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Abstract

We propose an approach to perform orbital-free density functional theory calculations in a

non-periodic setting using the finite-element method. We consider this a step towards con-

structing a seamless multi-scale approach for studying defects like vacancies, dislocations

and cracks that require quantum mechanical resolution at the core and are sensitive to long

range continuum stresses. In this paper, we describe a local real space variational formu-

lation for orbital-free density functional theory, including the electrostatic terms and prove

existence results. We prove the convergence of the finite-element approximation including

numerical quadratures for our variational formulation. Finally, we demonstrate our method

using examples.
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1 Introduction

Quantum mechanical calculations have yielded enormous insights into the mechanics and

physics of solids in the recent years. They are attractive since they are in principle ab

initio and require no empirical input. However, they are extremely expensive, and this

expense has limited the size of calculations one can perform. Schrödinger’s equation is

prohibitively expensive to solve except for a few electron system, and various approaches

have been developed to overcome this complexity. Most popular amongst them is the

density functional theory based on the work of Hohenberg & Kohn (1964); Kohn & Sham

(1965). This provides a rigorous reformulation of Schrödinger equation of an N-electron

system into a problem of estimating the wave functions and corresponding energies of

an effective single electron system. While this approach is exact, it is stated in terms of

an unknown exchange and correlation functional and requires an expensive evaluation

of the kinetic energy functional. While one can evaluate the exchange and correlation

functionals self-consistently, this is expensive and it is common to use an approximate

formulation. Similarly it is common to use an approximation for the kinetic energy and

this is often referred to as orbital-free density functional theory. We refer the reader to

Finnis (2003); Parr & Yang (1989) for a detailed description and discussion.

Irrespective of whether one is using the Kohn-Sham or the orbital-free approach, one

would have to solve the equations in a suitable basis. The plane-wave basis is the most

popular, and it lends itself to a computation of the electrostatic interactions naturally using

Fourier transforms. However, the plane-wave basis has some very notable disadvantages.

Most importantly, it requires periodic boundary conditions and this is not appropriate for

various problems of interest in materials science, especially defects. Therefore it is com-

mon to artificially consider periodic arrays of defects. Second, a plane-wave basis requires

the evaluation of Fourier transforms which affect the scalability of parallel computation.
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Third, the plane-wave basis functions are non-local in the real space, thus resulting in a

dense matrix which limits the effectiveness of iterative solutions. This in turn makes it

very tricky to embed this in multi-scale approaches which often use real-space formula-

tions to deal with realistic boundary conditions. Although plane-wave basis has been the

preferred choice in this area, recently there have been efforts at performing density func-

tional calculations using a finite-element basis in a periodic setting (Pask et al., 1999).

Other real-space approaches include GAUSSIAN (Hehre et al., 1969), FPLMTO (Wills

& Cooper, 1987), SIESTA (Soler et al., 2002), ONETEP (Skylaris et al., 2005) and CON-

QUEST (Bowler et al., 2006) based on specific orbital ansatz or tight-binding.

In this paper, we provide a real-space formulation for orbital-free density functional the-

ory and develop a finite-element method for computing this formulation. In the body of

the paper, we confine ourselves to the Thomas-Fermi-Weizsacker kinetic energy func-

tional (Parr & Yang, 1989; Thomas, 1927; Fermi, 1927) for clarity. However, we show in

the Appendix how our approach can be extended to the more recent and accurate kernel

kinetic energy functionals (Wang et al., 1998, 1999; Smargiassi & Madden, 1994; Wang

& Teter, 1992).

An important difficulty in using a real-space formulation is that electrostatic interactions

are extended in real-space. So we reformulate the electrostatics as a local variational prin-

ciple. This converts the problem of computing the ground state energy to a saddle-point

variational problem with a local functional in real space. We show that this problem is

mathematically well-posed by proving existence of solutions (Theorem 5).

Since our formulation is local and variational, it is natural to discretize it using the finite-

element method. In doing so, we exploit an advantage of the saddle-point formulation

and use the same mesh to resolve both the electron density and the electrostatic poten-

tial. We prove the convergence of the finite-element approximation, including numerical
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quadratures, using the mathematical technique of Γ−convergence. This is a notion of con-

vergence of functionals introduced by De Giorgi & Franzoni (1975) (also see Dal Maso

(1993) for a detailed introduction) that has recently been used in a variety of multi-scale

problems. In our context, consider a sequence of finer and finer finite-element approx-

imations. These generate a sequence of functionals, and we show that this sequence of

functionals Γ−converge to the exact functional associated with our real-space formula-

tion. While the exact definition is technical, Γ− convergence states in spirit that solutions

of the sequence of approximate functionals converge to the solution of the exact func-

tional.

Having proved the convergence of our finite-element method, we turn to its numerical

implementation. This requires care since the electron densities and electrostatic potential

are localized near the atomic cores and are convected as the atomic positions change.

Consequently a fixed spatial mesh would be extremely inefficient as we alternate between

relaxing the electron density and atomic positions. Therefore, we design a mesh which

convects with the atomic position and obtain efficient convergence.

We demonstrate our approach using three sets of examples. The first set of examples are

atoms. We begin with a hydrogen atom for which an analytic solution of Schrödinger’s

equation is known, and also consider other heavier atoms. The second set of examples

are nitrogen and carbon-monoxide molecules, for which there are numerous careful cal-

culations. Our results show reasonable agreement for binding energies with experiments

and other calculations; however the computed bond lengths are rather poor. These errors

are the well-recognized consequence of the use of orbital-free kinetic energy functional

in these covalent dimers, rather than our formulation and numerical method. The third set

of examples is a series of aluminum clusters ranging from 1 unit (face-centered-cubic)

cell to 9 × 9 × 9 unit cells (3730 atoms), and these demonstrate the efficacy and advan-

tages of our approach. Being clusters, they possess no natural periodicity and thus are not
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amenable to plane-wave basis. Second, since the boundaries of the clusters satisfy physi-

cally meaningful boundary conditions, it is possible to extract information regarding the

scaling of the ground state energy with size. Third, the finite-element method allows one

to use unstructured discretization concentrating numerical effort in regions where and

only it is necessary with ease and little loss of accuracy. Further, it allows us to adapt the

discretization to each atomic position.

