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Abstract

Many previous empirical studies on the productivity of pesticides suggest that
pesticides are under-utilized in agriculture despite the general held believe that these
inputs are substantially over-utilized. This paper uses data envelopment analysis
(DEA) to calculate non-parametric measures of the value of the marginal product of
pesticides. Furthermore, the effect of pesticides on the value of the marginal product
of productive inputs is investigated in order to analyze technical interdependence
between pesticides and productive inputs. Results suggest, in general, substantial
under-utilization of pesticides, which is consistent with earlier findings of parametric
specifications.
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1. Introduction

Pesticides are playing an important role as an output quantity- and quality-
increasing input in much of the world’s agriculture. However, environmental and
food safety concerns have encouraged the introduction of policies aiming at a
reduction of the use and dependence of agriculture on pesticides in many western
countries.
The measurement of the marginal productivity of pesticides has been the subject of

a continuous debate among agricultural economists. There is, in general, a
discrepancy between econometric results and perception concerning pesticide
productivity. A number of previous studies generated empirical results suggesting
that pesticides are under-utilized in agriculture despite the general perception of
over-utilization of this input.
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Previous empirical studies have analyzed pesticides use in agriculture using
parametric approaches. One of the central issues in these studies is the functional
specification of the role of damage control inputs in the production process.
Lichtenberg and Zilberman (1986) hypothesized that earlier estimates of the value of
the marginal product of pesticides (e.g., Headley, 1968; Carlson, 1977) were biased
upward since they do not account for the role of a damage abatement input that
pesticides play in the production process. Based on agronomic evidence that
demonstrates pesticides are damage reducing rather than a productivity increasing
input, Lichtenberg and Zilberman (1986) proposed an asymmetric treatment of
productive inputs and damage abatement inputs. Damage abatement inputs are
defined in general as inputs that reduce damage rather than increase output. Typical
examples of damage abatement inputs are costs of surveillance and electronic
monitoring to reduce theft in shops and pesticides and veterinary costs to reduce
damage from pests and diseases to crops and livestock.
The output damage abatement specification developed by Lichtenberg and

Zilberman (1986) was applied by Babcock et al. (1992), Carrosco-Tauber and Moffit
(1992), Lin et al. (1993), and Chambers and Lichtenberg (1994). The results of
empirical applications of asymmetric functional forms are mixed. Some of the
empirical studies indicated over-utilization of pesticides (e.g., Babcock et al., 1992),
while others reported estimates of the value of marginal product of pesticides that
exceed marginal factor cost (e.g., Carrasco-Tauber and Moffit, 1992). Furthermore,
the estimates of the value of the marginal product are sensitive to the parametric
functional form specified for the damage abatement function (e.g., Carrasco-Tauber
and Moffit, 1992).
The asymmetric functional specification proposed by Lichtenberg and Zilberman

(1986) is questioned by Carpentier and Weaver (1997), since this specification
imposes implicit restrictions on the production technology (e.g., homothetic
separability of the input vector in the partition of inputs into productive inputs
and damage abatement inputs). Based on theoretical grounds, Carpentier and
Weaver (1997) proposed an input damage abatement approach that treats damage
abatement inputs and productive inputs symmetrically. Oude Lansink and
Carpentier (2001) used the Generalized Maximum Entropy method to estimate a
quadratic input damage abatement specification and found evidence for different
technical interactions between pesticides and productive inputs, which violates the
assumption of homothetic separability.
This paper contributes to the literature on the economics of pesticides by

investigating the technical interdependence between productive inputs and pesticides
and measuring the shadow price (or the value of the marginal product) of pesticides
using a non-parametric approach.1 A non-parametric approach is more flexible than
a parametric approach, since it allows implicitly for technical interactions between
damage abatement and productive inputs without imposing a specific functional
form to represent the production technology. The essence of the non-parametric
approach employed in this study can be found in Färe et al. (1994). The shadow price
of pesticides is generated according to the procedure proposed by Ball et al. (1994,
2000) and is elaborated in detail later in the paper.
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Although the approach used in this study has the advantage of being non-
parametric, it has the drawback of being deterministic. Consequently statistical noise
may affect the measurement of the shadow price of pesticides, though in an
unknown direction. This study employs a sensitivity analysis to investigate the
impact of outliers on the shadow prices of inputs.
The objectives of this paper are twofold. First, this paper calculates the shadow

price of pesticides using data envelopment analysis (DEA). The DEA approach
adopted treats productive inputs and damage abatement inputs symmetrically. The
shadow price of pesticides is generated using four input-oriented models. Second, the
effect of pesticides on the value of the marginal product of productive inputs is
investigated in order to analyze the technical interdependence between damage
abatement and productive inputs.
The remainder of this paper is structured as follows. Non-parametric models of

production in the presence of damage abatement and productive inputs are
presented in the next section. This is followed by a discussion of the data and the
empirical results. The paper concludes with comments.

