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S U M M A R Y
Seismic data recovery from data with missing traces on otherwise regular acquisition grids
forms a crucial step in the seismic processing flow. For instance, unsuccessful recovery leads
to imaging artefacts and to erroneous predictions for the multiples, adversely affecting the
performance of multiple elimination. A non-parametric transform-based recovery method is
presented that exploits the compression of seismic data volumes by recently developed curvelet
frames. The elements of this transform are multidimensional and directional and locally resem-
ble wave fronts present in the data, which leads to a compressible representation for seismic
data. This compression enables us to formulate a new curvelet-based seismic data recovery
algorithm through sparsity-promoting inversion. The concept of sparsity-promoting inversion
is in itself not new to geophysics. However, the recent insights from the field of ‘compressed
sensing’ are new since they clearly identify the three main ingredients that go into a successful
formulation of a recovery problem, namely a sparsifying transform, a sampling strategy that
subdues coherent aliases and a sparsity-promoting program that recovers the largest entries of
the curvelet-domain vector while explaining the measurements. These concepts are illustrated
with a stylized experiment that stresses the importance of the degree of compression by the
sparsifying transform. With these findings, a curvelet-based recovery algorithms is developed,
which recovers seismic wavefields from seismic data volumes with large percentages of traces
missing. During this construction, we benefit from the main three ingredients of compres-
sive sampling, namely the curvelet compression of seismic data, the existence of a favourable
sampling scheme and the formulation of a large-scale sparsity-promoting solver based on a
cooling method. The recovery performs well on synthetic as well as real data by virtue of
the sparsifying property of curvelets. Our results are applicable to other areas such as global
seismology.

Key words: Fourier analysis; Wavelet transform; Inverse theory; Spatial analysis; Controlled
source seismology; Theoretical seismology.

I N T RO D U C T I O N

The methodology presented in this paper addresses two important

issues in seismic data acquisition, namely the mediation of imaging

artefacts caused by physical constraints encountered during acqui-

sition, and the design of a more economic acquisition, limiting the

number of source and receiver positions within the survey. In either

case, the data is incomplete and it is our task to recover a fully sam-

pled seismic data volume as required by wave equation based multi-

ple elimination (SRME, Verschuur & Berkhout 1997) and imaging

(Symes 2006). This paper deals with the specific case of seismic

data recovery from a regularly sampled grid with traces missing.

As a consequence, the data is undersampled and the Nyquist sam-

pling criterion is violated, giving rise to a Fourier spectrum that may

contain harmful aliases.

A multitude of solutions have been proposed to mitigate the im-

pact of coherent aliases on seismic imaging. Our approach derives

from three key ingredients, namely a sparsifying transform, a sam-

pling strategy that limits the occurrence of harmful aliases and a

non-linear recovery scheme that promotes transform-domain spar-

sity and consistency with the acquired data. These three key ingredi-

ents form the basis of the emerging field of ‘compressive sampling’

(Candès et al. 2006; Donoho et al. 2007) with several applications

that include MRI-imaging (Lustig et al. 2007) and A/D conversion

(Tropp et al. 2006). Compressive sampling can be seen as a theoreti-

cally rigorous justification of empirical ideas on sparsity-promoting

inversion that existed in the geophysical literature with applications

that include ‘spiky deconvolution’ (Taylor et al. 1979; Oldenburg

et al. 1981; Ulrych & Walker 1982; Levy et al. 1988; Sacchi et al.
1994) analysed by mathematicians (Santosa & Symes 1986; Donoho

& Logan 1992) to Fourier and Radon transform-based seismic data

recovery, an approach initially proposed by Sacchi et al. (1998) and

extended by numerous authors (Trad et al. 2003; Xu et al. 2005;

Abma & Kabir 2006; Zwartjes & Sacchi 2007). Amongst all these
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234 F. J. Herrmann and G. Hennenfent

methods, it was observed that a successful solution of these problems

depends critically on the number of measurements (or the frequency

passband for deconvolution) and the signal’s sparsity in some trans-

formed domain, for example, spikes for deconvolution and Fourier

for sparse recovery.

Compressive sampling provides insights into the conditions that

determine successful recovery from incomplete data. We leverage

these new insights towards a formulation of the large-scale seismic

data regularization problem, where a sparsifying transform, anti-

alias sampling and a sparsity-promoting solver are used to solve this

problem for acquisitions with large percentages of traces missing.

These theoretical developments are important since they provide a

better intuition of the overriding principles that go into the design

of a recovery method and into explicit construction of a sparsifying

transform, the sampling strategy and the sparsity-promoting solver.

In this paper, we consider a recovery method that derives from this

intuition by using a generic sparsifying transform that requires min-

imal prior information (although our method benefits like Fourier-

based interpolation (Zwartjes & Sacchi 2007) from dip discrimi-

nation by means of specifying a minimum apparent velocity). In

that respect our method differs from interpolation methods based

on pattern recognition (Spitz 1999), plane-wave destruction (Fomel

et al. 2002) and data mapping (Bleistein et al. 2001), including

parabolic, apex-shifted Radon and DMO-NMO/AMO (Harlan et al.
1984; Hale 1991; Canning & Gardner 1996; Bleistein et al. 2001;

Fomel 2003; Trad 2003; Trad et al. 2003; Malcolm et al. 2005),

which require, respectively, the omission of surface waves, specific

knowledge on the dominant dips and a velocity model.

Our main contribution

The success of our recovery method for seismic data, named

curvelet-based recovery by sparsity-promoting inversion (CRSI),

derives from a sparsifying transform in conjunction with a sam-

pling scheme that favours recovery. With their well-documented

sparsity for seismic data with wave fronts and Fourier-domain lo-

calization property (Candès et al. 2006; Hennenfent & Herrmann

2006; Herrmann et al. 2007a), curvelets render sparsity-promoting

inversion into a powerful constraint for the recovery of seismic data.

Our contribution, first reported in Herrmann (2005), lies in the ap-

plication of this transform (see, e.g. Ying et al. 2005; Candès et al.
2006a, for details on the definition and implementation of the dis-

crete curvelet transform) to the seismic recovery problem. Our work

includes the adaptation towards a geophysically feasible sampling

scheme that eliminates harmful aliases and allows for a dip discrimi-

nation by means of a minimum apparent velocity. This combination

of sparsity-promotion and sampling permits a solution of a very

large-scale �1-minimization problem at a computational cost com-

parable to iterative-reweighted least-squares (IRLS Gersztenkorn

et al. 1986).

Our formulation for the solution of the seismic data recovery

problem reads

Pε :

⎧⎨⎩̃x = arg min
x

‖x‖1 := ∑N
i=1 |xi | s.t. ‖Ax − y‖2 ≤ ε

f̃ = ST x̃
(1)

and is reminiscent of the solution of the ‘inpainting problem’, the

problem of infilling missing data, reported by Elad et al. (2005).

