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Abstract Most methods for foreground region detection in

videos are challenged by the presence of quasi-stationary

backgrounds—flickering monitors, waving tree branches,

moving water surfaces or rain. Additional difficulties are cau-

sed by camera shake or by the presence of moving objects in

every image. The contribution of this paper is to propose a

scene-independent and non-parametric modeling technique

which covers most of the above scenarios. First, an adaptive

statistical method, called adaptive kernel density estimation

(AKDE), is proposed as a base-line system that addresses

the scene dependence issue. After investigating its perfor-

mance we introduce a novel general statistical technique,

called recursive modeling (RM). The RM overcomes the

weaknesses of the AKDE in modeling slow changes in the

background. The performance of the RM is evaluated asymp-

totically and compared with the base-line system (AKDE).

A wide range of quantitative and qualitative experiments is

performed to compare the proposed RM with the base-line

system and existing algorithms. Finally, a comparison of

various background modeling systems is presented as well as

a discussion on the suitability of each technique for different

scenarios.
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1 Introduction

Typically, in most visual surveillance systems static came-

ras are used. However, because of inherent changes in the

background, such as fluctuations in monitors and fluores-

cent lights, waving flags and trees, water surfaces, etc. the

background may not be completely stationary. Furthermore,

the background may not appear completely empty in any

image across the video sequence, thus making the back-

ground modeling even more problematic. These difficult

situations are illustrated in Fig. 1. We refer to these back-

grounds as quasi-stationary.

1.1 Related work

In the presence of quasi-stationary backgrounds a single

background frame is not enough to accurately detect fore-

ground regions. Pless et al. [21] evaluated different models

for dynamic backgrounds. Depending on the complexity of

the problem the background models employ expected pixel

features (i.e. colors) [3–5,23], consistent motion [20,33],

or fusion of color/contrast and motion [1]. They also may

employ pixel-wise information [32] or regional models of

features [31,7,15]. To improve robustness to noise, spatial

[19] or spatio-temporal [14] features may be used.

In [32] a single 3-D Gaussian model for each pixel is built

and the mean and covariance of the model are learned in each

frame. This system models the noise and uses a background

subtraction technique to detect those pixels whose proba-

bilities are smaller than a heuristically selected threshold.
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396 A. Tavakkoli et al.

Fig. 1 Examples of challenges

in quasi-stationary backgrounds:

a Fluctuating monitors.

b Rain/snow. c Waving tree

branches. d Non-empty

background

However, the system failed to label a pixel as foreground

or background when it has more than one modality due to

fluctuations in its values, such as in a fluctuating monitor.

Kalman filtering [12,9,10] is also used to update the model

and linear prediction using Wiener filtering is presented in

[31]. These background models were also unable to represent

multi-modal situations.

Indupalli et al. in [8] applied a histogram based method

and a clustering technique to segment the background of the

video. They also used the HSV color space in their pixel-wise

system. However, their system requires that its parameters be

selected manually. Also, this method fails if the scene does

not have an empty background or is crowded.

In [30], Totozafiny et al. proposed a background segmen-

tation system for road surveillance applications. Their tech-

nique generates the background model using a background

reference frame and a mixture of Gaussians. This method is

not adaptive to gradual and local changes in the illumination

of the scene since it generates the model only once. The sys-

tem is not scene independent and its parameters should be

updated from application to application.

A mixture of Gaussians modeling technique was proposed

in [25,24,6] to address the multi-modality of the underlying

background. In this technique background pixels are modeled

by a mixture of Gaussians. During the training stage, para-

meters and weights of the Gaussians are trained and used

in the background subtraction where the probability of each

pixel is generated using the mixture of Gaussians. The pixel

is labeled as foreground or background based on its proba-

bility.

There are several shortcomings for mixture learning

methods. First, the number of Gaussians needs to be spe-

cified. Second, this method does not explicitly handle spatial

dependencies. Even with the use of incremental expectation

maximization, the parameter estimation and its convergence

is noticeably slow where the Gaussians adapt to a new clus-

ter. The convergence speed can be improved by sacrificing

memory as proposed in [16] and [17], limiting its applica-

tions when mixture modeling is pixel-based and over long

temporal windows.

A recursive filter formulation is proposed by Lee in [13]

to speed up the convergence. However, the problem of spe-

cifying the number of Gaussians as well as the adaptation

in later stages still exists. This model does not account for

situations in which the number of Gaussians changes due to

occlusion or uncovered parts of the background.

In [5], El Gammal et al. proposed a non-parametric ker-

nel density estimation method (KDE) for pixel-wise back-

ground modeling without making any assumption about its

probability distribution. Therefore, this method can easily

deal with multi-modality in background pixel distributions

without specifying the number of modes in the background.

However, there are several issues to be addressed using non-

parametric kernel density estimation.

These methods are memory and time consuming since for

each pixel in each frame the system has to compute the ave-

rage of all kernels centered at each training sample. The size

of temporal window used as the background model needs

to be specified. Too small a window increases speed, while

it does not incorporate enough history for the pixel, resul-

ting in a less accurate model. The adaptation will be proble-

matic by using small window sizes. Increasing the window

size improves the model accuracy but at the cost of higher

memory requirements and slower convergence. In order to

adapt the model a sliding window is used in [18]. However,

the model convergence is problematic in situations where the

illumination suddenly changes.