2. Specifications of DEA Models with Damage Abatement Inputs

This section presents different DEA models of production incorporating damage
abatement and productive inputs. Four input-oriented models are used to generate
the shadow price of pesticides. These models measure efficiency in different
directions and provide radial and non-radial (i.e., subvector and a type of Russell)
efficiency measures. Although these models provide different efficiency scores, the
main purpose is to generate the shadow price of pesticides at four different points on
the production frontier. The models also provide information on the technical
interdependence between productive and damage abatement inputs.

2.1. DEA Models Incorporating Damage Abatement Inputs

Let x ¼ ðx1; x2; . . . ; xSÞ [RS
þ and z ¼ ðz1; z2; . . . ; zAÞ [RA

þ denote the quantity vectors
of productive inputs and damage abatement inputs to produce a single output
y [Rþ. A production technology can be fully characterized by the input requirement
set VðyÞ ¼ fðx; zÞ : ðx; zÞ can produce yg. A nonparametric representation of VðyÞ
can be given as:

VðyÞ ¼ fðx; zÞ : Y 0l � yi;X
0l � xi;Z

0l � zi; I
0l ¼ 1; l � 0g;

where Y is the ðN61Þ vector of observed outputs, yi is the observed output level of
firm i, X is the ðN6SÞ matrix of observed productive inputs, xi is the vector of
productive inputs used by firm i, Z is the ðN6AÞ matrix of observed damage
abatement inputs, zi is the vector of damage abatement inputs (pesticides) used by
firm i; l is a ðN61Þ vector of intensity variables (firm weights) and I is the ðN61Þ

NON-PARAMETRIC PRODUCTION ANALYSIS OF PESTICIDES 51



unitary vector. This technology satisfies convexity, strong disposability of the output
and all inputs and variable returns to scale (VRS).2

Efficiency is measured relative to production possibilities characterized by V(y).
Four input-oriented models are constructed measuring efficiency in four different
directions.
The first model measures efficiency radially in the full input space indicating the

potential to scale down all (productive and damage abatement) inputs, keeping the
output constant.

min
g1i ;l

g1i

s:t: Y 0l � yi;

g1ixi � X 0l;

g1izi � Z0l;

I 0l ¼ 1;

l � 0: ð1Þ

The second model measures efficiency radially in the productive input subspace in
terms of the ability of the firm to contract all productive inputs equiproportionately,
given the damage abatement inputs and output.

min
g2i ;l

g2i

s:t: Y 0l � yi;

g2ixi � X 0l;

zi � Z0l;

I 0l ¼ 1;

l � 0: ð2Þ

The third model measures efficiency radially in the damage abatement input
subspace indicating the potential to contract all damage abatement inputs with an
equal proportion, given the productive inputs and the output level.

min
g3i ;l

g3i

s:t: Y 0l � yi;

xi � X 0l;

g3izi � Z0l;

I 0l ¼ 1;

l � 0: ð3Þ

The fourth model is a variation of the Russell efficiency measure (Färe and Lovell,
1978). The Russell measure allows for non-proportional contractions in each
positive input. The efficiency measure in (4) allows for non-proportional reductions
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in each subset of inputs, allowing for different efficiency scores of productive inputs
and damage abatement inputs.

min
g3il;g5i

ðg4i þ g5iÞ=2

s:t: Y 0l � yi;

g4ixi � X 0l;

g5izi � Z0l;

I 0l ¼ 1;

l � 0: ð4Þ

The efficiency measures from models (1)–(4) are demonstrated graphically in
Figure 1, representing a situation with one damage abatement input ðzÞ and one
productive input ðxÞ. Given observation A, model m, m ¼ 1; . . . ; 4, projects the
observed input combination on point m, m ¼ 1; . . . ; 4, in the figure.
A set of dual variables for each observation is obtained from each model

measuring the effect on efficiency (the optimal value of the objective) of a change of
each technological constraint. These dual variables are used to generate the shadow
value of each input using the procedure suggested by Ball et al. (1994, 2000).
The marginal product of each input is given by3

MPm
si ¼

qyi
qxsi

¼ � qgmi=qxsi
qgmi=qyi

; m ¼ 1; . . . ; 4; s ¼ 1; . . . ;S; i ¼ 1; . . . ;N;

