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Abstract. Background subtraction is a method typically used to seg-
ment moving regions in image sequences taken from a static camera
by comparing each new frame to a model of the scene background. We
present a novel non-parametric background model and a background
subtraction approach. The model can handle situations where the back-
ground of the scene is cluttered and not completely static but contains
small motions such as tree branches and bushes. The model estimates
the probability of observing pixel intensity values based on a sample of
intensity values for each pixel. The model adapts quickly to changes in
the scene which enables very sensitive detection of moving targets. We
also show how the model can use color information to suppress detec-
tion of shadows. The implementation of the model runs in real-time for
both gray level and color imagery. Evaluation shows that this approach
achieves very sensitive detection with very low false alarm rates.

Key words: visual motion, active and real time vision, motion detection,
non-parametric estimation, visual surveillance, shadow detection

1 Introduction

The detection of unusual motion is the first stage in many automated visual
surveillance applications. It is always desirable to achieve very high sensitivity
in the detection of moving objects with the lowest possible false alarm rates.
Background subtraction is a method typically used to detect unusual motion in
the scene by comparing each new frame to a model of the scene background.

If we monitor the intensity value of a pixel over time in a completely static
scene (i.e., with no background motion) , then the pixel intensity can be reason-
ably modeled with a Normal distribution N(µ, σ2), given the image noise over
time can be modeled by a zero mean Normal distribution N(0, σ2). This Nor-
mal distribution model for the intensity value of a pixel is the underlying model
for many background subtraction techniques. For example, one of the simplest
background subtraction techniques is to calculate an average image of the scene
with no moving objects, subtract each new frame from this image, and threshold
the result.
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This basic Normal model can adapt to slow changes in the scene (for ex-
ample, illumination changes) by recursively updating the model using a simple
adaptive filter. This basic adaptive model is used in [1], also Kalman filtering
for adaptation is used in [2,3,4].

In many visual surveillance applications that work with outdoor scenes, the
background of the scene contains many non-static objects such as tree branches
and bushes whose movement depends on the wind in the scene. This kind of
background motion causes the pixel intensity values to vary significantly with
time. For example, one pixel can be image of the sky at one frame, tree leaf at
another frame, tree branch on a third frame and some mixture subsequently; in
each situation the pixel will have a different color.
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Fig. 1. Intensity value overtime

Fig. 2. Outdoor scene with a circle at the top left corner showing the location of the
sample pixel in figure 1

Figure 1 shows how the gray level of a vegetation pixel from an outdoor scene
changes over a short period of time (900 frames-30 seconds). The scene is shown
at figure 2. Figure 3-a shows the intensity histogram for this pixel. It is clear
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that intensity distribution is multi-modal so that the Normal distribution model
for the pixel intensity/color would not hold.

In [5] a mixture of three Normal distributions was used to model the pixel
value for traffic surveillance applications. The pixel intensity was modeled as
a weighted mixture of three Normal distributions: road, shadow and vehicle
distribution. An incremental EM algorithm was used to learn and update the
parameters of the model. Although, in this case, the pixel intensity is modeled
with three distributions, still the uni-modal distribution assumption is used for
the scene background, i.e. the road distribution.

In [6,7] a generalization to the previous approach was presented. The pixel
intensity is modeled by a mixture of K Gaussian distributions (K is a small
number from 3 to 5) to model variations in the background like tree branch
motion and similar small motion in outdoor scenes. The probability that a certain
pixel has intensity xt at time t is estimated as:

Pr(xt) =

K
∑

j=1

wj

(2π)
d
2 | Σj | 1

2

e− 1
2 (xt−µj)

T Σ
−1
j

(xt−µj) (1)

where wj is the weight, µj is the mean and Σj = σ2
j I is the covariance for the

jth distribution. The K distributions are ordered based on wj/σ
2
j and the first

B distributions are used as a model of the background of the scene where B is
estimated as

B = arg min
b

(

∑b

j=1 wj
∑K

j=1 wj

> T

)

(2)

The threshold T is the fraction of the total weight given to the background model.
Background subtraction is performed by marking any pixel that is more that 2.5
standard deviations away from any of the B distributions as a foreground pixel.
The parameters of the distributions are updated recursively using a learning rate
α, where 1/α controls the speed at which the model adapts to change.

