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Abstract The cosmological jerk parameter j is recon-

structed in a non-parametric way from observational data

independent of a fiducial cosmological model. The Cos-

mic Chronometer data as well as the Supernovae data (the

Pantheon compilation) are used for the purpose. The recon-

structed values are found to be consistent with the standard

�CDM model within the 2σ confidence level. The model

dependent sets like Baryon Acoustic Oscillation and the

CMB Shift data are also included thereafter, which does not

significantly help in improving or de-proving the confidence

level in favour of �CDM. The deceleration parameter q is

also reconstructed from the same data sets. This is used to find

the effective equation of state parameter for the model inde-

pendent datasets only. �CDM model is excluded for some

part of the evolution in 1σ , but is definitely included in 2σ

in the domain (0 ≤ z ≤ 2.36) of all the reconstructions.

1 Introduction

Even after more than a couple of decades of its discovery

[1,2], the accelerated expansion of the universe is yet to

be attributed to a universally accepted form of dark energy,

responsible for the alleged acceleration. Therefore, the quest

for dark energy has been alive along all possible ways. A

“reverse engineering”, where one makes an attempt to find

the characteristics of the matter responsible for a particular

evolution history, is amongst the prominent ways for quite a

long time. Normally this “reconstruction” is related to figure

out a physical characteristics of the matter component, such

as the equation of state parameter of the dark energy wDE ,

or even the potential V (φ) if the dark energy is taken as a

scalar field.

Another direction of reconstruction is through the kine-

matical parameters, such as the deceleration parameter q =
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− 1
a H2

d2a
dt2 where a is the scale factor, and H = 1

a
da
dt

, the

fractional rate of increase in the linear size of the universe

called the Hubble parameter. For a long time, H had been

the only cosmological parameter which could be estimated

from observational data. As H was found to be evolving, the

next higher order derivative of a, namely q was the quantity

of interest, Now that q can be measured and is found to be

evolving, the third order derivative of a finds a natural impor-

tance. Expressed in a dimensionless way, this quantity called

the “jerk” is defined as

j =
1

aH3

d3a

dt3
. (1)

There has already been some work in the reconstruction

of a cosmological model through these kinematical parame-

ters. Reconstruction of the deceleration parameter q can be

found in the work of Gong and Wang [3,4], Lobo et al. [5],

Mamon and Das [6], Cardenas and Motta [7], Gómez-Valent

[8] and references therein. Very recently Yang and Gong [9]

reconstructed the cosmic acceleration and estimated the red-

shift at which the transition from a decelerated to an accel-

erated expansion took place using Gaussian Process. Recon-

struction through the jerk parameter has been carried out by

Luongo [10], Rapetti et al. [11], Zhai et al. [12], Mukherjee

and Banerjee [13,14], Mamon and Bamba [15], Mukherjee

et al. [16]. Density perturbations also have been investigated

for models reconstructed through the jerk parameter [17].

Very recently a �CDM model has been recovered from a

reconstruction of cosmographic parameters like q and j [18].

Although the possible importance of the jerk parameter in the

game of reconstruction was pointed out long back [19], not

much work has been done to utilize its full potential. Also,

the work already done is an estimation of parameters with

a functional form of j being used as an ansatz. This is nec-

essarily restrictive, as the functional form for j is already

chosen.

A more unbiased way is to attempt a non-parametric

reconstruction, where the evolution of the relevant quantity
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is determined directly from observational data without any

ansatz a priori. Such attempts normally involve the recon-

struction of wDE [20–27]. There are some efforts towards

a non-parametric reconstruction of q. Some recent exam-

ples can be found in works of Nunes et al. [28], Arjona and

Nesseris [29], Velten et al. [30] and Haridasu et al. [31]. How-

ever, there is hardly any attempt to model the dark energy

through a reconstruction of the jerk parameter in a non-

parametric way. Although there is no convincing reason that

a reconstruction of kinematic parameters like q or j is more

useful than that of a physical quantity like the dark energy

equation of state parameter, this indeed provides an alterna-

tive route towards the understanding of dark energy in the

absence of a convincing physical theory.

In the present work, the jerk parameter j is recon-

structed for the first time from the observational data in

a non-parametric way. We have utilized various combina-

tions of the Supernova distance modulus data, the Cosmic

Chronometer (CC) measurements of the Hubble parameter,

the Baryon Acoustic Oscillation (BAO) data and also the Cos-

mic Microwave Background (CMB) Shift parameter data to

examine their effect on the reconstruction.

The reconstruction yields the result that for any combina-

tion, the �CDM model is well allowed within a 2σ confi-

dence level, and for lower z values, within a 1σ confidence

level.