MPm
ai ¼

qyi
qzai

¼ � qgmi=qzai
qgmi=qyi

; m ¼ 1; . . . ; 4; a ¼ 1; . . . ;A; i ¼ 1; . . . ;N; ð5Þ

where MPm
si is the marginal product of the productive input s for observation i

estimated from model m, MPm
ai is the marginal product of the damage abatement

input a for observation i estimated from model m and gmi is the efficiency score for
the ith observation in model m ð¼ 1; . . . ; 4Þ. The variables qgmi=qxsi; qgmi=qzai and

Figure 1. Input oriented technical efficiency measures.
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qgmi=qyi are calculated using the dual variables in model m ðm ¼ 1; . . . ; 4Þ associated
with the constraints on the productive input s, the damage abatement input a and the
output.
The shadow value (or the value of the marginal product) of each input is obtained

as

SVm
si ¼ pMPm

si ;

SVm
ai ¼ pMPm

ai; ð6Þ

where p is the output price (Ball et al., 1994, 2000). Each model provides an
‘‘estimate’’ of the shadow price of each input at a particular point on the frontier,
being the projection point of the observed input vector (models 1 and 4) or the
observed input subvector (models 2 and 3). Figure 1 illustrates the different points
on the frontier where the shadow price of each input is evaluated. Model 1 (2)
generates the shadow price of each input at point 1 (2). Similarly, models 3 and 4
measure the shadow value of each input at points 3 and 4, respectively. Thus, four
shadow values are generated for each input and each firm from models (1)–(4).
Comparing the shadow price of each input across models is equivalent to
comparing the shadow price of the input at different points on the frontier. A
priori, it is expected that the shadow values of productive inputs (damage
abatement inputs) generated from model 2 (model 3) are larger than those
‘‘estimated’’ using the other models. This follows from the convexity property of
the input requirement set. Considering the points illustrated in Figure 1, the
shadow value of the productive input x is larger at point 2 than at the other points.
Also, the shadow value of the damage abatement input z is larger at point 3 than at
points 1, 2 and 4.
The extent to which damage abatement inputs are under- or over-utilized is

inferred from a comparison of the shadow prices and the market prices. Profit
maximization implies that shadow prices equal market prices. Shadow prices are
greater (lower) than market prices for inputs that are under-utilized (over-
utilized).
Technical interdependence between damage abatement inputs and productive

inputs is investigated using the four previous models. First, a set of shadow prices of
the productive inputs is generated for each model. Second, one damage abatement
input constraint is increased by one unit and new shadow values of the productive
inputs are generated for each model. This constraint perturbation is done A times
where A is the number of damage abatement inputs. Comparison of the new shadow
values of the productive inputs and the original set of shadow values provides
information on the local (i.e., at the projection point of the frontier) technical
interdependence between these inputs and a particular damage abatement input. If
the increasing a damage abatement input increases (reduces) the shadow value of
another input, then both inputs are locally technically complementary (competitive).
Furthermore, increasing the pesticides constraint is expected to decrease the shadow
value of pesticides.
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3. Data

Data on specialized arable farms5 in the South West clay area, covering the period
1989–1992, were obtained from a stratified sample of Dutch farms which kept
accounts on behalf of the farm accounting system of the Agricultural Economics
Research Institute (LEI).6 Farms stay in the sample to a maximum of four years,
where some farms are represented in the sample for only one year. The data set used
for all models contained 293 observations on 111 farms. Table A1 in Appendix A
reports the mean values of the data.
One output, five productive inputs (N-fertilizer, other variable inputs, land labor

and capital) and three damage abatement inputs (herbicides, fungicides and other
pesticides) are distinguished. Output mainly consists of potatoes, sugar beets and
winter wheat. Other variable inputs consist of services, fertilizers, seed and planting
materials, purchased feed input, energy and other variable inputs. Land represents
the total area under crops and is measured in hectares; labor is measured in quality-
corrected man-years and includes family as well as hired labor; capital includes
capital invested in machinery and livestock and is measured at constant 1990 prices.
Tornqvist price indices were calculated for outputs, other variable inputs and

other pesticides (prices were obtained from the LEI-DLO/CBS). For outputs and
most inputs (except land and labor), the available data contain information about
the revenues and expenses, respectively and no information about physical
quantities. Implicit quantity indexes (i.e., in 1,000 guilders of 1990) were obtained
for output, N-fertilizer, other variable inputs and all pesticides as the ratio of value
to the Tornqvist price index. The price indices vary over the years but not over the
farms, implying that differences in the composition of inputs/output and quality
differences are reflected in the quantity (Cox and Wohlgenant, 1986).7

4. Results

The mathematical programming problems in (1)–(4) are run for each farm in the
sample in each year. Empirical results are reported in Tables 1–4.
Table 1 presents average technical efficiency scores in each year and for the whole

time period 1989–1992. The efficiency scores generated in the four models indicate,

Table 1. Average technical efficiency scores.