In the case where the background has very high frequency variations, this
model fails to achieve sensitive detection. For example, the 30 second intensity
histogram, shown in figure 3-a, shows that the intensity distribution covers a very
wide range of gray levels (this would be true for color also.) All these variations
occur in a very short period of time (30 seconds.) Modeling the background
variations with a small number of Gaussian distribution will not be accurate.
Furthermore, the very wide background distribution will result in poor detection
because most of the gray level spectrum would be covered by the background
model.

Another important factor is how fast the background model adapts to change.
Figure 3-b shows 9 histograms of the same pixel obtained by dividing the original
time interval into nine equal length subintervals, each contains 100 frames (31

3
seconds.) From these partial histogram we notice that the intensity distribution
is changing dramatically over very short periods of time. Using more “short-
term” distributions will allow us to obtain better detection sensitivity.
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Fig. 3. (a) Histogram of intensity values, (b) Partial histograms

We are faced with the following trade off: if the background model adapts
too slowly to changes in the scene, then we will construct a very wide and
inaccurate model that will have low detection sensitivity. On the other hand,
if the model adapts too quickly, this will lead to two problems: the model may
adapt to the targets themselves, as their speed cannot be neglected with respect
to the background variations, and it leads to inaccurate estimation of the model
parameters.

Our objective is to be able to accurately model the background process non-
parametrically. The model should adapt very quickly to changes in the backgro-
und process, and detect targets with high sensitivity. In the following sections
we describe a background model that achieves these objectives. The model keeps
a sample for each pixel of the scene and estimates the probability that a newly
observed pixel value is from the background. The model estimates these proba-
bilities independently for each new frame. In section 2 we describe the suggested
background model and background subtraction process. A second stage of back-
ground subtraction is discussed in section 3 that aims to suppress false detections
that are due to small motions in the background not captured by the model. Ad-
apting to long-term changes is discussed in section 4. In section 5 we explain how
to use color to suppress shadows from being detected.

2 Basic Background Model

2.1 Density Estimation

In this section, we describe the basic background model and the background
subtraction process. The objective of the model is to capture very recent in-
formation about the image sequence, continuously updating this information to
capture fast changes in the scene background. As shown in figure 3-b, the inten-
sity distribution of a pixel can change quickly. So we must estimate the density
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function of this distribution at any moment of time given only very recent history
information if we hope to obtain sensitive detection.

Let x1, x2, ..., xN be a recent sample of intensity values for a pixel. Using this
sample, the probability density function that this pixel will have intensity value
xt at time t can be non-parametrically estimated [8] using the kernel estimatorK
as

Pr(xt) =
1

n

N
∑

i=1

K(xt − xi) (3)

If we choose our kernel estimator function, K, to be a Normal function N(0, Σ),
where Σ represents the kernel function bandwidth, then the density can be
estimated as

Pr(xt) =
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If we assume independence between the different color channels with a different
kernel bandwidths σ2

j for the jth color channel, then
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and the density estimation is reduced to
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Using this probability estimate the, pixel is considered a foreground pixel if
Pr(xt) < th where the threshold th is a global threshold over all the image that
can be adjusted to achieve a desired percentage of false positives. Practically,
the probability estimation of equation 5 can be calculated in a very fast way
using precalculated lookup tables for the kernel function values given the inten-
sity value difference, (xt − xi), and the kernel function bandwidth. Moreover, a
partial evaluation of the sum in equation 5 is usually sufficient to surpass the
threshold at most image pixels, since most of the image is typically sampled
from the background. This allows us to construct a very fast implementation of
the probability estimation.

Density estimation using a Normal kernel function is a generalization of the
Gaussian mixture model, where each single sample of the N samples is considered
to be a Gaussian distribution N(0, Σ) by itself. This allows us to estimate the
density function more accurately and depending only on recent information from
the sequence. This also enables the model to quickly “forget” about the past
and concentrate more on recent observation. At the same time, we avoid the
inevitable errors in parameter estimation, which typically require large amounts
of data to be both accurate and unbiased. In section 6.1, we present a comparison
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(a) (b)

Fig. 4. Background Subtraction. (a) original image. (b) Estimated probability image.

between the two models. We will show that if both models are given the same
amount of memory, and the parameters of the two models are adjusted to achieve
the same false positive rates, then the non-parametric model has much higher
sensitivity in detection than the mixture of K Gaussians.

Figure 4-b shows the estimated background probability where brighter pixels
represent lower background probability pixels.