This framework is developed with a larger goal in mind, which is to coarse-grain density

functional theory in a seamless atomistic-continuum formulation. Such a formulation is

necessary to accurately study defects in solids like vacancies, dislocations and cracks

where the local structure and long range elastic fields interact in a non-trivial manner.

We believe that a local, variational, real-space formulation is a step towards that goal. A

further goal is to extend our approach to the exact Kohn-Sham density functional theory

setting. These are the subject of current research.

The remainder of the paper is organized as follows. Section 2 describes the formulation.

Section 3 collects the important mathematical properties of this functional. Sections 4

and 5 discuss the convergence of the finite-element approximation. Section 6 describes

the implementation and Section 7 the examples. We conclude in Section 8 with a short

discussion. We have tried to keep the sections on the mathematical analysis and the nu-

merical implementation self-contained so that a reader interested in the former can focus

on Sections 3-5 while a reader interested in the latter can focus on Sections 6 and 7.
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2 Formulation

The ground state energy in density functional theory is given by (cf, e. g., Finnis (2003);

Parr & Yang (1989))

E(ρ,R) = Ts(ρ) + Exc(ρ) + EH(ρ) + Eext(ρ,R) + Ezz(R), (1)

where ρ is the electron density, R = {R1, . . . ,RM} collects the nuclear positions in the

system and the different terms are explained presently.

Ts is the kinetic energy of non-interacting electrons. A common choice of this is the

Thomas-Fermi-Weizsacker family of functionals, which have the form

Ts(ρ) = CF

∫

Ω
ρ5/3(r)dr +

λ

8

∫

Ω

|∇ρ(r)|2

ρ(r)
dr, (2)

where CF = 3
10

(3π2)
2/3

, λ is a parameter and Ω contains the support of ρ (crudely the

region where ρ is non-zero). Different values of λ are found to work better in different

cases (Parr & Yang, 1989). λ = 1 is the Weizsacker correction and is suitable for rapidly

varying electron densities, λ = 1/9 gives the conventional gradient approximation and

is suitable for slowly varying electron densities, λ = 1/6 effectively includes the 4th

order effects and λ = 0.186 was determined from analysis of large atomic-number limit

of atoms. This class of functionals makes computations of large and complex systems

tractable, though it does have limitations and improvements have been proposed (Wang

et al., 1998, 1999; Smargiassi & Madden, 1994; Wang & Teter, 1992). We confine our

attention to the Thomas-Fermi-Weizsacker family of functionals (2) for now for clarity.

However, we explain in the Appendix that our approach can be extended to include the

improved functionals.

Exc is the exchange-correlation energy. We use the Local Density Approximation (LDA)
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(Ceperley & Alder, 1980; Perdew & Zunger, 1981) given by

Exc(ρ) =
∫

Ω
ǫxc(ρ(r))ρ(r)dr, (3)

where ǫxc = ǫx + ǫc is the exchange and correlation energy per electron given by,

ǫx(ρ) = −
3

4
(
3

π
)1/3ρ1/3 (4)

ǫc(ρ) =























γ
1+β1

√
rs+β2rs

rs ≥ 1

A log rs + B + Crs log rs + Drs rs < 1

(5)

where rs = ( 3
4πρ

)1/3. The values of the constants are different depending on whether

the medium is polarized or unpolarized. The values of the constants are γu = −0.1471,

β1u = 1.1581, β2u = 0.3446„ Au = 0.0311, Bu = −0.048, Cu = 0.0014, Du = −0.0108,

γp = −0.079, β1p = 1.2520, β2p = 0.2567, Ap = 0.01555, Bp = −0.0269, Cp = 0.0001,

Dp = −0.0046.

The last three terms in the functional (1) are electrostatic:

EH(ρ) =
1

2

∫

Ω

∫

Ω

ρ(r)ρ(r′)

|r − r′|
drdr′, (6)

Eext(ρ,R) =
∫

Ω
ρ(r)Vext(r)dr, (7)

Ezz(R) =
1

2

M
∑

I=1

M
∑

J=1
J 6=I

ZIZJ

|RI − RJ |
. (8)

EH is the classical electrostatic interaction energy of the electron density also referred

to as Hartree energy, Eext is the interaction energy with external field, Vext, induced by

nuclear charges and Ezz denotes the repulsive energy between nuclei.

The energy functional (1) is local except for two terms: the electrostatic interaction energy

of the electrons and the repulsive energy of the nuclei. For this reason, evaluation of the

electrostatic interaction energy is the most computationally intensive part of the calcula-

tion of the energy functional. Therefore, we seek to write it in a local form. To this end,
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we first regularize the point nuclear charge ZI at RI with a smooth function ZIδRI
(r)

which has support in a small ball around RI and total charge ZI . We then rewrite the

nuclear energy as

Ezz(R) =
1

2

∫

Ω

∫

Ω

b(r)b(r′)

|r − r′|
drdr′, (9)

where b(r) =
∑M

I=1 ZIδRI
(r). Notice that this differs from the earlier formulation by

the self-energy of the nuclei, but this is an inconsequential constant depending only on

the nuclear charges. Second, we replace the direct Coulomb formula for evaluating the

electrostatic energies with the following identity

1

2

∫

Ω

∫

Ω

ρ(r)ρ(r′)

|r − r′|
drdr′ +

∫

Ω
ρ(r)Vext(r)dr +

1

2

∫

Ω

∫

Ω

b(r)b(r′)

|r − r′|
drdr′

= − inf
φ∈H1(R3)

{

1

8π

∫

R3
|∇φ(r)|2dr −

∫

R3
(ρ(r) + b(r))φ(r)dr

}

(10)

where we assume that ρ ∈ H−1(R3). Briefly, note that the Euler-Lagrange equation asso-

ciated with the variational problem above is

−1

4π
∆φ = ρ + b. (11)

These have an unique solution

φ(r) =
∫

Ω

ρ(r′)

|r − r′|
dr′ +

∫

Ω

b(r′)

|r − r′|
dr′ =

∫

Ω

ρ(r′)

|r − r′|
dr′ + Vext. (12)

Substituting this into the variational problem and integrating by parts gives us the desired

identity.

