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ABSTRACT
We present the mass distribution in the central area of the cluster A1689 by fitting over 100
multiply lensed images with the non-parametric Strong Lensing Analysis Package. The surface
mass distribution is obtained in a robust way, finding a total mass of 0.25 × 1015 h−1 M�
within a 70-arcsec circle radius from the central peak. Our reconstructed density profile fits
well a Navarro–Frenk–White (NFW) profile with small perturbations due to substructure, and
is compatible with the more model-dependent analysis of Broadhurst et al. based on the same
data. Our estimated mass does not rely on any prior information about the distribution of dark
matter in the cluster. The peak of the mass distribution falls very close to the central dominant
(cD) galaxy and there is substructure near the centre suggesting that the cluster is not fully
relaxed. We also examine the effect on the recovered mass when we include the uncertainties in
the redshift of the sources and in the original shape of the sources. Using simulations designed
to mimic the data, we identify some biases in our reconstructed mass distribution. We find that
the recovered mass is biased toward lower masses beyond 1 arcmin (150 kpc) from the cD
galaxy and that in the very centre we may be affected by degeneracy problems. On the other
hand, we confirm that the reconstructed mass between 25 and 70 arcsec is a robust, unbiased
estimate of the true mass distribution and is compatible with an NFW profile.
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1 I N T RO D U C T I O N

The breathtaking image of A1689 captured by the Advanced Cam-
era for Surveys (ACS) on-board the Hubble Space Telescope (HST;
Broadhurst et al. 2005a, hereafter B2005) provides us with an un-
precedented number of strong lensing arcs in a single cluster. The
large number of arcs is due to a combination of deep multicolour
imaging with the HST and the inherently large Einstein radius of
A1689. A total of 106 multiply lensed images of 30 background
galaxies have been identified (B2005) and are spread fairly uni-
formly over an area of diameter ∼300 kpc. In principle, we may
obtain an estimate of the deflection angle of the light at the loca-
tion of each of the images belonging to multiply imaged sources.

�E-mail: jdiego@space.mit.edu

This deflection relates to the projected gradient of the gravitational
potential of the lens, and hence we may derive the surface mass den-
sity with a precision and resolution set by the number of multiply
imaged sources.

Previous analyses of strong lensing have involved only an order
of magnitude fewer arcs per cluster, and hence have not permit-
ted the application of a non-parametric approach, leading to only
model-dependent statements in general (Kneib et al. 1993, 1995,
1996; Tyson, Kochanski & Dell’Antonio 1998; Broadhurst et al.
2000; Sand, Treu & Ellis 2002; Gavazzi et al. 2004). These mod-
els have produced reliable results for simple symmetric situations
where the mass enclosed within the Einstein radius is fairly ro-
bust to other parameters. The quality of deep images taken with
the ACS opens the way to estimating the surface mass distribution
directly without resorting to parametric models. Non-parametric
approaches have been previously explored in several papers
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(Saha & Williams 1997; Abdelsalam, Saha & Williams 1998a,b;
Trotter, winn & Hewitt 2000; Williams & Saha 2001; Warren &
Dye 2003; Bradac et al. 2005; Saha & Williams 2004; Treu &
Koopmans 2004) and more recently in Diego et al. (2005, here-
after Paper I). In Paper I, we showed that it is possible to non-
parametrically reconstruct a generic mass profile (with substructure)
provided the number of arcs with known redshifts is sufficiently
large. We have also shown how working with extended images,
rather than just their positions, adds enough constraints to the prob-
lem, thus solving the regularization problem found in other non-
parametric algorithms (see Kochanek, Schneider & Wambsganss
2004 for a discussion on this issue).

The mass distribution of A1689 has recently been estimated us-
ing a flexible parametric approach by B2005, who have identified
over 100 background galaxies using their method. This analysis as-
sumed a smooth dark matter component for the bulk of the mass
in the cluster plus a small lumpy component of mass correspond-
ing to the cluster sequence galaxies. The cluster galaxy contribution
is allowed freedom in the ratio of M/L, but the smooth component is
fitted to a low-order two-dimensional polynomial, the coefficients
of which were optimized to fit the multiply imaged sources. The
model is refined as more multiply imaged sources are identified
by the model and incorporated to improve its accuracy. Using this
approach, B2005 have been able to reliably uncover 106 multiply
lensed images of 30 background galaxies.

Non-parametric methods are interesting to explore as they pro-
vide a model-independent estimate of the mass distribution, free of
assumptions regarding the distribution of mass in the lens plane.
Hence, this method provides a very important consistency check,
which should be carried out in addition to, but not necessarily at the
expense of, parametric methods. If the recovered mass distribution
concurs with parametric estimates, this will add to the credibility
of these results. If, on the other hand, there are significant devi-
ations, this should open the door to interesting debates trying to
understand them. Another major advantage of the non-parametric
method is that it allows us to estimate the systematics and errors
in the recovered mass distribution free of model assumptions. As
shown in Paper I, the minimization process can take as little as a
few seconds, which allows for multiple minimizations with random
initial conditions. We can then study the dispersion of the recovered
solution and consequently provide an error estimate.

In this paper we use one of the algorithms in the Strong Lensing
Analysis Package (SLAP) developed by us and introduced in Paper I
to reconstruct the mass distribution of A1689. We therefore start by
giving a brief summary of the main ingredients of the method.

2 M E T H O D

2.1 Mass–source inversion of the data

The method described in this section is based on Paper I, and the
interested reader is highly encouraged to consult that paper for the
finer details. This section simply highlights the main ingredients
although with an important difference, which will be discussed at
the end of this section.

The problem we want to solve is the inversion of the lens equation

β = θ − α(θ, M) (1)

where β are the unknown positions (β x , β y) of the background
galaxies, θ are the observed positions (θ x , θ y) of the lensed galax-
ies (arcs) and α(θ) is the deflection angle created by the lens,
which depends on the observed positions, θ, and the unknown mass

distribution of the cluster, M. The unknowns of the problem are then
β and M.

