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Abstract 

 
 
In this paper we investigate a class of semiparametric models for panel datasets 
where the cross-section and time dimensions are large. Our model contains a 
latent time series that is to be estimated and perhaps forecasted along with a 
nonparametric covariate effect. Our model is motivated by the need to be flexible 
with regard to functional form of covariate effects but also the need to be practical 
with regard to forecasting of time series effects. We propose estimation procedures 
based on local linear kernel smoothing; our estimators are all explicitly given. We 
establish the pointwise consistency and asymptotic normality of our estimators. We 
also show that the effects of estimating the latent time series can be ignored in 
certain cases. 
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1 Introduction

Panel data are found in many contexts. Traditionally, it is associated with a series of household

surveys conducted over time on the same individuals for which the cross-sectional dimension is large

and the time series is dimension is short. Parametric methods appropriate for this kind of data can

be found in Hsiao (1986). There has also been some work on semiparametric models for such data,

see for example Kyriazidou (1997), and nonparametric additive models, Porter (1996). The increase

in the length of time series available for these data has lead to some interest in the application of

time series concepts, see for example Arellano (2003). More recently, there has been work on panel

data with large cross-section and time series dimension, especially in finance where the datasets can

be large along both dimensions and in macro where there are many series with modest length time

series. Some recent works include Phillips and Moon (1999), Bai and Ng (2002), Bai (2003,2004),

and Pesaran (2006). These authors have addressed a variety of issues including nonstationarity,

estimation of unobserved factors, and model selection. They all work with essentially parametric

models.

In this paper we investigate a class of semiparametric models for such datasets. Our model

contains a latent time series that is to be estimated along with a nonparametric covariate effect. Our

model is motivated by the need to be flexible with regard to functional form of covariate effects but

also the need to be practical with regard to forecasting of time series effects. Our main contribution

in fact is to provide results that support subsequent time series analysis on the latent time series, and

for this purpose it is desirable and important to not require the latent time series to be stationary.

Our framework is consistent with the influential model of Carter and Lee (1992) for US mortality.

Some other related works in econometrics include Connor and Linton (2002), who applied a similar

model to a large financial panel dataset. See also Fengler, Härdle and Mammen (2006) and Mammen,

Støve, and Tjøstheim (2006). We propose estimates of the nonparametric component and the latent

time series that are based on least squares objective functions and are defined in closed form. We

establish the pointwise asymptotic distribution of our estimator of the nonparametric component

and the joint distribution of the estimated latent time series in the case where the time series length

is fixed. We then establish some properties in the case where the time series length increases to

infinity at some rate. In many cases one wants to do further modelling of the latent time series with

a view to forecasting future values. We prove that the estimated latent time series is close enough

to the true latent time series such that the estimation error can be ignored in such future analysis.
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We give an application on simulated data.

The paper is organized as follows. In section 2 we describe our model, while in section 3 we

introduce our estimators of the key components. In section 4 we give the asymptotic properties of

the estimates, while in section 5 we investigate the application of our estimates to further modelling

strategies. We give some numerical evidence on the finite sample performance of our procedures in

section 6, while section 7 concludes. All proofs are in the appendix.

2 Model

We suppose that the data are generated as an unbalanced panel:

Yi,t = θt + g(Xi,t) + ui,t, i = 1, . . . , nt, t = 1, . . . , T, (1)

where the unobserved errors (ui,t)i,t satisfy at least the conditional moment restrictionE[ui,t|Xi,t, θt] =

0. Here, (θt)t is an unobserved time series, while (Xi,t)i,t are observed covariates. We shall assume

throughout that (θt)t is independent of the observed covariates and errors. The distribution theory

requires additional conditions on the errors and the covariates to ensure that laws of large numbers

and central limit theorems hold, we discuss this further below. The model is a semiparametric panel

data model and some aspects of this have been discussed recently in for example Fan and Li (2004),

Fan, Huang, and Li (2007), and Mammen, Støve, and Tjøstheim (2006), although our assumptions

will be more general in some cases and our focus is different. In particular, the focus of our paper is

on the latent time series (θt)t itself. In practice we expect the distribution of observed and unobserved

variables to change over time, and this is allowed for in our model. For example, we wish to allow

the covariates to have potentially time-varying densities ft, i.e.,

Xi,t ∼ ft, i = 1, . . . , nt. (2)

This is different from most previous treatments of this model.

The model can also be thought of as an additive nonparametric regression model in covariates

t/T and Xi,t except that the function t �→ θt is not assumed to be smooth or even continuous, so

most extant theory for additive regression models cannot be applied.

Our aim is to estimate the unknown smooth regression function g(·) and the time series (θt)t from
a sample {Yit, Xit, i = 1, . . . , nt, t = 1, . . . , T}. We allow the datasets to be unbalanced: the number
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of observations in each time period, denoted nt, and the number of time periods for each observation,

denoted Ti, are allowed to vary freely but are assumed independent of all other randomness.

Observe that the mean of Yi,t is

E[Yi,t] = E[θt] +

∫
g(x)ft(x)dx. (3)

Without further restrictions, the mean of the latent process {θt} and the function g(·) are not
separately identified. Clearly, we may subtract a constant from θt and add it to the function g without

changing the distribution of the observed data. In the context of additive models, for example Linton

and Nielsen (1995), it is common to assume that E[g(X)] = 0. However, since we wish to allow for the

possibility that the covariate distribution is nonstationary, this is not an attractive assumption. One

could instead assume that for example E[g(Xi,1)] = 0, which would be consistent with nonstationary

covariates. We instead put restrictions on the process {θt}. A restriction on the mean of θt would

effectively rule out nonstationarity in that component. Therefore, we shall impose that θ1 = 0 (one

could choose an arbitrary initial value instead, if this has better interpretation). This is consistent

with the process {θt} being a unit root process starting from the origin. It also allows the process {θt}
to be asymptotically stationary. We remark that there is an air of arbitrariness in the decomposition

between θt and g(Xi,t) and whatever restriction is imposed cannot get around this. The quantity

ϕt = E(Yit|θt, Xit) = θt + g(Xit) is invariant to the choice of identifying restriction. However, the

quantity ϕt contains two sources of nonstationarity though, θt and the changing mean of g due to the

changing covariate distribution. It is of interest to separate out these two sources of nonstationarity

by examining separately θt and ft.