This identity (10) allows us to write the energy functional in the local form,

E(ρ,R) = sup
φ∈H1(R3)

L(ρ,R, φ) (13)

where we introduce the Lagrangian

L(ρ,R, φ) = CF

∫

Ω
ρ5/3(r)dr +

λ

8

∫

Ω

|∇ρ(r)|2

ρ(r)
dr +

∫

Ω
ǫxc(ρ(r))ρ(r)dr

−
1

8π

∫

R3
|∇φ(r)|2dr +

∫

R3
(ρ(r) + b(r))φ(r)dr.

(14)
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The problem of determining the ground-state electron density and the equilibrium posi-

tions of the nuclei can now be expressed as the minimum problem

inf
ρ∈H−1

0 (Ω), R∈R3M

E(ρ,R) (15a)

subject to: ρ(r) ≥ 0 (15b)
∫

Ω
ρ(r)dr = N, (15c)

where N is the number of electrons of the system. Equivalently, the problem can be

formulated in the saddle-point form

inf
ρ∈H−1

0 (Ω), R∈R3M

sup
φ∈H1(R3)

L(ρ,R, φ) (16a)

subject to: ρ(r) ≥ 0 (16b)
∫

Ω
ρ(r)dr = N. (16c)

The constraint of ρ ≥ 0 can be imposed by making the substitution

ρ = u2, (17)

which results in the Lagrangian

L(u,R, φ) = CF

∫

Ω
u10/3(r)dr +

λ

2

∫

Ω
|∇u(r)|2dr +

∫

Ω
εxc(u

2(r))u2(r)dr

−
1

8π

∫

R3
|∇φ(r)|2dr +

∫

R3
(u2(r) + b(r))φ(r)dr

(18)

and the energy

E(u,R) = sup
φ∈H1(R3)

L(u,R, φ). (19)

With this representation, the minimum problem (15) becomes

inf
u2∈H−1

0 (Ω), R∈R3M

E(u,R) (20a)

subject to:

∫

Ω
u2(r)dr = N (20b)

9
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and the saddle-point problem (16) becomes

inf
u2∈H−1

0 (Ω), R∈R3M

sup
φ∈H1(R3)

L(u,R, φ) (21a)

subject to:

∫

Ω
u2(r)dr = N. (21b)

The preceding local variational characterization of the ground-state electronic structure

constitutes the basis of the finite-element approximation schemes described subsequently.

3 Properties of the DFT variational problem

We begin by establishing certain properties of the DFT variational problem that play

a fundamental role in the analysis of convergence presented in the sequel. To keep the

analysis simple we treat the electrostatics on a large but bounded domain with compact

support. To this end, we consider energy functionals E : W 1,p(Ω) → R of the form

E(u) =
∫

Ω
f(∇u)dr +

∫

Ω
g(u)dr + J(u)

J(u) = − inf
φ∈H1

0 (Ω)
{
1

2

∫

Ω
|∇φ|2dr −

∫

Ω
(u2 + b(r))φdr},

where Ω is an open bounded subset of R
N , with ∂Ω Lipschitz continuous. b(r) is a smooth,

bounded function in R
N . We assume:

(i) f is convex and continuous on R
N .

(ii) f satisfies the growth condition, c0|ψ|
p − a0≤f(ψ) ≤ c1|ψ|

p − a1, 1 < p < ∞, where

c0, c1 ∈ R
+, a0, a1 ∈ R.

(iii) g is continuous on R.

(iv) g satisfies the growth condition, c2|s|
q−a2≤g(s) ≤ c3|s|

q−a3, q≥p, where c2, c3 ∈ R
+,

a2, a3 ∈ R.

Let F : W 1,p(Ω) → R and G : W 1,p(Ω) → R be functionals defined by,

10
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F (u) =
∫

Ω
f(∇u)dr G(u) =

∫

Ω
g(u)dr.

We note that the growth conditions imply, |f(ψ)| ≤ c(1 + |ψ|p) and |g(s)| ≤ c(1 + |s|q).

Hence, it follows that, F (u) is continuous in W 1,p(Ω) and G(u) is continuous in Lq(Ω),

cf, e. g., Remark 2.10, Braides (2002).

Let X = {u|u ∈ W 1,p(Ω), ‖u‖L2(Ω) = 1} with norm induced from W 1,p(Ω). Let, 1
p∗

=

1
p
− 1

N
.

Lemma 1 X is closed in the weak topology of W 1,p(Ω) if p∗ > 2.

Proof. We can rewrite X as X = W 1,p(Ω)∩K, where K = {u ∈ L2(Ω)|‖u‖L2(Ω) = 1}.

Let (uh) ∈ X , uh⇀u in W 1,p(Ω). If p∗ > 2, then W 1,p(Ω) is a compact injection into

L2(Ω). Hence, uh→u in L2(Ω). Thus, 1 = ‖uh‖L2(Ω) → ‖u‖L2(Ω) Hence, u ∈ K and it

follows that X is closed in the weak topology of W 1,p(Ω)

In this section we establish the existence of a minimum point of the energy functional

E(u) in X . Let,

I(φ, u) =
1

2

∫

Ω
|∇φ|2dr −

∫

Ω
(u2 + b)φdr, φ ∈ H1

0 (Ω) u ∈ W 1,p(Ω).

Hence,

J(u) = − inf
φ∈H1

0 (Ω)
I(φ, u).

For every u ∈ L4(Ω), I(., u) admits a minimum. This follows from Poincaré inequality

and Lax-Milgram Lemma. Therefore,

J(u) = − min
φ∈H1

0 (Ω)
I(φ, u).

Lemma 2 J is continuous in L4(Ω).
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Proof. If φu denotes the minimizer of I(., u), then for every u, v ∈ L4(Ω), we have,

∫

Ω
∇(φu − φv).∇ψdr =

∫

Ω
(u2 − v2)ψdr ∀ψ ∈ H1

0 (Ω).