Indeed there are apprehensions that the CMB Shift param-

eter data depends crucially on a fiducial cosmological model

[32] and so does the BAO data [33]. However, we do not

ignore them. Our reconstruction is based on the combina-

tions both including and excluding the CMB Shift and the

BAO datasets. The final result, when we extract the physical

information, that of the effective equation of state parame-

ter we f f , looks qualitatively very much similar for various

combinations of the datasets.

In Sect. 2, the methodology is discussed in brief. The

details of the observational data used is discussed in Sect. 3.

Section 4 contains the actual reconstruction. The last section

includes a discussion of the results obtained.

2 The methodology

At the outset, we do not assume any fiducial model for the

universe except that it is given by a spatially flat, isotropic

and homogeneous metric given by

ds2 = −c2dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2). (2)

We pretend that we do not even know the Einstein equa-

tions and pick up only the kinematical quantities. We define

the reduced Hubble parameter as, h(z) = H(z)
H0

. A subscript

0 indicates the value of the quantity at the present epoch and

z is the redshift given as 1+ z = a0
a

. The luminosity distance

of any object (such as a Supernova), can be obtained as

dL(z) =
c(1 + z)

H0

∫ z

0

dz′

h(z′)
, (3)

For convenience, we define a dimensionless comoving dis-

tance,

D(z) ≡ (1 + z)−1 H0

c
dL(z). (4)

Combining Eqs. (3) and (4) and taking derivative with

respect to z, we obtain the relation between Hubble parameter

and the comoving distance as,

H(z) =
H0

D′ , (5)

h(z) =
1

D′ , (6)

where a prime denotes the derivative with respect to z. In

terms of the dimensionless quantities h, D and their deriva-

tives, the cosmological deceleration parameter and the jerk

parameter can be written as

q(z) = −1 + (1 + z)
h′

h
,

= −1 − (1 + z)
D′′

D′ . (7)

j (z) = 1 − 2(1 + z)
h′

h
+ (1 + z)2

(

h′2 + hh′′)

h2
,

= 1 + 2(1 + z)
D′′

D′ + (1 + z)2

(

3D′′2 − D′ D′′′)

D′2 . (8)

The uncertainty in q(z), σq is estimated by the standard

technique of error propagation from Eq. (7),

(

σq

1 + q

)2

=
(

σ ′
h

h′

)2

+
(σh

h

)2
−

2σhh′

hh′ . (9)

Similarly, the uncertainty associated with j (z), σ j is obtained

from Eq. (8) as

(

σ j

j − 1

)2

=
{

(1 + z)
[

2h′σh′ + hσh′′ + h′′σh

]

− 2
(

hσh′ + h′σh

)

(1 + z)(h′2 + hh′′) − 2hh′

}2

+
(

2σh

h

)2

−
2(1 + z)

[

2h′σh′h + hσh′′h + h′′σ 2
h

]

− 4
(

hσh′h + h′σ 2
h

)

(1 + z)(hh′2 + hh′′) − 2h2h′ .

(10)

As D′(z) is connected to h(z) through Eq. (6), the uncer-

tainty σD′ is related to σh by

|σD′ | =
1

h2
|σh |. (11)

In order to implement the reconstruction, the widely

used Gaussian processes (GP) [34–36], which is a powerful

model-independent technique, is adopted. This is a distribu-

tion over functions which generalizes the idea of a Gaussian

distribution for a finite number of quantities to the continuum.

Given a set of data points one can use Gaussian processes to
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reconstruct the most probable underlying continuous func-

tion describing the data, and also obtain the associated con-

fidence levels, without assuming a concrete parametrization

of the aforesaid function. It requires only a probability on the

target function f (z). For a detailed overview one can refer

to the Gaussian Process website.1

In cosmology, GP has attracted a wide application in

reconstructing or testing models without an a priori fidu-

cial model [9,24,37–47]. For a pedagogical introduction to

GP, one can refer to Seikel et al. [37]. The publicly available

GaPP
2 (Gaussian Processes in Python) code has been used

in this work.

Assuming that the observational data, such as the distance

data D, or Hubble data H , obeys a Gaussian distribution

with a mean and variance, the posterior distribution of recon-

structed function f (z) can be expressed as a joint Gaussian

distribution of different data-sets involving D or H . In this

process, the key ingredient is the covariance function k(z, z̃)

which correlates the values of different D(z) and H(z) at red-

shift points z and z̃. The covariance function k(z, z̃) depends

on a set of hyperparameters (e.g. the characteristic length

scale l and the signal variance σ f ). This approach also pro-

vides a robust way to estimate derivatives of the function in

a stable manner. The hyperparameter l corresponds roughly

to the distance one needs to move in the input space before

the function value changes significantly, while σ f describes

the typical change in the function value.