Due to the (non-linear) dependency of the deflection angle, α, on
the position in the sky, θ, the problem is usually regarded as a typical
example of a non-linear problem. However, the problem also has an
equivalent formulation which can be expressed in a linear form.
The linearization of the problem is possible due to an observational
constraint and a fundamental principle.

The constraint is that the observation fixes the positions of the
arcs, θ. The non-linear nature of the problem is associated only
with this variable. Fixing θ, transforms this variable into a constant.

The fundamental principle is the linear nature of the gravitational
potential. The integrated effect of the continuous mass distribution in
α can be approximated by a superposition of discretized masses. The
continuous mass distribution can be discretized into small cells in the
lens plane if the continuous mass distribution can be approximated
by a constant over each one of the individual cells or, in other words,
if the continuous mass distribution does not change much over the
scale of the cells. This can be achieved if we divide the lens plane
into a multiresolution grid where the size of the cell in a given
position is inversely proportional to the mass density in that position.
Other interesting possibilities can be explored. For instance, one may
prefer to sample better the regions in the lens plane which are near
the arcs where the effects of the finer details in the mass distribution
are more evident. This would provide a grid which is constant from
iteration to iteration. One may also think about a combination of the
two (i.e. sampling proportional to the quantity M cell/θ ). This would
still be an adaptive process, but takes into account that it is in fact
the mass multiplied by 1/θ , which determines the lensing effect.
These possibilities have not yet been explored.

Using a multiresolution grid with N c cells, and with positions of
the arcs, θ, fixed by observations, the problem can be rewritten in
the linear algebraic form

β = θ − ϒ M, (2)

where θ is a vector with 2N θ elements containing all the observed
positions (x and y) of the N θ pixels in the arcs of the lensed galaxy
(or galaxies if there is more than one source), β is made up of the
corresponding 2N θ positions (x and y) of the source galaxy, and ϒ

is a matrix of dimension 2N θ × N c where N c is the number of cells
of the multiresolution grid used to divide the lens plane.

The reader should note that, strictly speaking, our non-parametric
algorithm formulated in this way may also be seen as a parametric
one, with the parameters being the number of cells of different sizes,
N c, the location of the different cells in the lens plane, their masses
and the position of the sources. The role of the adaptive grid in this
context is to fix the location of the cells in the lens plane based on
a previous estimate of the solution.

To invert the strong lensing data, we use the algorithm of SLAP
which is based on the bi-conjugate gradient method (Press et al.
1997). Instead of solving equation (2) we solve the following

θ = �X. (3)

Here � is a matrix of dimension 2N θ × (N c + 2N s) and X is the
vector of dimension (N c + 2N s) containing all the unknowns in our
problem, the N c cell masses, M, and the 2N s central positions, β o

(x and y), of the N s sources. From now on we will drop the vector
notation.

The bi-conjugate gradient algorithm solves a system of linear
equations

Ax = b (4)
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by minimizing the function

f (x) = c − bx + 1

2
xt Ax, (5)

where c is an arbitrary constant. When the function f (x) is min-
imized, its gradient (∇ f (x) = Ax − b) is zero. The problem is
formulated like this because, in most cases, finding the minimum of
equation (5) is much easier than finding the solution of the system in
equation (4), especially when no exact solution exists for equation
(4) or A does not have an inverse.

The algorithm assumes that the matrix A is square. This does not
generally hold for our case as, for the matrix �, we typically have
N θ � (N c + N s). We therefore build a new quantity called the
square of the residual, R2

R2 = (θ − �X )T(θ − �X )

= 2

(
1

2
θTθ − �Tθ X + 1

2
XT�T�X

)
. (6)

This is clearly of the same form as equation (5), with �T� a square
matrix. Solving the lens equation means minimizing this quantity.
The quantity R2 reaches its minimum in the solution of equation
(3), which is also solution of equation (4). We only have to realize
that

b − AX = �T(θ − �X ) = �T R. (7)

The algorithm starts with an initial guess for the solution, Xo, and
builds an initial residual, ro and a search direction, po. At every iter-
ation k, an improved estimate for the residual rk, the search direction
pk and the solution, Xk, is found. The minimization is stopped when
the square of the residual, rT r , is below a given value, ε. The beauty
of this algorithm is that the successive minimizations are carried out
in a series of orthogonal conjugate directions. This means it is very
fast, the solution can be found in typically 1 s of CPU time (running
on a 1-GHz processor). As we shall see below, this is crucial to allow
for the multiple minimizations required to estimate the accuracy of
the method.

The minimization process has to be carried out through several
iterations to arrive at a division of the lens plane into a grid that
reflects well the uneven distribution of lensed images. For the first
iteration we simply divide the lens plane into a regular grid. After
this iteration, a first estimate of the mass is used to create a new grid
(and a new �) where dense areas are sampled better than underdense
areas.

The method has one potential pathological behaviour when ap-
plied to our problem. We cannot choose the minimization threshold,
ε, to be arbitrarily small. If we choose a very low ε, the algorithm
will try to find a solution that focuses the arcs in N s sources, which
are δ functions. This is not surprising as we are in fact assuming
that all the 2N θ unknown β are reduced to just 2N s β, i.e. the
point source solution (see Paper I). Because the lensed galaxies are
extended objects, such a solution is of course unphysical, and we
therefore have to choose ε wisely. Because the algorithm will stop
when R2 < ε, we should choose ε to be an estimate of the expected
dispersion of the sources at the specified redshifts. This is the only
prior which has to be given to the method. However, as shown in
Paper I, the specific value of ε is not critical as long as it is within
a factor of a few of the true source dispersion. As seen in Paper I,
instead of defining ε in terms of R2, it is better to define it in terms
of the residual of the conjugate gradient algorithm, r 2

k . This speeds
up the minimization process significantly:

ε = rT
k rk = RT��T R. (8)

As an example, 30 circular sources with a radius of 14 kpc located at
redshifts between 1 and 6 typically correspond to ε = 2.0 × 10−11.