Hence, from Poincaré and Cauchy-Schwartz inequality, it is immediate that,

‖φu − φv‖H1
0 (Ω) ≤ C‖u2 − v2‖L2(Ω) .

Continuity of J thus follows.

Let us denote by Hypothesis H , the condition, p∗ > max{q, 4}.

Lemma 3 If the Hypothesis H is satisfied, then E is lower semi-continuous (l.s.c) in the

weak topology of X .

Proof. We noted previously that F is continuous in W 1,p(Ω). As F is convex, it follows

that F is l.s.c in the weak topology of W 1,p(Ω) (cf, e. g. Prop. 1.18, Dal Maso (1993)). If

the hypothesis H is satisfied, then W 1,p(Ω) is a compact injection into Lq(Ω) and L4(Ω).

G is continuous in Lq(Ω), as noted previously, and from Lemma 2, J is continuous in

L4(Ω). Hence, it follows that, G and J are l.s.c and thus E is l.s.c in the weak topology

of W 1,p(Ω). As X is a subset of W 1,p(Ω), it follows that E is l.s.c in the weak topology

of X.

Lemma 4 E is coercive in the weak topology of X .

Proof. If we establish the coercivity of E in the weak topology of W 1,p(Ω), the coercivity

of E in the weak topology of X follows from Lemma 1. We note that J(u)≥0. Hence,

E(u)≥ c0‖∇u‖p
Lp(Ω) + c2‖u‖

q
Lq(Ω) − (a0 + a2)Ω

≥ c0‖∇u‖p
Lp(Ω) +

c1

Cq
Ω

‖u‖q
Lp(Ω) − C = K(u) as p≤q

12
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If the function K is bounded, then ‖u‖W 1,p(Ω) is bounded. As W 1,p(Ω) is reflexive (1 <

p < ∞), it follows that K is coercive in the weak topology of W 1,p(Ω). Hence, E is

coercive in the weak topology of W 1,p(Ω) and from Lemma 1, E is coercive in the weak

topology of X .

Theorem 5 E(u) has a minimum in X .

Proof. It follows from Lemma 3, Lemma 4 and Theorem 1.15, Dal Maso (1993).

The orbital-free density functional under consideration falls into the class of functionals

being discussed with J(u) representing the classical electrostatic interaction energy. The

constraint on electron density is imposed explicitly through the space X . It is easy to

check that the energy functional satisfies conditions (i)-(iv) with p = 2, q = 10/3. As

Ω ⊂ R
3, we estimate p∗ = 6. Hence, the hypothesis H is satisfied and all the results

apply to the specific energy functional.

4 Γ-Convergence of the Finite-Element Approximation

Finite-element approximations to the solutions of the DFT variational problem are ob-

tained by restricting minimization to a sequence of increasing finite-dimensional sub-

spaces of X . Thus, let Th be a sequence of triangulations of Ω of decreasing mesh size,

and let Xh be the corresponding sequence of subspaces of X consisting of functions

whose restriction to every cell in Th is a polynomial function of degree k ≥ 1. A standard

result in approximation theory (cf, e. g., Ciarlet (2002)) shows that the sequence (Xh) is

dense in X , i. e., for every u ∈ X there is a sequence uh ∈ Xh such that uh → u. Let,

X1h
= {φ|φ ∈ H1

0 (Ω), φ is piece-wise polynomial function corresponding to triangu-

lation Th}, denote a sequence of constrained spaces of the space H1
0 (Ω). The sequence

13
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of spaces, (X1h
), is such that ∪hX1h

is dense in H1
0 (Ω). We now define a sequence of

finite-element energy functionals

Eh(u) =























F (u) + G(u) + Jh(u), if u ∈ Xh;

+∞, otherwise;

where

Jh(u) = − min
φ∈H1

0 (Ω)
Ih(φ, u)

and

Ih(φ, u) =























I(φ, u), if φ ∈ X1h
,u ∈ Xh;

+∞, otherwise;

Then, we would like to establish convergence of the sequence of functionals Eh to E in a

sense such that the corresponding convergence of minimizers is guaranteed. This natural

notion of convergence of variational problems is provided by Γ-convergence (cf, e. g.,

Dal Maso (1993) for comprehensive treatises of the subject). In the remainder of this

section, we show the Γ-convergence of the finite-element approximation and attendant

convergence of the minima. We also extend the analysis of convergence to approximations

obtained using numerical quadrature.

To analyze the behavior of the sequence of functionals, Eh, it is important to understand

the behavior of Jh. We first note some properties of Jh before analyzing Eh.

Lemma 6 If uh→u in L4(Ω), then for any φh ⇀ φ in H1
0 (Ω), lim infh→∞ I(φh, uh)≥I(φ, u).

Proof. I(φ, u) = 1
2

∫

Ω |∇φ|2dr −
∫

Ω (u2 + b)φdr. L.s.c of
∫

Ω |∇φ|2dr in the weak topol-

ogy of H1
0 (Ω) follows from Prop 2.1, Dal Maso (1993). As uh→u in L4(Ω), limh→∞

∫

Ω (u2
h + b)φhdr =

∫

Ω (u2 + b)φdr. Putting both the terms together, we get, lim infh→∞ I(φh, uh)≥I(φ, u).

14
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Lemma 7 If uh→u in L4(Ω), then (Ih(., uh)) is equi-coercive in the weak topology of

H1
0 (Ω).

Proof.

I(φ, u) ≥ C‖φ‖2
H1

0 (Ω) − (‖u2‖L2(Ω) + ‖b‖L2(Ω))‖φ‖L2(Ω) (22)

Ih(., uh) ≥ I(., uh) ≥ I∗ where I∗(φ) = C‖φ‖2
H1

0 (Ω)−K‖φ‖L2(Ω), K = suph ‖uh
2‖L2(Ω)+

‖b‖L2(Ω). Since, uh → u in L4(Ω) and b is a bounded function, K is bounded. This im-

plies, I∗ is coercive in the weak topology of H1
0 (Ω). Thus it follows that, (Ih(., uh)) is

equi-coercive in the weak topology of H1
0 (Ω).