In this expression, y is the vector with the incomplete data and x
the unknown coefficient vector that generates the decimated data

through the modelling matrix, A. The solution of the recovery prob-

lem corresponds to finding the sparsity vector, x, with minimal �1

norm subject to fitting the data to within a noise-dependent �2 er-

ror ε. The estimate for the recovered data vector, f̃, is obtained by

applying the inverse transform, ST , to the recovered sparsity vec-

tor, x̃, that solves Pε . Above formulation for the recovery problem

is known to be stable and extends to (seismic) signals that are not

strictly sparse but compressible (Candès et al. 2006b). In that case,

the recovery error becomes smaller for transforms that concentrate

the signal’s energy amongst a smaller fraction of the coefficients.

At this point, the well established ability of curvelets (Candès

et al. 2006a; Hennenfent & Herrmann 2006; Herrmann et al. 2007a)

enters into the equation. Compared to discrete wavelets, used for dig-

ital storage of multidimensional seismic data volumes (Donoho et al.
1999), curvelets truly honour the behaviour of seismic wavefields.

They correspond to localized ‘little plane waves’ that are oscilla-

tory in one direction and smooth in the other direction(s) (Candès

& Donoho 2000a, 2004). Like directional isotropic wavelets, they

are multiscale and multidirectional, but unlike wavelets, they have

an anisotropic shape—they obey the so-called parabolic scaling re-

lationship, yielding a width ∝ length2 for the support of curvelets

in the physical domain. Curvelets are also strictly localized in the

Fourier domain and quasi localized in the space domain, that is,

they decay rapidly away from the crest where they are maximal.

The anisotropic scaling is necessary to detect wave fronts (Candès

& Donoho 2005a,b) and explains their high compression rates on

seismic data (Candès et al. 2006a; Herrmann et al. 2007a,b).

Outline

To leverage maximally the recent insights gained from compressive

sampling, we tie the important aspects of this theory into the for-

mulation of the seismic recovery problem. After presenting a brief

overview of this theory, including an intuitive explanation, we em-

phasize the importance of compression rates on the quality of the

recovery by means of a series of stylized experiments. Based on this

experience, the appropriate sparsifying transform, sampling strategy

and minimal velocity constraint that controls the mutual coherence

are reviewed, followed by the formulation of our sparsity-promoting

inversion method. We conclude by applying this method to various

data sets with a focus on improvements of curvelet-based recov-

ery over recovery with plane-wave destruction and the additional

benefits from shot-receiver interpolation with 3-D curvelets over

recovery from shot records with 2-D curvelets.

C O M P R E S S I V E S A M P L I N G

The basics

Compressive sampling states that a signal with a sparse Fourier

spectrum can be recovered exactly from sub-Nyquist sampling by

solving a sparsity-promoting program that seeks, amongst all pos-

sible solutions, a spectrum with the smallest �1 norm whose inverse

Fourier transform equals the sampled data. During the recovery,

the rectangular modelling matrix, A, linking the unknown sparsity

N-vector, x, to the incomplete n-data vector, y, is inverted. The re-

covered data is calculated by taking the inverse Fourier transform

of the recovered sparsity vector that solves (denoted by the tilde

symbol˜) the sparsity promoting program. Compressive sampling

provides the conditions under which this underdetermined system of

equations (n � N) can be inverted. This theory also applies to more

general situations, including the presence of noise, compressible
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Curvelet-based recovery by sparsity-promoting inversion (CRSI) 235

instead of strictly sparse signals and more general measurement and

sparsity bases, replacing the Fourier basis.

To be specific, compressive sampling theory states that Pε

(cf. eq. 1) recovers in the noise-free case (for ε → 0) the k non-zero

entries of the Fourier N-vector exactly from n ∼ k × log N samples

in the vector, y = Ax0 (Candès et al. 2006b). For random sampling,

this condition was recently improved to n = k × 2 log(N/k) by

Donoho & Tanner (2007) in the regime N 	 k.

So, what is the rational behind these sampling criteria for k-sparse

Fourier vectors? Intuitively, one may argue that taking a single time

sample corresponds to probing the data by an inner product with a

complex exponential in the Fourier domain. This sinusoidal func-

tion intercepts with any non-zero entry of the unknown Fourier

spectrum. One can argue that two intersections from two arbitrary

samples should suffice to determine the amplitude and phase for

each non-zero entry of the spectrum. Extending this argument to a

k-sparse spectrum turns this into a combinatorial problem, seeking

the smallest number of non-zero entries in the sparsity vector with

an inverse Fourier transform that fits the data. The theory of com-

pressive sampling provides conditions under which the above com-

binatorial problem can be replaced by Pε for which practical solvers

exist. This theory also provides guidelines for sampling strategies

that limit the imprint of interference that leads to coherent aliases.

After illustrating the importance of compression for the recovery

on a series of stylized experiments, we discuss the design of a com-

pressive sampling procedure that is favourable for the recovery of

seismic data with traces missing.

A stylized experiment

Sparsifying transforms form the key component of compressive

sampling. As we will show below, the accuracy of the recovery

depends on the degree of compression achieved by the sparsifying

transform. For signals that are not strictly sparse but compressible,

their sparsity properties can be measured by the compression rate, r,

defined by the exponent for the power-law decay of the magnitude-

sorted coefficients. The larger r, the faster the decay of the recon-

struction error, measuring the energy difference between the orig-

inal signal and its approximation from the k largest coefficients.

Because Pε (cf. eq. 1) recovers the largest k coefficients, the re-

covery of compressible signals improves in a transformed domain

with a large compression rate. The challenge is to find a sparsifying

transform that also permits a favourable sampling condition.

A series of experiments is conducted that measures the perfor-

mance of the recovery as a function of the compression rate and

the aspect ratio of the modelling matrix, δ = n/N . This aspect ratio

is related to the undersampling rate. As before, a modelling matrix

defined in terms of the decimated Fourier matrix is used. The exper-

iments are carried out for varying numbers of measurements, n, and

for increasing compression rates, that is, (δ, r ) ∈ (0, 1] × (1/2, 2].

For each parameter combination, twenty different pseudo-random

realizations are generated defining the random sampling and the en-

tries in the sparsity vector, x0. For each r, this vector is calculated

by applying random permutations and signs flips to a sequence that

decays with i−r for i = 1 ··· N with N = 800. The incomplete data is

generated for each realization with y =Ax0 and is used as input to

StOMP (Donoho et al. 2006), a solver that solves Pε approximately,

for ε = 0. As a performance metric, the squared relative �2 error,

err2 = ‖̃x − x0‖2/‖x0‖2, is calculated and averaged amongst the re-

alizations for fixed (δ, r ) ∈ (0, 1] × (1/2, 2]. This error is encoded in

the greyscale of the recovery diagram, which is included in Fig. 1.