2.2 Kernel Width Estimation

There are at least two sources of variations in a pixel’s intensity value. First, there
are large jumps between different intensity values because different objects (sky,
branch, leaf and mixtures when an edge passes through the pixel) are projected
to the same pixel at different times. Second, for those very short periods of
time when the pixel is a projection of the same object, there are local intensity
variations due to blurring in the image. The kernel bandwidth, Σ, should reflect
the local variance in the pixel intensity due to the local variation from image blur
and not the intensity jumps. This local variance will vary over the image and
change over time. The local variance is also different among the color channels,
requiring different bandwidths for each color channel in the kernel calculation.

To estimate the kernel band width σ2
j for the jth color channel for a given

pixel we compute the median absolute deviation over the sample for consecu-
tive intensity values of the pixel. That is, the median, m, of | xi − xi+1 | for
each consecutive pair (xi, xi+1) in the sample, is calculated independently for
each color channel. Since we are measuring deviations between two consecutive
intensity values, the pair (xi, xi+1) usually comes from the same local-in-time
distribution and only few pairs are expected to come from cross distributions.
If we assume that this local-in-time distribution is Normal N(µ, σ2), then the
deviation (xi −xi+1) is Normal N(0, 2σ2). So the standard deviation of the first
distribution can be estimated as

σ =
m

0.68
√

2
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Since the deviations are integer values, linear interpolation is used to obtain
more accurate median values.

3 Suppression of False Detection

In outdoor environments with fluctuating backgrounds, there are two sources
of false detections. First, there are false detections due to random noise which
should be homogeneous over the entire image. Second, there are false detection
due to small movements in the scene background that are not represented in the
background model. This can occur, for example, if a tree branch moves further
than it did during model generation. Also small camera displacements due to
wind load are common in outdoor surveillance and cause many false detections.
This kind of false detection is usually spatially clustered in the image and it is not
easy to eliminate using morphology or noise filtering because these operations
might also affect small and/or occluded targets.

The second stage of detection aim to suppress the false detections due to
small and unmodelled movements in the scene background. If some part of the
background (a tree branch for example) moves to occupy a new pixel, but it was
not part of the model for that pixel, then it will be detected as a foreground
object. However, this object will have a high probability to be a part of the
background distribution at its original pixel. Assuming that only a small displa-
cement can occur between consecutive frames, we decide if a detected pixel is
caused by a background object that has moved by considering the background
distributions in a small neighborhood of the detection.

Let xt be the observed value of a pixel, x, detected as a foreground pixel
by the first stage of the background subtraction at time t. We define the pixel
displacement probability, PN (xt), to be the maximum probability that the ob-
served value, xt, belongs to the background distribution of some point in the
neighborhood N (x) of x

PN (xt) = max
y∈N (x)

Pr(xt | By)

where By is the background sample for pixel y and the probability estimation,
Pr(xt | By), is calculated using the kernel function estimation as in equation 5.
By thresholding PN for detected pixels we can eliminate many false detections
due to small motions in the background. Unfortunately, we can also eliminate
some true detections by this process, since some true detected pixels might be
accidentally similar to the background of some nearby pixel. This happens more
often on gray level images. To avoid losing such true detections we add the
constraint that the whole detected foreground object must have moved from
a nearby location, and not only some of its pixels. We define the component
displacement probability, PC , to be the probability that a detected connected
component C has been displaced from a nearby location. This probability is
estimated by

PC =
∏

x∈C

PN (x)
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For a connected component corresponding to a real target, the probability that
this component has displaced from the background will be very small. So, a
detected pixel x will be considered to be a part of the background only if
(PN (x) > th1) ∧ (PC(x) > th2).

In our implementation, a diameter 5 circular neighborhood is used to deter-
mine pixel displacement probabilities for pixels detected from stage one. The
threshold th1 was set to be the same threshold used during the first backgro-
und subtraction stage which was adjusted to produce a fixed false detection rate.
The threshold, th2, can powerfully discriminate between real moving components
and displaced ones since the former have much lower component displacement
probabilities.

(a) (b)

(c) (d)

Fig. 5. Effect of the second stage of detection on suppressing false detections

Figure 5 illustrates the effect of the second stage of detection. The result
after the first stage is shown in figure 5-b. In this example, the background
has not been updated for several seconds and the camera has been slightly
displaced during this time interval, so we see many false detection along high
contrast edges. Figure 5-c shows the result after suppressing detected pixels
with high displacement probability. We eliminates most of the false detections
due to displacement, and only random noise that is not correlated with the
scene remains as false detections; but some true detected pixel were also lost.
The final result of the second stage of the detection is shown in figure 5-d where
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the component displacement probability constraint was added. Figure 6-b shows
another results where as a result of the wind load the camera is shaking slightly
which results in a lot of clustered false detections especially on the edges. After
the second stage of detection, figure 6-c, most of these clustered false detection
are suppressed while the small target at the left side of the image remains.