Theorem 8 If (uh) ∈ (Xh) is a sequence such that uh→u in L4(Ω), then Ih(., uh) ⇀Γ

I(., u) in weak topology of H1
0 (Ω).

Proof. Let (φh) be any sequence ∋ φh ⇀ φ in H1
0 (Ω). Ih(φh, uh) ≥ I(φh, uh). Hence,

lim infh→∞ Ih(φh, uh) ≥ lim infh→∞ I(φh, uh). But from Lemma 6, lim infh→∞ I(φh, uh) ≥

I(φ, u). Hence, lim infh→∞ Ih(φh, uh) ≥ I(φ, u). Now we construct the recovery se-

quence from interpolated functions. Let (φh) be a sequence constructed from the inter-

polation functions of successive triangulations such that φh → φ in H1
0 . As φh → φ in

H1
0 (Ω), ‖∇φh‖L2(Ω) → ‖∇φ‖L2(Ω). Also, as uh → u in L4(Ω), limh→∞

∫

Ω (u2
h + b)φhdr =

∫

Ω (u2 + b)φdr. Hence, limh→∞ Ih(φh, uh) = I(φ, u). This shows that, Ih(., uh) ⇀Γ

I(., u) in weak topology of H1
0 (Ω).

Theorem 9 If (uh) ∈ (Xh) is a sequence such that uh→u in L4(Ω), then limh→∞ Jh(uh) =

J(u).

Proof. Follows from Lemma 7, Theorem 8 and Theorem 7.8, Dal Maso (1993).
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Lemma 10 Let uh⇀u in X , then lim infh→∞ Eh(uh)≥E(u) if the hypothesis H is satis-

fied.

Proof. We need to consider 2 cases.

Case1: There is no sub-sequence (uhk
) such that (uhk

)∈Xhk

lim infh→∞ Eh(uh) = +∞. Hence, lim infh→∞ Eh(uh) ≥ E(u).

Case2:∃ sub-sequence (uhk
) such that (uhk

)∈Xhk

Using Theorem 9, the proof for this case follows on the same lines as Lemma 3.

Theorem 11 Eh ⇀Γ E in weak topology of X if the hypothesis H is satisfied.

Proof. Let (uh) be any sequence ∋ uh ⇀ u in X . From Lemma 10, it follows that

lim infh→∞ Eh(uh)≥E(u).

Now lets construct the recovery sequence. Let (uh) be a sequence constructed from the in-

terpolation functions of successive triangulations such that, uh → u in X . From Theorem

9 and continuity of F and G, it follows that limh→∞ Eh(uh) = E(u). Thus, Eh ⇀Γ E in

weak topology of X .

Lemma 12 (Eh) is equi-coercive in the weak topology of X if the hypothesis H is satis-

fied.

Proof. Noting that Eh(u)≥F (u) + G(u) + Jh(u) and Jh(u) ≥ 0 if u ∈ Xh, the proof

follows on the same lines as Lemma 4.

Theorem 13 limh→∞ infX Eh = minX E if the hypothesis H is satisfied.

Proof. Follows from Lemma 12, Theorem 11 and Theorem 7.8, Dal Maso (1993).
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5 Γ-convergence of the Finite-Element Approximation with Numerical Quadra-

tures

Let f : Ω → R, Ω ⊂ R
N , Ω bounded, be a function in W n+1,1(Ω) and I =

∫

Ω f(r)dr.

Define the quadrature of I to be,

Ĩ =
P

∑

i=1

Cif(r(ξi))

where, P denotes the number of quadrature points and C and ξ denote the weights and

quadrature points. If the quadrature rule is of nth order, then the values of C and ξ are de-

termined such that all polynomials upto degree n are integrated exactly. If the quadrature

rule is nth order, then the error due to the quadrature rule is given by

|Ĩ − I| ≤ KC
(n+1)
Ω

∫

Ω
|f (n+1)(r)|dr,

where f (n+1) denotes the n+1th derivative of f and CΩ represents the size of the domain.

Define Ĩh as,

Ĩh(φ, u) =























Ĩ(φ, u), if φ ∈ X1h
, u ∈ Xh;

+∞, otherwise;

We rewrite Ĩh as

Ĩh(φ, u) = Ih(φ, u) + ∆Ih(φ, u),

where ∆Ih(φ, u) is a perturbation of Ih(φ, u) introduced due to numerical quadrature and

is given by

∆Ih(φ, u) =























Ĩ(φ, u) − I(φ, u), if φ ∈ X1h
, u ∈ Xh;

0, otherwise;

To estimate the error in the energy introduced due to the quadrature, we assume that

the family of triangulations (Th) are regular, affine and satisfy the inverse assumption

(cf, e. g., Ciarlet (2002)). If the quadrature rule is nth order, then the error due to the

quadrature for φ ∈ X1h
and u ∈ Xh is given by
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|∆Ih(φ, u)| ≤Chn+1
0

∑

i

∫

ei

|Dn+1[
1

2
|∇φ|2 − (u2 + b)φ]|dr

≤Chn+1
0

∑

i

∫

ei

{|Dn+1|∇φ|2| + |Dn+1((u2 + b)φ)|}dr

≤Chn+1
0

∑

i

∫

ei

{|Dn+1|∇φ|2| + C1h
−n
0 |D(u2φ)| + C2h

−n
0 |D(φ)|}dr,

(23)

where ei denotes the ith element and h0 is characteristic of the size of the largest element

in the finite-element mesh. The last inequality in (23) is obtained by using the inverse

inequality (Ciarlet, 2002). We note that, as h → ∞, h0 → 0. Let k denote the degree of

polynomials used for finite-element interpolation.

Lemma 14 If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X , (n− 2k +3) > 0, p≥ 2

and the hypothesis H is satisfied, then (∆Ih(., uh)) is continuously convergent to the zero

function in H1
0 (Ω).