We close this section with some motivation for considering the model (1). The model captures the

general idea of an underlying and unobserved trend modifying the effect of a covariate on a response.

For example, suppose that output of a firm Q is determined by inputs capital K and labour L but

the production function F is subject to technological change a that affects all firms in the industry.

This could be captured by the deterministic equation Q = aF (K,L). Taking logs and adding a

random error yields the specification (1) for Yit = logQit, θt = log at, and g(.) = logF (.). Note that

∂ logQ/∂ log a = 1, and this specification imposes the so-called Hicks Neutral technical change. In

this case, the Total Factor Productivity or Solow Residual is θ′(t), the part of growth not explainable

by measurable changes in the inputs. In the popular special case where the production function is

homothetic, one can replace F (Kit, Lit) by f(Xit), where Xit is the scalar capital to labour ratio.
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Traditional econometric work chose particular functional forms for F like Cobb-Douglas or CES,

and made θt a polynomial function of time. However, there is not general agreement on the form of

production functions, see Jorgensen (1986), and so it is well motivated to treat g as a nonparametric

function. Likewise it is restrictive to assume a particular form that underpins how the technology

should change and so we do not restrict the relationship t �→ θt. The model assumption that θ1 = 0

has a natural interpretation in this case as it corresponds to a1 = 1, in which case Qi1 = F (Ki1, Li1)

is a baseline level of production.

3 Estimation

We next present several methods for estimation of the unknown quantities. All our methods are based

on minimizing sample sums of squared residuals. This has several advantages: it leads to closed form

estimators; it only requires the conditional moment restriction E(u|X, θ) = 0 for consistency; it

usually implies an efficient procedure under i.i.d. normal error terms as has been noted in earlier

work. We also adopt the local linear regression paradigm because of its many advantages, Fan

and Gijbels (1996). Extension to the local polynomial case is straightforward conceptually. Our

estimation method is related to that considered in the paper of Mammen, Stove, and Tjostheim

(2006) except that we consider different identification restrictions, which leads to a slightly different

procedure. They consider a more general model with multiple covariates that enter in an additive

fashion, which makes their procedure more complicated to describe. Also, they do not provide results

for estimation of the latent time series, which is perhaps the main contribution of this paper.

We estimate (g(x), g′(x)) for each x in a set X and θ = (θt)t=2,...,T by minimizing the following

integrated weighted sum of squares:

∫ T∑

t=1

nt∑

i=1

(Yi,t − θt − g(x)− g′(x)(Xi,t − x))
2
K

(
Xi,t − x

ht

)
dν(x)

=

∫ (
Y −Aθ −Bx

[
g(x)

g′(x)

])⊤
Kx,h

(
Y −Aθ −Bx

[
g(x)

g′(x)

])
dν(x),

(4)

for some suitable measure ν concentrated on X where θ1 = 0, Y = (Yi,t)i=1,...,nt,t=1,...,T , while A

and Bx are suitable “design matrices” of dimension N × (T−1) and N × 2 respectively, where

N =
∑T

t=1 nt. The rows in Bx are of the form [1 Xi,t − x] and the typical row in A has a 1 in the
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t−1st place and zeros elsewhere if the row corresponds to an observation Yi,t from the tth time period

for t = 2, . . . , T ; rows corresponding to observations Yi,1 from the first time period have all element

equal to 0. Finally, Kx,h is the N × N diagonal matrix with diagonal elements K ((Xi,t − x)/ht) ,

where ht is a bandwidth sequence and K is a kernel function. For any fixed value of θ the integrated

sum of squares is minimized by minimizing the integrand. This leads to
[
ĝ(x)

ĝ′(x)

]
= (B⊤

x Kx,hBx)
−1B⊤

x Kx,h(Y −Aθ). (5)

We note that this is just the (pooled) local linear regression of Y −Aθ on X in the point x. Plugging

this expression into (4) yields
∫

(Y − Aθ −Wx,h(Y −Aθ))⊤Kx,h(Y − Aθ −Wx,h(Y − Aθ))dν(x)

=(Y − Aθ)⊤
∫

Kx,h(IN −Wx,h)dν(x)(Y − Aθ)

where Wx,h = Bx(B
⊤
x Kx,hBx)

−1B⊤
x Kx,h. Minimizing this as a function of θ yields the weighted least

squares estimator

θ̂ =

(
A⊤
∫

Kx,h(IN −Wx,h)dν(x)A

)−1
A⊤
∫

Kx,h(IN −Wx,h)dν(x)Y

=

(∫
A⊤Kx,h(IN −Wx,h)Adν(x)

)−1 ∫
A⊤Kx,h(IN −Wx,h)Y dν(x) (6)

The integrals in the matrices in (6) are one-dimensional and can be computed by standard numerical

integration routines. Moreover, simple expressions can be given for the matrices A⊤Kx,h(IN−Wx,h)A

(see (21)) and A⊤Kx,h(IN−Wx,h)Y . Plugging (6) into (5) then gives the estimator of g(x) (and g′(x)).

It is worth noting that having derived the estimator of θ and the estimator of g as a solution to a least

squares problem does not prevent us from using different x’s or another set of bandwidths (or even

another choice of kernels) in the final estimation of g. This may be quite useful in some situations,

perhaps especially when predicting future observations YT+s corresponding to a new covariate value

x.

4 Asymptotic results

In this section we give some asymptotic properties of our estimators. Our main focus is in the

estimation of the latent time series (θt)t but we also provide results for the estimator of g. The
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first properties we give hold for the large N and fixed T case. Here we give the joint asymptotic

distribution of the estimation error for the time series. We then give some results for the case where

both quantities grow. Here the focus is on sufficient conditions that allow us to apply standard

asymptotic results from time series theory to the estimated time series.

4.1 Asymptotic results when T is fixed

We use the following regularity conditions, which as usual are sufficient but not necessary for our

results.

A��������	 A.

1. Suppose that Xit are independent across i and t, and identically distributed across i, while

ui,t = σt(Xi,t)ǫi,t, where ǫi,t are i.i.d. with mean zero and variance one and independent of Xit.