2.2 Method accuracy

As seen above, it is crucial to stop the minimization before the
absolute minimum of R2 is reached. Because we are minimizing an
N-dimensional quadratic function (R2), the area where we stop is an
N-dimensional ellipsoid around the global minimum. The end point
of the minimization will then vary depending on the initial condition,
Xo. That is, the solution is not unique as each minimization will stop
in a different point on the N-ellipsoid. The physical meaning of this
degeneracy is connected to our lack of knowledge about the shape
of the sources. When traced back to the source plane, the pixels in
the arcs are placed with any configuration within a compact region
corresponding to the size of the source. This uncertainty in the shape
of the sources can be accounted for by minimizing many times, each
time with a different initial condition, Xo. Using a fast minimization
algorithm such as the bi-conjugate gradient is therefore crucial in
order to explore a large number of initial conditions and estimate
the scatter in the final solution.

For the current analysis, the starting points for the minimization,
Xo, are drawn from a uniform random distribution between 0 and
1.6 × 10−3 × 1015 h−1 M� for the masses and a random uniform
distribution for the β positions in a box of 2 arcmin centred in the
central dominant (cD) galaxy. The value 1.6 × 10−3 typically gives
initial total masses of around 0.5 × 1015 h−1 M� in the considered
field of view.

There are also other factors which may reduce the accuracy of
the method. One such source of uncertainty comes from the fact
that the redshifts are not known with infinite precision but have a
small uncertainty. For the majority of the lensed galaxies, the red-
shift has to be estimated using photometric data only, and errors of
15–20 per cent in redshift are quoted by B2005.

Inaccuracies in the redshifts are problematic for our reconstruc-
tion algorithm because they propagate into errors in the estimated
angular diameter distances between us and the source, as well as
between the source and the lens. These are of course crucial ingre-
dients in calculating the � matrix for the linearized problem, and
it is therefore important that we take this into consideration in our
analysis.

To account for the redshift uncertainty, we again resort to multiple
minimizations. We use different redshift realizations for the sources
each time we solve for the lens equation (or equivalently minimize
its quadratic residual, R2). This allows us to propagate the error in
the redshifts into scatter in the solution, and gives us an estimate
of the inaccuracy of the solution through a frequentist approach.
The redshifts are generated from a Gaussian distribution, with a
mean and dispersion obtained from the data, which we assume is
approximated by a Gaussian probability distribution for simplicity.

A final source of inaccuracy in the method is the adaptive gridding
of the lens plane. As explained in Paper I, we take the initial grid to
be regular and containing a low number of grid points. An 8 × 8 or
16 × 16 grid produces a nice initial solution, which looks roughly
like a smooth version of the final solution. An adaptive grid is then
created from this first solution. It is important that the maximum
number of cells be chosen with caution. Too few cells may not suf-
ficiently capture the details of the mass distributions. However, the
number of grid cells should not be too high, exceeding the resolution
set by the projected density of the observed images.

A natural upper limit for the number of cells is two times the
number of pixels in the data (i.e. pixels forming part of one of the
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arcs) minus two times the number of sources. A number of cells
equal to this number would produce a square matrix �. For the
analysis presented in this paper, we shall see in the next section that
the number of pixels is N θ = 601. An estimate of the error due to
choice of grid points can be obtained by repeating the analysis with
different grid sizes.

It is important to emphasize here a key difference between the
results presented in this work and those in Paper I. In that paper,
many minimizations were performed to explore the space of solu-
tions but with the difference that the grid was the same in all of
them. That constant grid had ≈350 cells and was obtained after one
minimization starting from a regular grid of 8 × 8 cells. Instead,
in the present paper each minimization may have a different grid,
which is obtained from a previous minimization. Allowing the grid
to vary increases the dispersion of the solutions significantly. The
interested reader will find that the standards set in Paper I are not
reached in this paper. This is mainly a direct consequence of this
extra source of variance in the modelling of the lens plane, which
was not studied in Paper I.

3 AC S DATA

The data used in this paper are described in detail in B2005. Here we
only briefly summarize their main characteristics. The original ACS
image of A1689 (Benı́tez et al. 2002; B2005) was obtained after in-
tegration of 20 orbits with the HST in four bands (G, R, I and Z).
The interested reader can find an overview of the ACS in Ford et al.
(2003). The final published image covers a field of view of 3.3 ×
3.3 arcmin2 with a pixel size of 0.05 × 0.05 arcsec2. The catalogue
with the coordinates and redshifts of the arcs contains the positions
and redshifts of 106 arcs, four of which have been spectroscopically
identified in previous works (Fort et al., private communication;
Frye et al., private communication). The bulk of the redshifts were
estimated using the Bayesian software BPZ (Benı́tez 2000). In addi-
tion to the five bands mentioned above, the ACS observations were
complemented with U-band observations obtained with the DuPont
telescope at Las Campanas Observatory and J , H , K data at La Silla
with the New Technology Telescope (NTT). With these bands, the
final photometric redshifts are typically uncertain by 15–20 per cent
(90 per cent confidence level). In the four cases where the redshifts
are measured, the agreement with the photometric estimate is very
good (less than 10 per cent). These errors, although large, play a
weak role on the estimated mass basically because all the sources
are beyond z = 1 where the angular diameter distance shows a much
weaker dependency with the redshift than at z < 1. However, we
will include the redshift uncertainty in our calculations.

The 106 arcs are associated with 30 systems or sources with
redshifts in the range 1 < z < 6. The positions in the catalogue cor-
respond to the centre of the arc. We only use these central positions
to identify the arcs. Then we carefully select all the pixels in each
arc to build the final strong lensing data set. We go through all the
tabulated positions and select the pixels belonging to the specified
arc by eye. We only select the pixels which are clearly connected
with the arc. In the cases where the arc is too faint, a smoothed ver-
sion of the data is used to enhance the signal-to-noise (S/N) ratio.
Eye selection is superior to algorithm selection in our case because
software cannot be trusted to separate the faintest arcs from the
background. After all the positions in the arcs have been selected,
we repixelize the data in an area of 5 × 5 arcmin2 using 512 ×
512 pixel. Under this pixelization, the total number of pixels in our
data set containing part of an arc is N θ = 601. The resulting data

Figure 1. Data used in the mass reconstruction. There are 106 arcs in
this image, which are assigned to 30 different sources. Every arc has a flag
associated to the putative source. Source redshifts range from z ≈ 1 to z ≈ 6.
The area in this plot is similar to the field of view of the original data and it
covers 3.3 × 3.3 arcmin2.

set is show in Fig. 1. These are the 601 θ positions which are used
to invert the lens. The results are described in the next section.