(a) (b) (c)

Fig. 6. b) Result after first stage of detection. (c) Result after second stage

4 Updating the Background

In the previous sections it was shown how to detect foreground regions given a
recent history sample as a model of the background. This sample contains N
intensity values taken over a window in time of size W . The kernel bandwidth
estimation requires all the sample to be consecutive in time, i.e., N = W or
sample N

2 pairs of consecutive intensity values over time W .
This sample needs to be updated continuously to adapt to changes in the

scene. The update is performed in a first-in first-out manner. That is, the oldest
sample/pair is discarded and a new sample/pair is added to the model. The new
sample is chosen randomly from each interval of length W

N
frames.

Given a new pixel sample, there are two alternative mechanisms to update
the background:

1. Selective Update: add the new sample to the model only if it is classified as
a background sample.

2. Blind Update: just add the new sample to the model.

There are tradeoffs to these two approaches. The first enhance detection of
the targets, since target pixels are not added to the model. This involves an
update decision: we have to decide if each pixel value belongs to the background
or not. The simplest way to do this is to use the detection result as an update
decision. The problem with this approach is that any incorrect detection decision
will result in persistent incorrect detection later, which is a deadlock situations
[2]. So for example, if a tree branch might be displaced and stayed fixed in the
new location for a long time, it would be continually detected.
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The second approach does not suffer from this deadlock situation since it does
not involve any update decisions; it allows intensity values that do not belong
to the background to be added to the model. This leads to bad detection of the
targets (more false negatives) as they erroneously become part of the model.
This effect is reduced as we increase the time window over which the sample are
taken, as a smaller proportion of target pixels will be included in the sample.
But as we increase the time window more false positives will occur because the
adaptation to changes is slower and rare events are not as well represented in
the sample.

Our objective is to build a background model that adapts quickly to changes
in the scene to support sensitive detection and low false positive rates. To achieve
this goal we present a way to combine the results of two background models (a
long term and a short term) in such a way to achieve better update decisions
and avoid the tradeoffs discussed above. The two models are designed to achieve
different objectives. First we describe the features of each model.
Short-term model: This is a very recent model of the scene. It adapts to
changes quickly to allow very sensitive detection. This model consists of the most
recent N background sample values. The sample is updated using a selective-
update mechanism, where the update decision is based on a mask M(p, t) where
M(p, t) = 1 if the pixel p should be updated at time t and 0 otherwise. This
mask is driven from the final result of combining the two models.

This model is expected to have two kinds of false positives: false positives due
to rare events that are not represented in the model, and persistent false positives
that might result from incorrect detection/update decisions due to changes in
the scene background.
Long-term model: This model captures a more stable representation of the
scene background and adapts to changes slowly. This model consists of N sample
points taken from a much larger window in time. The sample is updated using
a blind-update mechanism, so that every new sample is added to the model
regardless of classification decisions. This model is expected to have more false
positives because it is not the most recent model of the background, and more
false negatives because target pixels might be included in the sample. This model
adapts to changes in the scene at a slow rate based on the ratio W/N

Computing the intersection of the two detection results will eliminate the
persistence false positives from the short term model and will eliminate as well
extra false positives that occur in the long term model results. The only false
positives that will remain will be rare events not represented in either model.
If this rare event persists over time in the scene then the long term model will
adapt to it, and it will be suppressed from the result later.

Taking the intersection will, unfortunately, suppress true positives in the first
model result that are false negatives in the second, because the long term model
adapts to targets as well if they are stationary or moving slowly. To address this
problem, all pixels detected by the short term model that are adjacent to pixels
detected by the combination are included in the final result.
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5 Shadow Detection

The detection of shadows as foreground regions is a source of confusion for
subsequent phases of analysis. It is desirable to discriminate between targets
and their detected shadows. Color information is useful for suppressing shadows
from detection by separating color information from lightness information. Given
three color variables, R,G and B, the chromaticity coordinates r, g and b are
r = R

R+G+B
, g = G

R+G+B
, b = B

R+G+B
where r + g + b = 1 [9]. Using the

chromaticity coordinates in detection has the advantage of being more insensitive
to small changes in illumination that are due to shadows. Figure 7 shows the
results of detection using both (R,G,B) space and (r, g) space; the figure shows
that using the chromaticity coordinates allow detection of the target without
detecting their shadows. Notice that the background subtraction technique as
described in section 2 can be used with any color space.