The choice of covariance function, given in (12) affects the

reconstruction to some extent. Here we have used the Matérn

(ν = 9
2

, p = 4) covariance [34] between two redshift points

separated by |z − z̃| distance units, as in equation (13). This

leads to the most reliable and stable results amongst the other

significant choices [48].

k
ν=p+ 1

2
(z, z̃) = σ 2

f exp

(

−
√

2p + 1

l
|z − z̃|

)

p!
(2p)!

×
p

∑

i=0

(p + i)!
i !(p − i)!

(

2
√

2p + 1

l
|z − z̃|

)p−i

, (12)

k 9
2
(z, z̃) = σ 2

f exp

(

−3|z − z̃|
l

)

[

1 +
3|z − z̃|

l

+
27(z − z̃)2

7l2
+

18|z − z̃|3

7l3
+

27 (z − z̃)4

35l4

]

. (13)

1 http://www.gaussianprocess.org.

2 https://github.com/carlosandrepaes/GaPP.

3 Observational datasets

Supernova distance modulus data, Cosmic Chronometer

data, radial Baryon Acoustic Oscillation data and CMB Shift

Parameter data have been utilized in this work.

3.1 Cosmic chronometer data

Cosmic Chronometer (CC) H(z) data points are measured

by calculating the differential ages of galaxies [49–54], as a

Table 1 The Cosmic Chronometer Hubble parameter H(z) measure-

ments (in units of km s−1 Mpc−1) and their errors σH at redshift z

obtained from the differential age method (CC)

Index z H(z) σH References

1 0.07 69 19.6 [49]

2 0.1 69 12 [50]

3 0.12 68.6 26.2 [49]

4 0.17 83 8 [50]

5 0.1797 81 5 [51]

6 0.1993 81 6 [51]

7 0.2 72.9 29.6 [49]

8 0.27 77 14 [50]

9 0.28 88.8 36.6 [49]

10 0.3519 88 16 [51]

11 0.3802 89.2 14.1 [52]

12 0.4 95 17 [50]

13 0.4004 82.8 10.6 [52]

14 0.4247 93.7 11.7 [52]

15 0.4293 91.8 5.3 [52]

16 0.4497 99.7 13.4 [52]

17 0.47 89 49.65 [53]

18 0.4783 80.9 9 [52]

19 0.48 97 60 [50]

20 0.5929 110 15 [51]

21 0.6797 98 10 [51]

22 0.7812 88 11 [51]

23 0.8754 124 17 [51]

24 0.88 90 40 [50]

25 0.9 117 23 [50]

26 1.037 113 15 [51]

27 1.3 168 17 [50]

28 1.363 160 33.6 [54]

29 1.43 177 18 [50]

30 1.53 140 14 [50]

31 1.75 202 40 [50]

32 1.965 186.5 50.4 [54]
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function of the redshift z and is given by

H(z) = −
1

1 + z

dz

dt
. (14)

A complete compilation of the CC data used in this work is

enlisted in Table 1.

3.2 BAO data

An alternative compilation of the H(z) data can be deduced

from the radial BAO peaks in the galaxy power spectrum, or

from the BAO peak using the Ly-α forest of QSOs, which

are based on the clustering of galaxies or quasars [55–67].

Table 2 includes almost all data reported in various surveys so

far. One may find that some of the H(z) data points from clus-

Table 2 The Baryon Acoustic Oscillation Hubble parameter measure-

ments H(z) (in units of km s−1 Mpc−1) and their errors σH at redshift

z obtained from the radial BAO method (BAO)

Index z H(z) σH References

1 0.24 79.69 2.99 [55]

2 0.3 81.7 6.22 [56]

3 0.31 78.17 4.74 [57]

4 0.34 83.8 3.66 [55]

5 0.35 82.7 8.4 [58]

6 0.36 79.93 3.39 [57]

7 0.38 81.5 1.9 [59]

8 0.40 82.04 2.03 [57]

9 0.43 86.45 3.68 [55]

10 0.44 82.6 7.8 [60]

11 0.44 84.81 1.83 [57]

12 0.48 87.79 2.03 [57]

13 0.51 90.4 1.9 [59]

14 0.52 94.35 2.65 [57]

15 0.56 93.33 2.32 [57]

16 0.57 87.6 7.8 [61]

17 0.57 96.8 3.4 [62]

18 0.59 98.48 3.19 [57]

19 0.6 87.9 6.1 [60]

20 0.61 97.3 2.1 [59]

21 0.64 98.82 2.99 [57]

22 0.73 97.3 7 [60]

23 0.978 113.72 14.63 [63]

24 1.23 131.44 12.42 [63]

25 1.526 148.11 12.71 [63]

26 1.944 172.63 14.79 [63]

27 2.3 224 8 [64]

28 2.33 224 8 [65]

29 2.34 222 7 [66]

30 2.36 226 8 [67]

tering measurements are correlated since they either belong

to the same analysis or there is an overlap between the galaxy

samples. Here in this paper, we mainly consider the central

value and standard deviation of the data into consideration.