Figure 1. Example of a recovery diagram for parameter combinations (δ,

r ) ∈ (0, 1) × (1/2, 2) on a regular grid of 25 × 25. Notice that the relative �2

error decays the most rapidly with r. The contour lines represent 1 per cent

decrements in the recovery error starting at 10 per cent on the lower left-hand

corner and decaying to 1 per cent in the direction of the upper right-hand

corner.

Bright regions correspond to parameter combinations that favour

accurate recovery. For r fixed, the relative error decays as the num-

ber of measurements increases. For each undersampling ratio, δ =
n/N , the error decays rapidly as a function of the compression rate, r.

This example underlines the importance of finding a representation

that has a high compression rate.

The recovery diagram contains another piece of important infor-

mation. For a user-defined recovery error and empirical decay rate,

the degree of undersampling can be calculated from the intercept

of the appropriate contour with a line of constant approximation

rate. Conversely, for a given degree of undersampling, the relative

recovery error can be determined by looking at the grey value at the

specified parameter combination for (δ, r).

Approximately a decade ago Sacchi et al. (1998) showed that a

sparse Fourier spectrum can be recovered from sub-Nyquist sam-

pling by a Bayesian argument that amounted to the solution of an

optimization problem close in spirit to Pε. While this work has re-

cently been expanded to large-scale problems in higher dimensions

by Trad et al. (2006) and Zwartjes & Sacchi (2007), compressive

sampling and the presented recovery diagram provide new insights

regarding the abruptness of the recovery as a function of the under-

sampling and the sparsity, and the importance of the compression

rate on the quality of the recovery. Unfortunately, the large number

of experiments required to compute the recovery diagram precludes

a straightforward extension of these experiments to the seismic sit-

uation, where problem sizes exceed [N = O(230)]. However, this

does not mean that abstract concepts of compressive sampling are

not useful in the design of a compressive sampling scheme for seis-

mic data.

C O M P R E S S I V E S A M P L I N G

O F S E I S M I C DATA

Application of the seismic recovery problem according to the princi-

ples of compressive sampling requires a number of generalizations.

To make these extensions explicit, the modelling matrix is factored

into A := RMST , where ST (cf. eq. 1) represents the synthesis
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236 F. J. Herrmann and G. Hennenfent

Figure 2. Example of the alignment of curvelets with curved events.

matrix of the sparsifying transform, M the measurement matrix and

R the restriction or sampling matrix. The measurement matrix repre-

sents the basis in which the measurements are taken and corresponds

to the Dirac (identity) basis in seismology and to the Fourier basis

in MRI imaging (Lustig et al. 2007). The sampling matrix models

missing data by removing zero traces at locations (rows) where data

is missing, passing the remaining rows unchanged. The above defini-

tion for the modelling matrix is commensurate with the formulation

of compressive sampling. As predicted by compressive-sampling

theory, the recovery depends quadratically on a new quantity that

measures the mutual coherence, μ ≥ 1, between the vectors of the

measurement and sparsity bases. This mutual coherence is defined

as

μ(M, S) =
√

M max
(i, j)∈[1···M]×[1···N ]

|〈mi , s j 〉| (2)

with mi and s j the rows of M and S, respectively. For the Dirac–

Fourier pair, where measurements are taken in Euclidean space of

a signal that is sparse in Fourier space, this quantity attains its min-

imum at μ = 1. Because this property quantifies the spread of the

vectors from the measurement basis in the sparsifying domain, it

explains successful recovery of signals that are sparse in the Fourier

domain from a limited number of Euclidean samples. Compressive-

sampling theory extends this idea to different measurement and

sparsity matrix pairs and this incoherence quantity proves, aside

from the compressibility of the to-be-recoverd signal, to be one of

the important factors that determines the recovery performance.

Choice for the sparsifying transform

Despite the presence of curved wave fronts with conflicting dips,

caustics and a frequency content that spans at least three decades, the

curvelet transform attains high compression on synthetic as well as

on real seismic data. An intuitive explanation for this behaviour lies

in the ‘principle of alignment’, predicting large correlations between

curvelets and wave fronts that locally have the same direction and

frequency content. This principle is illustrated in Fig. 2 and explains

that only a limited number of curvelet coefficients interact with the

wave front while the other coefficients decay rapidly away from

a wave front. Remark that curvelets require no knowledge on the

location of the wave fronts and do not rely on a NMO correction

to reduce the spatial bandwidth. However, additional steps such as

focusing (see Herrmann et al. 2008) or spatial-frequency content

reduction by NMO will improve the recovery but these require extra

prior information.

This compression property of curvelets leads, as shown in Fig. 3,

to a reconstruction from the largest 1 per cent coefficients that

is far superior compared to Fourier- or wavelet-based reconstruc-

tions from the same percentage of coefficients. The curvelet re-

sult in Fig. 3(d) is artefact free while the Fourier (Fig. 3b) and

wavelet (Fig. 3c) reconstructions both suffer from unacceptable arte-

facts. Both for synthetic and real data the observed decays of the

magnitude-sorted coefficients, as plotted in Fig. C1 of Appendix C,

support the superior performance of curvelets. By virtue of this

property, the curvelet transform is the appropriate choice for our

sparsifying transform and we set, S := C with C ∈ RN×M the dis-

crete curvelet transform (Ying et al. 2005; Candès et al. 2006a) with

N > M the number of curvelet coefficients and M the size of the

fully sampled data volume, f0 ∈ RM . See the appendices for further

detail on the curvelet transform and its performance on seismic data.

Unlike the Fourier and wavelet bases, curvelets form a frame with

a moderate redundancy. Frames share many properties with bases

but their redundancy requires care in computing the curvelet coeffi-

cients, which are no longer unique. Despite the loss of orthogonality,

a technical condition required by compressive sampling, curvelets

lead to excellent recovery results, which can be understood intu-

itively.

The measurement matrix

Sampling of seismic wavefields during acquisition can be consid-

ered as taking measurements in the Dirac basis, that is, M := I
with I the identity matrix. This is a good approximation for omni-

directional point sources that are impulsive and for receivers with

no directivity and a flat frequency response. For this ‘choice’ of

measurement basis—the physics of seismic wavefield acquisition

limits this choice to this specific type of measurement basis—the

recovery conditions are reasonably favourable according to com-

pressive sampling because the Dirac basis is fairly incoherent with

curvelets, whose Fourier spectrum is confined to localized angular

wedges (see Fig. 4). We argue that this loss of mutual coherence
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Curvelet-based recovery by sparsity-promoting inversion (CRSI) 237

Figure 3. Partial reconstruction in different transform domains. (a) Original shot record reconstructed from its 1 per cent amplitude-largest (b) Fourier,

(c) wavelet and (d) curvelet coefficients. The curvelet reconstruction is clearly the most accurate approximation.

t

trace

W2W2t

trace k

fWW

Figure 4. Illustration of the angular weighting designed to reduce the adverse effects of seismic sampling. On the left, the increased mutual coherence between

near vertical-oriented curvelets and a missing trace. In the middle, a schematic of the curvelets that survive the angular weighting illustrated on the right-hand

side.

with respect to the Dirac–Fourier pair is offset by the improved

sparsity attained by curvelets (see also our discussion on the role of

compression in the stylized examples section). In 3-D this argument

gains more strength by virtue of improved sparsity and reduced mu-

tual coherence, that is, fewer 3-D curvelets are required to capture

sheet-like wave fronts while more 3-D curvelets are necessary to

cancel each other to approximate a discrete delta Dirac.