Model 4

Year # observations Model 1 Model 2 Model 3 Productive Pesticides

1989 70 0.753 0.734 0.521 0.790 0.583

1990 74 0.798 0.778 0.599 0.831 0.645

1991 75 0.782 0.766 0.584 0.821 0.638

1992 74 0.902 0.889 0.793 0.926 0.821

1989–1992 293 0.810 0.792 0.625 0.843 0.673
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in general, a significant amount of inefficiency in each year. Improvements in
efficiency are achieved in 1992 relative to previous years as shown by the values of
the efficiency scores in each model. The efficiency scores of model 3 indicate a higher
amount of inefficiency than models 1 and 2. Since model 3 measures efficiency in the
use of pesticides, this suggests that the farms in the sample are less efficient in the use
of these inputs.8 Also, the efficiency scores of model 4 indicate, on average, a higher
amount of inefficiency in the use of pesticides than in the use of productive inputs,
given the output level. The results from models 3 and 4 suggest that the application

Table 2. Annual averages of the shadow values of inputs.

1989 1990 1991 1992 1989–1992

Model 1

N-Fertilizer 3.607 9.472 5.641 5.654 6.126

Other variable inputs 1.051 0.985 1.019 1.452 1.127

Land 4.037 6.313 5.036 3.884 4.829

Labor 96.598 123.000 132.008 93.972 111.349

Capital 0.170 0.220 0.634 0.305 0.369

Herbicides 2.472 3.795 3.528 4.446 3.575

Fungicides 8.279 8.805 9.901 9.957 9.251

Other Pesticides 11.386 37.779 40.373 42.732 33.388

Model 2

N-Fertilizer 4.789 10.047 6.830 7.443 7.309

Other variable inputs 1.428 1.409 1.294 1.761 1.473

Land 4.375 10.810 5.072 2.860 5.818

Labor 90.474 112.071 116.454 67.868 96.870

Capital 0.191 0.420 0.380 0.440 0.358

Herbicides 0.206 0.233 0.398 2.789 0.914

Fungicides 3.770 5.763 5.393 3.228 4.552

Other Pesticides 5.577 6.300 10.458 28.798 12.874

Model 3

N-Fertilizer 1.173 5.119 2.392 4.997 3.447

Other variable inputs 0.024 0.125 0.083 0.171 0.102

Land 0.260 0.518 1.264 1.237 0.829

Labor 26.949 47.418 56.658 47.861 45.00

Capital 0.138 0.350 0.069 0.12 0.169

Herbicides 34.498 22.494 20.372 18.718 23.866

Fungicides 14.712 29.947 13.919 14.872 18.397

Other Pesticides 26.085 28.387 56.502 27.568 34.827

Model 4

N-Fertilizer 2.322 5.227 3.473 6.038 4.289

Other variable inputs 0.398 0.409 0.311 0.549 0.417

Land 1.572 1.495 2.729 1.674 1.875

Labor 92.709 98.753 105.123 66.038 90.677

Capital 0.165 0.220 0.122 0.130 0.160

Herbicides 16.482 14.757 14.133 13.519 14.697

Fungicides 12.687 10.345 11.591 12.010 11.644

Other Pesticides 19.308 18.357 56.115 23.429 29.530
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of pesticides is more difficult to manage than the use of productive inputs such as
fertilizers, labor and capital. The efficiency of pesticides is generally more dependent
on weather and soil conditions than the efficiency of productive inputs (Zadoks,
1993). The effect of herbicides is usually larger under conditions that are less
beneficial for plant growth; winds during spraying also reduce the efficiency of most
pesticides. Yet, another example is the incidence of hot and humid weather
conditions reducing the efficiency of the use of fungicides that are applied against
Phytophtora Infestans in potato production.
Although models 1–4 provide interesting insights in the efficiency of productive

vis-à-vis damage abatement inputs, the main purpose of the paper is to generate
shadow prices of damage abatement inputs at different points on the production
frontier.10 Table 2 reports the annual averages of the shadow values of all productive
and damage abatement inputs for each model. Shadow values of productive inputs
(pesticides) in model 2 are generally larger (smaller) than their values in models 1 and
3. All differences between the values of model 2 vis-à-vis those of either model 1 or 3
are significant at the critical 5% level, with the exception of the shadow values of land
and capital in models 1 and 2. The differences between the shadow values of model 2
versus models 1 and 3 reflect the different points at the frontier at which the shadow
prices are evaluated and are consistent with a priori expectations discussed in Section
2. The shadow price in model 2 is evaluated at the point on the frontier that reflects
the minimum quantity of productive inputs required for producing a given bundle of
outputs, given the quantity of pesticides. Shadow values in model 4 lie in the range
spanned by the values of models 2 and 3, which is consistent with the observation

Table 3. Percentage of farmers that under-utilize pesticides.