In order to update the background for scene changes such

as moved objects, parked vehicles or opened/closed doors,

Kim et al. in [11] proposed a layered modeling technique.

This technique needs an additional model called cache and

assumes that the background modeling is performed over

a long period of time. It should also be used as a post-

processing stage after the background is modeled.

Another approach to model variations in the background

is to represent these changes as different states corresponding

to different environments—such as lights on/off, night/day,

sunny/cloudy. For this purpose hidden Markov models

(HMM) have been used in [22] and [26]. However, these

techniques suffer from slow model training speed and are

sensitive to model selection and initialization.

1.2 Motivation and contributions

Because of the aforementioned issues in detecting foreground

regions in videos with quasi-stationary backgrounds existing

systems addresses some of these problems in a specific or a

combination of scenarios. Our focus here is to find a common
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ground that would cover a general scenario for background

modeling. Contributions of this study can be summarized as

follows:

– Finding an appropriate approach to the problem of

detecting foreground regions in videos with quasi-

stationary background. This approach should address

the multi-modality of the background as well as scene-

independence. Our proposed solution is based on a non-

parametric framework that addresses the issues in the

literature. This base-line system, called adaptive ker-

nel density estimation (AKDE), outperforms the existing

methods in the literature [27,28].

– Investigating the efficiency of the base-line system and

deriving a more universal framework upon this system.

The proposed general method is called recursive mode-

ling (RM). This technique addresses the issue of robust

background training in slowly changing backgrounds,

non-empty backgrounds, and backgrounds with steady,

irregular global motion (hand-held camera).

The AKDE. The theory behind the AKDE algorithm is

to estimate the probability of each pixel being background

based on a number of samples in its history. One advantage

of the AKDE method over existing kernel density estimation

modeling is in using a different threshold for each pixel,

instead of a single threshold for all pixels in the scene. These

thresholds are independently trained over a number of video

frames.

By training the thresholds the system becomes scene inde-

pendent and there is no need to heuristically select and tune

threshold values in different scenes. By employing these

localized thresholds the system works efficiently on different

video scenes and is more robust to local changes in the same

scene. The proposed AKDE method exploits the dependency

between pixel color components as well, thus leading to a

more accurate background model.

The RM. The RM method is a recursive counterpart for

the AKDE technique which uses pixel intensity/color values

in new frames to update the background model at that pixel

location. Since the update process is performed continuously,

the background model converges to the actual one as more

frames emerge and are processed. This gives the RM its

ability to detect foreground regions when the background

changes occur slowly and do not fit in a small temporal win-

dow. In videos without a set of empty background frames the

proposed RM technique has the ability to generate a clear

background model because pixels belonging to the actual

background provide more support for the background model.

In order to make the background model converge to the

actual one and recover from the expired model faster the

proposed RM method uses a schedule for learning. It should

be noticed that a non-parametric recursive modeling scheme

has not been investigated in the literature.

The rest of the paper is structured as follows. Section 2

presents the base-line AKDE method and evaluates its per-

formance and efficiency. This system and a benchmark data

provide a standard set of comparison tests. Section 3 present

the proposed RM technique and an evaluation of its perfor-

mance with regard to the standard assessment presented for

the base-line system. In Sect. 5, a comprehensive comparison

between these two methods and other techniques is conduc-

ted and the situations in which each of the proposed methods

is superior are presented. Finally, Sect. 6 concludes the paper

and gives future directions of the research.

2 Adaptive kernel density estimation (AKDE)

In this section we present a novel technique for background

modeling based on adaptive non-parametric kernel density

estimation (AKDE) [28].

2.1 The algorithm

Figure 2 shows the pseudo-code for the AKDE algorithm,

consisting of three major stages: training, classification and

update. In the training stage the background model is gene-

rated, and for each pixel its model values are used to estimate

the probability of that pixel to be background in new frames.

The proposed method detects foreground regions by solving

a classification problem. However, it should be noted that

we only have samples of the background class before any

foreground object appears in the scene.

The only parameter in kernel density estimation is the ker-

nel bandwidth. In theory, as the number of training samples

grows without a bound the estimated density converges to the

actual underlying density regardless of the kernel bandwidth

value [2].

2.2 Non-parametric density estimation

In the proposed AKDE method a non-parametric model for

each pixel is generated and its classifier is trained. It uses the

history of pixel values as training samples and estimates the

probability of each pixel being background in new frames

as the classification criterion. In the classification stage each

pixel is classified as foreground or background based on its

estimated probability, computed by:

Pt (xt) =
1

N2π |�|1/2

N
∑

i=1

e

[

− 1
2 (xt −xi )

T
�

−1(xt −xi )

]

(1)

where xt is the pixel feature vector at time t and xi are

its values in the training sequence. � is a positive definite
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Fig. 2 The proposed AKDE

modeling algorithm

symmetric matrix which is the kernel bandwidth matrix and

N is the number of frames used to train the background

model. In order to capture dependencies between features

for each pixel, � has to be a full (non-diagonal) matrix.