As noted in the previous section, there is another important differ-
ence between the data set used in this work and the simulated data
used in Paper I. The fraction of pixels forming part of a radial arc is
significantly smaller in the former than in the latter case. This will
have consequences in the recovered mass because the radial arcs are
more sensitive to the very central regions in the mass distribution
than the tangential arcs.

4 R E C OV E R E D M A S S D I S T R I BU T I O N
O F A 1 6 8 9

In this section we present the results of our analysis when applying
the method of Section 2 on the data from Section 3. We show the
results of 1000 minimizations, where the initial mass distribution
and source redshifts are randomly varied. The maximum number of
mass cells is approximately 600.

The result of this minimization process is shown in Fig. 2 where
we compare the average of the 1000 recovered solutions with the
ACS optical image of A1689. Keeping in mind that no information
about the luminosity is used, the first obvious conclusion from this
plot is the existing correlation between the luminous and the dark
matter. The peak of the mass distribution falls very close to the cD
galaxy. There is also a clear correlation between the position of the
subgroup to the right and a secondary peak in the mass distribution.
The small subgroup at ≈30 arcsec to the south of the cD galaxy
seems to be sitting close to the top of other overdensity.

The substructure within 1 arcmin of the centre of the cluster sug-
gests that the cluster is not fully relaxed. Another possibility is that
some of the substructure arises from projection rather than from
substructure within the main cluster. However, the existing correla-
tion between the recovered mass and the galaxies suggests that the
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Figure 2. Mean recovered mass (contours) compared with the true ACS
image. The mass is the average of 1000 minimizations of the lens equation
where at each minimization we change the grid, the initial conditions, Xo

and the redshifts of the sources. Contours go from 0.1 to 0.97 times the
maximum mass density in intervals of 0.1 (0.097 last interval). Total mass
in the field of view is about 5.2 × 1014 h−1 M�. The field of view in this
plot and the others is 5 × 5 arcmin2 unless otherwise noted.

substructure may be really present in the cluster. Another interesting
feature is that the reconstructed mass seems to be insensitive to the
external structure of A1689. There seems to be no significant struc-
ture beyond 2 arcmin from the cD galaxy. This can be explained if
the mass distribution beyond this radius can be approximated by a
spherical distribution. In this case, the Gauss theorem implies that
the strong lensing data should be independent of the unknown outer
mass distribution. If the distribution is highly elliptical, the recov-
ered mass provided by SLAP may suffer additional biases. This is
an interesting issue which we defer to a future investigation.

Looking at the dispersion of the 1000 minimizations tells us some-
thing about the reliability of our recovered mass profile. An estimate
of the dispersion of these solutions can be seen in Fig. 3 where we
plot the S/N ratio, which is defined as the ratio of the mean recov-
ered map divided by the standard deviation map of the solutions.
The first thing we should notice is that around 20 arcsec, the S/N
ratio drops below 3. In other words, the mass estimate in this region
cannot be trusted as well as in other regions. A similar behaviour
can be observed at large radius as discussed above and may imply
a degeneracy set by the limitations of the data we are using. The
insensitivity of the data to the outer regions of the mass distribution
is suggested also when we look at the average one-dimensional (1D)
profile. The 1D density profile is defined as the average profile at
a given distance from the centre normalized by the critical density,
defined as

	crit = c2

4πG

Ds

Dd Dds
= 4.29 × 1015 hM�

Mpc2 . (9)

Here, we have assumed that 	 crit is defined at the mean redshift
of the sources, i.e. z = 3 (B2005). Note that the units of 	 crit are

Figure 3. This grey-scale map shows the S/N ratio of the recovered mass
which is obtained by dividing the mean recovered mass by the dispersion
of the 1000 recovered maps. For clarity, the areas with S/N > 8 have been
saturated (white colour). Note the low S/N ratio at about 20 arcsec from the
centre of mass. The contours show the mean recovered mass of Fig. 2. The
field of view is 5 × 5 arcmin2.

h M� Mpc−2. These are the same as the recovered 	, which is
defined as

	 = Mass

pixel
= h−1 M�

(h−1 Mpc)2
= hM�

Mpc2 . (10)

The recovered 1D profile is shown in Fig. 4. Also shown is the dis-
persion of the 1000 recovered profiles. The dot-dashed line shows
the best-fitting NFW profile (Navarro, Frenk & White 1995) found
by B2005 using the same data. By comparing the reconstructed pro-
file with an NFW profile we can confirm the excess found in B2005.
This excess may also be well described by an NFW profile. We will

Figure 4. The plot shows the mean value (thin solid line) and the 95 per cent
confidence region (dotted lines) of the 1D profiles for the 1000 minimizations
in case (i). The dot-dashed line is the best-fitting NFW profile found in
B2005. The density has been rescaled by the critical density, 	 crit. The thick
solid line is a very similar NFW profile plus an excess given by three NFW
subhaloes around the main halo. See text for details.
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discuss this point later but here we anticipate that the data are more
likely to be compatible with an NFW profile plus an excess (thick
solid line). However, it is clear from Fig. 4 that our reconstructed
profiles differ significantly from an NFW profile at large radii, thus
suggesting a possible bias in our results here. This possibility will
be explored in more detail later. When we look at the normalized 1D
profile (Fig. 4), we find another striking feature which also suggests
possible bias in our results, this time in the very central region. As
opposed to previous results based on the same data (B2005), the
central density deviates from an NFW profile and even shows a dip
at distances around 20 arcsec from the central peak. The same dip
can be observed if we look at the map of the S/N ratio (see Fig. 3).
This may be an indication that our algorithm is more sensitive to
tangential than radial arcs. The radial images contain more infor-
mation about the matter distribution in the very centre of the cluster
than the tangential ones. This could be explained because we are
minimizing the residual of the lens equation. The residual is basi-
cally dominated by the tangential arcs as they have more pixels than
the radial arcs and therefore contribute more to the residual. Again,
this possible bias will be explored later.