Proof. If φ /∈ X1h
, then by definition, ∆Ih(φ, uh) = 0. Hence, we need to consider only

the case where φ ∈ X1h
. If φ ∈ X1h

, then from (23),

|∆Ih(φ, uh)|≤Chn+1
0

∑

i

∫

ei

{|Dn+1|∇φ|2| + C1h
−n
0 |D(u2

hφ)| + C2h
−n
0 |D(φ)|}dr

If (n − 2k + 3) > 0, then Dn+1|∇φ|2 = 0. Hence,

|∆Ih(φ, uh)| ≤Ch0

∑

i

∫

ei

|D(u2
hφ)|dr + C1h0

∑

i

∫

ei

|D(φ)|dr

≤Ch0{‖∇uh‖L2(Ω)‖uhφ‖L2(Ω) + ‖∇φ‖L2(Ω)‖uh‖
2
L4(Ω)} + C1h0‖∇φ‖L1(Ω)

≤Ch0{‖∇uh‖L2(Ω)‖uh‖L4(Ω)‖φ‖L4(Ω) + ‖∇φ‖L2(Ω)(‖uh‖
2
L4(Ω) + C2)}.

(24)

As the hypothesis H is satisfied, H1
0 (Ω) and W 1,p(Ω) are compact injections into L4(Ω)

and all the norms make sense. As, uh ⇀ u in X , it follows that norms ‖∇uh‖L2(Ω)

and ‖uh‖L4(Ω) are uniformly bounded. Hence, it follows that (∆Ih(., uh)) is continuously
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convergent to the zero function.

Theorem 15 If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X , (n−2k+3) > 0, p≥ 2

and the hypothesis H is satisfied, then Ĩh(., uh) ⇀Γ I(., u) in weak topology of H1
0 (Ω).

Proof. Ĩh(., uh) = Ih(., uh) + ∆Ih(., uh). From Lemma 14, it follows that (∆Ih(., uh))

is continuously convergent to zero. Hence, from Prop. 6.20, Dal Maso (1993), it follows

that Ĩh(., uh) ⇀Γ I(., u) in weak topology of H1
0 (Ω).

Theorem 16 If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X , (n − 2k + 3) >

0, p≥ 2, N < 4 and the hypothesis H is satisfied, then limh→∞ infH1
0 (Ω) Ĩh(., uh) =

minH1
0 (Ω) I(., u), i.e. limh→∞ J̃h(uh) = J(u).

Proof. To show this we need to show that Ĩh is equi-coercive in the weak topology of

H1
0 (Ω). For φ ∈ X1h

, from (22) and (24),

Ĩh(φ, uh)≥ Ih(φ, uh) − Ch0{‖∇uh‖L2(Ω)‖uh‖L4(Ω)‖φ‖L4(Ω) + ‖∇φ‖L2(Ω)(‖uh‖
2
L4(Ω) + C2)}

≥C1‖φ‖
2
H1

0 (Ω) − C2‖φ‖L2(Ω) − C3h0‖∇φ‖L2(Ω) − C4h0‖φ‖L4(Ω)

Using Inverse Inequality, ‖φ‖L4(Ω)≤Ch
−N/4
0 ‖φ‖L2(Ω). Hence, we have,

Ĩh(φ, uh)≥C1‖φ‖
2
H1

0 (Ω) −C2‖φ‖L2(Ω) −C3h0‖∇φ‖L2(Ω) −Ch
1−N/4
0 ‖φ‖L2(Ω) (C1 > 0)

If φ /∈ X1h
, then Ĩh(φ, uh) = ∞. Hence, for any φ we have,

Ĩh(φ, uh)≥C1‖φ‖
2
H1

0 (Ω) −C2‖φ‖L2(Ω) −C3h0‖∇φ‖L2(Ω) −Ch
1−N/4
0 ‖φ‖L2(Ω) (C1 > 0)

As all the terms appearing with a negative sign are lower order, it follows that Ĩh is equi-

coercive in the weak topology of H1
0 (Ω). Hence, the result follows from Theorem 15 and

Theorem 7.8, Dal Maso (1993).

19



Gavini, Knap, Bhattacharya & Ortiz

Returning to the energy functional, lets define,

Ẽh(u) =























F̃ (u) + G̃(u) + J̃h(u), if u ∈ Xh;

+∞, otherwise;

If f is a polynomial function of degree d which satisfies the condition n − d(k − 1) ≥ 0

and g
′

(u)∈L2(Ω), then for u ∈ Xh, we have the error estimate for a quadrature of nth

order as,

|Ẽh(u) − Eh(u)|≤Chn+1
0

∑

i

∫

ei

|Dn+1[f(∇u) + g(u)]|dr + |J̃h(u) − Jh(u)| .

If f is a polynomial function of degree d which satisfies the condition n − d(k − 1) ≥ 0,

then Dn+1(f(∇u)) = 0. Hence,

|Ẽh(u) − Eh(u)| ≤Chn+1
0

∑

i

∫

ei

|Dn+1(g(u))|dr + |J̃h(u) − Jh(u)|

≤Ch0‖g
′

(u)‖L2(Ω)‖∇u‖L2(Ω) + |J̃h(u) − Jh(u)| (Inverse Inequality)

(25)

Lets denote by hypothesis H2 the following conditions,

1. f is a polynomial function of degree d which satisfies the condition n − d(k − 1) ≥ 0

2. If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X , then ‖g
′

(uh)‖L2(Ω) is bounded

uniformly

3. N < 4

4. n − 2k + 3 > 0

5. p≥2

Lemma 17 If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X , and hypothesis H and

H2 are satisfied, then limh→∞{Ẽh(uh) − Eh(uh)} = 0.

Proof. Follows from (25), Theorem 9 and Theorem 16.
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Theorem 18 If the hypothesis H and H2 are satisfied, then Ẽh ⇀Γ E in the weak topol-

ogy of X .

Proof. let (uh) be a sequence such that uh ⇀ u in X . We then have 2 cases.

Case1: There is no sub-sequence (uhk
) such that (uhk

)∈Xhk

lim infh→∞ Ẽh(uh) = +∞. Hence, lim infh→∞ Ẽh(uh) ≥ E(u).