Since in the AKDE method no assumptions are made on

the covariance matrix �, any features for each pixel can be

used. Because color is the easiest and most reliable feature

to extract we use chrominance values for each pixel. That is,

given color values in RG B space we determine red (cr) and

green (cg) chrominance values by:

cr =
R

R + G + B

cg =
G

R + G + B

(2)

Therefore the feature vector for each pixel at a given time t

is defined by:

xt = [ cr(t), cg(t) ]T (3)

Due to limited memory and computational power, we need

to store a rather short term memory of the background frames

as training samples. This makes the non-parametric kernel

density estimation dependent on the choice of its kernel band-

width. In order to achieve an accurate and automatic back-

ground model, which is adaptive to the spatial information in

the scene, the kernel bandwidth matrix needs to be trained.

The effect of using a full covariance matrix can be obser-

ved in Fig. 3. By using a full covariance matrix (�) in Eq.

(1) we do not impose an assumption of feature independence

on our estimation. If we assumed that features for each pixel

are independent then a simplified version of Eq. (1) could

be used, where the covariance matrix is diagonal. However,

as it can be seen from Fig. 3 by using chrominance features,

the independence assumption is not valid and the full cova-

riance matrix results in a more accurate density estimation,

as opposed to the diagonal covariance matrix proposed in [5].

2.3 Training stage

For each pixel the training samples are vectors XN = {x1, x2,

. . . , xN }, where N is the number of training frames. In our

experiments we chose N = 300 for most of the scenes. The

successive deviation of the above vectors is a matrix ∆X

whose columns are:

[

xi − xi−1

]T
with i = 2, 3, . . . , N (4)

For each pixel, the kernel bandwidth matrix is defined such

that it represents the temporal scatter of training samples.

Thus the kernel bandwidth is:

Σ = cov(∆X ) (5)

From Eqs. (4) and (5) it can be seen that for pixels with

more feature changes through time, such as flickering pixels,

the kernel bandwidth matrix has larger elements, while for

pixels that do not change much its elements are smaller. Also

notice that the kernel bandwidth is drawn from the training

samples without any assumption on features and their under-

lying probability density function. The estimated probability

density function by using this adaptive kernel bandwidth is

accurate, even with a small number of background training

frames. Finally, since the kernel bandwidth matrix is com-

puted using successive deviations in Eq. (4) it accounts for

temporal dependencies in pixel feature vectors.

In the traditional foreground detection techniques, usually

the foreground regions are detected by comparing the value

or model of each pixel with its value or model in the back-

ground. If this deviation is larger than a heuristically selec-

ted threshold it is labeled as a foreground region. If we

estimate the probability of each pixel in all of the background

frames, given that all pixels are background, their probabi-

lities should have large values, close to 1. But because of

noise and inherent background changes, pixels do not take a

single value and their probabilities become smaller. The
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Fig. 3 Diagonal vs full kernel

matrix: a pixel chrominance

scatter plot (cr, cg) for one pixel

over time. b Probability constant

contours using diagonal

covariance matrix. c Probability

constant contours using full

covariance matrix. d Probability

density using full covariance

matrix

probability of a pixel to be background is related to the

amount of change that its features undergo in time. The-

refore a single global threshold does not work well because

pixels in different locations undergo different amounts of

change.

These threshold values need to be trained for each pixel

during the training stage to build an accurate and automatic

classifier. For each pixel its threshold value (th) is selected

such that its classifier results in 5% false reject rate. That is,

95% of the time the pixel is correctly classified as belonging

to background:

N
∑

i = 1

P(Bg|xi ) ≤ th

P(Bg|xi ) ≤ 0.05

N
∑

i=1

P(Bg|xi ) (6)

This can be seen in Fig. 4, where (a) shows an arbitrary

frame of a sequence containing a water surface and (b) shows

the trained threshold map for this frame. Darker pixels in

Fig. 4b represent smaller threshold values and lighter pixels

correspond to larger threshold values. The thresholds in areas

that tend to change more, such as the water surface, are lower

than those in areas with less amount of change, such as the

sky. Since the probability density function is normalized, for

pixels which undergo more changes the estimated probability

density function is wider. As a result, in order to keep 5%

false reject rate, smaller threshold values are needed. Note

Fig. 4 Adaptive threshold map: a an arbitrary frame. b Threshold map

that the threshold map is noisy, since for efficiency purposes

only 150 frames are used.

2.4 Classification stage

In the training stage, for each pixel its kernel bandwidth

matrix Σ and its classification decision criterion th were

determined. The probability of each pixel in the new frame

is then estimated using Eq. (1). If we directly apply the trai-

ned threshold of each pixel to its estimated probability, due

to impulse noise isolated pixels may still be erroneously

classified.

