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SUMMARY

We describe a non-parametric optimal design as a theoretical gold standard for dose finding studies. Its
purpose is analogous to the Cramer–Rao bound for unbiased estimators, i.e. it provides a bound beyond
which improvements are not generally possible. The bound applies to the class of non-parametric designs
where the data are not assumed to be generated by any known parametric model. Whenever parametric
assumptions really hold it may be possible to do better than the optimal non-parametric design. The goal
is to be able to compare any potential dose finding scheme with the optimal non-parametric benchmark.
This paper makes precise what is meant by optimal in this context and also why the procedure is described
as non-parametric.
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1. INTRODUCTION

In oncology the anti-cancer effect of a new treatment generally increases with dose. However, the
probability of toxicity also increases with dose. In practice, a certain amount of severe toxicity is accepted
in order to have some anti-tumour effect. This means that for a given dose a proportion of patients will
suffer toxic side effects. The maximum tolerated dose (MTD) is defined for a population of patients as the
highest acceptable dose level among several levels. For an individual, toxic side effects are often reported
following NCI grades and take values between 0 (no toxicity) and 4 (severe, possibly life threatening
toxicity). In most phase I dose finding studies, the outcome variable of interest is a severe toxicity and is
coded as a dichotomy (0, 1) i.e. above a certain grade threshold, the toxicity observed for an individual
is reported as a dose limiting toxicity (DLT) and is coded by a 1. Otherwise the toxic response is coded
by a 0. The distribution of the DLT among the patient population generates the dose–toxicity relation. We
make the fundamental assumption that this relation is monotonic increasing. Eventually, the problem of
identifying the MTD translates into one of targeting some percentile of this relation.

A key assumption here is that, for the toxic side effects of interest, the hypothesis of the toxicity
increasing with dose results from the fact that a subject who experiences a severe toxicity at a given
dose level would have had a severe toxicity at every higher level. In the same way we are leaning on the
implicit assumption that a subject tolerating the treatment at some given dose level would have tolerated
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the treatment at every lower level. This relatively uncontroversial, and easily accepted, albeit debatable,
restriction, turns out to be central to the main development.

A number of approaches have been developed to identify the MTD (Anbar, 1978, 1984; O’Quigley et
al., 1990; Gatsonis and Greenhouse, 1992; Whitehead, 1997; Whitehead and Williamson, 1998; Storer,
1989, 1993, 1998; Goodman et al., 1995; Faries, 1994; Møller, 1995; Piantadosi and Liu, 1996; O’Quigley
and Shen, 1996; O’Quigley and Reiner, 1998). How well does any approach do? This question begs the
further question: how well is it possible to do? Of course, the answer depends upon the objectives which
may sometimes vary among studies. Here we restrict our attention to cases where the purpose is to identify
a level whose associated probability of toxicity is as close as possible to a specified target. As we carry
out design improvements we may ask ourselves, is there some limit beyond which further improvements
can not be achieved without making strong parametric assumptions about the shape of the dose–toxicity
curve? The purpose of this paper is to identify this limit.

We shall adopt the following notation. We consider dose–toxicity relations completely described by
the m pairs (d1, R1), . . . , (dm, Rm) where dk indicates the dose at level k and Rk the associated probability
of toxicity. Let Y jk (k = 1, . . . , m; j = 1, . . . , n) denote the random variable taking the value 1 when
a DLT is observed for subject j at level dk . We restrict our attention to monotonic curves for which the
toxicity increases with the dose, R1 < R2 < · · · < Rm . We target the dose level dk where the probability
of toxicity Rk is closest to a given percentile denoted by θ . More formally, the goal is to identify the level
di such that |Ri − θ | < |Rl − θ | l = 1, . . . , m; l �= i .

2. AN OPTIMAL DESIGN

We can define an optimal design using the concept of complete and incomplete information. It is
the ability of the optimal method to exploit compete information, typically unavailable in practice, which
confers the optimality property. We provide the following definitions to the terms complete and incomplete
information.

Incomplete information

Suppose we have subjects available for experimentation at six dose levels. In a real experiment each
patient provides partial or incomplete information. The assumption of monotonic toxicity implies that if
a subject had a toxic reaction at level dk (k � 6) then he/she would necessarily have a toxic reaction
at d� (k � � � 6). As for his/her response at levels below dk , we have no information on this. On
the other hand, should the subject tolerate the treatment at level dk (1 � k � 6) then he/she would
necessarily tolerate the treatment at all levels d� (1 � � � k). As an illustration let us suppose that subject
h experiences a toxicity at d5 and subject j a non-toxicity at level d3. This is summarized in the table
below where a ∗ indicates missing or incomplete information.

Dose
d1 d2 d3 d4 d5 d6

Yhk * * * * 1 1
Y jk 0 0 0 * * *

Complete information

If all the information were available, for each patient, we would know the response at every dose level.
In other words, the highest tolerated dose level would be known. For instance, instead of the above
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table, we could imagine a table for a subject for whom DLT appears from dose level 3. Conceptually,
we might think of the experiment, for each subject j , being carried out on six clones of this same subject.
Complete information is then as shown in the table below. Of course in a real trial, such information is not
available. However in the framework of simulations or probabilistic calculations, complete information
can be obtained.