2. Suppose that dν(x) = ω(x)dx for some density ω and that ν has compact support X .

3. Suppose that g is twice differentiable on the compact set X ⊂ ∩t{x : ft(x) > 0}, and satisfies

|g′′(x)− g′′(y)| ≤ C|x− y| for some constant C. The marginal densities ft are (uniformly over

t) continuous and strictly positive throughout X . The conditional variance functions σ2t are

(uniformly over t) continuous and strictly positive throughout X .

4. Suppose that K is a Lipschitz-continuous density function symmetric about zero (a second order

kernel) with compact support. Define ||K||22 =
∫

K(u)2du and µj(K) =
∫

K(u)ujdu.

5. Suppose that N =
∑T

s=1 ns →∞ such that nt/N → λt ∈ [λ, λ] ⊂ (0,∞) for each t = 1, . . . , T .

6. There exists a sequence h = h(N) such that ht/h → bt, where bt ∈ [b, b] ⊂ (0,∞) for all t ,

while h→ 0 and Nh5 → 0.

We have maintained strong assumptions with regard to the errors. In principle, one can allow

both cross-sectional dependence and time series dependence in the errors and most of our results go

through with some modification of the limiting variances in some cases. However, note that the model

itself induces cross-sectional and time series dependence in Yi,t. We are assuming that the number

of observations in each time period is of similar magnitude; this can be weakened but at the expense

of a more complicated theory. It seems like a reasonable assumption to make here. In assumption
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A6 h may be chosen to be any of the bandwidths h1, . . . , hT . Note that since the distribution of

covariates and errors may differ from time period to time period it may in practice be very useful

to have different bandwidths in each time period. The other assumptions are quite standard in the

nonparametric literature. In the setup of this section, where T is fixed, the uniformity in t required

in assumption A3 is just an assumption for each t. However, we will use the assumption again in

section 5 where T →∞ and here some sort of uniformity is required.

We need to define some quantities that are important in the results. Define the T − 1 × T − 1

matrix D(x) with elements

D(x)t,t′ =





ft+1(x)

(
1− λt+1bt+1ft+1(x)∑T

s=1 λsbsfs(x)

)
if t = t′

−
√

λt+1bt+1ft+1(x)
√

λt′+1bt′+1ft′+1(x)∑T
s=1 λsbsfs(x)

if t �= t′.

(7)

Under assumptions (A3) and (A5) the matrix D(x) is strictly positive definite for x ∈ X : If we
let v be the T − 1 vector with elements v2, v3, . . . , vT , where vt = λtbtft(x) for t = 1, . . . , T and let

V =diag(v), then D(x) may be written as Λ−1/2B−1/2D(x)B−1/2Λ−1/2, where Λ = diag{λ2, . . . , λT},
B = diag{b2, . . . , bT}, and

D(x) = V − 1∑T
s=1 vs

vv⊤.

We note that

D(x)−1 = V −1 +
1

v1
iT−1i

⊤
T−1,

which can easily be checked, see Berry, Linton and Pakes (2004) for some results on this type of

matrices. In particular, D(x)−1 and therefore also D(x) and D(x) are strictly positive definite.

Define also the (T − 1)× T -matrix

C(x) = [0|IT−1]−
vi⊤T∑T
s=1 vs

, (8)

where iT = (1, 1, . . . , 1)⊤ ∈ RT . Then let C(x) = B−1/2Λ−1/2C(x)Λ
1/2

B
1/2

, where Λ = diag{λ1, . . . , λT},
B = diag{b1, . . . , bT}, and define

Ω(x) = C(x)Ψ(x)C(x)⊤, (9)

where Ψ(x) =diag{σ21(x)f1(x), . . . , σ2T (x)fT (x)}.
Let ∆T = diag{n2, . . . , nT} and HT = diag{h2, . . . , hT}.
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Theorem 1 Suppose that assumptions A1-A6 hold. Then

∆
1/2
T

(
θ̂ − θ

)
D−→ N(0,Φ−1ΞΦ−1), (10)

where

Φ = B−1/2
∫

D(x)ω(x)dxB1/2 and Ξ =

∫
Ω(x)ω(x)2dx.

The asymptotic variance is a bit unusual for a semiparametric quantity in that the bandwidth

constant matrix B enters the limiting variance. This is due to the fact that we have allowed different

bandwidths in each time period; with a single choice of bandwidth this term cancels out. We

discuss the form of the limiting variance more below. Consistent standard errors can be obtained by

estimating the unknown quantities in the asymptotic variance by consistent estimators. A simpler

approach is to work off the leading terms in the asymptotic expansion of the estimator as follows.

Let

Φ̂ = H−1/2
T ∆−1/2

T

∫
A⊤Kx,h(IN −Wx,h)Aω(x)dx∆−1/2

T H−1/2
T

Ξ̂ = Ŵdiag{û2it}Ŵ⊤

Ŵ = H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)ω(x)dx,

where ûit = Yi,t − θ̂t − ĝ(Xi,t) are nonparametric residuals.

We conclude this section with a discussion of the limiting variance (10). Consider the special case

where σ2t (x) = σ2(x) for all t, ft(x) = f(x) for all t, and λt = 1/T . Then

Φ−1ΞΦ−1 =

∫
σ2(x)f(x)ω(x)2dx

(
∫

f(x)ω(x)dx)2
[
IT−1 + iT−1i

⊤
T−1
]
.

If we knew the function g, then we would estimate θt by

θ̃t =
1

nt

nt∑

i=1

(Yit − g(Xit)), t = 1, . . . , T, (11)

which satisfies [√
n1(θ̃1 − θ1), . . . ,

√
nT (θ̃T − θT )

]⊤ D−→ N(0,Σ),

where Σ = diag
(∫

σ2t (x)ft(x)dx
)
. In the special case considered above, Σ =

∫
σ2(x)f(x)dxIT−1. Of

course this is an unfair comparison in view of the identification issue. If instead of knowing g we
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know g up to an additive constant, α, (11) would estimate θt + α instead of θt. Assuming as above

that θ1 = 0 we would estimate θt by

θ̃t =
1

nt

nt∑

i=1

(Yit − g(Xit))−
1

n1

n1∑

i=1

(Yi1 − g(Xi1)), t = 2, . . . , T,

with asymptotic distribution

∆
1/2
T

(
θ̂ − θ

)
D−→ N

(
0,

∫
σ2(x)f(x)dx

[
IT−1 + iT−1i

⊤
T−1
])

Observe that we may get arbitrarily close to this asymptotic variance by choosing X to be a large

compact subset of {x : f(x) > 0} and letting ω(x) = 1 in Theorem 1. Thus, the lack of efficiency of

our estimator of θt is more due to the unidentifiability than to the unknown regression function g.