One of the properties of this type of noise is that, if strong

noise affects a pixel, it is less likely to affect its neighbors

with the same strength. If a pixel in a region belonging to the

background produces a fairly small probability because of

noise, its neighboring pixels are expected to produce larger

probabilities.
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Fig. 5 Enforcing spatial

consistency: a original frame

b Detected foreground regions

by applying thresholds directly

on the estimated probability.

c Detected foreground regions

by applying threshold on

median of probabilities in a

neighborhood

Fig. 6 Our proposed RM

algorithm

Notice that this impulsive noise is introduced to the system

as a byproduct of the probability density estimation. As

known, median filtering is a suitable tool to remove this type

of noise. Applying the median filtering directly to the images

suppresses the impulsive noise in the frames but does not

significantly affect the noise introduced by the process. In

order to remove the process noise we apply the median of esti-

mated probabilities in a region around a pixel. After estima-

ting the probability of each pixel in the new frame, the median

of probabilities in its 8-connected neighborhood is compared

with its threshold to make the classification decision:

Labelt =

{

Foreground if median (Probt ) ≤ th

Background otherwise
(7)

Figure 5 shows the effect of enforcing spatial consistency

using the median of probabilities in foreground region detec-

tion. As it can be seen, by applying the threshold on the

median of estimated probabilities of pixels in a neighbo-

rhood, most of the noise can be suppressed, while maintai-

ning the image quality.

2.5 Update stage

In the proposed AKDE method we use two different types of

adaptation. To make the system adaptive to gradual changes

in illumination, we replace the pixels in the oldest back-

ground frame with those belonging to the current background

mask. In order to detect sudden changes in the illumination,

the area of the foreground objects are checked. Once a sudden

change is detected (detected foreground region is very large),

the classification stage of the algorithm is suspended and new

frames replace all frames in the background training buffer.

Because the training stage of the algorithm is time

consuming, the updating stage is actually performed every

few frames, depending on the rate of changes and the proces-

sing power. In the current implementation the updating stage

is performed every 100–150 frames.

3 Recursive modeling (RM)

In this section, we describe our novel recursive method. The

formulation is discussed in one dimension and its extension to

higher dimensions is straightforward. We explain how depen-

dencies between pixel features in higher dimensions can be

captured, resulting in more accurate models.

3.1 The algorithm

The proposed method, in pseudo-code, is shown in Fig. 6. θB
t

is the background model and θF
t is the foreground model for

each pixel. Let xt be the the intensity value of a pixel at time

t . The non-parametric estimation of the background model

that accurately follows its multi-modal distribution can be

reformulated in terms of recursive filtering [29]:

θ̂B
t (x) = [1 − βt ] · θB

t−1(x) + αt · H∆ (x − xt ) (8)

255
∑

x=0

θB
t (x) = 1 (9)

where x ∈ [0, 255] and θB
t is the background pixel model

at time t , normalized according to (9). θ̂B
t is updated by the

local kernel H (·) with bandwidth ∆ centered at xt . Para-

meters αt and βt are the learning rate and forgetting
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Fig. 7 Recursive modeling:

model after a 10 frames. b 200

frames

rate schedules, respectively. The kernel H should satisfy the

following conditions:

∑

x

H∆(x) = 1

∑

x

x × H∆(x) = 0 (10)

These conditions should be satisfied to ensure that the

kernel is normalized, symmetric and positive definite in case

of multivariate kernels. In our implementation of the RM

method we use a Gaussian kernel which satisfies the above

conditions. Note that in this context there is no need to specify

the number of modalities of the background representation

at each pixel.

Figure 7 shows the updating process using our proposed

recursive modeling technique. It can be seen that the trai-

ned model (solid line) converges to the actual one (dashed

line) as new samples are introduced. The actual model is the

probability density function of a randomly generated sample

population and the trained model is generated by using the

recursive formula presented in (8).

In existing non-parametric kernel density estimation

methods the learning rate α is selected to be constant and

has small values. This makes the pixel model convergence

slow and keeps its history in the recent temporal window of

size L = 1/α. The window size in non-parametric models

is important as the system has to cover possible fluctuations

in the background model. That is, pixel intensity changes

may not be periodic or regular and consequently may not fit

in a small temporal window. In such cases larger windows

are needed, resulting in higher memory and computational

requirements. Another issue in non-parametric density esti-

mation techniques is that the window size is fixed and the

same for all pixels in the scene. However, some pixels may

have fewer fluctuations and therefore need smaller windows

to be accurately modeled, while others may need a much

longer history to cover their changes.

3.2 Scheduled learning

In order to speed up the modeling convergence and recovery

we use a schedule for learning the background model at each

pixel based on its history. This schedule makes the adaptive

learning process converge faster, without compromising the

stability and memory requirements of the system. The lear-

ning rate changes according to the schedule:

αt =
1 − α0

h(t)
+ α0 (11)

where αt is the learning rate at time t and α0 is a small target

rate which is:

α0 = 1/256 × σθ (12)

where σθ is the model variance. The function h(t) is a

monotonically increasing function:

h(t) = t − t0 + 1 (13)

where t0 is the time at which a sudden global change is

detected. At early stages the learning occurs faster (αt = 1)

and monotonically decreases to converge to the target rate

(αt → α0). When a global change is detected h(t) resets to

1. Later in Sect. 5 we discuss the effect of this schedule on

improving the convergence and recovery speed.

The forgetting rate schedule is used to account for remo-

ving the values that have occurred a long time ago and no

longer exist in the background. In the current implementation

we assume that the forgetting rate is a portion of the learning

rate βt = l · αt , where l = 0.5.