Case2: ∃ sub-sequence (uhk
) such that (uhk

)∈Xhk

lim infh→∞ Ẽh(uh)≥ lim infhk→∞ Ehk
(uhk

)+lim infh→∞ (Ẽhk
− Ehk

)(uhk
) and by using

Lemma 17 we get, lim infh→∞ (Ẽhk
− Ehk

)(uhk
) = 0.

Hence, lim infh→∞ Ẽh(uh)≥ lim infhk→∞ Ehk
(uhk

)≥E(u) (from Theorem 11).

Now we construct the recovery sequence from interpolated functions. Let (uh) be a se-

quence constructed from the interpolation functions of successive triangulations such

that, uh → u in X . limh→∞ Ẽh(uh) = limh→∞ Eh(uh) + limh→∞(Ẽh − Eh)(uh). But

limh→∞(Ẽh−Eh)(uh) = 0 from Lemma 17. Hence, limh→∞ Ẽh(uh) = limh→∞ Eh(uh) =

E(u). Hence, Ẽh ⇀Γ E in weak topology of X .

Lemma 19 If f is a polynomial function of degree d which satisfies the condition n −

d(k − 1) ≥ 0, p≥ 2 and N(max{0, p−1
p

− 1
2
}) < 1 then, Ẽh is equi-coercive in the weak

topology of X .

Proof. First we note the following property about quadratures. If A(u) =
∫

f(u), B(u) =

∫

g(u) and f(u(r))≥g(u(r)) on Ω, then Ã(u)≥B̃(u). Hence, if u∈Xh, as Jh(u) ≥ 0 and

q ≥ p we have,

Eh(u)≥
∫

Ω
{f(∇u) + C1|u|

p − C2}dr

Ẽh(u)≥Q{
∫

Ω
{f(∇u) + C1|u|

p − C2}dr}
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where, Q denotes the quadrature of the term inside the bracket. Hence,

Ẽh(u)≥
∫

Ω
{f(∇u) + C1|u|

p}dr − Ch0‖u‖
p−1

L(2p−2)(Ω)
‖∇u‖L2(Ω) − C2

≥ c0‖∇u‖p
Lp(Ω) + C1‖u‖

p
Lp(Ω) − Ch0‖u‖

p−1

L(2p−2)(Ω)
‖∇u‖L2(Ω) − C2

≥ c0‖∇u‖p
Lp(Ω) + C1‖u‖

p
Lp(Ω) − Ch

1−N(max{0, p−1
p

− 1
2
})

0 ‖u‖
(p−1)
Lp(Ω)‖∇u‖L2(Ω) − C2

As N(max{0, p−1
p

− 1
2
}) < 1, ∃ a m such that ∀h > m,

Ẽh(u)≥K0‖∇u‖p
Lp(Ω) + K1‖u‖

p
Lp(Ω) − K2

where, K0 > 0, K1 > 0, K2 are constants independent of h. If u /∈ Xh, then Ẽh(u) =

+∞. Thus, the above expression is true for any u. It is now straightforward to show that

(Ẽh) is equi-coercive in the weak topology of W 1,p(Ω) and from Lemma 1, equi-coercive

in the weak topology of X .

Theorem 20 If the hypothesis H and H2 are satisfied, and N(max{0, p−1
p

− 1
2
}) < 1,

then limh→∞ infX Ẽh = minX E.

Proof. Follows from Lemma 19 and Theorem 18 and Theorem 7.8, Dal Maso (1993).

For the orbital-free energy functional, it is easy to check that it satisfies the following

conditions:

1. f is a polynomial function of degree 2.

2. If (uh) ∈ (Xh), uh ⇀ u in X , then ‖g
′

(uh)‖L2(Ω) is uniformly bounded, which follows

from the continuity of g
′

and compact injection of X in L2q−2(Ω).

3. N(max{0, p−1
p

− 1
2
}) < 1 (as N = 3, p = 2).

Hence, if we choose an appropriate quadrature rule, all the results in this section will

carryover to the orbital-free energy functional under consideration.
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6 Numerical Implementation

We now turn to a numerical implementation of the variational formulation (21) described

in Section 2. We discretize the variational problem using a finite-element method and use

a nested sequence of iterative conjugate-gradient solvers to solve for the electrostatic po-

tential, charge density and atomic positions. For a given set of atomic positions, we relax

the electron density, and for each electron density, we relax the electrostatic potential. An

effective implementation of this procedure requires care with two aspects.

First, the electrostatic potential has to be solved on all space R
3 while the electron den-

sity is solved only on a compact region Ω. Since all the charges are confined to Ω, the

electrostatic potential will decay better than 1/r since we have charge neutrality. We take

advantage of this, and compute the electrostatic potential on a larger domain Ω′ satisfying,

Ω
′

⊃⊃ Ω, and impose zero Dirichlet boundary conditions on the boundary of the larger

domain. Typically we use dia(Ω
′

) ≈ 102dia(Ω) in our calculations. Further, we coarsen

our mesh as we go away from Ω to keep the computations efficient and accurate.

Second, we anticipate that the charge density and the electrostatic potential will be lo-

calized near the atomic cores, and to be convected along with the cores as the atomic

positions change. In other words, we anticipate that the spatial perturbation of the elec-

tron density would be large as the atomic positions change, but the perturbation to be

small in a coordinate system that is convected with the atomic position. Therefore, with

each update of the atomic position we convect the finite-element grid and as well as the

old electron density and electrostatic potential, and use this convected electron density

and potential as an initial guess for the subsequent iteration.