Aside from this argument, most if not all practical compressive

sampling schemes use sparsifying transforms that are not ideal.

For instance, in MRI people use Fourier measurement bases and
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238 F. J. Herrmann and G. Hennenfent

wavelets as the sparsity basis (Candès et al. 2007; Lustig et al. 2007).

At the coarse scales, wavelets become more Fourier-like and hence

would adversely affect the recovery. In practice, these less-than-

ideal circumstances do not necessarily translate into unfavourable

recovery.

Another complication is related to the fact that seismic data is

sampled regularly in time and at a subset of source/receiver posi-

tions that belong to the acquisition grid. This means that data is

fully sampled in time and irregularly along the source/receiver co-

ordinates. This asymmetric trace-by-trace sampling is unfavourable

for the recovery because it introduces correlations between verti-

cally oriented curvelets and vertically oriented traces along which

the data is collected. Fig. 4 illustrates this problem schematically.

To incorporate this additional complication in our formalism, we

extend the formal definition of mutual coherence (cf. eq. 2) by study-

ing the pseudo mutual coherence between the rows of the acquisition

matrix, RM, and the columns of the curvelet synthesis matrix. From

this perspective, enforcing a dip discrimination by means of specify-

ing a minimum apparent velocity (see e.g. Zwartjes & Sacchi 2007),

has a natural interpretation in the context of compressive sampling

because this discrimination removes steeply dipping curvelets and

hence reduces the ‘mutual coherence’ (see Fig. 4). This dip discrimi-

nation corresponds to Fourier-domain dip filtering and is equivalent

to replacing the Dirac measurement basis with a Toeplitz matrix

derived from a dip-filtered discrete delta Dirac. In this case, the

mutual coherence will also be reduced, yielding a more favourable

recovery condition. This observation is consistent with reports in the

geophysical literature, where maximal dip limitation for the recov-

ered wavefields are known to improve recovery (Zwartjes & Sacchi

2007).

Because curvelets are angular selective, it is straightforward to

implement the dip discrimination as a diagonal weighting matrix

in the curvelet domain. This choice not only avoids having to put

infinities in a weighting for the �1-norm in eq. (1) but it also allows

us to redefine the synthesis matrix as

ST := CT W with W = diag{w} (3)

with CT ∈ RM×N the inverse discrete curvelet transform. The

weighting vector, w, contains zeros at positions that correspond

to wedges that contain near vertical curvelets and ones otherwise

(see Fig. 4). However, this redefinition does not impact the actual

wavefield because near vertical events cannot occur and leads to a

reduced mutual coherence between the rows of the acquisition ma-

trix and the columns of the now restricted curvelet synthesis matrix.

This restriction removes the curvelets that correlate with traces in

the acquisition, and therefore, leads to a reduction of the mutual co-

herence, that is, the sum in eq. (2) no longer runs over the vertically

oriented curvelets. The observation that reduced coherence leads

to favourable recovery conditions is consistent with the theory of

compressive sampling.

The restriction/sampling matrix

Curvelet-based recovery performs less well in the presence of strong

coherent aliases caused by regular undersampling. These coherent

aliases are harmful because they lead to artefacts that have large

inner products with curvelets, which may lead to falsely recovered

curvelets. The performance of transform-based recovery methods

depends on a reduction of these aliases that are caused by construc-

tive interference induced by a regular decimation of the data.

Random subsampling according to a discrete uniform

distribution—each discrete grid point is equally probable to be

sampled—is known to break aliases. For the restricted Fourier ma-

trix, which consists of the fast Fourier transform (FFT) applied to

a vector with zeros inserted at locations where samples are miss-

ing, this random sampling turns aliases into a relatively harmless

random noise (according to the slogan ‘noiseless underdetermined

problems behave like noisy well-determined problems’ by Donoho

et al. 2007), allowing for a separation of signal from incoherent

interference by a denoising procedure that exploits the sparsifying

property of curvelets on seismic data (Hennenfent & Herrmann

2007a,c). Roughly speaking, this can be understood by arguing that

random subsampling according to a discrete uniform distribution

corresponds to some sort of a perturbation of the regularly deci-

mated grid that is known to create coherent aliases. As shown in

Hennenfent & Herrmann (2007c), this type of sampling, and our

extension to jitter sampling, creates a noisy spectrum, where for all

wave numbers aliased energy is distributed over the seismic tempo-

ral frequency band.

The observation that irregular sampling favours recovery is well

known amongst scientists and engineers (Sun et al. 1997; Wisecup

1998; Malcolm 2000). Albeit not strictly necessary, we will, for the

remainder of this paper, assume that the data is sampled according to

a discrete uniform distribution. In practice, there is no need to insist

on this condition as long as there is some control on the clustering of

the measurements and the size of the largest gaps in the acquisition.

Details on this important topic are beyond the scope of this paper

and the reader is referred to Donoho & Logan (1992) and to recent

applied work by the authors Hennenfent & Herrmann (2007b,c) on

jitter sampling.

The modelling matrix

With the sampling and sparsifying matrices in place, the represen-

tation for noisy seismic data can now be written as

y = Ax0 + n with A := RIST , (4)

y ∈ Rn the noisy measurements and n ∈ Rn a zero-centred pseudo-

white Gaussian noise. According to this model, the measurements

are related to the sparsity vector x0 through the modelling matrix

A ∈ Rn×N . This modelling matrix is defined by compounding the

restriction, R ∈ Rn×M ; measurement, I ∈ RM×M ; and inverse trans-

form, ST ∈ RM×N matrices. The noisy measurements themselves

are given by y = Rf0 +n with R ∈ Rn×M the restriction matrix taking

n � M random samples from the full data vector, f0 ∈ RM . Because

the curvelets transform is redundant, the length of the curvelet vector

exceeds the length of the full data vector (N > M > n). Therefore,

our main task is to invert the modelling matrix A for situations where

δ = n/N ≈ 0.04 in 2-D and δ ≈ 0.01 in 3-D.

