of ecological communities. Species abundance data
have three properties in relationship to environmental
gradients that challenge multivariate statistical analysis
(Beals 1984; McCune & Grace 2002, pp. 35-43): the
zero truncation problem, ‘solid’ response curves, and
complex response shapes (including polymodality and
asymmetry). Together, these properties produce the ‘dust
bunny’ distribution of sample units in multidimensional
species space (McCune & Grace 2002) rather than a
multivariate normal distribution, demanding multivariate
tools capable of effectively representing grossly nonlinear
relationships. An ordination axis derived from commu-
nity data can be considered a synthetic gradient through
the dust bunny of sample units in species space. The
collective relationships of species to these gradients, fit
with NPMR, could be an improved basis for an optimi-
zation principle, replacing stress minimization in
nonmetric multidimensional scaling.

The immediate utility of NPMR, however, will be
improved empirical models of single species in relation
to the factors that influence them. NPMR allows us to
abandon simplistic assumptions about overall model
form, embracing the ecological truism that habitat fac-
tors interact.
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App. 1. The Local Linear Form of Non-parametric multiplica-
tive regression, NPMR.

A fault of the local mean estimator is that estimates near
the ends of the predictors are biased toward the central ten-
dency of the response variable (Bowman & Azzalini 1997, pp.
50-51). This occurs because the closer a target point is to the
edge of the sample space, the less data are available beyond
the target point. This bias can be removed by using a local
linear estimator rather than a local mean estimator (Bowman
& Azzalini 1997; Hastie et al. 2001). The local linear estimator
is a weighted least squares problem, the weights provided by
the kernel function such that points near the target point
receive more weight than points far from the target point.

Two important characteristics of LLR are: (1) bias is
reduced near the edges of the data set and (2) as the kernel
function becomes broad, the fitted curve will smoothly ap-
proaches traditional least squares regression. In contrast, the
local mean smoothly approaches a horizontal line parallel to
the predictor axis with an intercept equal to the global mean.

The local linear estimator can be represented in matrix
notation if we first create the design matrix Z containing the
predictors plus a first column of 1s. The predictors are trans-
formed by subtracting each value for a given variable from the
corresponding value for the target point. Z has n rows m+1
columns (variables). The ith row of Z has the elements:

[ 1 (x1i – v1) (x2i –v2) … (xji – vj) ] (A1-1)

We also create a n × n diagonal matrix of weights, W. In
NPMR the ith diagonal element of W is the product of the
weights for all variables j = 1 to m. For sample unit i, the
diagonal element is:

W Wij ij

j

m

= ∗

=

∏
1

(A1-2)

Then the local linear estimator is the first element of the
weighted least squares solution, b:

b = (Z'WZ)–1 Z'Wy (A1-3)

A separate regression is solved for each target point.
Despite the improved fit to responses near the ends of the

ranges of predictors, local linear models are less conservative,
because estimates of y can fall outside of its observed range.
This behavior can be particularly noticeable with small data
sets. In contrast, the local mean can never produce an estimate
outside the observed range of the dependent variable. In prac-
tice, the decision between LM- and LLR-NPMR is a tradeoff
between avoiding the known bias near the edges of the sample
space and avoiding the possibility of wild estimates in those
same regions. If the former is the more serious risk, then use
LLR-NPMR, while if the latter is possible, use LM-NPMR.
Small data sets are more safely modeled with LM-NPMR.

The tolerances (smoothing parameters) are related to the
importance of variables, but in different ways depending on
the local model. With local mean models, tolerance is in-
versely related to the importance of a variable. With local
linear models, this is not necessarily so, because a large
tolerance can be obtained in either of two conditions, a strong
globally linear effect, or a weak effect. On the other hand a
narrow tolerance in a locally linear model implies a strong
nonlinear global relationship.

App. 2.  Illustration of Residuals for Example 1. Unstandardized residuals from regressions of biomass of epiphytic nitrogen-fixing
lichens against (A) stand age and (B) elevation, based on a synthetic data set of known underlying structure. Residuals from least-
squares multiple linear regression (MLR) are large and strongly patterned, despite the inclusion of a quadratic term for elevation and
interactions with the quadratic and untransformed variables. Residuals from LM-NPMR against (C) stand age and (D)  elevation, are
small and only slightly patterned.
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App. 3. Example with Non-linear Dynamics.

Even a simple deterministic simulation model for two species
and one environmental factor can produce a response surface
that cannot be easily represented by standard habitat modeling
tools. This is illustrated with a dynamic model of Picea
mariana (Black spruce) and Picea glauca (White spruce)
along a moisture gradient. In the model, P. mariana and P.
glauca increase in logistic fashion, following stand-replacing
disturbance. P. mariana has a broader tolerance to moisture
than does P. glauca, but P. glauca outcompetes P. mariana on
mesic sites. This results in a bimodal realized niche for P.
mariana, dominating on very dry and very wet sites (Curtis
1959; Loucks 1962). Using difference equations in a
spreadsheet (App. 4), I generated a hypothetical response
surface representing cover of P. mariana in relationship to
moisture and time since disturbance (Fig. A3-1). I then used
NPMR and GAM to fit statistical models to the 110 values
representing response surface on a grid of 10 dates (10, 20, ...
100 years) by 11 steps on the moisture gradient.