Therefore, we assume that they are independent measure-

ments as in [68].

3.3 Reconstructed H0

After the preparation of CC or/and BAO data, we utilize the

GP method to reconstruct the Hubble parameter H(z) and the

results are shown Fig. 1. The value of the Hubble constant

H0 obtained from this model independent reconstruction is

shown in Tables 3 and 4.

Further, we normalize the datasets to obtain the dimen-

sionless or reduced Hubble parameter h(z) = H(z)/H0.

Considering the error of Hubble constant, we calculate the

uncertainty in h(z) as,

σh
2 =

σH
2

H0
2

+
H2

H0
4
σH0

2, (15)

where σH0 is the error associated with H0.

3.4 SN-Ia data

For the supernova data, we use the recent Pantheon com-

pilation [69] consisting of 1048 SNIa, which is the largest

spectroscopically confirmed SN-Ia sample by now. It con-

sists of different supernovae surveys, including SDSS, SNLS,

various low-z and also some high-z samples from HST. We

include the covariance matrix along with systematic errors in

our calculation. The numerical data of the full Pantheon SNIa

catalogue and a detailed description is publicly available.3,4

The distance modulus of each supernova can be estimated as

μ(z) = 5 log10

dL(z)

Mpc
+ 25, (16)

where dL is the luminosity distance as in Eq. (3).

The distance modulus of SN-Ia can be derived from the

observation of light curves through the empirical relation

(Tripp formula [70])

μ = m∗
B + αX1 − βC − MB + 	M + 	B, (17)

where X1 and C are the stretch and colour correction param-

eters, m∗
B is the observed apparent magnitude and MB is the

absolute magnitude in the B-band for SN-Ia while α and β

are two nuisance parameters characterizing the luminosity-

stretch, and luminosity-colour relations respectively. 	M is

a distance correction based on the host-galaxy mass of the

SN-Ia and 	B is a distance correction based on predicted

3 http://dx.doi.org/10.17909/T95Q4X.

4 https://archive.stsci.edu/prepds/ps1cosmo/index.html.
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Fig. 1 Plots for H(z) reconstructed from CC data (left), BAO data (middle), and combined CC + BAO data (right). The solid black line is the

“best fit” and the associated 1σ , 2σ and 3σ confidence regions are shown in lighter shades

Table 3 Table showing the reconstructed value of H0 and best fit values

of MB for the Pantheon supernova data corresponding to the different

H(z) datasets used in reconstruction

Dataset CC BAO CC + BAO

H0 71.249 ± 4.569 64.721 ± 3.264 67.862 ± 2.894

MB −19.360 −19.453 −19.398

biases from simulations. Usually, the nuisance parameters α

and β are optimized simultaneously with the cosmological

model parameters or are marginalized over. However, this

method is model dependent.

We shall adopt the following strategy. Based on the new

approach called BEAMS with Bias Corrections (BBC) [71]

the nuisance parameters in the Tripp formula [70] were

retrieved and the observed distance modulus is reduced to

the difference between the corrected apparent magnitude m B

and the absolute magnitude MB i.e., μ = m B − MB . In the

Pantheon sample by Scolnic et al. [69], the corrected appar-

ent magnitude m B = m∗
B + αX1 − βC along with 	M and

	B corrections are reported. We shall avoid marginalizing

the over nuisance parameters α, β but marginalize over the

Pantheon data for MB in combination with the H(z) data,

for the reconstructed value H0. The values of α and β thus

become irrelevant for the present method of estimation.