1989 1990 1991 1992

Model 1

Herbicides 21.43 27.03 28.00 35.14

Fungicides 28.57 35.14 38.70 28.38

Other Pesticides 44.29 33.78 52.00 47.30

Model 2

Herbicides 1.43 2.70 9.33 21.62

Fungicides 14.29 17.57 17.33 22.97

Other Pesticides 32.86 22.97 38.67 37.84

Model 3

Herbicides 85.71 77.03 80.00 81.08

Fungicides 67.14 72.97 78.67 70.27

Other Pesticides 54.29 48.65 62.67 63.51

Model 4

Herbicides 82.86 72.97 77.33 72.97

Fungicides 68.57 68.92 73.33 62.16

Other Pesticides 52.86 44.59 60.00 58.11
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that the evaluation point in model 4 is given by a non-radial contraction in the
subspaces of productive and damage abatement inputs.
The annual averages of the shadow values of fungicides and other pesticides are

higher than their average market prices (presented in Table A1) in all models,
indicating that fungicides and other pesticides are (on average) under-utilized. This
means that farmers could increase their profitability by increasing the use of
fungicides and other pesticides. Also, the annual average shadow values of herbicides
are higher than the annual market prices for herbicides in models 1, 3 and 4,
suggesting under-utilization of this damage abatement input. However, the overall
average shadow value of herbicides in model 2 is lower than its market price
suggesting over-utilization of this damage abatement input.

Table 4. Average differences in the shadow values of inputs when the herbicides, fungicides and other

pesticides constraints change (sample period 1989–1992).

Model 1 Model 2 Model 3 Model 4

Input Difference t-value Difference t-value Difference t-value Difference t-value