Local-mean NPMR with minimum N* = 5.5 (5% of the
number of data points) yielded a reasonable facsimile of the
response surface with xR2 = 0.90 (Fig. A3-1B). A local linear
model improved xR2 to 0.93. Decreasing minimum N* to 1.0
improved xR2 to 0.96, but at higher risk of overfitting if error
were present in the data.

GAM (poisson family, log link, spline functions) yielded a
response surface that captured the behavior of P. mariana on
wetter sites, but missed the smaller hump of P. mariana on the
dry sites and the temporary rise and fall of P. mariana on
mesic sites (Fig. A3-1C). Even without a cross-validation
penalty, the R2 = 0.78 was lower than with NPMR. Adding an
interaction term to the GAM did not improve the fitted surface
or R2 appreciably (increment was 0.001). Similar results were
obtained using lowess instead of spline functions. In this case
GAM performs worse than NPMR because no single curve
shape permeates either of the dimensions in the predictor
space. In other words, GAM appears to fall short when parallel
slices of the response surface along a given predictor have
fundamentally different shapes, for example sigmoid on wet
sites and hump-shaped on mesic sites. With NPMR, on the
other hand, the curve shapes in one part of the multidimen-
sional response surface need not bear any relationship to the
shapes in other parts of the response surface.

Fig. A3-1. A. Dynamics of Picea mariana along a moisture
gradient, in competition with P. glauca, based on a determin-
istic difference equation model, plotted for ten decades at 11
points on the moisture gradient.  Each vertical slice represents
the change in P. mariana over time at a point on the moisture
gradient. B. Response surface fitted to the data in A using local
linear NPMR and Gaussian kernel, xR2 = 0.93. C. Response
surface fitted to the data in A using GAM (Poisson family, log
link, spline smoothing, R2 = 0.78).
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App. 4.  Formulation of the Black Spruce – White Spruce Simulation Model.

A simple deterministic simulation model for two species and one environmental factor can produce a response surface that is not
easily represented by standard habitat modeling tools. The four basic components of the system are Picea mariana (Black spruce),
Picea glauca (White spruce ), a moisture gradient, and time since disturbance.

The basic facts captured in the model are based on Curtis (1959) and Loucks (1962), who noted the bimodality of P. mariana
along moisture gradient in the boreal forest of eastern North America. Assume that P. mariana and P. glauca increase in logistic
fashion, following disturbance. P. mariana has a broader tolerance to moisture than does P. glauca, but P. glauca outcompetes P.
mariana on mesic sites, resulting in a bimodal realized niche for P. mariana on a moisture gradient, at least in older stands. P. glauca
cannot survive on very wet or very dry sites. Of course the system is more complex than this, but even this level of simplicity is
challenging enough for habitat models.

The key response surface to be simulated and used for statistical model tests is cover of P. mariana in relationship to moisture
and time since disturbance.

Variables
B = P. mariana cover (0-100%). Starting value = 1 at year 0.
W = P. glauca cover (0-100%). Starting value = 1 at year 0.
M = position on a moisture gradient (0=driest, 10=wettest)
t = time, increment set to one year

Parameters
75 Kb = carrying capacity of P. mariana
90 Kw = carrying capacity of P. glauca
0.15 rb = intrinsic maximum rate of increase in P. mariana, discrete, (%/yr)
0.20 rw = intrinsic maximum rate of increase in P. glauca, discrete, (%/yr)
-0.02 sb = tolerance of P. mariana to moisture gradient (more negative is steeper)
-0.10 sw = tolerance of P. glaucato moisture gradient
5 vb = optimum of P. mariana on moisture gradient
5 vw = optimum of P. glauca on moisture gradient
1.0 cb = competition coefficient for effects of B on W (0 = no effect)
1.5 cw = competition coefficient for effects of W on B (0 = no effect)
8 a1 = asymmetry constant 1 for moisture response for P. mariana (higher = more asymmetric)
3 a2 = asymmetry constant 2 for moisture response for P. mariana (higher = low end higher)
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The first term (in square brackets) is the intrinsic rate of increase, reduced by a Gaussian relationship to moisture (second rounded
brackets), and an asymmetry control for the response of P. mariana to moisture (third rounded brackets). The second term (B or W)
is the existing percent cover of the particular spruce species. The last term (in rounded brackets) depresses the rate of increase as the
carrying capacity is approached, in standard logistic fashion, along with a competitive effect from the other species (e.g., cw W
expresses the resources preempted by W).

Integration over time
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