Finally, an interesting conclusion from Fig. 4 is that using a non-
parametric algorithm does not mean necessarily that the solution
cannot be well constrained within the error bars. In fact, these error
bars are comparable to those obtained with parametric methods.

5 P R E D I C T E D P O S I T I O N S O F T H E S O U R C E S

The solution found in the previous section also gives us the original
position of the sources. Let us recall that in our algorithm we assume
that the sources are point-like and they are described by just two
numbers, namely the x and y coordinates at the centre. For each of
the 1000 minimizations we obtain an estimate of the (x , y) position
of each source. The result is plotted in Fig. 5. The recovered sources
fall in a small area of ≈1 × 1 arcmin2. Some sources seem to

Figure 5. Zoomed version of the recovered β positions after 1000 min-
imizations. The field of view is 3.3 × 3.3 arcmin2. The cross marks the
position of the cD galaxy. Note how the small area of the source plane rela-
tive to the image plane and implies a high magnification of the background
galaxies with a mean value of ∼8.

fall on top of others. Given the uncertainties in the photometric
redshifts, it could happen that some of the sources are at the same
redshift. Together with the fact that they appear in the same area in
the sky, this makes us think that some of these sources may be the
same. We should note, however, that previous work has identified a
systematic problem when minimizing the lens equation in the source
plane, namely the fact that the minimization is biased toward higher
masses for the lens and with the sources being in a more compact
region. If we are indeed affected by this, this would explain why
the sources seem to fall in such a compact region. This possible
systematic effect will be also studied later.

6 C R I T I C A L C U RV E S

It is interesting to look at the critical curves of our reconstructed
mass. These curves are defined as the regions where the magnifi-
cation diverges. Normally one expects to see two types of curve:
the tangential critical curve and the radial critical curve. The first is
normally associated with the Einstein radius and is where the big
tangential arcs tend to appear.

The radial critical curve defines the region where two multiple
images merge or split in the radial direction. This curve is very
interesting because it is sensitive to the particular profile of the inner
region of the cluster. If we change the total mass, the concentration
parameter and the characteristic scale, rs, such that the tangential
critical curve does not change much (i.e. we do not change the mass
embedded within the giant tangential arcs) then we observe that
smaller rs produce smaller radial critical curves. In other words, the
ratio between the tangential and the radial critical curves tells us
something about the steepness of the profile between the radii of
the giant arcs and the centre. A steep profile will produce a small
relatively small radial critical curve, for a fixed tangential critical
curve. A relatively large radial critical curve is generated by a flatter
profile near the centre of the cluster. Note that for profiles steeper
than the isothermal case, the radial critical curve is reduced to a
point at the position of the lens.

Previous analysis of A1689 based on the same data (B2005) found
a relatively large radial critical curve extending up to 20 arcsec from
the centre of the cluster. NFW profiles are compatible with these
large radial critical curves only if the halo characteristic radius, rs, is
relatively large. B2005 found best-fitting values of r s = 310 h−1 kpc
and concentration parameter CN = 8.2 (with CN = Rvirial/r s). An
NFW profile like this one reproduces well the derived critical curves
in B2005.

The critical curves of our mean recovered model (see Fig. 2) are
shown in Fig. 6. By comparing with the critical curves in B2005,
we see that the inner curve (radial critical curve) is similar (or even
larger in some areas) than that obtained in B2005. This fact suggests
that the characteristic scale, rs, must be indeed large, of the order of
300 h−1 kpc or more. Also from the same plot, our critical curves
show a smoother behaviour than previous analysis (B2005), which
may suggest that we are not very sensitive to small details in the
mass distribution. More specifically, the differences between our
recovered critical curves and those found in B2005 are bigger in the
case of the radial critical curve, which is more sensitive to the details
in the central part of the cluster. A higher resolution is expected in
the centre for the modelling of B2005 because the masses of the tight
clump of luminous cluster galaxies found there are included in the
model as part of the cluster sequence component (B2005). This level
of detail is not easy to reproduce in detail with our non-parametric
model, which would require more constraints in the centre for a
more detailed fit here; hence, our results in the centre r < 20 arcsec
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Mass reconstruction of A1689 1253

Figure 6. Critical curves for the mean recovered mass in Fig. 2. The field of
view is the same as the original image (3.3 arcmin). Note the clear formation
of a radial critical curve whose size relative to the tangential critical curve
requires a shallow central mass profile.

should probably be regarded as a somewhat smoothed version of the
central mass profile. This very last point may be connected with the
drop interior to the critical curve (around 20 arcsec from the centre)
in the mass density profile (see Fig. 4). This feature in the profile
could be due to a degeneracy among the masses in the cells in the
very central region of the cluster and could be easily explained by
the argument used above that our algorithm is less sensitive to the
radial than to the tangential arcs. This is also made evident when
we realize that the high S/N regions in Fig. 3 coincide with the
tangential critical curve, while the radial critical curve falls in a
region with low S/N ratio. The features in the profile may be real or
due to a systematic bias in our algorithm. Answering this question
is the purpose of the next sections.

7 E R RO R A NA LY S I S A N D P O S S I B L E
S Y S T E M AT I C S

The results in the previous section offer some answers about the mass
distribution in A1689 but also raise some serious questions about
the reliability of our results. A visual comparison with the results
of B2005 indicates some disagreement between our mass distribu-
tion and theirs. Our recovered mass distribution shows substructure
within the central 200 h−1 kpc (1.5 arcmin) with dips and peaks
around the central peak. The overall mass distribution is similar in
shape to that of B2005, but with more pronounced substructure.
The difference can be partially explained by the fact that parametric
methods implicitly assume a smooth distribution for the main dark
matter component with no dips, while we do not. The second pos-
sibility is that the dips are an artefact coming from degeneracies of
the modelling procedure. As shown in Paper I, we may expect a va-
riety of models to be consistent with the data. Some of these models
may show degeneracies between neighbouring cells at small scales
if the result is not sensitive to these small scales, although in general

is not possible to predict where the degeneracies will appear. We
expect that the range of valid models reduces as the number of arcs
increases. This means that each case has to be studied separately.
This possibility will be explored further in the next section.