Herbicides

N-Fertilizer 0.01 0.04 � 0.03 � 0.25 0.25b 1.77 0.14 1.19

Other variable inputs � 0.04b � 1.69 � 0.05 � 1.33 0.05 0.78 0.02 0.64

Land 1.11 1.04 0.07 1.44 0.13a 2.66 0.06 1.54

Labor 2.83a 2.05 0.11 0.16 � 1.65a � 2.65 � 0.32 � 0.29

Capital � 0.01 � 0.16 � 0.01 1.09 0.04 1.01 0.03 1.14

Herbicides � 0.49b � 1.75 � 0.13a � 2.44 � 3.61b � 1.71 � 2.22a � 3.71

Fungicides 0.75 1.20 0.16 1.08 1.97 1.39 0.64b 1.83

Other Pesticides 0.22 0.86 0.20 0.48 6.65b 1.78 1.59a 2.30

Fungicides

N-Fertilizer 0.09 0.96 � 0.03 � 0.35 0.35b 1.71 0.37b 1.79

Other variable inputs 0.11 0.82 � 0.08 � 1.52 0.01 0.55 0.01 0.59

Land � 0.01 � 0.42 � 0.01 � 0.30 � 0.03 � 0.81 0.00 0.00

Labor 1.37 1.20 � 0.19 � 0.16 � 0.42 � 0.21 0.00 0.00

Capital 0.05 0.88 � 0.07 � 1.29 � 0.06 � 1.26 0.00 0.00

Herbicides 0.22a 2.10 0.04 0.55 � 1.78 � 0.85 � 0.03 � 0.07

Fungicides � 1.70a � 2.74 � 1.69a � 2.71 � 4.98 � 1.41 � 1.65a � 4.36

Other Pesticides 8.47 1.17 8.36 1.16 0.75 0.34 3.81b 1.68

Other Pesticides

N-Fertilizer � 0.01 � 0.09 0.10 0.44 0.17 1.37 0.21a 2.09

Other variable inputs � 0.05 � 0.94 � 0.05 � 1.41 � 0.01 � 0.82 � 0.04 � 1.28

Land � 0.02 � 0.05 0.23 1.03 � 0.01 � 0.04 0.03 0.10

Labor � 3.51 � 0.65 � 0.56 � 0.42 � 1.40 � 0.22 1.00 0.16

Capital � 0.07 � 1.11 � 0.01 � 1.28 � 0.04 � 0.83 0.02 0.90

Herbicides � 0.07 � 0.38 � 0.05 � 0.91 � 0.90 � 0.40 0.09 0.13

Fungicides � 0.04 � 0.06 � 0.10 � 0.17 � 2.19 � 0.61 1.19b 1.83

Other Pesticides � 8.18 � 1.54 � 1.63a � 3.50 � 9.75b � 1.64 � 7.46 � 1.32

aSignificant at 5%
bSignificant at 10%
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Table 3 reports the percentage of farmers that under-utilize pesticides in each
model. The percentage of farmers that under-utilize pesticides is in general higher in
model 3 than in the other models. This result is consistent with the results reported in
Table 2 where the annual averages of the shadow values of pesticides are generally
higher in model 3 than in the other models. The lower percentage indicated by model
1 and mainly model 2 is also consistent with the results reported in Table 2. The
annual average of the shadow values of pesticides are in general lower in models 1
and 2 (substantially lower in model 2). Inspection of the shadow values of each
pesticide in models 1 and 2 shows zero values for many farmers in each year. This
occurs because the projected point for many farmers is a point on the horizontal
segment of the frontier.
The large average values of the shadow prices of pesticides relative to their market

prices may be a result of outliers due to, for example measurement errors of input
and output quantities, causing extremely high shadow prices for individual
observations. The sensitivity of the shadow prices to outliers is demonstrated by
computing averages from truncated samples for each shadow price, i.e., samples that
exclude shadow prices that are more than two, four and five standard deviations
away from the untruncated mean. Results of this sensitivity analysis for pesticides
are found in Tables A2–A4 in the Appendix; results for the productive inputs have
been excluded because of space limitations, but can be obtained from the authors
upon request. Most truncated means (four or five standard deviations) are
substantially smaller than the untruncated means, implying the presence of outliers.
However, the conclusions regarding over- or under-utilization of damage abatement
inputs remain unchanged.
Oude Lansink and Carpentier (2001) using different parametric damage

abatement specifications for the production function found shadow values for
Herbicides in the range of 0.96–1.78, for Fungicides in the range of 2.22–2.94 and
for other pesticides in the range of 2.94–9.14. Tables A2–A3 show that in
particular the truncated means of models 1 and 2 are in line with results found by
Oude Lansink and Carpentier (2001); shadow values obtained from models 3 and
4 are generally larger. Also, it can be seen that both the parametric and
nonparametric models indicate that herbicides tend to have the lowest shadow
price (among the damage abatement inputs), whereas other pesticides have the
highest shadow price.
The effect of a change in each pesticide on the shadow values of all inputs is found

by a perturbation procedure described before. Each pesticide constraint is increased
separately by one unit and new shadow values of all inputs are generated for each
model. A local ‘‘estimate’’ of technical interdependence between productive inputs
and a particular pesticide is obtained by comparing the new shadow prices of
productive inputs, found after perturbing a particular pesticide constraint, and the
original shadow values (Table 2). Table 4 presents the differences in the shadow
values (and the corresponding t-values) of productive and damage abatement inputs
resulting from perturbing the herbicides, fungicides and other pesticides constraints.
The impact of an increase in each pesticide on the shadow value of a productive

input varies, in general, from year to year. This variability may be explained by the
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fact that pesticides are generally dependent on weather and soil conditions; for
example, the effect of herbicides is usually larger under conditions that are less
beneficial for plant growth. Therefore, Table 4 and our discussion is based on the
average differences for the whole time period 1989–1992.
Table 4 shows that, in line with a priori expectations, the shadow value of

herbicides decreases when perturbing the herbicides constraint in each model. The
same effects are found for fungicides and other pesticides when perturbing their
constraints. The impact of an increase of herbicides on the shadow value of the
productive inputs depends on the frontier point where it is evaluated. The impact on
the shadow value of the N-fertilizer is positive in model 3 and insignificant in the
other cases. This implies that the N-fertilizer and herbicides are complements at the
point on the frontier that minimizes the use of pesticides, given the levels of
productive inputs and outputs. Therefore, farmers that focus on minimizing the use
of pesticides will likely benefit from a positive interaction between herbicides and N-
fertilizer; at higher levels of pesticides application, the relation between N-fertilizer
and herbicides is inconclusive as some models suggest they are substitutes whereas
others suggest they act as complements.
Table 4 also shows that other variable inputs and herbicides are substitutes when

all inputs are contracted radially (model 1). Furthermore, herbicides and labor are
complements on farms minimizing the use of all (model 1) or only the productive
inputs (model 2), and they are substitutes on farms minimizing the use of pesticides
(model 3). These results reflect the possibility for farmers to substitute herbicides for
more labor intensive mechanical or manual weeding when labor is available in
sufficient amounts. On farms with limited availability of labor, substitution is not
possible. Capital and herbicides are substitutes on farms minimizing the use of
productive inputs and other pesticides and herbicides are complements at low
application levels of pesticides.
Results for fungicides show that fungicides have a small number of significant

interactions with productive inputs. Fungicides and N-fertilizer are complements at
low application levels of pesticides implying positive interactions between these
inputs when farmers minimize pesticides use. Also, herbicides and other pesticides
are locally complementary for fungicides in all models.
Other pesticides have a very low number of significant interactions with all other

inputs. Only N-fertilizer and other pesticides show significant relationships in model
4, suggesting that these inputs are complements for non-radial contractions in each
subset of inputs (productive and damage abatement inputs).