C U RV E L E T R E C OV E RY B Y

S PA R S I T Y- P RO M O T I N G

I N V E R S I O N ( C R S I )

The seismic data regularization problem is solved with matrix-free

implementations for the fast discrete curvelet transform (defined by

the fast discrete curvelet transform, FDCT, with wrapping, a type of

periodic extension, see Ying et al. 2005; Candès et al. 2006a) and the

restriction operator. The solution of Pε (cf. eq. 1) is cast into a series

of simpler unconstrained subproblems. Each subproblem is solved

with an iterative soft-thresholding method with thresholds that are

carefully lowered. For (extremely) large problems, this cooling leads
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Curvelet-based recovery by sparsity-promoting inversion (CRSI) 239

to the solution of Pε with a relatively small number [O(100)] of

matrix–vector multiplications.

The unconstrained subproblems

The inversion of the underdetermined system of equations in eq. (4)

lies at the heart of compressive sampling. The large system size

of seismic data and the redundancy of the curvelet transform ex-

acerbate this problem. Our main thesis is that the matrix, A, can

be successfully inverted with an iterative solution of the sparsity-

promoting program Pε (cf. eq. 1) by means of a descent method

supplemented by thresholding.

Following Elad et al. (2005), the constrained optimization prob-

lem, Pε , is replaced by a series of simpler unconstrained optimization

problems

Pλ :

{̃
xλ = arg min

x

1
2
‖y − Ax‖2

2 + λ‖x‖1

f̃λ = ST x̃λ.
(5)

These subproblems depend on the Lagrange multiplier λ, determin-

ing the emphasis of the �1-norm over the �2 data misfit. The solu-

tion of Pε is reached by solving Pλ for λ ↓ λε with λε = supλ{λ :

‖y−Ãxλ‖2 ≤ ε}. During the solution of the non-linear optimization

problem Pε , the rectangular matrix A is inverted by first emphasiz-

ing the sparsity-promoting �1-norm, yielding sparse approximate

solutions, followed by a relaxation as λ decreases, increasing the

energy captured from the data.

Solution by iterative thresholding

Following Daubechies et al. (2004), Elad et al. (2005), Candés &

Romberg (2005a) and ideas dating back to Figueiredo & Nowak

(2003), the subproblems Pλ are solved by an iterative thresholding

technique that derives from the Landweber descent method (Vogel

2002). According to Daubechies et al. (2004) looping over

x ← Tλ

[
x + AT (y − Ax)

]
, (6)

converges to the solution of Pλ with

Tλ(x) := sgn(x) · max(0, |x | − |λ|) (7)

the soft-thresholding operator. This convergence requires a large

enough number of iterations and a largest singular value of A that is

smaller than 1, that is, ‖A‖ < 1. Each iteration requires two matrix–

vector multiplications.

The descent update, x ← x + AT (y − Ax), minimizes the

quadratic part of eq. (5). This update is subsequently projected onto

the �1 ball by the soft thresholding. Even though this procedure prov-

ably converges to the solution of Pλ, the large scale of the seismic

regularization problem precludes running these iterations to conver-

gence within a reasonable number of matrix–vector multiplications.

Final solution by cooling

Cooling is a common strategy to solve large to extremely large-

scale problems. During this cooling process, the subproblems Pλ

are solved approximately for λ decreasing. Because of its simplic-

ity, the iterative-thresholding technique, presented in eq. (6), lends

itself particularly well for this approach since it offers a warm start,

typically given by the previous outer loop, and control over the ac-

curacy. This accuracy is related to the number of iterations, L, of

the inner loop. The higher L the more accurate the solutions of the

subproblems become.

Table 1. The cooling method with iterative thresholding.

Initialize:

i = 0; x0 = 0;

Choose: L , ‖AT y ‖∞ > λ1 > λ2 > ···
while ||y − Axi||2 > ε do

xi+1 = Tλi

(
xi + AT

(
y − Axi

))
end for
i = i + 1;

end while f̃ = ST xi .

The convergence of the overall problem is improved by using the

approximate solution of the previous subproblem, the warm start, as

input to the next problem for which λ is slightly decreased (Starck

et al. 2004; Elad et al. 2005). Sparsity is imposed from the beginning

by setting λ1 close to the largest curvelet coefficient, that is, λ1 <

‖AT y‖∞. As the Lagrange multiplier is lowered, more coefficients

are allowed to enter the solution, leading to a reduction of the data

misfit. A similar approach, derived from POCS (Bregman 1965),

was used by Candés & Romberg (2005a) and Abma & Kabir (2006).

The details of the cooling method are presented in Table 1.

In practice, five inner loops and 10–50 outer loops suffice to solve

for x with the series of subproblems Pλ. When the cooling is appro-

priately chosen, the solution of the subproblems converges to the

solution of Pε . The final solution to the seismic data regularization

problem, f̃, is obtained by applying the weighted-inverse curvelet

transform to x̃, that is, f̃ = ST x̃. The total number of matrix–

vector multiplications required by this method is similar to those

required by iterative-reweighted least-squares (Gersztenkorn et al.
1986).

S E I S M I C DATA R E C OV E RY W I T H C R S I

The performance of our recovery algorithm is evaluated on synthetic

as well as on real data. The first synthetic example is designed to

highlight our ability to handle conflicting dips. Next, a synthetic

seismic line is used to study the potential uplift for a recovery with

3-D curvelets over a recovery with 2-D curvelets. Finally, our method

is tested on real data and compared to a regularization method based

on plane-wave destruction (Fomel et al. 2002).

2-D synthetic for a layered earth model

Consider the reflection response of a medium with four plane layers,

modeled with a 50-feet (15.24-m) receiver interval, 4-ms sampling

interval and a source function given by a Ricker wavelet with a

central-frequency of 25-Hz. The data set contains 256 traces of

500 time samples each. The resulting common-midpoint (CMP)

gather after incomplete acquisition is shown in Fig. 5(a) together

with a close-up in Fig. 5(b) of an area with conflicting dips. The

incomplete acquisition was simulated by randomly removing 60 per

cent of the traces. This undersampling corresponds to a sub-Nyquist

average spatial sampling of 125 feet (38.1 m).

Based on the maximum expected dip of the reflection events in

the data, a minimum velocity constraint of 5000 ft s−1 (1524 m s−1)

was used. To limit the number of unknowns, the negative dips were

excluded. Figs 5(c) and (d) show the results for the CMP recon-

struction with the CRSI algorithm for 100 iterations (5 inner- and

20 outer-loops). The starting Lagrange multiplier was chosen such

that 99.5 per cent of the coefficients do not survive the first threshold.