3.3 Training stage

Before new objects appear in the scene, at each pixel all

the intensity values have the same probability of being fore-

ground. However, in each new frame the background models

are updated according to Eq. (8), resulting in larger model

values (θB) at the pixel intensity value xt . In essence the value
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of background pixel model at each intensity x is:

θB
t (x) = P(Bg|x) x ∈ [0, 255] (14)

In order to achieve better detection accuracy, we introduce

the foreground model. Later in the classification stage the

foreground model is compared to the background model. For

all x ∈ [0, 255], the foreground model is defined by:

θ̂F
t (x) = [1 − βF

t ] · θF
t−1(x) + αF

t · H∆ (x − xt ) (15)

255
∑

x=0

θF
t (x) = 1 (16)

Once the background model is updated for each pixel, it

is compared to the threshold th. If its value is less than this

threshold the foreground model for that pixel value is updated

according to (15) and (16).

3.4 Classification stage

For each pixel at time t we use a function θB
t for the back-

ground model and θF
t for the foreground. The domain of these

functions is [0, 255]N , where N is the dimensionality of the

pixel feature vector. For simplicity assume the one dimen-

sional case again, where θt is the background/foreground

model whose domain is [0, 255]. From Eq. (15), each model

ranges between 0 and 1 and its value shows the amount of

evidence accumulated in the updating process (i.e., the esti-

mated probability). For each new intensity value xt we have

the evidence of each model as θB
t (xt ) and θF

t (xt ). The clas-

sification uses a maximum a posteriori criterion to label the

pixel as foreground:

ln

(

θB
t

θF
t

)

≤ κ (17)

3.5 Updating stage

In many applications with dynamic or quasi-stationary back-

grounds, we need adaptive classification criteria. Because not

all pixels in the scene follow the same changes, the decision

threshold κ should be adaptive and independent for each pixel

and has to be driven from the history of that pixel. Figure 4

explains this issue. The argument is similar to issue the of

adaptive, localized threshold map discussed in Sect. 2.2.

From the algorithm shown in Fig. 6 it can be observed that

there are two set of thresholds th and κ . Thresholds th for

each pixel should adapt to a value where:

∑

x

θB
t (x) ≥ th

θB
t (x) ≥ 0.95 (18)

For the other set of thresholds κ , we similarly use a mea-

sure of changes in the intensity at each pixel position.

Therefore the threshold κ is inversely proportional to the

background model variance:

κ ≈ ln

⎧

⎨

⎩

[

255
∑

x=0

(

θB
t (x) − mean[θB(x)]

)2
]−1

⎫

⎬

⎭

(19)

This ensures that for pixels with more changes, smaller

threshold values are chosen for classification, while for those

pixels with fewer changes larger thresholds are employed. It

should be mentioned that in the current implementation of

the algorithm, the thresholds are updated every 30 frames.

3.6 Incorporating color information

In the above section, we described the recursive learning

scheme in 1-D where the background and foreground models

are updated using the intensity value of pixels at each frame.

To extend the modeling in higher dimensions and incorpo-

rate color information, one may consider each pixel as a 3-D

feature vector in [0, 255]3. The kernel H in this space is

a multivariate kernel HΣ . In this case, instead of using a

diagonal matrix HΣ a full multivariate kernel can be used.

The kernel bandwidth matrix Σ is a symmetric positive defi-

nite 3 × 3 matrix. Given N pixels, x1, x2, . . . , xN , labeled

as background, their successive deviation matrix is a matrix

∆X whose columns are:

[

xi − xi−1

]T
with i = 2, 3, . . . , N (20)

The bandwidth matrix is defined such that it represents the

temporal scatter of training samples:

Σ = cov(∆X ) (21)

However, in the current implementation only red and green

chrominance values are used. Also in order to decrease the

memory requirements of the system we assumed that the two

chrominance values are independent. Making this assump-

tion results in a significant decrease in memory requirements

while the accuracy of the model does not decay drastically.

The red/green chrominance values are quantized into 256

discrete values.

4 Performance evaluation

In this section, we evaluate the performance of each of the

proposed methods separately. The evaluation is conducted in

terms of the number of system parameters, their impact on

the output of the system, memory requirements and accuracy

of the results.
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Fig. 8 Effect of the number of training samples on the estimated den-

sity function

4.1 Adaptive kernel density estimation method (AKDE)

In this section, we present the system details and analyze its

performance.

Parameters. One important parameter in this method is

the number of training samples used to estimate the proba-

bility density. Other parameters such as the threshold and

the kernel bandwidth matrix are trained during the training

stage. In Fig. 8, the actual probability function of a randomly

distributed population is shown by the solid line. The esti-

mated probability density function converges to the under-

lying density by increasing the number of training samples.

However, there is a trade-off between the number of training

samples, memory requirements and convergence speed of the

algorithm.

Memory requirements. The system needs to store all the

training samples in order to estimate the probability of a new

sample. If only pixel intensity values are to be employed for

each pixel, n values should be stored. Given that these values

range is between 0 and 255, each intensity value is stored in

1 byte, resulting in n bytes per-pixel memory requirement.