5. Conclusions

This paper presents a non-parametric production analysis of pesticides use on
specialized cash crop farms in the Netherlands. Shadow prices of different pesticides
are determined using four input-oriented models, each measuring these prices at
different points of the frontier. Comparison of the shadow price of different
pesticides with the corresponding market prices indicates whether pesticides are
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over- or under-utilized. Furthermore, special attention is paid to the technical
interdependence between pesticides and productive inputs.
The empirical results indicate that almost all pesticides are, on average, under-

utilized, which is in line with earlier findings in the literature. Technical
interdependence between pesticides and productive inputs is investigated at different
points on the frontier. The results indicate that technical interdependence between
each pesticide and a particular productive input varies along the frontier. This result
suggests that empirical studies using a parametric approach should not choose
functional forms that impose a particular technical interdependence (e.g., the Cobb-
Douglas production function assumes all inputs are substitutes).
This paper has contributed to the literature on the economics of pesticides by

providing non-parametric ‘‘estimates’’ of shadow prices of different pesticides and
investigating technical interdependence between pesticides and productive inputs
using a non-parametric approach. Future research on the economics of pesticides
should account for the effects of different outputs on the shadow prices and technical
interactions between inputs. Another interesting avenue for future research is an
investigation of non-convexities in the production technology that might occur due
to the damage-reducing role of pesticides.

Appendix A

Table A1. Description of data and variability.

Period: 1989–1992

Observations: 293

Variable Dimension/Base Year Symbol Mean

Standard

Deviation

Prices

Output Base year 1990 p 0.94 0.14

Herbicides Base year 1990 w1 1.08 0.11

Fungicides Base year 1990 w2 1.12 0.09

Other Pesticides Base year 1990 w3 1.11 0.15

Quantities

Output 1,000 guilders of 1990a y 401.46 276.95

N-Fertilizer 1,000 guilders of 1990a x1 110.51 64.02

Other Inputs 1,000 guilders of 1990a x2 6.87 5.10

Land Hectares x3 62.19 42.40

Labor Man years x4 1.62 0.91

Capital 1,000 guilders of 1990a x5 510.47 402.99

Herbicides 1,000 guilders of 1990a z1 14.96 11.75

Fungicides 1,000 guilders of 1990a z2 10.41 8.76

Other Pesticides 1,000 guilders of 1990a z3 4.20 4.81

a1 euro is approximately 2.204 guilders.
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Table A2. Untruncated and truncated averages of the shadow values of inputs—model 1.

Input 1989 1990 1991 1992

Herbicides

untruncated mean 2.472 3.795 3.528 2.789

standard error (5.919) (8.801) (9.612) (9.182)

truncated mean 1a 1.212 2.023 2.309 2.440

truncated mean 2b 2.057 3.274 2.590 2.440

truncated mean 3c 2.472 3.795 2.590 2.789

Fungicides

untruncated mean 8.279 8.805 9.901 3.228

Standard error (20.480) (22.616) (38.241) (53.238)

truncated mean 1a 4.116 4.342 5.736 3.228

truncated mean 2b 6.644 6.819 5.736 3.228

truncated mean 3c 6.644 6.819 5.736 3.228

Other Pesticides

untruncated mean 11.386 37.779 40.373 28.798

standard error (28.265) (229.945) (177.610) (208.399)

truncated mean 1a 5.574 11.218 20.259 11.566

truncated mean 2b 9.157 11.218 20.259 20.198

truncated mean 3c 9.157 11.218 20.259 20.198

aExcludes observations more than two standard deviations away from the mean.
bExcludes observations more than four standard deviations away from the mean.
cExcludes observations more than five standard deviations away from the mean.

Table A3. Untruncated and truncated averages of the shadow values of inputs—model 2.a

Input 1989 1990 1991 1992

Herbicides

untruncated mean 0.206 0.233 0.398 2.789

standard error (0.389) (0.719) (0.854) (7.150)

truncated mean 1 0.018 0.0158 0.057 1.430

truncated mean 2 0.018 0.0158 0.203 2.238

truncated mean 3 0.018 0.0158 0.203 2.238

Fungicides

untruncated mean 3.770 5.763 5.393 3.228

standard error (11.573) (20.572) (22.793) (7.951)

truncated mean 1 1.125 2.278 2.317 1.409

truncated mean 2 3.036 3.735 3.026 2.753

truncated mean 3 3.770 3.735 3.026 3.228

Other Pesticides

untruncated mean 5.577 6.30 10.458 28.798

standard error (15.430) (19.030) (23.349) (195.872)

truncated mean 1 3.246 1.623 5.188 6.073

truncated mean 2 3.246 4.955 8.756 6.073

truncated mean 3 4.234 4.955 8.756 6.073

aSee Table A2 for explanation.
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Table A4. Untruncated and truncated averages of the shadow values of inputs—model 3a.