Since the data is noise free, the Lagrange multiplier is lowered such
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240 F. J. Herrmann and G. Hennenfent

Figure 5. Synthetic example of curvelet 2-D reconstruction. (a) Simulated acquired data with about 60 per cent randomly missing traces and (b) zoom in a

complex area of the CMP gather. (c) Curvelet reconstruction and (d) same zoom as (c). (e) Difference between reconstruction and complete data (not shown

here) and (f) zoom. Virtually all the initial seismic energy is recovered without error as illustrated by the difference plots (SNR = 29.8 dB).

that 99 per cent of the coefficients survives the final threshold. This

corresponds to the situation where Pε is solved with a constraint

that is close to an equality constraint, that is, nearly all energy of the

incomplete data is captured.

Figs 5(e) and (f) plot the difference between the recovered and

‘ground-truth’ complete data. The SNR for the recovery, defined as

SNR = 20 log‖̃f − f0‖/‖f0‖, is about 29.8 dB, which corroborates

the observation that there is almost no energy in the difference plots.

Curvelet reconstruction clearly benefits from continuity along the

wave fronts in the data and has no issue with conflicting dips thanks

to the multidirectional property of curvelets.

Common-shot/receiver versus shot-receiver interpolation

Curvelets derive their success in seismology from honouring the

multidimensional geometry of wave fronts in seismic data. To il-

lustrate the potential benefit from exploiting this high-dimensional

geometry, a comparison is made between common-shot interpo-

lation with 2-D curvelets and shot-receiver interpolation with 3-D

curvelets. For this purpose, a synthetic seismic line is simulated with

a finite-difference code for a subsurface velocity model with 2-D

inhomogeneities. This velocity model consists of a high-velocity

layer that represents salt, surrounded by sedimentary layers and a
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Curvelet-based recovery by sparsity-promoting inversion (CRSI) 241

Figure 6. Synthetic data volume. (a) Complete data set consisting of 256 ×
256 × 256 samples along the source, x s , receiver, x r and time coordinates.

(b) Simulated acquired data with 80 per cent randomly missing traces.

water bottom that is not completely flat. Using an acoustic finite-

difference modelling algorithm, 256 shots with 256 receivers are

simulated on a fixed receiver spread with receivers located from

780 to 4620 m with steps of 15 m. The temporal sample interval is

4 ms. The data generated by these simulations can be organized in

a 3-D data volume (shot-receiver volume) along the shot, x s , re-

ceiver, x r and time, t coordinates. The full data and the incomplete

acquisition are depicted in Figs 6(a) and (b). The incomplete acqui-

sition is simulated by randomly removing 80 per cent of the receiver

positions for each shot, which corresponds to an average spatial

sampling interval of 75 m. Again the full data serves as the ground

truth.

To make the comparison, we either solve a series of 2-D prob-

lems on individual shot gathers or we solve the full 3-D interpolation

problem. This procedure is outlined in Fig. 7 with results for one se-

lected shot record summarized in Fig. 8. These results show a clear

improvement for the interpolation with the 3-D curvelet transform

over the recovery from individual shot records with 2-D curvelets.

For both cases results were obtained with 250 iterations and without

imposing a minimal velocity constraint. We omitted this constraint

because we want to study the uplift without interference from this

velocity constraint. Contrasting the results in Figs 8(c) and (e) con-

firms the improved recovery by exploiting the 3-D structure, an

observation corroborated by the difference plots. The improvement

in continuity is particularly visible for the shallow near zero-offset

traces where the events have a large curvature. The SNR’s for the

2- and 3-D curvelet-based recovery are 3.9 and 9.3 dB, respectively,

which confirms the visual improvement.

As a possible explanation for the observed performance gain for

3-D curvelets, we argue that 3-D curvelets make up for the increased

redundancy (a factor of 24 for 3-D compared to only a factor of 8

in 2-D) by exploiting continuity of wave fronts along an extra tan-

gential direction. This extra direction leads to an improved concen-

tration of the energy amongst relatively fewer curvelet coefficients.

The increased dimensionality of 3-D curvelets also makes inter-

sections with areas where data is present more likely. Finally, the

theory of compressive sampling tells us that the recovery perfor-

mance is proportional to the mutual coherence. In 2-D, curvelets

are locally line like while 3-D curvelets are locally plate like. Con-

sequently, the mutual coherence between a vertical-oriented 3-D

curvelet and a trace is smaller than its 2-D counterpart and this also

explains the improved recovery. The result plotted in Fig. 9(a) and

the difference plot in Fig. 9(b) confirm the expected improvement

and the recovered data displays a nice continuity along the recon-

structed wave fronts. Moreover, there is only minor residual energy

in the difference plots for a time slice, common-shot and common-

receiver panels. The positions of these slices are indicated by the

vertical and horizontal in the different panels. The SNR for the 3-D

recovery with the 3-D curvelets is 16.92 dB, which is by all means

acceptable.

Comparison between CRSI and plane-wave destruction on

2-D real data

To conclude the discussion, our method is contrasted with an in-

terpolation method based on plane-wave destruction (Fomel et al.
2002). Fig. 10(a) displays a real shot record that is used for the

comparison. This record is taken from a seismic survey, collected

at the offshore Gippsland basin in Australia, and contains traces

with the first 1.7 s of data received at 200 hydrophones. The data

is sampled at 4 ms with a receiver spacing of 12.5 m. The data is

decimated by randomly removing 60 per cent of the traces, which

corresponds to an average spatial sampling interval of 31.25 m. The

results obtained with CRSI and the plane-wave destruction method

are included in Fig. 10. The CRSI result shows a nice recovery with

a small residual error. The interpolation result and difference plot

for the plane-wave destruction method are included in Figs 10(e)

and (f). These results clearly indicate the challenges imposed by

real data, with the recovery performing well for regions with low

complexity. However, the plane-wave destruction method does not

perform so well for regions where there is more complexity and

in particular in regions with conflicting dips. In those areas our

curvelet-based method maintains its performance while the plane-

wave destruction creates events with erroneous dips. This problem

can be related to the inability to assign unique slopes to the reflec-

tion events. Curvelets do not experience these difficulties because

they can handle multiple dips at the same location. Again, the im-

proved performance is reflected in the SNR’s, which is 18.8 dB for

2-D CRSI compared to 5.5 dB for the plane-wave destruction.
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242 F. J. Herrmann and G. Hennenfent

Figure 7. Illustration of common shot versus shot-receiver interpolation on the complete data volume.

D I S C U S S I O N

Initial findings

Compressive sampling: We showed that the concepts of compres-

sive sampling apply to the seismic recovery problem. Indeed, some

of the ideas of compressive sampling are not exactly new to (explo-

ration) seismology, where Fourier, Radon and even migration-based

high-resolution approaches have been used to solve the seismic reg-

ularization problem. However, compressive sampling offers a clear

and concise framework that gives insights into the workings of a

successful recovery. These insights offered guidance while making

specific choices to exploit the inherent geometry within the seismic

wavefield and to eliminate aliases and correlations due to trace-by-

trace sampling. Most importantly, compressive sampling tells us that

the largest entries of the sparsity vector are recovered thereby un-

derlining the importance of sparsifying transform for seismic data.