It follows from Theorem 1 that we can write θ̂ = θ+(θ̂−θ), where the two terms on the right hand

side are asymptotically independent and the latter term is asymptoticallyN(0,∆
−1/2
T Φ−1ΞΦ1/2∆

−1/2
T )-

distributed. Hence, when nt is large we may either model the estimated time series and from this

derive a model for the latent time series, or — if nt is sufficiently large so that the prediction error is

negligible — use the estimated time series as if it were the latent time series.

4.2 Asymptotics for the estimator of g

Theorem 2 Suppose that assumptions A1-A6 hold. Then

√
Nh

(
ĝ(x)− g(x)− h2

2
µ2

∑T
t=1 λtb

3
tft(x)∑T

t=1 λtbtft(x)
g′′(x)

)
D−→ N


0, ||K||22

∑T
s=1 λsbsσ

2
s(x)fs(x)(∑T

s=1 λsbsfs(x)
)2


 ,

provided
√

Nhh3 → 0 and
√

Nhh2rN → 0, where rN = maxs=1,...,T (hs +
√

log ns/(nshs)).

Consistent standard errors can be obtained by estimating the unknown quantities in the asymp-

totic variance in the usual way, Fan and Gijbels (1996) and Fan and Yao (2003). In particular we

note that the constants b1, . . . , bT and λ1, . . . , λT in practice may be replaced by ht/h and nt/N

respectively.

If we knew the process θt we would estimate the function g from the pooled nonparametric

regression of Yit − θt on Xit. This satisfies the same CLT. In the special case where σ2t (x) = σ2(x)

for all t, ft(x) = f(x) for all t, and λt = 1/T , the asymptotic variance is T ||K||22σ2(x)/f(x).
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5 Time series analysis

If one observed the time series θt, t = 1, . . . , T, where T is large, the usual econometric approach

would be to specify a model for it, thereby enabling description and forecasting. For example,

suppose that θt follows an ARIMA(p,d,q) process with slowly varying mean, A(L)(1 − L)dθt =

µ(t/T ) + B(L)σ(t/T )ζt, where µ(·) and σ(·) are smooth functions on [0, 1], ζt is a white noise

process, while A(L) =
∑p

j=0 ajL
j and B(L) =

∑q
j=0 bjL

j are lag polynomials with roots outside the

unit circle. Here, d is an integer denoting the order of nonstationarity. This is a convenient class

of models for forecasting; it is just one (quite general) class of discrete time models that allows a

certain type of nonstationary behaviour, others can be contemplated. The properties of estimators

in such models generally rely on a long time series so that T →∞.
Our previous results can be formally extended to this case, although in an extension of Theorem 1,

one would have to consider finite dimensional linear combinations of the expanding parameter vector.

Instead, we address the issue of the impact of estimating the time series θt on inference about the

parameters that govern its dynamic evolution. Hansen, Nielsen, and Nielsen (2004) consider the

general problem of using estimated values in time series models. They prove a general result that

provided
T∑

t=2

(
θ̂t − θt

)2 P−→ 0 (12)

as T → ∞, then we may use the estimated time series as if it was the true unobserved time series

for instance in estimation and unit root testing in the sense that using the estimated values leads to

the same asymptotic distribution (for T →∞) as if the true values were used. It is understood that
the limits here are taken pathwise so that N and T approach infinity at some rate.

We next show that this property also holds in our case with a nonparametric covariate effect. As

we now consider the case of T →∞ and mins=1,...,T ns →∞, we need additional assumptions. When

T → ∞ we must have nt/N → 0 if not for all then at least for some t. Thus we need to replace

assumption A5. A natural assumption would be to let all ratios nt/N go to 0 with the same rate.

Hence we will assume:

A��������	 B.

1. Suppose that nt → ∞ for each t and T → ∞ such that there exists a sequence {λ∗s}, bounded
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away from zero and infinity, such that as T →∞

sup
s=1,...,T

∣∣∣∣
ns
N
− λ∗s

T

∣∣∣∣ = o(1/T ). (13)

2. For each x
∑T

s=1
ns
N

fs(x) has a limit, f(x) say, as N →∞.

3.
∫ ∑T

s=1 σ
2
s(x)

ns
N

fs(x)dx is bounded as N →∞.

Note that under assumption B1 the limit in B2 may be rewritten as

f(x) = lim
T→∞

1

T

T∑

s=1

λ∗sfs(x)

Moreover, under assumption A3 f(x) > 0 for x ∈ X . Under assumptions A3 and B2, a sufficient
condition for assumption B3 is that σt(x) is bounded (in t). This latter condition is almost implied

by A3.

Theorem 3 Suppose that assumptions A1-A4, A6, and B1-B3 hold and that logN/(Nh) = o(1),

Th2 = o(1) and T/(
√

Nh) = o(1) as N →∞. Then (12) holds.

This shows that the estimation of θt does not affect the limiting distribution of the estimators

of the parameters of the time series process or the tests. This means that standard errors can be

constructed as if the θt were observed. Furthermore, under the strong exogeneity assumption, we

can factor the likelihood so that our two-step approach to estimation of the parameters of θt does

not lose information. Note that our result does not make any assumptions about properties of the

process θt.