(a) (b) (c)

Fig. 7. b) Detection using (R,G,B) color space c) detection using chromaticity coordi-
nates (r,g)

Although using chromaticity coordinates helps suppressing shadows, they
have the disadvantage of losing lightness information. Lightness is related to the
difference in whiteness, blackness and grayness between different objects [10].
For example, consider the case where the target wears a white shirt and walks
against a gray background. In this case there is no color information. Since both
white and gray have the same chromaticity coordinates, the target will not be
detected.

To address this problem we also need to use a measure of lightness at each
pixel. We use s = R + G + B as a lightness measure. Consider the case where
the background is completely static, and let the expected value for a pixel be
< r, g, s >. Assume that this pixel is covered by shadow in frame t and let
< rt, gt, st > be the observed value for this pixel at this frame. Then, it is
expected that α ≤ st

s
≤ 1. That is, it is expected that the observed value,

st, will be darker than the normal value s up to a certain limit, αs ≤ st, which
corresponds to the intuition that at most (1−α)% of the light coming to this pixel
can be reduced by a target shadow. A similar effect is expected for highlighted
background, where the observed value is brighter than the expected value up to
a certain limit.
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In the our case, where the background is not static, there is no single expected
value for each pixel. Let A be the sample values representing the background for
a certain pixel, each represented as xi =< ri, gi, si > and, let xt =< rt, gt, st >
be the observed value at frame t. Then, we can select a subset B ⊆ A of sample
values that are relevant to the observed lightness, st. By relevant we mean those
values from the sample which if affected by shadows can produce the observed
lightness of the pixel. That is, B = {xi | xi ∈ A∧α ≤ st

si
≤ β}. Using this relevant

sample subset we carry out our kernel calculation, as described in section 2, based
on the 2-dimensional (r, g) color space. The parameters α and β are fixed over all
the image. Figure 8 shows the detection results for an indoor scene using both the
(R,G,B) color space and the (r, g) color space after using the lightness variable,
s, to restrict the sample to relevant values only. We illustrate the algorithm on
indoor sequence because the effect of shadows are more severe than in outdoor
environments. The target in the figure wears black pants and the background is
gray, so there is no color information. However we still detect the target very
well and suppress the shadows.

(a) (b) (c)

Fig. 8. (b) Detection using (R,G,B) color space (c) detection using chromaticity coor-
dinates (r, g) and the lightness variable s

6 Comparisons and Experimental Results

6.1 Comparison

In this section we describe a set of experiments performed to compare the de-
tection performance of the proposed background model as described in section
2 and a mixture of Gaussian model as described in [6,7]. We compare the ability
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of the two models to detect with high sensitivity under the same false positive
rates and also how detection rates are affected by the presence of a target in the
scene.

For the non-parametric model, a sample of size 100 was used to represent the
background; the update is performed using the detection results directly as the
update decision, as described in section 2. For the Gaussian mixture model, the
maximum number of distributions allowed at each pixel was 101. Very few pixels
reached that maximum at any point of time during the experiments. We used a
sequence contains 1500 frames taken at a rate of 30 frame/second for evaluation.
The sequence contains no moving targets. Figure 9 shows the first frame of the
sequence.

Fig. 9. Outdoor scene used in evaluation experiments

The objective of the first experiment is to measure the sensitivity of the model
to detect moving targets with low contrast against the background and how this
sensitivity is affected by the target presence in the scene. To achieve this goal,
a synthetic disk target of radius 10 pixels was moved against the background of
the scene shown in figure 9. The intensity of the target is a contrast added to
the background. That is, for each scene pixel with intensity xt at time t that
the target should occlude, the intensity of that pixel was changed to xt + δ. The
experiment was repeated for different values of δ in the range from 0 to 40. The
target was moved with a speed of 1 pixel/frame.

To set the parameters of the two models, we ran both models on the whole
sequence with no target added and set the parameters of the two models to
achieve an average of 2% false positive rate. To accomplish this for the non-
parametric model, we adjust the threshold th; for the Gaussian mixture model
we adjust two parameters T and α. This was done by fixing α to some value and
finding the corresponding value of T that gives the desired false positive rates.

1 this way the two models use almost the same amount of memory: for each distribution
we need 3 floating point numbers a mean, a variance and a weight; for each sample
in our method we need 1 byte
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This resulted in several pairs of parameters (α, T ) that give the the desired 2%
rate. The best parameters were α = 10−6, T = 98.9%. If α is set to be greater
that 10−6, then the model adapts faster and the false negative rate is increased,
while if the α is less than this value, then the model adapts too slowly, resulting
in more false positives and an inability to reach the desired 2% rate.