Sparsifying transform: An important factor contributing to the

performance of our method is the ability of curvelets to parsimo-

niously capture the essential characteristics of seismic wavefields.

This property explains the rapid decay for the magnitude-sorted

coefficients and the relative artefact-free reconstruction from a rel-

atively small percentage of largest coefficients. The moderate co-

herence between the seismic measurement basis and curvelets and

the inclusion of the minimal-velocity constraint all contribute to the

success of our method. Finally, the results from shot-receiver inter-

polation showed significant improvement over interpolation on shot

records. This behaviour is consistent with findings in the literature

on Fourier-based recovery (Zwartjes & Sacchi 2007).

The cooling method: Despite its large scale, the seismic recov-

ery problem lends itself particularly well for a solution by iterative

thresholding with cooling. As the threshold is lowered, additional

components enter into the solution, which leads to an improved data

misfit and controlled loss of sparsity. We find it quite remarkable

that this relatively simple threshold-based solver performs so well

on the solution of �1 problems that can be considered as large to

extremely large. In a future paper, we plan to report on the proper-

ties of this solver compared to other recent developments in solver

technology, emerging within the field of compressive sampling (Tib-

shirani 1996; Candès & Romberg 2005b; Donoho et al. 2005;

Figueiredo et al. 2007; Koh et al. 2007; van den Berg & Friedlander

2007).

Extensions

Focused CRSI: Our recovery method can be improved when addi-

tional information on the wavefield is present. For instance, as part

of SRME, estimates for the primaries in the data are available. These

estimates can be used to focus the energy by compounding the mod-

elling matrix of CRSI with an operator defined by the estimate for

the major primaries. As shown by Herrmann et al. (2007c, 2008),

this inclusion leads to a better recovery that can be attributed to an

improved compression due to focusing with the primaries.

The parallel curvelet transform: Aside from the large number of

unknowns within the recovery, seismic data sets typically exceed the

memory size of compute nodes in a cluster. The fact that seismic

data is acquired in as many as five dimensions adds to this problem.

Unfortunately, the redundancy of the curvelet transform makes it

difficult to extend this transform to higher dimensions. By applying

a domain decomposition in three dimensions, some progress has

been made (Thomson et al. 2006). The second problem is still open

and may require combination with other transforms.

Jitter sampling: During random sampling there is no precise con-

trol over the size of the gaps. This lack of control may lead to an occa-

sional failed recovery. Recently, Hennenfent & Herrmann (2007b)

have shown that this problem can be avoided by jitter sampling.

During this jitter sampling, the size of the gaps and the occurrence

of coherent aliases are both controlled. We report on this recent

development elsewhere (Hennenfent & Herrmann 2007c).

CRSI for unstructured data: The presented interpolation method

assumed data to be missing on otherwise regular grids. With the non-

uniform fast discrete curvelet transform developed by the authors

(Hennenfent & Herrmann 2006), CRSI no longer requires data to

C© 2008 The Authors, GJI, 173, 233–248

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/1/233/554282 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Curvelet-based recovery by sparsity-promoting inversion (CRSI) 243

Figure 8. Comparison between common-shot (2-D) and shot-receiver (3-D) CRSI. (a) Shot from the original data volume. (b) Corresponding simulated

incomplete data with 80 per cent randomly missing traces. (c) 2-D CRSI result. (d) Difference between (c) and (a). (e) Shot extracted from 3-D CRSI result.

(f) Difference between (e) and (a). 3-D CRSI clearly benefits from 3-D information that greatly improves the reconstruction over 2-D CRSI.

be collected on some underlying grid. This extension makes CRSI

applicable in other fields such as global seismology, where irregular

sampling and spherical coordinate systems prevail.

Fast (reweighted) �1 solvers: The success of compressed sensing

depends on the ability to solve large-scale �1 optimization problems.

As a result, there has been a surge in research activity addressing

this important issue (Tibshirani 1996; Candès & Romberg 2005b;

Donoho et al. 2005; Figueiredo et al. 2007; Koh et al. 2007). One

development is particularly relevant and that is the discussion (see

Candès et al. 2007, for further details) whether to solve the recovery

problem according to eq. (1), known as the synthesis problem or,

according to

Pa
ε : f̃ = arg min

f
‖Cf‖1 s.t. ‖RMf − y‖2 ≤ ε, (8)

which is known as the analysis problem. Even though there are re-

ports in the literature (Candès et al. 2007) that state that the analysis

form (cf. eq. 8) leads to improved recovery results, our experience

with (extremely) large problems in CRSI has shown better recovery

with the synthesis formulation (cf. eq. 1). Because current hardware

affords only O(100) matrix–vector multiplies, the future challenge

will be the inclusion of more sophisticated �1-norm solvers and the

investigation of potential benefits from a possible reweighting and
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Figure 9. Synthetic example of curvelet volume interpolation. (a) 3-D CRSI

result based on the simulated acquired data of Fig. 6(b). (d) Difference

between Fig. 6(a) and (a). Notice the continuity and the small difference

in the common-shot, common-receiver and time slice. The positions in the

cube are indicated by the numbered lines.

a formulation in the analysis form. The latter corresponds to an ap-

proximate solution for the �0 problem for which encouraging results

have been reported (Candès et al. 2007). In a future paper, we plan

to report on these issues.

C O N C L U S I O N S

A new non-parametric seismic data regularization technique was

proposed that combines existing ideas from sparsity-promoting in-

version with parsimonious transforms that expand seismic data with

respect to elements that are multiscale and multidirectional. The

compression attained by these elements, which form the redundant

curvelet frame, in conjunction with an acquisition that is not too

far from random, led to a compressive sampling scheme that recov-

ers seismic wavefields from data with large percentages of traces

missing.

Figure 10. Comparison of plane-wave destruction and curvelet-based 2-D

recovery on real data. (a) Shot-record of a seismic survey from offshore

Gippsland basin Australia. Group interval is 12.5 m. (b) Incomplete data de-

rived from (a) by randomly removing 60 per cent of the traces (corresponding

to average spatial sampling is 31.25 m). (c) Result obtained with CRSI. (d)

Difference between CRSI result and ground truth. (e) and (f) the same as (c)

and (d) but now obtained with plane-wave destruction. The improvement of

the curvelet-based method over the plane-wave destructions is corroborated

by the SNR’s which are 18.8 and 5.5 dB, respectively.