R����. In this asymptotic framework, we can revise the result of Theorem 2. For any x such

that lim
T→∞

1
T

∑T
s=1 λsbsfs(x) > 0, we have

√
nTh

(
ĝ(x)− g(x)− h2

2

∑T
t=1 λtb

3
tft(x)∑T

t=1 λtbtft(x)
µ2g

′′(x)

)
D−→ N


0, ||K||22

lim
T→∞

1
T

∑T
s=1 λsbsσ

2
s(x)fs(x)

(
lim
T→∞

1
T

∑T
s=1 λsbsfs(x)

)2


 ,

provided h is chosen to be of order (NT )−1/5.
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6 Numerical Results

In this section we present the results of a small simulation experiment. We generated data from the

design

yit = θt + xit + uit,

where uit ∼ N(0, 1), xit ∼ U [−1, 1], and θt = θt−1 + ηt, where ηt ∼ N(0, 0.1) and θ1 = 0, with

all random variables mutually independent. This results in the regression function and the time

varying component having similar scale in most cases, see below. We take T ∈ {20, 40, 80} and
n = nt ∈ {50, 100, 200}. Bandwidth was chosen by a Silverman rule of thumb procedure, specifically
h = 1.06σ̂(nT )−1/5, where σ̂ was the sample standard deviation of the covariates. This bandwidth

is exactly optimal for the integrated mean squared error of a kernel density estimator when the

underlying density is Gaussian. Obviously, it is not optimal for the problem at hand. However, it

is so widely used and simple to implement and also relatively robust, that we decided on using it

here. This means that the performance we report can likely be improved on by using a more time

consuming method like least squares cross-validation. We evaluate several performance measures:

LT2(θ̂) = E
T∑

t=2

(
θ̂t − θt

)2
; L∞(θ̂) = E max

2≤t≤T

∣∣∣θ̂t − θt

∣∣∣

L2(ĝ) =
1

J

J∑

j=1

E (ĝ(Uj)− g(Uj))
2 ; L∞(ĝ) = E max

1≤j≤J
|ĝ(Uj)− g(Uj)| ,

where Uj ∼ U [−1, 1] independent of the data. The expectations are computed by averaging over 100
simulation draws. We also evaluate the performance of the least squares estimator of the autore-

gressive coefficient, ρ̂ =
∑

t θ̂tθ̂t−1/
∑

t θ̂
2

t−1; we show the standard deviation and bias. Our results

are given in Table 1.

Table 1

12



n T LT2(θ̂) L∞(θ̂) L2(ĝ) L∞(ĝ) bias(ρ̂) std(ρ̂)

50 20 0.3181 0.2757 0.0024 0.0878 -0.3022 0.2601

40 0.6870 0.3215 0.0016 0.0722 -0.1589 0.1832

80 1.5581 0.3720 0.0009 0.0535 -0.1220 0.1356

100 20 0.1635 0.2045 0.0014 0.0667 -0.1434 0.2473

40 0.3761 0.2336 0.0010 0.0544 -0.0931 0.1501

80 0.8382 0.2811 0.0005 0.0415 -0.0466 0.0832

200 20 0.0932 0.1540 0.0009 0.0553 -0.0645 0.1913

40 0.2184 0.1789 0.0005 0.0434 -0.0374 0.1173

80 0.5151 0.2159 0.0003 0.0326 -0.0254 0.0696

The performance of θ̂ clearly improves with n and gets worse with T . Note however that LT2(θ̂)

roughly doubles and L∞(θ̂) increases by a factor
√
2 whenever T doubles as Theorem 1 would predict.

Our asymptotics in section 5 refer to the case where T (n)→∞ as n→∞ and so one should ideally

choose a path through these numbers. Our impression is that the results roughly correspond to

the predictions of our asymptotics. The performance of ĝ seems to be much better and it improves

with both n and T. Regarding ρ̂ performance seems to improve primarily with T (as expected) but

also there is some improvement as n increases, which reflects the reduction of the estimation error

associated with the first stage. Note that even when the time series is observed and not estimated

as here, ρ̂ is negatively biased in finite samples.

Figure 1 below shows a typical outcome:

13



Figure 1. Shows actual time series (solid line) with estimated series (circles) for a case with

n = 200, T = 40

7 Conclusions

We have established the theoretical properties of our estimation procedures for the quantities of

interest in this semiparametric model for large panels. The simulation results generally support our

asymptotic arguments.

The model can be extended in various ways. If the observed covariates X are multidimensional,

our results go through provided we use multidimensional kernels and multidimensional local linear

estimation. In some multivariate cases one may wish to impose additional structure on the function

g such as additivity, index structure, or partial linearity. Our methodology provides consistent

estimation of the unrestricted function; the additional structure may be imposed afterwards, see for

example Linton and Nielsen (1995).

In some applications, one may also be concerned about individual effects, Hsiao (1986). For

example, suppose that

Yi,t = αi + θt + g(Xi,t) + ui,t,

14



for some unobserved individual specific effect αi. One can estimate the parameter vector (αi)i

jointly with (θt)t and g(.) by minimizing the re-defined sum of squared residuals in (4) subject to

the constraint that
∑n

i=1 αi = 0. However, with a large cross-section this may be computationally

demanding. Alternatively, either differencing or deviation from full mean eliminates the nuisance

parameters and reduces the model to something very similar to (1).

A Appendix

A.1 Lemmas

We start by noting that

θ̂x = θ +
(
A⊤Kx,h(IN −Wx,h)A

)−1 (
A⊤Kx,h(IN −Wx,h)Y

∗) ,

where Y ∗ = Y −Aθ is the vector with elements

Y ∗
i,t = g(Xi,t) + σt(Xi,t)ǫi,t

= g(x) + g′(x)(Xi,t − x) +
(
g(Xi,t)− g(x)− g′(x)(Xi,t − x)

)
+ σt(Xi,t)ǫi,t.

Moreover as (IN −Wx,h)Bx = 0

A⊤Kx,h(IN −Wx,h)Y
∗ = A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
+A⊤Kx,h(IN −Wx,h)u (14)

with g = (g(Xi,t)i,t. The first term on the far right is the “bias term”, the second is the “variance

term”. Therefore,

H
1/2
T ∆

1/2
T (θ̂x − θ)

=
(
H
−1/2
T ∆

−1/2
T A⊤Kx,h(IN −Wx,h)A∆

−1/2
T H

−1/2
T

)−1
H
−1/2
T ∆

−1/2
T A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])

+
(
H−1/2
T ∆−1/2

T A⊤Kx,h(IN −Wx,h)A∆−1/2
T H−1/2

T

)−1
H−1/2
T ∆−1/2

T A⊤Kx,h(IN −Wx,h)u.