Also the system needs to store the kernel bandwidth and the

thresholds for each pixel, which result in two floating num-

bers. Considering that each floating number can be stored in

4 bytes, 8 bytes per pixel are needed to store the kernel band-

width and the threshold. This results in n + 8 bytes memory

requirement per pixel. Similarly, the per-pixel memory requi-

rements using chrominance values are 8n + 20.

From the above discussion we can conclude that the

asymptotic memory requirement for the system is O(n).

That is, if the number of training samples reaches infinity

the memory requirements of the system grow linearly.

Computational cost. If we only use pixel intensity values

for n training samples per pixel we need two additions and

two multiplications for each training sample. This results

in 2n addition and 2n multiplication operations. Given the

optimal implementation of the exponential function using

look-up tables, its cost is equal to a memory indexing. This

can be assimilated to a single addition operation. The per-

pixel computational cost of the AKDE method is 5 × n. If

chrominance values are used the computational cost will be

13 × n per pixel.

Given the optimal implementation of the exponential func-

tion and multiplication operations, the asymptotic per-pixel

computational cost is O(n). Note that this is the optimal

asymptotic computational cost per pixel. The actual frame

rate of the current implementation of the AKDE method is

about 5–10 fps.

4.2 Recursive modeling method (RM)

In this section, we analyze the performance of our recursive

modeling method.

Parameters. In the RM method there are five parameters:

the learning and forgetting rate α and β, thresholds th and κ ,

and the bandwidth Σ . As described earlier, these parameters

are trained and estimated from the data to generate an accu-

rate and robust model. The reason that the RM technique is

robust is in using most of the information in the data set and

not being limited on the number of training samples. With

all parameters being updated, the system performance does

not depend on heuristically (and scene dependent) values for

these parameters.

Memory requirements. If pixel intensity is used in the

RM technique the model becomes a 1-D function represen-

ting the probability mass function of the pixel. The pixel

intensity values range is from 0 to 255 making the memory

requirements of the RM equal to 256 × 4 bytes per pixel.

Using chrominance values, the model is 2-D and needs

2562 × 4 bytes in memory.

The current implementation of the RM method uses a

simple assumption of independence between color features

which results in 8 × 256 bytes memory requirements [29].

Color components are not independent. However, assuming

that they are independent helps decreasing memory needs

drastically while the accuracy does not decrease significantly.

In conclusion the asymptotic memory requirement of the RM

algorithm is constant O(1).

Computational cost. If we only use pixel intensity values

for pixels we need 256 addition and 2 × 256 multiplication

operations. Similarly, if we use 2-D chrominance values as

pixel features and using the independence assumption dis-

cussed earlier, the system requires only 2×256 addition and

4 × 256 multiplication operations to update the model.

The asymptotic computation cost for this system is

constant, O(1), since the updating process merely consists

of adding two 1-D functions. Note that this technique does
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Fig. 9 Rapidly fluctuating

background: a Handshake video

sequence. b Detected

foreground regions using

AKDE. c Detected foreground

regions using RM

Fig. 10 Slowly changing

background: a Water video

sequence. Detected foreground

region using: b MoG, c AKDE

and d RM

not need to compute the exponential function and it acts as an

incremental process, updating the model at each frame using

the kernel and the previous model. The algorithm is inhe-

rently fast and an efficient implementation runs in real-time

reaching frame rates of 15–30 fps.

5 Comparison

In this section, we compare the performance of proposed

techniques using several real video sequences that pose signi-

ficant challenges. Also their performances are compared with

the mixture of Gaussians method [25], the spatio-temporal

modeling presented in [14] and the simple KDE method [5].

We use different scenarios to test the performance of the pro-

posed techniques and discuss where each method is more

suitable.

Rapidly fluctuating backgrounds. As described above,

for videos with rapidly changing background, the AKDE

method has a better performance in terms of memory requi-

rements and speed. Our experiments showed that for videos

where possible fluctuations in the background occur in about

10 s, the AKDE technique needs less memory and works fas-

ter compared to the RM method. Figure 9 shows the detection

results of the AKDE and RM algorithms on the Handshake

video sequence. As it can be seen from this figure, captu-

ring dependencies between chrominance features results in

a more accurate foreground region (in Fig. 9b), showing that

AKDE performs better than the RM. Note that this is a low

contrast video sequence and the color of foreground objects

is close to the background in some regions. Also in both

methods fluctuations in monitors are completely modeled as

a part of background and not detected as foreground regions.

Slowly changing backgrounds. For videos with slowly

changing backgrounds or backgrounds in which changes are

not periodic, the AKDE method needs more training frames

to generate a good model for the background. This increases

the system memory requirements and drastically decreases

its speed. In these situations the RM technique is a very good

alternative, since its performance is independent of the num-

ber of training frames. Figure 10a shows an arbitrary frame of

the Water video sequence. In this figure the detection results

of both AKDE and RM methods are presented. This example

is particularly difficult because waves do not follow a regular

motion pattern and their motion is slow. Figure 10b shows the

result of the MoG [25]. As it can be seen from Fig. 10c, using

the AKDE method without any post-processing results in

many false positives. Figure 10d shows the detection results

of the RM method, which outperforms both AKDE and MoG

in the presence of slowly changing backgrounds.