In this section we focus on another source of systematics. In
Section 4 we included in our analysis the numerical uncertainties
in our algorithm. These were the uncertainty in the knowledge of
the redshift of the sources and the uncertainty in the shape of the
sources. The uncertainty in the redshift was included by assigning
different redshifts to the sources at each minimization (Gaussian
distribution), while the uncertainty in the shape of the sources was
included by minimizing many times, each one with a different initial
condition, Xo.

In Section 4 we also changed the grid at each iteration using our
dynamical adaptive grid, which constructs the new grid based on
the previous solution. For doing this, we had to fix one parameter
of the algorithm, the total number of cells, N c. The algorithm needs
another parameter to be defined, namely the minimum residual we
want to achieve, ε. The algorithm stops when R2 < ε, where ε can
be defined by the size of the sources and their number. In Sections 2
and 4 we gave some intuitive motivation on how to choose ε and N c,
respectively. In this section we address the issue of how sensitive
the results are to these two parameters.

We consider three different scenarios or cases.

(i) The minimization is performed with a number of cells N c ≈
600 and ε = 2 × 10−11. This is the case used to present the results
in Section 4.

(ii) As in case (i), but we reduce the number of cells to N c ≈ 300.
(iii) As in case (i), but we reduce the size of the sources to ε = 5 ×

10−12.

Case (i) was already studied in the previous sections and is used here
for comparison. For each of the cases (ii) and (iii), we run another
1000 minimizations changing the starting point, Xo, the redshifts
and the grid as we did in case (i) (Section 4).

In case (ii), by reducing the number of cells we reduce the number
of possible solutions, i.e. we reduce the uncertainty in the solution.
We also degrade the resolution because we have to fill the same
space (5 × 5 arcmin2) with half the number of cells. After averaging
1000 minimizations, the recovered mass distribution1 looks similar
to that found in case (i), with the main difference being in the outer
areas where case (ii) shows an even larger deficit in mass when
compared to the NFW profile. The critical curves2 also look very
similar to those found in case (i) but showing a slightly larger radial
critical curve, which suggests a higher concentration of mass near
the centre of the cluster. The average of the 1D profiles together
with its 95 per cent error bars can be seen in Fig. 7. The plot clearly
demonstrates the departure from the NFW profile at large radii. It
also shows the reduction in the dispersion of the solutions as well
as a lack of a dip at 20 arcsec. The same effect can be seen when
we look at the predicted position of the sources (Fig. 8). Contrary
to what happened in case (i) (see Fig. 5), the predicted positions of
the sources in case (ii) do not suggest a smaller number of sources.
A closer look reveals that in case (ii) the smaller number of cells
produces a sequence of grids with very small differences between
them. In other words, in case (ii) we are in a situation in which the

1 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.
2 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.
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Figure 7. Recovered 1D profile (solid line) with error at 95 per cent level
(dotted lines). The dot-dashed line is the best NFW profile found in B2005.
This is for case (ii) (300 cells, 2 × 10−11).

Figure 8. Zoomed version of the recovered β positions after 1000 mini-
mizations for case (ii). Field of view is 3.3 × 3.3 arcmin2.

grid has been practically fixed from iteration 1. This fact contributes
crucially to the reduction in the range of solutions (masses and β

positions).
Case (iii) is interesting to explore because it forces the algorithm

to find a solution closer to the unphysical point source solution. The
total dispersion in the source plane has now been reduced by a factor
of 4. The solutions achieve this by adding more substructure to the
mass distribution, and when ε is made small enough, the β positions
are also shifted toward the position of the centre of mass. This effect
is well known and it was studied in Paper I. In our particular case, the
mean mass distribution of the 1000 solutions looks again similar3 to
that found in case (i) but showing more substructure. The average

3 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.

Figure 9. Critical curves for the mean recovered mass in the case (iii). The
field of view is (3.3 arcmin)2.

1D profile4 is also similar to that in Fig. 5. Here we present only the
critical curves in Fig. 9 where the effect of the extra substructure
can be appreciated.

The residual, R or ε, has the physical meaning of being the vari-
ance or size of the sources. Setting a very small ε produces a biased
mass distribution, which focuses the arcs into very small sources or
point sources. The point source solution achieving this is normally
unphysical, as was shown in Paper I. On the contrary, choosing a
large ε will stop the minimization early, resulting in a short-sighted
cluster, meaning the solution cannot focus the arcs properly. This
short-sighted cluster solution is normally a smoother, lower-mass
version of the real solution.

8 T E S T I N G T H E R E S U LT S W I T H
S I M U L AT I O N S

The previous section has two possible interpretations. On the pes-
simistic side, we have raised concerns about the reliability of our
results because we show how the results change depending on our
choice of number of cells and the stopping point of the minimization.
On the other hand, the positive interpretation is that the change in
the results is not dramatic and our conclusions seem to be relatively
insensitive to big changes in the minimization process.

Although the last section gave us an idea about the dispersion
in the solution, it did not address the issue of whether or not the
recovered solution is biased. The problem in answering this question
is, of course, that we do not know what the real mass distribution
is, and thus there is nothing to compare our results with. The aim
of this section is to rectify this by using a simulated data set which
mimics the main features of the real data. With a simulation we can
easily check aspects such as how sensitive the data are to the mass

4 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.

C© 2005 RAS, MNRAS 362, 1247–1258

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/362/4/1247/988795 by guest on 20 August 2022



Mass reconstruction of A1689 1255

Figure 10. Recovered mass (left) compared with the original simulated one (right). The contours increase in steps of 0.1 times the maximum central density
(in the recovered case) starting at 0.1 times the maximum. The field of view is (5 arcmin)2.

distribution in the very centre or in the area beyond the tangential
arcs. Our simulated cluster is a simplified version of the recovered
mass distribution, made up of a superposition of NFW profiles.
Because the recovered solution has a mass deficit in the outer parts,
the simulated cluster has a larger total mass, but is chosen so that it
resembles well the mass distribution within the giant arcs.