To prove our results we need the following two lemmas.
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Lemma 1 Suppose that assumption A holds. Then

sup
x∈X

∥∥∥H−1/2
T ∆

−1/2
T A⊤Kx,h(IN −Wx,h)A∆

−1/2
T H

−1/2
T −D(x)

∥∥∥ = op(1).

where for a matrix W , ‖W‖ =
(
tr(W⊤W )

)1/2
.

Proof of Lemma 1. Letting

sj,t(x) =
nt∑

i=1

(Xi,t − x)j K

(
Xi,t − x

ht

)
, j ∈ N0, t = 1, . . . , T,

it is well known (Fan and Yao (2003, Theorem 5.3)) that as nt → ∞ and ht → 0 such that

ntht/ lognt →∞,

sj,t(x) = Nhj+1 · bj+1t λtft(x)
(
µj +OP (rN )

)
(15)

with rN = maxs=1,...,T (hs+
√

logns/(nshs)) the Op-term is uniform in x ∈ X . Note that by assump-
tion A4 µ0 = 1 and µ1 = 0. Put sj(x) =

∑T
t=1 sj,t(x), j ∈ N0.

It follows that the 2× 2-matrix B⊤
x Kx,hBx is

[
s0(x) s1(x)

s1(x) s2(x)

]
=


Nh

∑T
t=1 btλtft(x)(1 +OP (rN)) Nh2

∑T
t=1 b

2
tλtft(x)OP (rN )

Nh2
∑T

t=1 b
2
tλtft(x)OP (rN) µ2Nh3

∑T
t=1 b

3
tλtft(x)(1 +OP (rN))


 (16)

Next we see that for t = 1, . . . , T − 1 the t′th row of A⊤Kx,hBx is
[
s0,t+1(x) s1,t+1(x)

]
= Nhft+1(x)

[
bt+1λt+1 +OP (rN) hOP (rN)

]
, (17)

so that the t’th row of A⊤Kx,hBx(B
⊤
x Kx,hBx)

−1 is
[
bt+1λt+1ft+1(x)∑T

s=1 bsλsfs(x)
(1 +OP (rN)) OP (rN/h)

]
, (18)

Combining (17) and (18), A⊤Kx,hWx,hA is a (T − 1)× (T − 1)-matrix with (t, t′)-element given by

Nh
bt+1λt+1ft+1(x)bt′+1λt′+1ft′+1(x)∑T

s=1 bsλsfs(x)
(1 +OP (rN)) . (19)

The (t, t) element in the diagonal matrix A⊤Kx,hA is
∑nt+1

i=1 K
(
Xi,t+1−x
ht+1

)
= s0,t+1(x). Hence the

matrix A⊤Kx,h(IN −Wx,h)A is a (T − 1)× (T − 1)-matrix with diagonal-elements

Nhbt+1λt+1ft+1(x)

(
1− bt+1λt+1ft+1(x)∑T

s=1 bsλsfs(x)

)
(1 +OP (rN ))
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and off-diagonal elements given by (19). Pre and postmultiplying by H
−1/2
T ∆

−1/2
T gives the desired

result.

Lemma 2 Suppose that assumption A holds. Then the t’th element of H
−1/2
T ∆

−1/2
T A⊤Kx,h(IN −

Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
is oP (1) uniformly in x ∈ X .

Proof of Lemma 2. Under our assumptions

B⊤
x Kx,h

(
g −Bx

[
g(x)

g′(x)

])
=

g′′(x)

2

[
s2(x)

s3(x)

]
+

[
O(s∗3(x))

O(s4(x))

]

= Nh3
T∑

t=1

λtb
3
tft(x)

(
g′′(x)

2

[
µ2

hbtµ3

]
+

[
hbtµ

∗
3

h2b2tµ4

])
× (1 +OP (rN)) (20)

where µ∗3 =
∫
|z|3K(z)dz and

s∗3(x) =
T∑

t=1

nt∑

i=1

|Xi,t − x|3K
(

Xi,t − x

ht

)
= Nh4

T∑

t=1

λtb
4
tft(x)µ

∗
3 (1 +O(rN)) .

Combining (18) and (20) the tth element of the vector A⊤Kx,hWx,h

(
g −Bx

[
g(x)

g′(x)

])
is

Nh3µ2
g′′(x)

2
λt+1bt+1ft+1(x)×

∑T
s=1 λsb

3
sfs(x)∑T

s=1 λsbsfs(x)
× (1 +OP (rN)) .

Similarly, the t′th element of A⊤Kx,h

(
g −Bx

[
g(x)

g′(x)

])
is

g′′(x)

2
s2,t+1(x) +O(s∗3,t+1(x)) = Nh3µ2

g′′(x)

2
λt+1b

3
t+1ft+1(x) (1 +OP (rN)) .

Therefore, the tth element of the vector A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
is

Nh3µ2
g′′(x)

2
λt+1bt+1ft+1(x)

[
b2t+1 −

∑T
s=1 λsb

3
sfs(x)∑T

s=1 λsbsfs(x)

]
(1 +OP (rN)) .

Premultiplying by the diagonal matrix H
−1/2
T ∆

−1/2
T we get the desired result.
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A.2 Proof of Theorem 1

First, write

∆
1/2
T (θ̂ − θ) =

(
H
−1/2
T H

−1/2
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)Aω(x)dx∆

−1/2
T H

−1/2
T H

1/2
T

)−1

×H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
ω(x)dx

+

(
H
−1/2
T H

−1/2
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)Aω(x)dx∆

−1/2
T H

−1/2
T H

1/2
T

)−1

×H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)uω(x)dx.

From Lemma 1 and the hypothesis on ω, we have

H
−1/2
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)Aω(x)dx∆

−1/2
T H

−1/2
T =

∫
D(x)ω(x)dx + op(1),

whence

H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)Aω(x)dx∆

−1/2
T = B−1/2

∫
D(x)ω(x)dxB1/2 + op(1).