Input 1989 1990 1991 1992

Herbicides

untruncated mean 34.498 22.494 20.377 18.718

standard error (74.863) (28.946) (19.165) (19.503)

truncated mean 1 23.835 19.067 16.987 15.244

truncated mean 2 26.179 19.985 20.377 18.718

truncated mean 3 26.179 19.985 20.377 18.718

Fungicides

untruncated mean 14.712 29.947 13.919 14.872

standard error (16.606) (121.003) (12.204) (35.295)

truncated mean 1 12.891 16.228 12.201 10.971

truncated mean 2 13.728 16.228 13.919 10.971

truncated mean 3 14.712 16.228 13.919 10.971

Other Pesticides

untruncated mean 26.085 28.387 56.502 27.568

standard error (41.288) (69.203) (199.595) (82.1938)

truncated mean 1 16.084 21.449 33.986 18.621

truncated mean 2 26.085 21.449 33.986 18.621

truncated mean 3 26.085 21.449 33.986 18.621

aSee Table A2 for explanation.

Table A5. Untruncated and truncated averages of the shadow values of inputs—model 4a.

Input 1989 1990 1991 1992

Herbicides

untruncated mean 16.482 14.757 14.133 13.519

standard error (24.510) (26.573) (21.650) (13.361)

truncated mean 1 13.258 11.240 10.422 10.755

truncated mean 2 14.031 12.142 12.656 13.519

truncated mean 3 14.031 12.142 12.656 13.519

Fungicides

untruncated mean 12.687 10.345 11.591 12.010

standard error (25.418) (15.604) (18.670) (35.381)

truncated mean 1 9.333 6.832 8.753 8.071

truncated mean 2 10.224 10.345 10.051 8.071

truncated mean 3 10.224 10.345 10.051 8.071

Other Pesticides

untruncated mean 19.308 18.357 56.115 23.429

standard error (33.534) (32.500) (200.648) (81.341)

truncated mean 1 13.257 12.994 33.593 14.425

truncated mean 2 19.308 18.357 33.593 14.425

truncated mean 3 19.308 18.357 33.593 14.425

aSee Table A2 for explanation.
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Notes

1. Technical interdependence measures the impact of an input on the marginal productivity of another

input. If the marginal productivity of an input increases (decreases) as the other input increases, then

the two inputs are technically complementary (competitive). Two inputs are technically independent

if the marginal productivity of one input is not affected by changes in the use of the other input

(Beattie and Taylor, 1993).

2. This paper only considers models characterized by variable returns to scale (VRS) technologies, since

the VRS formulation is a priori less restrictive in economic terms than the constant returns to scale

(CRS). Imposing CRS requires the technology to satisfy this property globally. VRS allows the

technology to satisfy increasing returns to scale, CRS and decreasing returns to scale locally.

3. In this paper, the marginal product of each input is calculated in a single-output context. However,

the approach can be extended to the case of M outputs, i.e., by calculating a marginal product of an

input for each of the M outputs. A weighted average can be calculated using revenue shares of the M

outputs.

4. The non-uniqueness of the shadow price of an input is possible in the DEA models if the point of the

frontier where it is evaluated is a vertex. In this case, GAMS picks one of the shadow values.

5. Farms with more than 80% of output coming from marketable crops. The average share of

marketable crops in the output variable is 95%.

6. The willingness of the Agricultural Research Institute in the Hague to make the data available for

this research is gratefully acknowledged.

7. Higher quality outputs or inputs are reflected by larger revenues and expenses, respectively.

Therefore, implicit quantities calculated using the same prices for all farmers within one year are

higher for farmers producing outputs or using inputs with a higher quality.

8. The results for model 3 are mainly methodological (reduced dimensionality). However, the lack of

substantial difference in the average efficiency scores of models 1 and 2 suggest that reducing the

three damage abatement inputs does not change the results. Thus, it is the productive inputs that are

limiting for the efficiency scores and there is a lot more slack on the damage abatement inputs.

9. Differences in weather conditions between years do not have a large impact on the results here, since

the production frontier is based on all observations of farms within one year. Local differences in

weather conditions are also likely small since all farms are situated in the same region, i.e., the South-

West clay area.

10. Also, shadow prices are being calculated at different points on the frontier since the projected point is

not the same for each farm.
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