Hand-held camera. In situations when the camera is not

completely stationary, such as the case of a hand-held camera,

the AKDE method is not suitable. In these situations there is

a consistent, slow and irregular global motion in the scene,

which can not be modeled by a limited size sliding window

of training frames. In such cases the RM method is highly

preferable.

Figure 11 shows the modeling error of the RM method in

the Room video sequence. In Fig. 11a an arbitrary frame of

this video is shown. Figure 11b compares the modeling error

using different techniques. As it can be seen, the modeling

error using a constant window size in the AKDE (the dotted

line) is between 20 and 40%, and it does not decrease with

time. This shows that the system using the AKDE method

with a constant sized sliding window never converges to the

actual model. The dashed line shows the modeling error using

the RM method with a constant learning rate, and the solid

line shows the modeling error of the RM with scheduled lear-

ning. We conclude that the model generated by the RM tech-

nique eventually converges to the actual background model

and its error goes to zero. Figure 11c and d show misclassi-

fied regions using the AKDE method after 2 and 247 frames

respectively and Fig. 11e and f show the false positives using

the RM method after 2 and 247 frames into the video. As it
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Fig. 11 Hand-held camera:

a Room video sequence.

b Modeling error in a hand-held

camera situation using different

methods. c False positives after

two frames using the AKDE

method. d False positives after

247 frames using the AKDE

method. e False positives after

two frames using the RM

method. f False positives after

247 frames using the RM

method

Fig. 12 Non-empty

background: a Mall video

sequence. b Background model

after five frames using the RM

method. c Background model

after 95 frames using the RM

method

can be seen, the amount of false positives decrease with time

as the system accumulates most changes observed in the his-

tory of the scene using the RM method, but for the AKDE it

does not converge to zero.

Non-empty backgrounds. In situations where the back-

ground of the video is not empty (there is no clear background

at any time in the video sequence), the AKDE method fails to

accurately detect the foreground regions. In these situations

the RM technique has to be used to generate an accurate

empty background model.

Figure 12 shows the background model in the Mall video

sequence in which the background is never empty. In this

situation the AKDE method fails unless a post-processing

on the detected foreground regions is performed to generate

models for uncovered parts of the background. This system

considers the foreground objects present in the background

training window as a part of background. When those objects

move their empty position is detected as a foreground region.

In the RM method however, the background model is updated

at every frame from the beginning of the video. When an

object moves the new pixel information is used to update

the background model to the new one. Figure 12b shows the

background model after five frames from the beginning of

the video and Fig. 12c shows the model after 95 frames.

In this scenario consistent background regions are tempo-

rarily occluded by transient moving objects. Therefore the

background itself contributes more consistent information to

the model. As a result, the model converges to the empty

background. This can be observed from Fig. 12.

Fig. 13 Convergence speed

Convergence speed. An important issue in the recursive

learning is the convergence speed of the system (how fast the

model converges to the actual background). Figure 13 illus-

trates the convergence speed of our approach with scheduled

learning, compared to constant learning and kernel density

estimation with constant window size.
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Fig. 14 Sudden global changes

in the background: a Lobby

video sequence with lights on.

b Lights off. c Recovery speed

comparison in lights turned off

scenario. d Recovery speed

comparison in lights turned on

scenario

Fig. 15 Other difficult

examples: a original frame.

b Detected foreground region

using AKDE. c Detected

foreground regions using RM

Sudden global changes in the background. In situa-

tions where the video background suddenly changes—such

as lights on/off—the proposed RM technique with schedu-

led learning recovers faster than the AKDE method. Gene-

rally, with the same speed and memory requirements, the RM

method results in faster convergence and lower model error

than existing techniques.

Figure 14 shows the comparison of the recovery speed

from an expired background model to the new one. Figure 14a

depicts an indoor scene with lights on and Fig. 14b shows

the scene with the lights off. In our example (Fig. 14c) lights

go from on to off through three global but sudden changes

occurring at frames 23, 31 and 47. As shown, the scheduled

learning RM method (solid curve) recovers the background

model after these changes faster than non-scheduled RM and

the AKDE with constant window size. The constant, large

learning rate recovers more slowly (dashed curve) while the

AKDE technique (dotted curve) is not able to recover even

after 150 frames. A similar situation with lights going from

off to on through three global, sudden illumination changes

is shown in Fig. 14d. It needs to be mentioned that the mix-

ture learning algorithms are even slower in convergence and

recovery. A typical mixture learning technique proposed in

[25] needs at least 1,000 frames to converge.

Other difficult examples. Figure 15 shows three video

sequences with challenging backgrounds. In column (a) the

original frames are shown, while column (b) and (c) show

the results of the AKDE and the RM methods, respectively.

Heavy rain, waving tree branches, and the water fountain

shown in this figure (from top to bottom) pose significant

difficulties in detecting accurate foreground regions.

Quantitative evaluation. Performance of our proposed

methods, RM and AKDE, is evaluated quantitatively on ran-

domly selected samples from different video sequences, taken

from [14].