With the smooth function H(z) reconstructed from the

Hubble data, we use a simple trapezoidal rule [72] for the

calculation of the comoving distance,

dc(z) = c

∫ z

0

dz′

H(z′)
,

≃
c

2

n
∑

i=0

(zi+1 − zi )

[

1

H(zi+1)
+

1

H(zi )

]

. (18)

The uncertainty in dc is obtained by error propagation

formula,

σ 2
dc

=
n

∑

i=0

s2
i , (19)

where,

si =
c

2
(zi+1 − zi )

[

σ 2
Hi+1

H4
i+1

+
σ 2

Hi

H4
i

]
1
2

. (20)

Thus, we obtain the smooth function of the comoving dis-

tance dc(z) and its error σdc(z) from the Hubble data. This

dc(z) can be rewritten in a dimensionless form by scaling

with H0
c

, such that

DGP =
H0

c
dc(z), (21)

σDGP = DGP

√

(

σH0

H0

)2

+
(

σdc

dc

)2

. (22)

The subscript GP indicates Gaussian Process. Further, we

convert the distance modulus of SN-Ia to the normalized

comoving distance through the relation (4)

D(z) =
1

1 + z

H0

c
10

μ−25
5 =

H0

c(1 + z)
10

m B −MB −25

5 . (23)

For this we perform another Gaussian Process on the apparent

magnitudes m B of the SN-Ia data and reconstruct them at the

same redshift z as that of the Hubble data.

The total uncertainty or error propagation �μ and �D in

μ and D respectively are estimated following the standard

practice. The total uncertainty matrix of distance modulus is

given by,

�μ = Cstat + Csys (24)

where Cstat and Csys are the statistical and systematic uncer-

tainties respectively.

The uncertainty of D(z) is propagated from that of μ and

H0 using the standard error propagation formula,

�D = D1�μD1
T + σ 2

H0
D2DT

2 (25)

where σH0 is the uncertainty of Hubble constant, the super-

script ‘T ’ denotes the transpose of any matrix, D1 and D2 are

the Jacobian matrices,

D1 = diag

(

ln 10

5
D

)

(26)
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Table 4 Table showing the effect of local (R19) and global (P18) measurements of Hubble parameter on reconstructed value of H0, and the

corresponding marginalized constraints on the absolute magnitude MB of SN-Ia

Dataset CC + P18 CC + R19 CC + BAO + P18 CC + BAO + R19

H0 67.324 ± 0.593 73.834 ± 1.357 67.640 ± 0.414 73.516 ± 1.314

MB −19.415 −19.319 −19.408 −19.328

D2 = diag

(

1

H0
D

)

(27)

where D is a vector whose components are the normalized

comoving distances of all the SN-Ia.

The absolute magnitude of SN-Ia is degenerate with the

Hubble parameter H0. We get the constraints on MB by min-

imizing the χ2 function, considering a uniform prior MB

∈ [−35,−5]. The χ2 function is given by,

χ2 = 	DT · �−1 · 	D, (28)

where 	D = (D − DGP) and � = �D +σ 2
DGP

respectively.

The Markov Chain Monte Carlo (MCMC) analysis is per-

formed for maximizing the likelihood function. We adopt a

python implementation of the ensemble sampler for MCMC,

the emcee,5 introduced by Foreman-Mackey et al. [73]. The

results are plotted using the GetDist6 module of python,

developed by Lewis [74]. Plots for the marginalized MB con-

straints are shown in the first three columns ([a], [b], [c]) of

Fig. 2. The best fit results are given in Table 3.

3.5 CMB shift parameter data

The so-called shift parameter is related to the position of

the first acoustic peak in the power spectrum anisotropies

of the cosmic microwave background (CMB). However the

shift parameter R is not directly measurable from the cosmic

microwave background, and its value is usually derived from

data assuming a spatially flat cosmology with dark matter

and cosmological constant,

R =
√

�m0

∫ zc

0

dz′

h(z′)
. (29)

where zc = 1089 is the redshift of recombination. We use

the CMB shift parameter R = 1.7488 ± 0.0074 [75] and

matter density parameter is marginalized assuming a fiducial

�CDM model. The χ2 for CMB Shift parameter data is given

by
(

1.7488−R(�m0, 1089)
0.0074

)2
. Plots for the marginalized �m0 is

shown in the last column [d] of Fig. 2. The best fit result is

given by �m0 ≃ 0.299 ± 0.013.

5 https://github.com/dfm/emcee.

6 https://github.com/cmbant/getdist.

3.6 H0 data

In view of the known tussle between the value of H0 as

given by the Planck data [76], and that from HST obser-

vations of 70 long-period Cepheids in the Large Magellanic

Clouds by the SH0ES team [77], reconstruction using both of

them have been carried out separately. The recent global and

local measurements of H0 = 67.27 ± 0.60 km s−1 Mpc−1

for TT+TE+EE+lowE (P18) [76] and H0 = 74.03 ±
1.42 km s−1 Mpc−1 (R19) [77] with a 4.4σ tension between

them, are considered for the purpose.