Dose
d1 d2 d3 d4 d5 d6

Y jk 0 0 1 1 1 1

Implementation

Were we to have complete information from an experiment then we could use it to provide an efficient
non-parametric estimate of the dose–toxicity relation. Once again these estimates will not be available in
practice but they can be evaluated for the purposes of theoretical comparisons. To each subject j we can
associate a numerical value v j indicating his/her toxicity tolerance threshold to the treatment under study.
Without loss of generality, the v j can be generated from a uniform distribution. Using these outcomes
and the given values of Rk , it is then determined whether or not we see a toxicity at any dose level. On
the basis of a sample of size n the probabilities Rk (k = 1, . . . , m) at each dose level can be estimated
by R̂k = ∑n

j=1 Y jk , the empirical frequencies. We know that R1 � · · · � Rk � · · · � Rm and it is

easily seen that R̂1 � · · · � R̂m . The estimated MTD is the level whose estimate of the probability of
toxicity minimizes |R̂k −θ |. It can be readily shown that R̂k is an unbiased estimator of Rk and that Var R̂k

achieves the Cramer–Rao lower bound.
For every k we claim our estimate of Rk to be optimal in the sense of being unbiased and attaining the

Cramer–Rao lower bound. Unless we are prepared to make parametric assumptions whereby information
at any level provides some information at all levels then we can clearly not improve upon this estimator.
This is the sense in which it is also non-parametric. Of course, in any practical setting, the observations are
not complete, we are unable to independently replicate experimentation for the same subject at all levels,
and so such an optimal method is not available to us. It can nonetheless be a useful tool in theoretical
investigations, providing insights into relative as well as absolute performance.

3. ILLUSTRATION

As an illustration we compare a two-stage CRM (Møller, 1995; O’Quigley and Shen, 1996), based on
initial 3 by 3 escalation, with the optimal method. We carried out 5000 simulations of the two procedures.
Table 1 shows the recommendation distribution when the target is 0.2. We denote by qk(16) the proportion
of times that the optimal method recommends level k based on 16 patients and pk(16) the analogous
quantity for the CRM. The information used in the table can also be expressed in terms of a cumulative
distribution of errors. The error is simply the distance of the probability of toxicity at the recommended
level from the probability of toxicity at the target level. An illustration is given in Figure 1 for the above
situation (left panel). The right panel results from simulations over many hundred dose–toxicity relations,
and highlights the poorer performance of a two-parameter CRM as compared to a one-parameter CRM
(Shen and O’Quigley, 1996), even though the data are generated by this same two-parameter model. This
poorer performance has been discussed in the CRM literature and the graph simply adds an angle to this
fact.
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Table 1. Frequency of recommending dose level dk

dk
1 2 3 4 5 6

Rk 0.05 0.11 0.22 0.35 0.45 0.60
pk(16) 0.05 0.26 0.42 0.21 0.06 0.0
qk(16) 0.04 0.27 0.48 0.17 0.04 0.0
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Fig. 1. Cumulative probability of error for the optimal and CRM designs.

4. FURTHER POINTS

We can associate a single measure of efficiency with the graphs in Figure 1. In order to summarize
efficiency measures at different sample sizes it is common to consider asymptotic efficiency if it exists.
For phase I studies it may be more sensible to average some measure of finite sample efficiency over a
range of sample sizes likely to be of interest in practice. Based on experience we suggest

e(n) =
∑

k pk(n) qk(n)

max
(∑

k pk(n)2,
∑

k qk(n)2
)

to be the efficiency of the reference method for a sample of size n. Many other candidates could also be
considered, the only requirement being the use of an appropriate distance measure between the distribution
pk and qk . Often the numerical differences between different measures will be slight and, since we are
only interested in relative differences, it makes little difference which distance measure we choose. For
the results shown in Table 1 we find e(16) = 0.93.

High efficiency is one desirable property of a design but not the only one. Objective evaluation is
important but, as for any single summary measure, other aspects may be obscured. For instance, we might
anticipate higher efficiency if we put patients at higher risk of toxicity. Such efficiency improvements may
be deemed too costly and we would most often only want to choose a design on the basis of superior
efficiency if the risks to patients in the study were comparable. In addition, the pattern of deviation of the
optimal from any reference design is altogether lost in the efficiency index. Such information may be of
real interest.

Note also that efficiency is always defined with respect to some particular class of situations. We may
want to evaluate competing designs in cases where the target level is most likely to be one of the higher
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levels under investigation, or we might like to focus attention on dose–toxicity relationships that are very
shallow.

The optimal method will help in evaluation. It is also helpful as a conceptual tool since it indicates
just how our data are incomplete. This alone can be instructive to those wishing to carry out dose finding
studies with very few subjects and yet hoping to maintain some reasonable degree of accuracy. Designs
with stopping rules and different escalation/de-escalation algorithms may cloud the fact that the very best
we can ever do is limited by elementary binomial variation.

All of the results in this paper hinge upon the monotonicity assumption: i.e. a patient presenting a
DLT at some level would necessarily present a DLT at all higher levels. Other plausible models might
be considered; for example, a stochastic one in which the probability of toxicity for any given individual
increases with dose but not as a (0, 1) step function. Our findings would not directly apply here to this
case.

The example shows the CRM in a favourable light. Other situations may be less favourable to the
CRM, although this is not our experience. Our purpose here is not to study the efficiency of the CRM,
already shown to be fully efficient for large samples (Shen and O’Quigley, 1996). The example is
illustrative. More extensive examples, using much broader families of dose–toxicity curves, and many
competing designs can be found in Paoletti (2001).
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