The similarity measure between two regions A (detec-

ted foreground regions) and B (ground truth) is defined by

S(A,B) = A∩B
A∪B

. This measure increases monotonically
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Table 1 Quantitative evaluation

and comparison. The sequences

are Meeting Room, Lobby,

Campus, Side Walk, Water and

Fountain, from left to right from

[14]

Method Videos

MR LB CAM SW WAT FT Avg.S(A, B)

AKDE 0.74 0.66 0.55 0.52 0.84 0.51 0.64

RM 0.92 0.87 0.75 0.72 0.89 0.87 0.84

Spatio-Temp [14] 0.91 0.71 0.69 0.57 0.85 0.67 0.74

MoG [25] 0.44 0.42 0.48 0.36 0.54 0.66 0.49

with the similarity between detected masks and the ground

truth, ranging between 0 and 1. By using this measure we

report the performance of the AKDE method, the RM method,

the spatio-temporal technique presented in [14] and the mix-

ture of Gaussians (MoG) in [25]. By comparing the average

of the similarity measure over different video sequences in

Table 1, we can see that the RM method outperforms other

techniques. This shows that the RM method works consis-

tently well on a wide range of video sequences. Also, note

that both AKDE and RM are automatic, without the need for

fine-tuning a large number of parameters for each scene, as

opposed to other existing methods.

However from this table one might argue that AKDE

does not perform better than the method presented in [14].

The reason is that in [14] the authors used a morphologi-

cal post-processing stage to refine their detected foreground

regions, while the results shown for AKDE are the raw detec-

ted regions. We performed a morphological post-processing

on the results obtained by the AKDE, and the average simi-

larity measure increased to 0.74.

Computation time. In this section, we present a compa-

rison of the speed of the RM and the AKDE on the Hand-

shake video sequence. The frame size for the experiments is

120 × 160 in RGB color format. The systems are implemen-

ted on a 4.8 GHz Pentium 4 Processor. We used N = 300

frames for the initial background training process for the

AKDE. Table 2 shows the computation time of the system

for the AKDE and the RM method. As seen, the RM method

is a fast technique with frame rate of at least 15 fps.

Comparison summary. Table 3 summarizes this study

and provides a comparison between different traditional

methods for background modeling proposed in the literature

and our proposed methods. The comparison includes the

number of parameters, classification type, memory

requirements, computation cost and parameter selection.

Table 2 Computation time

Method Detection time per frame (s) Speed (fps)

AKDE 0.186 5.2

RM 0.0625 15.38

Table 4 shows different scenarios and illustrates which

method appears to be particularly suitable for foreground

region detection.

6 Conclusions and future work

In this paper, we have presented two novel techniques for

background modeling based on non-parametric density esti-

mation and recursive modeling. The advantage of our adap-

tive kernel density estimation method (AKDE) over existing

techniques is that instead of a global threshold for all pixels

in the video scene, different and adaptive thresholds are used

for each pixel. By training these thresholds the system works

robustly on different video scenes without changing or tuning

any parameter. Since each pixel is classified by using adap-

tive thresholds and exploiting its color dependency, the back-

ground model is more accurate.

Our novel recursive modeling method (RM) updates the

model on-line when a new frame becomes available, instead

of processing a set of video frames to generate the back-

ground model. Since the model is not generated by a finite

set of samples it eventually converges to the actual back-

ground model. This method is superior and more robust than

other techniques for situations in which background changes

are slow and not periodic.

In particular the RM method outperforms other non-

parametric techniques when a set of empty background

frames is not available (such as the Mall video sequence)

as well as in the case of a hand-held camera. The recovery

and convergence speed of the RM method in cases when the

global illumination suddenly changes are better than those

of other non-parametric techniques.

From studying the performance of each of the proposed

methods in terms of memory requirements and computatio-

nal cost it can be observed that the AKDE method is more effi-

cient than the RM technique when background changes are

fast. On the other hand when changes occur very slowly, or

when there are no empty background frames, the RM works

better than AKDE because of its recursive nature.

A future research direction is to perform the foreground/

background segmentation without establishing a probabilistic
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Table 3 Comparison between

the proposed methods and

traditional techniques

n number of training frames or

training features used per pixel
a Per-pixel memory requirements

or computational cost

Criteria AKDE RM KDE [5] Spatio-Temp [14] MoG [25] Wallflower [31]

No. of parameters 3 3 3 9 5 8

Scene-independent Yes Yes No No No No

Post proc. No No No Yes No No

Classifier Bayes MAP Bayes Bayes Bayes K-means

Memory req.a O(n) O(1) O(n) O(n) O(1) O(n)

Comp. costa O(n) O(1) O(n) O(n) O(1) O(n)

Table 4 Scenarios where each

method appears to be

particularly suitable

a Suitable
b Not suitable

Scenario AKDE RM KDE [5] [14] MoG [25] Wallflower [31]

Low contrast video Sa NSb S NS NS NS

Close Bg/Fg colors S NS NS NS NS NS

Slowly changing background NS S NS S S S

Rapidly changing background S S S S NS S

Sudden global changes NS S NS S S NS

Non-empty backgrounds NS S NS S S S

Hand-held camera NS S NS NS NS NS

model for the background or the foreground. This new

approach would aim to establish the decision boundaries bet-

ween background and foreground classes for each pixel based

on support vector classification methods.
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