4 The reconstruction

The reconstructed functions h(z), D(z), and their respective

derivatives are plotted against z for different sets of the data,

and shown in Figs. 3, 4, 5, 6, 7 and 8. The black solid line is the

best fit curve, and the black dashed line represents the �CDM

model with �m0 = 0.3. The shaded regions correspond to the

68, 95 and 99.7% confidence levels (CL). The specific points

marked with error bars represent the observational data used

in reconstruction. For the Pantheon data, Eqs. (23) and (25)

are used to estimate the D data points and the uncertainty �D

from the observed μ and �μ respectively. For the CC and

BAO data, we consider Eq. (15) and convert the H–σH data

to h–σh data set. From (6) we can clearly see D′(z) is related

to h(z). So, we can take into account the h data points, the

uncertainty associated σh , and represent it using Eqs. (6) and

(11). Thus, given a set of observational data points we have

used the Gaussian Process to construct the most probable

underlying continuous function h(z) or D(z) describing the

data, along with their derivatives, and have also obtained the

associated confidence levels.

4.1 Reconstruction of q

Using the reconstructed values of h(z), D(z) and their deriva-

tives in Eq. (7), the deceleration parameter q is now recon-

structed. As already mentioned, the Gaussian Process is

employed for this. The plots are shown in Fig. 9 for var-

ious combination of the datasets. The shaded regions cor-

respond to the 68, 95 and 99.7% confidence levels (CL).

The black solid lines show the “best fit” values of the recon-
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structed function, and the black dashed lines corresponds

to the �CDM model with �m0 = 0.3. For a compari-

son, one can note that the expected value of q�C DM at

z = 0 is q0�C DM = 3
2
�m0 − 1 = −0.55. Although

the best fit curve appears to deviate from the a monotonic

behaviour, the deceleration parameter as given by the �CDM

is included generally in 1σ , and at most in the 2σ confidence

level.

4.2 Reconstruction of j

We now reconstruct the cosmological jerk parameter j using

the Gaussian Process from the reconstructed function h(z),

D(z) and their higher order derivatives using Eq. (8). If one

use the standard Einstein equations with a cold dark matter

and a Cosmological constant, j is a constant whose value is

unity. Results for the reconstructed jerk is given in Fig. 10.

The shaded regions correspond to the 68, 95 and 99.7% con-

fidence levels (CL). The black solid lines show the “best fit”

values of the reconstructed function, and the black dashed

lines corresponds to the �CDM model with �m0 = 0.3 and

j = 1. The plot shows that the �CDM model, is allowed

within a 2σ error bar. Plots for the “best fit value” of the

jerk parameter clearly indicate that j has an evolution, and

also, this evolution may well be non-monotonic. The recon-

structed best fit q0 and j0 at the present epoch is shown in

Table 5.

In Fig. 10, we used the value of H0, generated by the

reconstruction, as described in Sect. 3.3. We further exam-

ine if the two different strategies for determining value of

H0 affect our reconstruction differently. We proceed with

the analysis similar to that above except we add the P18 or

R19 data to the H(z) data tables. For comparison one can

refer to Tables 3 and 4 to get an insight as to how including

the H0 measurement affects our reconstruction. Plots for the
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Fig. 10 Plots for j (z) reconstructed from CC data (top left), Pantheon data (top middle), CC + Pantheon data (top right), CC + BAO data (bottom
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The black dashed line represents the �CDM model with �m0 = 0.3 where j = 1

Table 5 Table showing the reconstructed value along with the 1σ uncertainty of q0 and j0 corresponding to the different datasets used

Datasets CC SNe CC + SNe CC + BAO SNe + BAO CC + SNe + BAO + CMB

q0 −0.482+0.307
−0.360 −0.646+0.106

−0.103 −0.584+0.059
−0.058 −0.552+0.177

−0.195 −0.625+0.097
−0.094 −0.647+0.070

−0.069

j0 0.911+0.736
−0.818 1.139+0.289

−0.330 0.909+0.149
−0.158 0.893+0.420

−0.444 1.211+0.287
−0.316 1.035+0.219

−0.227
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reconstructed j (z) along with a comparison for the model

independent CC + Pantheon data is shown in Fig. 11.

4.3 Reconstructing the effective EOS

We now relax our pretension of not knowing Einstein equa-

tions. We use the definition of deceleration parameter

Ḣ

H2
= −(1 + q), (30)

in Einstein equations,

3H2 = 8πGρ, (31)

2Ḣ + 3H2 = −8πGp, (32)

where ρ and p are the total energy density and pressure

contribution from all components constituting the Universe.

Therefore, the effective equation of state parameter is

weff =
p

ρ
= −

2Ḣ + 3H2

3H2
=

−1 + 2q

3
. (33)

Using the reconstructed q(z) for the different data com-

binations, we arrive at the effective EoS parameter weff non-

parametrically. The evolution of weff is shown in Fig. 12.