We use a total mass of M T = 0.68 × 1015 h−1 M� in the field
of view (5 × 5 arcmin2). For simplicity, our simulated cluster is
made of only four NFW haloes. The main halo is assigned a mass
of M 1 = 0.53 × 1015 h−1 M� and placed at the maximum of the
averaged recovered mass in Section 4. The second halo is given
a mass of M 2 = 0.07 × 1015 h−1 M� and centred in the north-
eastern subgroup. The third halo with M 3 = 0.03 × 1015 h−1 M�
is centred to the south-east of the main group, and finally the fourth
halo with M 4 = 0.05 × 1015 h−1 M� is placed to the north-west
of the main halo (see Fig. 10). This simulated cluster resembles the
reconstructed mass profile found in Section 4 but with the difference
that it has a sharp cusp in the centre (plus three off-peak sharp cusps)
and the tails of the distribution do not fall off as quickly as in the
recovered mass distribution. We have also verified that the model
roughly reproduces the recovered critical curves.5 The 1D profile
of this simulated cluster is shown in Fig. 4 (thick solid line) where
it is compared with the reconstructed 1D profile and the best-fitting
NFW profile of B2005. The projected mass distribution is shown in
Fig. 10. For the lensing simulation, the cluster is located at the same
redshift as A1689 (z = 0.18).

The second ingredient of the simulation is the sources. We use
30 sources whose β positions are taken as random within a box of
1 × 1 arcmin2 around the centre of the main halo. The sources are
assumed to be circular with radii of a few kpc, and are placed at the
redshifts published in B2005.

The final part of the simulation is to find the arcs corresponding
to the previous configuration.6 For this we use a simple ray-tracing

5 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.
6 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.

Figure 11. The mean and error region (95 per cent level) of the 1000
recovered profiles after changing the initial conditions, Xo, the redshifts and
the grid at each minimization. The thick solid line is the original profile of
the simulated cluster.

algorithm. With these simulated data we follow a reconstruction
process similar to case (i) in the previous section. We run 1000
minimizations (but with 500 cells instead of 600 and with ε =
2.0 × 10−11) and calculate the mean value and dispersion of the
solutions.

The average of the 1000 recovered masses is shown in Fig. 10
(left) and it is compared with the original mass distribution (right).
The position of the main halo is reconstructed with good accuracy.
In the position of the secondary haloes we reproduce an overdensity,
although a spurious overdensity also appears in the south-west of
the main halo. The total recovered mass is 4 × 1015 h−1 M�, that
is 40 per cent smaller than the original total mass. This deficit in
mass is again concentrated in the outer areas, beyond the position
of the giant arcs, as can be seen from the recovered 1D profile
(Fig. 11). The simulation confirms that the algorithm is insensitive
to the mass distribution beyond the most distant arcs from the centre.
It is important to note that the bias in the recovered profile in the
outer regions is not due to any intrinsic prior in the masses. The
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Figure 12. Reconstructed positions of the sources (grey-scale) for 1000
minimizations. The true position of the sources is marked with small crosses.
The big cross is the position of the main halo. The field of view is a zoomed
version (2 × 2 arcmin2) of the original 5-arcmin field of view.

recovered profile in the outer regions can be biased toward both
lower or higher values when compared with the true profile. In fact,
the recovered profile in these regions remains close to the profile
given by the initial condition. Starting with low masses in Xo (as
we do in our analysis) will produce a profile with low masses in the
tails. On the contrary, if Xo has high masses in the outer regions,
these will remain high at the position where the minimization is
stopped. This is just a manifestation of the low sensitivity of the
outer regions to the data. The small error bars in the outer regions
can also be explained by the fact that the solution retains a memory
of the initial conditions in these regions and also that the initial
densities (mass/cell) are systematically smaller in these regions due
to the griddification of the lens plane (big cells in the outer regions).
On the other hand, the recovered profile in the central region is
much less sensitive to the initial conditions, producing in all cases
profiles which more or less resemble the original one. However, we
observed that starting with small initial conditions renders better
results in the central regions than using large initial conditions. This
fact can be connected with the point source solution where large
fluctuations are needed to achieve convergence. Another interesting
conclusion from Fig. 11 is that the algorithm also seems to have some
problems finding the right mass in the central region. It overpredicts
the central density and underpredicts the density in the area near
the radial critical curve. It even suggests a fictitious dip in this area.
When we repeat the same exercise but reducing the number of cells
down to 300 (and keeping ε = 2 × 10−11), we observe a similar
behaviour to that described in Section 7.7 The recovered 1D profile
does not show a dip at 20 arcsec and the profile falls faster at radii
larger than 60 arcsec. Between 20 and 60 arcsec, the 1D profile

7 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.

overpredicts the real one by about 20 per cent in the case with
300 cells.

An interesting lesson can be learned when we combine both re-
sults. The recovered mass distribution interior to the radial critical
curve is closer to the real one when we use a smaller number of cells
(300); however, between the radial and the tangential critical curves,
the recovered mass profile is better when we increase the number of
cells (500–600). Unsurprisingly, we are also able to conclude that
we definitely recover a biased mass distribution beyond 70 or 80
arcsec from the centre.

Regarding the location of the sources, the recovered β positions
deviate from the true position by between 0 and 5 arcsec (see Fig. 12).
Reducing the number of cells from 500 to 300 does not show any
appreciable improvement in this situation and the recovered β po-
sitions look almost indistinguishable from Fig. 12. This is to be
contrasted by case (ii) in Section 7. However, as opposed to that
case, reducing the number of cells to 300 in the simulated data does
not here produce a sequence of almost identical grids. This suggests
that the recovered positions of case (ii) in Section 7 (see Fig. 8) are
more the product of fixing the grid than being the real position of
the sources.