Moreover

H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
ω(x)dx = oP (1)

by lemma 2. The t’th element of A⊤Kx,h(IN −Wx,h)u is (using (18))

nt+1∑

i=1

K

(
Xi,t+1 − x

h t+1

)
σt+1(Xi,t+1)ǫi,t+1 −

T∑

s=1

ns∑

i=1

K

(
Xi,s − x

hs

)
(Xi,s − x)σs(Xi,s)ǫi,sOP (rN/h)

− bt+1λt+1ft+1(x)∑T
s=1 bsλsfs(x)

T∑

s=1

ns∑

i=1

K

(
Xi,s − x

hs

)
σs(Xi,s)ǫi,s(1 +OP (rN)).

It follows that

H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)ω(x)dx× u

=

∫
C(x)




1
h1
√
n1

∑n1
i=1K

(
Xi,1−x
h1

)
σt(Xi,1)ǫi,1

...
1

hT
√
nT

∑nT
i=1K

(
Xi,T−x
hT

)
σt(Xi,T )ǫi,T


ω(x)dx× (1 +OP (rN)) .
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Define (ct(x))t=1,...,T−1 = γ⊤C(x) for arbitrary vectors γ ∈ RT−1. Then

T∑

t=1

1√
nt

∫
ct(x)

1

ht

nt∑

i=1

K

(
Xi,t − x

ht

)
ω(x)dx× σt(Xi,t)ǫi,t

=
T∑

t=1

1√
nt

nt∑

i=1

ct(Xi,t)ω(Xi,t)σt(Xi,t)ǫi,t + op(1),

by changing variables and dominated convergence. Using standard arguments the vector Zn =

(Zn1, . . . , ZnT )
⊤, where

Znt =
1√

nt
∫

σ2t (x)c
2
t (x)ω

2(x)ft(x)dx

nt∑

i=1

ct(Xi,t)ω(Xi,t)σt(Xi,t)ǫi,t t = 1, . . . T,

is jointly asymptotically normal with mean zero and identity variance covariance matrix. It follows

that

γ⊤H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)ω(x)dx× u = i⊤TΨ

1/2
γ Zn + op(1)

D−→ N
(
0, i⊤TΨγiT

)
,

where Ψγ = diag{
∫

σ2t (x)c
2
t (x)ω

2(x)ft(x)dx}. Hence i⊤TΨγiT equals

T∑

t=1

∫
σ2t (x)c

2
t (x)ω

2(x)ft(x)dx = γ⊤
∫

C(x)Ψ(x)C(x)⊤ω2(x)dx γ = γ⊤
∫

Ω(x)ω2(x)dx γ

Therefore, by the Cramer-Wold device

H−1
T ∆

−1/2
T

∫
A⊤Kx,h(IN −Wx,h)ω(x)dx× u

D−→ N

(
0,

∫
Ω(x)ω2(x)dx

)

The result follows.

A.3 Proof of Theorem 2

Let

βT (x) =
1

2
µ2

∑T
t=1 λtb

3
tft(x)∑T

t=1 λtbtft(x)
g′′(x).
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We see that

√
Nh
(
ĝ(x)− g(x)− h2βT (x)

)

=
√

Nh
([

1 0
]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,h(Y −Aθ)− h2βT (x)
)

−
√

Nh
[
1 0

]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,hA∆
−1/2
T ∆

1/2
T (θ̂ − θ)

=
√

Nh
([

1 0
]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,h(Y −Aθ)− h2βT (x)
)
+ oP (1)

using the results of the previous section and (18). Note that

[
1 0

]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,h(Y −Aθ)

is the pooled local linear regression estimator of x based on the independent data Y ∗
i,t = g(Xi,t) +

σt(Xi,t)ǫi,t and the covariates Xi,t. We may rewrite this as

[
1 0

]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,hY
∗ =
[
1 0

]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,hBx

[
g(x)

g′(x)

]

+
[
1 0

]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,h

(
g −Bx

[
g(x)

g′(x)

])

+
[
1 0

]
(B⊤

x Kx,hBx)
−1B⊤

x Kx,hu

The first term is g(x). To find the second term we note that by (15)

[
1 0

]
(B⊤

x Kx,hBx)
−1 =

[
1

Nh
∑T

1 bsλsfs(x)
(1 +OP (rN ))

1

Nh
OP (rN )

]
.

Using this and (20) the second term becomes

Nh3
∑T

t=1 λtb
3
tft(x)

g′′(x)
2

µ2

Nh
∑T

1 bsλsfs(x)
(1 +OP (rN)) + h3(1 +OP (rN)) +OP

(
rN

Nh4

Nh

)

=h2βT (x) + oP (1/
√

Nh).

The final term is

1∑T
s=1 bsλsfs(x)

· 1

Nh

T∑

t=1

nt∑

i=1

K

(
Xi,t − x

h

)
σt(Xi,t)ǫi,t(1 +OP (rN)) +OP (rN/

√
Nh)
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which using standard arguments is easily shown to be asymptotically normal with mean 0 and

variance
1

Nh
||K||22

∑T
s=1 λsbsσ

2
s(x)fs(x)(∑T

s=1 λsbsfs(x)
)2 .

A.4 Proof of Theorem 3

First note that in the asymptotic set-up of Theorem 3

where

rN = max
s=1,...,T

hs +

√
logns
nshs

= O

(
h +

√
logN

Nh

)

We have

T∑

t=2

(θ̂t − θt)
2 =

(∫
(Y ∗)⊤(IN −Wx,h)Kx,hAω(x)dx

)(∫
A⊤Kx,h(IN −Wx,h)Aω(x)dx

)−1

×
(∫

A⊤Kx,h(IN −Wx,h)Aω(x)dx

)−1(∫
A⊤Kx,h(IN −Wx,h)Y

∗ω(x)dx

)

≤ 1

ζ2N

(∫
(Y ∗)⊤(IN −Wx,h)Kx,hAω(x)dx

)(∫
A⊤Kx,h(IN −Wx,h)Y

∗ω(x)dx

)

where

ζN = inf
z: z⊤z=1

z⊤
∫

A⊤Kx,h(IN −Wx,h)Aω(x)dx z

is the smallest eigenvalue of
∫

A⊤Kx,h(IN −Wx,h)Aω(x)dx. This may be bounded from below by∫
ζN(x)ω(x)dx with

ζN(x) = inf
z: z⊤z=1

z⊤A⊤Kx,h(IN −Wx,h)Az

the smallest eigenvalue of

A⊤Kx,h(IN −Wx,h)A = diag(s0(x))− [s0(x) s1(x)]