The black solid line represent the best fit curve. The shaded

regions show the uncertainty associated with weff corre-

sponding to the 1σ , 2σ and 3σ confidence level. The recon-

structed values of weff at z = 0 is shown in Table 6.

For the �CDM model, the dark matter contributes only to

the energy density while the cosmological constant � con-

tributes to both the energy density and pressure. The effective

EOS (33) thus takes the following form.

weff,� =
p�

ρ� + ρm

= −
1

1 + �m0

1−�m0
(1 + z)3

. (34)

Considering the value of �m0 = 0.299 ± 0.013 from

the CMB Shift parameter marginalization we can calculate

the value of the effective EOS for the �CDM model to be

−0.701 with ±0.013 uncertainty at z = 0 using the standard

error propagation method. For higher redshift (z > 1.5),

the reconstructed weff in the present work indicates a non-

monotonic behaviour. However, the corresponding weff for

the �CDM model is included definitely in the 2σ confidence

level.

4.4 Fitting function for j (z)

In this section we attempt to write an approximate fitting

function for the reconstructed jerk parameter in the low

redshift range 0 < z < 1 for the model independent

CC+Pantheon, CC+Pantheon+R19 and CC+Pantheon+P18

combination. We consider a polynomial function for j (z)

with respect to redshift z as,

jfit(z) =
n

∑

i=0

ji z
i . (35)
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Table 6 Table showing the reconstructed value along with the 1σ , 2σ and 3σ uncertainty of weff (0) corresponding to the different datasets used

Datasets CC + SNe CC + SNe + P18 CC + SNe + R19

weff (z = 0) −0.723+0.039
−0.038

+0.078
−0.075

+0.120
−0.113 −0.700+0.035

−0.035
+0.070
−0.068

+0.107
−0.102 −0.752+0.041

−0.040
+0.080
−0.078

+0.123
−0.117
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Fig. 13 Plots showing a comparison between the reconstructed jerk j (z) and the estimated jfit(z) using the combined CC + Pantheon data (left),

CC + Pantheon + P18 data (middle) and the CC + Pantheon + R19 data (right). The black solid line is the best fit curve from GP reconstruction. The

1σ and 2σ CL are shown in dashed and dotted lines respectively. The bold dot-dashed line represents the best fit function from χ2-minimization.

The associated 1σ uncertainty is shown by the shaded region

This polynomial is non-linear in z, but it is linear in ji ’s. Thus

estimating the above equation by the method of least squares

or χ2 minimization holds.

We define the χ2 function as

χ2 =
∑ [ j (z) − jfit(z)]

2

σ 2
.

Here in this work we perform the fitting using a trial and

error estimation for different orders of i in Eq. (35). To check

the goodness of the fit we calculate the minimized χ2 for

every i th order fitting. The value of the reduced χ2
ν = χ2

ν
,

where ν signifies the degrees of freedom, is estimated. This

procedure entails to go from order to order in the polyno-

mial and getting the best-fitting χ2, and truncating once the

reduced χ2 falls below one. We start with i = 1 followed

by i = 2 and so on and check for which order i the value

of χ2
ν < 1. The measure of χ2

ν obtained for the three cases

studied are mentioned below. Again, the estimated ji ’s along

with their 1σ uncertainties are given. A comparison between

the reconstructed j (z) and estimated jfit are shown in Fig. 13.

We also plot the correlations between the parameters ji ’s in

Fig. 14. We note that the process fails for z > 1, but we can

do a reasonable estimate for z < 1. So we show the plots

only in the domain 0 ≤ z ≤ 1.

For CC + Pantheon data,

jfit(z) = 0.901 + 0.611 z + 0.987 z2. (36)

The final set of parameters ji ’s and their 1σ uncertainty are,

j0 = 0.901+0.032
−0.032, j1 = 0.611+0.231

−0.230 and

j2 = 0.987+0.314
−0.314. χ2

ν = 0.670.

Similarly, for the CC + Pantheon + P18 data,

jfit(z) = 0.917 + 0.788 z + 0.899 z2. (37)

The final set of parameters ji ’s and their 1σ uncertainty are,

j0 = 0.917+0.045
−0.045, j1 = 0.788+0.291

−0.291 and

j2 = 0.899+0.366
−0.367. χ2

ν = 0.868.

And finally for the CC+Pantheon+R19 data,

jfit(z) = 0.956 + 1.376 z − 0.188 z2. (38)

The final set of parameters ji ’s and their 1σ uncertainty are,

j0 = 0.956+0.044
−0.044, j1 = 1.376+0.311

−0.311 and j2 =
−0.188+0.403

−0.403. χ2
ν = 0.817.