9 C O N C L U S I O N S

Using a non-parametric algorithm (SLAP) we reconstruct the mass
distribution of A1689 based on strong lensing data containing the
106 multiply lensed images identified by B2005. The reconstructed
mass agrees well with previous estimations based on parametric
algorithms (B2005). Our non-parametric approach is an essential
complement to the more model-dependent methods and also allows
us to understand better the uncertainties and potential ambiguities
involved in using strong lensing data for generating surface mass
distributions. In particular, we find that our recovered mass is biased
toward smaller values beyond the most external tangential arcs and
there is some evidence for degeneracy problems in the very central
region. However, we also conclude that the total mass can be well
constrained within 70 arcsec from the centre of the cluster. The total
projected mass within 70 arcsec from the centre is found to be 0.25 ×
1015 h−1 M�. The simulated work suggest that the estimated profile
between 20 and 70 arcsec is reliable. Using this profile we can try
to constrain its slope. In Fig. 13 we show two examples of power
laws. The case n = 2 corresponds to the isothermal sphere. We also
show the modified power laws when we add a core of 15 h−1 kpc.

Figure 13. Power laws compared with the recovered mass profiles (the
confidence region is taken from Fig. 4). We show two cases, the singular
power law ρ(r ) ∝ r−n (dotted line) and the power law with core ρ(r ) ∝ (r +
r c)−n (dashed line).
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The singular isothermal sphere (singular power law with n = 2) is
ruled out by our data but it may be compatible when we add a core
of about 15 h−1 kpc. It is interesting to compare this plot with the
results of Broadhurst et al. (2005a) where they find a best fit for
the slope of n = 1.65. Also using simulations we show how the
degeneracy in the central region can be reduced by taking a smaller
number of cells, which naturally decreases the degrees of freedom.
This is done at the expense of a bias in the outer regions, which is
increased when the number of cells is low. Testing the algorithm with
simulations which mimic the real data and the average estimated
mass, we found that the best results can be obtained combining a
minimization with a relatively large number of cells (N c ≈ 500)
with a minimization with a smaller number of cells (N c ≈ 300).
Combining these results we find that the mass recovered in a non-
parametric way is compatible with an NFW profile plus an excess
associated to substructure around the central overdensity.

Although not discussed in this work, it is worth mentioning that
the algorithm fails to predict the redshift for other arcs present in the
ACS data and with no current estimate of their redshifts. Most of
the tested new arcs show a flat probability density function beyond
redshift z = 1. The situation can be improved if pairs of arcs are
identified in the data.

Our modelling indicates that the central region of the cluster is
either affected by projection along the line of sight or is not yet fully
relaxed as significant local density perturbations are found in our
reconstruction. Evidence of ongoing merging has been also reported
from an analysis of recent X-ray data (Andersson & Madejski 2004).
The mass derived from the X-ray profile differs from that derived
here when the cluster is assumed to be in a relaxed state (Andersson
& Madejski 2004). If we believe the lensing results, it means the
assumption of hydrostatic equilibrium used to derive the mass from
X-rays may be hard to justify in detail (Xue & Wu 2002).

Previous analyses of A1689 using different lensing techniques
support this hypothesis as they tend to agree in the mass. Our inte-
grated mass estimate agrees well with these previous analyses.8

Tyson & Fischer (1995) found a mass of (0.18 ± 0.01) ×
1015 h−1 M� enclosed in a radius of 51 arcsec from the centre.
In the same radius we find a mass of (0.16 ± 0.02) × 1015 h−1

M�. At larger radii Taylor et al. (1998) found (0.5 ± 0.09) ×
1015 h−1 M� within 108 arcsec, Dye et al. (2001) found (0.48 ±
0.16) × 1015 h−1 M� within 112 arcsec, while we found (0.42 ±
0.07) × 1015 h−1 M� in 110 arcsec. At radii larger than 70 arcsec
we believe our total mass is biased toward lower values due to the
insensitivity of the outer regions to the data.

In the literature we can find numerous studies of how masses
derived from X-rays, optical and lensing compare (Miralda-Escudé
& Babul 1995; Allen 1998; Wu et al. 1998; Wu 2000; Cypriano
et al. 2004). Systematically, a discrepancy of about 2 is found in the
central regions of some clusters, especially in those with evidence
of being in a non-relaxed state (Allen 1998). A combination of the
gravitational potential in the central region derived from strong lens-
ing observations with high-resolution X-ray data will allow exciting
studies focusing on the dynamical state of the gas in these regions.
Also interesting is to combine the strong lensing results in the cen-
tral region with weak lensing information, which allows us to extend
the analysis up to Mpc scales (Bradac et al. 2005; Broadhurst et al.
2005b).

8 Figure available at http://darwin.physics.upenn.edu/SLAP/ and as Supple-
mentary Material to the online version of this article.
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Figure S1. Recovered mass for case (ii) in the paper. The field of
view is 5 arcmin.

C© 2005 RAS, MNRAS 362, 1247–1258

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/362/4/1247/988795 by guest on 20 August 2022



1258 J. M. Diego et al.

Figure S2. Critical curve for case (ii) in the paper. The field of
view is 3.3 arcmin.

Figure S3. Recovered mass for case (iii) in the paper. The field
of view is 5 arcmin.

Figure S4. 1D profile after 1000 minimizations for case (iii) in
the paper. Error bars are 95 per cent. Dot-dashed line is the best
NFW profile in Broadhurst et al. 2005.

Figure S5. Critical curves of the simulated cluster. The field of
view is 5 arcmin.

Figure S6. Simulated arcs from the simulated cluster. Each source
has a different colour. There are 30 sources randomly distributed in

space and with redshifts between 1 and 6 producing about 80 arcs
in this image.

Figure S7. Reconstructed profile with error bars (95 per cent) for
the simulated cluster after 1000 minimizations and using 300 cells.
The solid line is the original 1D profile of the simulation.

Figure S8. Solid line is our total integrated (projected) mass as a
function of radius. The symbolds are previous estimates from Tyson
& Fischer (star), Taylor et al. (triangle) and Dye et al. (square) using
different lensing techniques.
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