Treating the seismic data regularization problem in terms of a

compressive sampling problem enabled us to design a scheme that

favoured recovery. The success of this scheme can be attributed to

three main factors, namely the compression of seismic wavefields

by curvelets, the control of aliases by (close to) random sampling

and the solution of (extremely) large-scale �1 problems by a cooled

iterative thresholding. This combination allowed us to reconstruct

seismic wavefields from data with up to 80 per cent of its traces

missing at a cost comparable to other sparsifying transform-based

methods. Our method was successfully applied to synthetic and real

data. A significant improvement was witnessed for shot-receiver in-

terpolation during which the 3-D geometry of seismic wavefields is

C© 2008 The Authors, GJI, 173, 233–248

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/1/233/554282 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Curvelet-based recovery by sparsity-promoting inversion (CRSI) 245

fully exploited by 3-D curvelets. Our results also showed a signif-

icant improvement on real data with conflicting dips amongst the

wave arrivals.

Unfortunately, compressive sampling does not offer explicit sam-

pling criteria for a curvelet-based recovery of seismic wavefields.

However, this theory has given us insights that justified the design of

our recovery method, where the seismic data regularization problem

is solved by sparsity promotion in the curvelet domain.
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A P P E N D I X A : T H E D I S C R E T E

C U RV E L E T T R A N S F O R M

The FDCT by wrapping (see e.g. Ying et al. 2005; Candès et al.
2006a) perfectly reconstructs data after decomposition by applying

the transpose of the curvelet transform, that is, we have f = CT Cf for

an arbitrary finite-energy vector f. In this expression, C ∈ RN×M

represents the curvelet decomposition matrix. The curvelet coeffi-

cients are given by x = Cf with x ∈ RN. The curvelet transform is an

overcomplete signal representation. The number of curvelets, that

is, the number of rows in C. exceeds the number of data (M � N).

The redundancy is moderate (approximately 8 in two dimensions

and 24 in three dimensions). This redundancy implies that C is not

a basis but rather a tight frame for our choice of curvelet transform.

This transform preserves energy, ‖f‖2 = ‖Cf‖2. Because CCT is

a projection, not every curvelet vector is the forward transform of

some function f. Therefore, the vector x0 cannot readily be calcu-

lated from f = CT x0, because there exist infinitely many coefficient

vectors whose inverse transform equals f.

A P P E N D I X B : C U RV E L E T P RO P E RT I E S

Curvelets are directional frame elements that represents a tiling

of the 2-/3-D frequency domain into multiscale and multi-angular

wedges (see Figs B1 and B2). Because the directional sampling

increases every-other scale, curvelets become more and more

anisotropic for finer and finer scales. They become ‘needle-like’ as

illustrated in Fig. B2. Curvelets are strictly localized in the Fourier

domain and of rapid decay in the physical domain with oscillations

in one direction and smoothness in the other direction(s). Their ef-

fective support in the physical domain is given by ellipsoids. These

ellipsoids are parametrized by a width ∝ 2 j/2, a length ∝ 2 j and

an angle θ = 2πl2� j/2� with j the scale, j = 1 ··· J and l the an-

gular index with the number of angles doubling every other scale

doubling (see Fig. B1). Curvelets are indexed by the multi-index

γ := ( j, l, k) ∈ M with M the multi-index set running over

all scales, j, angles, l, and positions k (see for more details Ying

et al. 2005; Candès et al. 2006a). Therefore, conflicting angles are

possible.

k1

k2

angular
wedge

2j
2j/2

Figure B1. Discrete curvelet partitioning of the 2-D Fourier plane into sec-

ond dyadic coronae and subpartitioning of the coronae into angular wedges.
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Figure B2. Spatial and frequency representation of curvelets. (a) Six different curvelets in the spatial domain at five different scales. (b) Dyadic partitioning

in the frequency domain, where each wedge corresponds to the frequency support of a curvelet in the spatial domain. Each pair of opposing wedges represents

a real curvelet. Each scale is decomposed into a number of angles that double at every other scale. This figure illustrates the correspondence between curvelets

in the physical and Fourier domain. Curvelets are characterized by rapid decay in the physical space and of compact support in the Fourier space. Notice the

correspondence between the orientation of curvelets in the two domains. The 90◦ rotation is a property of the Fourier transform.

A P P E N D I X C : C O M P R E S S I O N

P RO P E RT I E S O F C U RV E L E T F R A M E S

For 2-D functions that are twice-differentiable and that contain sin-

gularities along piecewise twice differentiable curves, the Fourier

transform (ignoring log-like factors in this discussion) only attains

an asymptotic decay of the k-term non-linear approximation error

of O(k−1/2). For this class of functions, this decay is far from the

optimal decay rateO(k−2) (Candès & Donoho 2000b). Wavelets im-

prove upon Fourier, but their decayO(k−1) is suboptimal. Curvelets,

on the other hand, attain the optimal rate O(k−2). In three dimen-

sions, similar (unpublished) results hold and this is not surprising

because curvelets can in that case explore continuity along two di-

rections.

Continuous-limit arguments underly these theoretical estimates,

somewhat limiting their practical relevance. Additional facts, such

as the computational overhead, the redundancy and the non-linear

approximation performance on real data, need to be taken into con-

sideration. The computational complexity of the curvelet transform

is O(M log M). The redundancy of the curvelet transform, however,

maybe of concern. Strictly speaking wavelets yield the best SNR for

the least absolute number of coefficients, suggesting wavelets as the

appropriate choice. Experience in seismic data recovery, backed by

the evaluation of the reconstruction and recovery performance in

the ‘eye-ball norm’, suggest otherwise. Performance measured in

terms of the decay rate as a function of the relative percentages

of coefficients are more informative. For instance, when the recon-

struction in Fig. 3 of a typical seismic shot record from only 1 per

cent of the coefficients is considered, it is clear that curvelets give

the best result. The corresponding reconstructions from Fourier and

wavelets coefficients clearly suffer from major artefacts. These arte-

facts are related to the fact that seismic data does not lent itself to

be effectively approximated by superpositions of monochromatic

plane waves or ‘fat’ wavelet ‘point scatterers’. This superior per-

formance of the curvelet reconstruction in Fig. 3 is also supported

by comparisons for the decay of the normalized amplitude-sorted

Fourier, wavelet and curvelet coefficients, included in Fig. C1. In

three dimensions, we expect a similar perhaps even more favourable

behaviour by virtue of the higher dimensional smoothness along

the wave fronts. These observations, suggest that curvelets are

the appropriate choice for the sparsity representation so we set

S := C.
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(a)

(b)

Figure C1. Decay of the transform coefficients for a typical synthetic (the fully sampled data set that corresponds to Fig. 2) and real data set (Fig. 3a).

Comparison is made between the Fourier domain wavelet and curvelet coefficients. (a) The normalized coefficients for a typical 2-D synthetic seismic shot

record. (b) The same for a real shot record. Coefficients in the Fourier domain are plotted with the blue—dashed and dotted line, the wavelet coefficients with

the red—dashed line, and the curvelet coefficients with the pink—solid line. The seismic energy is proportionally much better concentrated in the curvelet

domain thus providing a sparser representation of seismic data than Fourier and wavelets.
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