In all the three cases, the coefficients in the polynomial are

estimated by the χ2 minimization technique, and the poly-

nomial is truncated once the reduced χ2 falls below one to

prevent over-fitting. If we proceed on fitting with any higher

order polynomial, the 1σ uncertainty for the fitted function

will not be contained within the 1σ error margin of j (z)

reconstructed by GP.

5 Discussion

The major aim of the present work is a reconstruction of

the cosmological jerk parameter j from the observational

datasets. The reconstruction is non-parametric, so j is unbi-

ased to any particular functional form to start with. Also, it

does not depend on the theory of gravity, only except the

assumption that the universe is described by a 4 dimensional

spacetime geometry and it is spatially flat, homogeneous and

isotropic. It deserves mention that although a non-parametric
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reconstruction is there in the literature for quite some time

now for reconstructing physical quantities like the equation

of state parameter or the quintessence potential and the cos-

mographic quantity like the deceleration parameter q, it has

hardly been used to reconstruct the jerk parameter. We have

reconstructed q from the datasets, in order to self-consistently

reconstruct the j-parameter and the effective equation of

state.

Kinematical quantities, that can be defined with the metric

(namely the scale factor a) alone, form the starting quantities

of interest in the present case. As the deceleration parameter

q is now an observed quantity and is found to evolve, the

next higher order derivative, the jerk parameter is the focus

of attention. Surely the parameters made out of even higher

derivatives like snap (4th order derivative of a), crack (5th

order derivative) etc. could well be evolving [78]. But we

focus on j which is the evolution of q, the highest order

derivative that is an observationally measured quantity. For

a parametric reconstruction of j , one can still start from the

higher order derivatives [79,80] and integrate back to j , and

estimate the parameters, coming in as constants of integra-

tion, with the help of data. But this does not form the content

of the present work as already mentioned. Instead we have

directly reconstructed q and j non-parametrically from the

datasets, without assuming any kind of parametrizations to

start with.

It is found that for various combinations of datasets,

the jerk parameter corresponding to the �CDM model is

included in the 2σ confidence level.

The effective equation of state parameter weff is linear in

q, so the plots for both of them will look similar. We use

the reconstruction of q to plot weff against the redshift z in

Fig. 12. The plots indicates that weff has an evolution which

is not necessarily monotonic. The plots also indicate that the

universe might have another stint of accelerated expansion in

the recent past before entering into a decelerated phase and

finally giving way to the present accelerated expansion. For

the reconstruction of weff , the model dependent data sets like

BAO and CMB data are not included.

For the reconstructed j , this non-monotonicity is not

apparent when only CC or Supernova (Pantheon) data are

individually employed, and j decreases slowly for the for-

mer and increases rapidly for the latter (Fig. 10). When these

two data sets are combined, the non-monotonicity appears

and this nature is preserved even when the model dependent

datasets like CMB Shift and BAO data are included. It should

also be noted that the exclusion of the CMB Shift and BAO

does not (i.e., when CC and Pantheon data are used) seriously

affect the agreement with �CDM within the 2σ error bar.

It may be noted that we obtained the marginalized con-

straints on H0, MB and �m0, by keeping the nuisance param-

eters α and β fixed using the BBC framework. As there may

be correlations between these parameters keeping them fixed

may adversely affect the model independent nature of the

reconstruction to an extent. However, we have employed the

BEAMS with Bias Corrections (BBC) [71] so that the model

dependence could be minimized.

There is a very recent work by Bengaly [81] which shows,

in a model independent way, that the accelerated expansion of

the universe is correct even in 7σ ! So the observational con-

straints on the kinematic parameters find even more impor-

tance. The present work is an attempt to reconstruct the jerk

parameter in a non-parametric way. Some of the recent para-

metric reconstructions of j show that the present value of

j indicates that the �CDM model is not included in the 1σ

level [15,16]. The present work also shows that the evolution

of j may exclude the corresponding value in the �CDM for

a part of the evolution in 1σ , but at a 2σ level j = 1 is indeed

included. It deserves mention that a recent model indepen-

dent study [82] shows that if the GRB (Gamma Ray Burst)

data are included, the current value of j is quite different

from the standard �CDM value of j = 1.
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It deserves mention that a very recent work by Steinhardt,

Sneppen and Sen [83] points out some errors in the quoted

values of the redshift z in the Pantheon dataset. We have

worked out the reconstruction of j with the corrected values

of z given in [83]. There is hardly any qualitative difference

in the plots. The only noticeable difference found is in the

lower middle panel of Fig. 10 for the best fit curve where

Pantheon + BAO + CMB data are combined. However, even

in 1σ , there is no change in the conclusion. The result that

�CDM is always included in 2σ always remains valid.
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