[
s0(x) s1(x)

s1(x) s2(x)

]−1 [
s0(x)

⊤

s1(x)
⊤

]
(21)
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where s0(x)
⊤ = (s0,2(x), s0,3(x), . . . , s0,T (x)) and s1(x)

⊤ = (s1,2(x), s1,3(x), . . . , s1,T (x)). Hence, we

need to bound

z⊤A⊤Kx,h(IN −Wx,h)Az =

∑T
t=2 z

2
t s0,t(x) · s0(x)−

(∑T
t=2 zts0,t(x)

)2

s0(x)− s1(x)2/s2(x)

+
T∑

t=2

z2t s0,t(x) ·
s1(x)

2

s2(x)s0(x)− s1(x)2
(22)

+
2s1(x)

∑T
t=2 zts0,t(x)

∑T
t=2 zts1,t(x)−

(∑T
t=2 zts1,t(x)

)2
s0(x)

s2(x)s0(x)− s1(x)2

away from 0. The first term of (22) may be re-written as

(
T∑

s=2

s0,s(x)

)2∑T
t=2 z

2
t s0,t(x)/

∑T
s=2 s0,s(x)−

(∑T
t=2 zts0,t(x)/

∑T
s=2 s0,s(x)

)2

s0(x)− s1(x)2/s2(x)

+
s0,1(x)

s0(x)− s1(x)2/s2(x)

T∑

t=2

z2t s0,t(x)

Of these two terms, the first one is non-negative and the second may be bounded from below by

s0,1(x)

s0(x)− s1(x)2/s2(x)
min

s=2,...,T
s0,s(x) =

Nh

T

b1λ
∗
1f1(x)

1
T

∑T
t=1 btλ

∗
tft(x)

min
t=2,...,T

btλ
∗
tft(x)(1 +OP (rN))

The second term of (22) is non-negative (and of smaller order than the first) whereas the third term

is of order

(Nh2/T ·OP (rN))
2
Nh/T · (1 +OP (rN ))

N2h4/T 2 · (1 +OP (rN))
= OP (Nhr2N/T )

It now follows that

T 2

Nh
ζN ≥

∫
b1λ

∗
1f1(x)

1
T

∑T
t=1 btλ

∗
tft(x)

min
t=2,...,T

btλ
∗
tft(x) · ω(x)dx (1 +OP (rN )) +OP (r

2
N)

which is bounded away from 0 by assumptions A3, A6, B1 and B2. Thus we need to show that

(∫
T

Nh
(Y ∗)⊤(IN −Wx,h)Kx,hAω(x)dx

)(∫
T

Nh
A⊤Kx,h(IN −Wx,h)Y

∗ω(x)dx

)
(23)

22



is oP (1). Using (14) it suffices to bound

(
T

Nh

∫
A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
ω(x)dx

)⊤

×
(

T

Nh

∫
A⊤Kx,h(IN −Wx,h)

(
g −Bx

[
g(x)

g′(x)

])
ω(x)dx

) (24)

and (
T

Nh

∫
A⊤Kx,h(IN −Wx,h)uω(x)dx

)⊤(
T

Nh

∫
A⊤Kx,h(IN −Wx,h)uω(x)dx

)
(25)

Applying lemma 2 we see that the t’th element of first term of (??) (the “bias term”) isOP

(
nt+1h

2
t+1rN

)

so that (24) is

OP

(
T 2
∑T

t=2(nth
2
t rN)

2

N2h2

)
= OP

(
T 2h2

T∑

t=2

(nt
N

)2
r2N

)
= OP (Th2r2N ) = oP (1)

For the vector containing the second term (??) (the “variance term”) we write

∫
A⊤Kx,h(IN −Wh,x)uω(x)dxu =

∫
C∗(x)




∑n1
i=1 σ1(Xi,1)K

(
Xi,1−x
h1

)
· ǫi,1

...
∑nT

i=1 σT (Xi,T )K
(
Xi,T−x
hT

)
· ǫi,T


ω(x)dx

× (1 +OP (rN))

where C∗ = [0|IT−1] − v∗i⊤
T∑T

s=1 v
∗
s

, with v∗ = (v∗s)
⊤
s=2,...,T and v∗s = λ∗sbsfs(x) for s = 1, . . . , T . Ignoring

the remainder term we get

∫



∑n2
i=1 σ2(Xi,2)K

(
Xi,2−x
h2

)
· ǫi,2

...
∑nT

i=1 σT (Xi,T )K
(
Xi,T−x
hT

)
· ǫi,T


ω(x)dx−

∫
v∗

∑T
t=1

∑nt
i=1 σt(Xi,t)K

(
Xi,t−x
ht

)
· ǫi,t

∑T
s=1 v

∗
s

ω(x)dx

and since all terms have expectation 0, it suffices to show that

and

T 2

N2h2

T∑

s=2

Var

[
T∑

t=1

nt∑

i=1

σt(Xi,t)ǫi,t

∫
v∗s∑T
s=1 v

∗
s

K

(
Xi,t − x

ht

)
ω(x)dx

]
(26)

23



go to 0. Here (??) may be bounded as follows:

T 2

N2h2

T∑

t=2

Var

[
nt∑

i=1

σt(Xi,t)

∫
K

(
Xi,t − x

ht

)
ω(x)dx · ǫi,t

]

≤const T 2

Nh2

∫ T∑

t=1

σ2t (x)
nt
N

ft(x)dx = O

(
T 2

Nh2

)

using assumption B3, whereas (26) may be bounded as follows:

T 2

N2h2

T∑

s=2

Var

[
T∑

t=1

nt∑

i=1

σt(Xi,t)ǫi,t

∫
v∗s∑T
s=1 v

∗
s

K

(
Xi,t − x

ht

)
ω(x)dx

]

≤const T

Nh2

∫ T∑

t=1

σ2t (x)
nt
N

ft(x)dx = O

(
T

Nh2

)
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