Using the adjusted parameters, both the models were used to detect the
synthetic moving disk superimposed on the original sequence. Figure 10-a show
the false negative rates obtained by the two models for various contrasts. It
can be noticed that both models have similar false negative rates for very small
contrast values; but the non-parametric model has a much smaller false negative
rates as the contrast increases.
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Fig. 10. (a) False Negatives with moving contrast target (b) Detection rates with global
contrast added.

The objective of the second experiment is to measure the sensitivity of the
detection without any effect of the target on the model. To achieve this a contrast
value δ in the range -24 to +24 is added to every pixel in the image and the
detection rates were calculated for each δ while the models were updated using
the original sequence (without the added contrast.) The parameters of both the
models were set as in the first experiment. For each δ value, we ran both the
models on the whole sequence and the average detection rates were calculated,
where the detection rate is defined as the percentage of the image pixels (after
adding δ) that are detected as foreground. Notice that with δ = 0 the detection
rate corresponds to the adjusted 2% false positive rate. The detection rates
are shown in figure 10-b where we notice better detection rates for the non-
parametric model.

From these two experiments we notice that the non-parametric model is more
sensitive in detecting targets with low contrast against the background; moreover
the detection using the non-parametric model is less affected by the presence of
targets in the scene.
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6.2 Results

Video clips showing the detection results can be downloaded in either MPEG or
AVI formats from ftp://www.umiacs.umd.edu/pub/elgammal/video/index.htm.
Video clip 1 shows the detection results using 100 background samples. The video
shows the pure detection result without any morphological operations or noise
filtering. The video clip 2 shows the detection results for a color image sequence.
Figure 11-top shows a frame from this sequence. Video clip 3 shows the detection
results using both a short-term and a long-term model. The short-term model
contains the most recent 50 background samples while the long-term contains 50
samples taken over a 1000 frame time window. Figure 11-bottom shows a frame
from this sequence where the target is walking behind trees and is occluded by
tree branches that are moving.

Fig. 11. Example of detection results

Video clip 4 shows the detection result for a sequence taken using an omni-
directional camera2. A 100 sample short-term model is used to obtain these
results on images of size 320x240. One pass of morphological closing was per-
formed on the results. All the results shows the detection result without any

2 We would like to thank T.E. Boult, EECS Department, Lehigh University, for pro-
viding us with this video
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use of tracking information of the targets. Figure 12-top shows a frame from
this sequence with multiple targets in the scene.Video clip 5 shows detection
result for outdoor scene on a rainy day. The video shows three different clips for
different rain conditions where the system adapted to each situation and could
detect targets with the high sensitivity even under heavy rain. Figure 12-bottom
shows a frame from this sequence with a car moving under heavy rain.

Fig. 12. Top:Detection result for an omni-directional camera. Bottom:Detection result
for a rainy day.

7 Conclusion and Future Extensions

A robust, non-parametric background model and background subtraction me-
chanism that works with color imagery was introduced. The model can handle
situations where the background of the scene is not completely static but con-
tains small motions such as tree branch motion. The model is based on estimating
the intensity density directly from sample history values. The main feature of
the model is that it represents a very recent model of the scene and adapts to
charges quickly. A second stage of the background subtraction was presented
to suppress false detection that are due to small motions in the scene backgro-
und based on spatial properties. We also showed how the model can use color
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information to suppress shadows of the targets from being detected. A frame-
work was presented to combine a short-term and a long-term model to achieve
more robust detection results. A comparison between the proposed model and a
Gaussian mixture model [6,7] was also presented.

The implementation of the approach runs at 15-20 frame per second on a
400 MHz pentium processor for 320x240 gray scale images depending on the
size of the background sample and the complexity of the detected foreground.
Precalculated lookup tables for kernel function values are used to calculate the
probability estimation of equation 5 in an efficient way. For most image pixels
the evaluation of the summation in equation 5 stops after very few terms once
the sum surpasses the threshold, which allows very fast probability estimation.

As for future extensions, we are trying to build more concise representation
for the long term model of the scene by estimating the required sample size
for each pixel in the scene depending on the variations at this pixel. So, using
the same total amount of memory, we can achieve better results by assigning
more memory to unstable points and less memory to stable points. Preliminary
experiments shows that we can reach a compression of 80-90% and still achieve
the same sensitivity in detection.
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