We implement these two aspects in the following way by using two triangulations. We

first construct a coarse or atomistic triangulation T of the large domain Ω
′

with K nodal
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points located at {xi}
K
i=1. This triangulation contains each initial atomic position as a

node so that it has atomic resolution in the small region Ω, and coarsens away from it. We

use a coarsening rate of r6/5 which is estimated to be optimal for a 1/r decay with linear

interpolation. The triangulation is generated automatically from Delaunay triangulation

of a set of points. This is shown in Figure 1. We now introduce a second triangulation

T
′ which is a uniform subdivision of T repeated a certain number of times by using the

Freudenthal’s algorithm for a 3-simplex (Bey, 2000). This triangulation is sufficiently fine

to resolve the electronic charges and the electrostatic field, and is shown in Figures 2 and

3. At any step in the iteration suppose ϕi : R
3 → R

3 denote the deformation of the ith

atom. We extend this deformation mapping to all nodes of the triangulation T by setting

it to zero for nodes that do not coincide with atomic positions, and then use a linear

interpolation to extend this deformation to Ω′:

ϕ(x) =
n

∑

i=1

ϕiNi(x) (26)

where Ni is the shape-function associated with the ith node and n is the number of vertices

in the simplex associated with triangulation T. We use this deformation to deform the fine

mesh T′. Specifically, we define a new mesh T′ϕ with nodes

x
ϕ
a = ϕ(xa) =

n
∑

i=1

ϕiNi(xa) a = 1, . . . , L (27)

where xa are the position of the nodes of the original triangulation T′ and L are the number

of such nodes.

We use this mesh, T′ϕ to discretize the electron density and electrostatic potential. It con-

sists of 4-node tetrahedral elements and the interpolating shape functions are linear. We

use a 4-point Gaussian quadrature which is second order accurate and satisfies (1) & (4)

in hypothesis H2. So the results of Section 5 hold. We solve the finite-element equations

using non-linear conjugate gradients with secant method for line search. However, since
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the mesh is adapted to the updated atomic positions, and the electron density convected

from the previous atomic position (by keeping the nodal values constant while the mesh

deforms) is used as an initial guess, the convergence is rapid. Finally, we implement the

computation in parallel using domain decomposition.

It is possible that the quality of the triangulation could deteriorate and the aspect ratio

of the elements become very small as the mesh deforms. To work around this, with each

update of T′ϕ, we evaluate the minimum value of the aspect ratio (defined as ratio of

the radii of inscribed sphere to the circumsphere) amongst all elements, and remesh the

region with the nodes fixed if it is below a prescribed value.

7 Examples

The approach presented is demonstrated and tested by means of simulations performed

on atoms, molecules and clusters of aluminum.

7.1 Atoms

The first test case is the hydrogen atom for which theoretical results are available. We use a

value of λ = 1
3

since it gives the best results. Figure 4 demonstrates the convergence of our

finite-element approach. We use N0 ≈ 100 elements for the initial mesh and have N08
n

elements after the nth subdivision. It shows that the ground state energy converges almost

exponentially as the number of subdivisions (i.e., the fine-ness of the triangulation) is

increased. It also shows that the ground state energy of the hydrogen atom is computed to

be -0.495 Hartree as against the theoretical value of -0.5 Hartree. Figure 5 shows the radial

distribution of the electron density around the hydrogen nucleus. It is compared with

the theoretical solution obtained by solving the Schrödinger equation. The comparison is
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very good except at the regions very close to the nucleus, where the simulations predict

a slightly higher electron density. Figure 6 shows the radial probability distribution of

finding the electron as a function of the distance from the nucleus. We observe that the

probability of finding the electron is maximum at a distance of 1 Bohr from the nucleus

which agrees with the theoretical solution.

To simulate atoms heavier than hydrogen atom, λ = 1
9

is used, which is the conventional

gradient correction to Thomas-Fermi kinetic energy functional. The ground state energies

of various other atoms estimated from our simulations, are tabulated in table 1 under DFT-

FE, which denotes orbital-free density functional calculation in a finite-element basis.

The results obtained are compared with other ab inito calculations (Tong & Sham, 1966;

Clementi et al., 1962) which include, the Hartree-Fock approach and the Kohn-Sham

approach of density functional theory using local density approximation for exchange

correlation functionals (KS-LDA). The ground state energies are found to be in good

agreement with other ab-initio calculations and experiments.

7.2 Molecules

The next set of examples we consider are N2 and CO molecules. The ground state energies

of these molecules are evaluated at various values of interatomic distances. Using this

data, the binding energies and bond lengths of the molecules are determined. Figure 7

shows the binding energy for N2 molecule as a function of the interatomic distance. The

interatomic potential energy has the same form as other popular interatomic potentials

like Leonard-Jones and Morse potentials. Tables 2 & 3 show the comparison of binding

energies and bond lengths of N2 and CO molecules predicted from our simulations with

those from other ab inito calculations and experiments (Gunnarsson et al., 1977; Cade

et al., 1973; Hou, 1965; Huber, 1972). There is reasonable agreement of our simulations
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with experiments in terms of the binding energies. But there is a considerable deviation in

the values of predicted bond lengths in comparison to other calculations and experiments.

We believe that this is due to the well-understood limitation of the orbital-free kinetic

energy functionals in the presence of strong covalent bonds (Parr & Yang, 1989).

7.3 Aluminum Clusters

The final set of examples we consider are aluminum clusters. We choose λ = 1
6
, which

was found to yield good results. The simulations are performed using a modified form

of Heine-Abarenkov pseudopotential for aluminum (Goodwin et al., 1990), which in real

space has the form,

Vext =























−Zv

r
, if r ≥ rc;

−A, if r < rc;

(28)

where, Zv is the number of valence electrons, rc the cut-off radius and A is a constant. For

aluminum, Zv = 3, rc = 1.16 a.u., A = 0.11 a.u.. Simulations are performed on clusters

consisting of 1× 1× 1, 3× 3× 3, 5× 5× 5 and 9× 9× 9 face-centered-cubic (fcc) unit

cells. The number of atoms in the cluster consisting of 9× 9× 9 fcc unit cells is 3730 and

close to 6 million finite-elements are used in this simulation. It took more than 10,000

CPU hours on 2.4 GHz processors for each simulation on the cluster with 9 × 9 × 9 fcc

unit cells to convergence. Figures 8 & 9 show the contours of electron density for a cluster

consisting of 3 × 3 × 3 fcc unit cells. Figure 10 show the binding energy per atom as a

function of the lattice constant (size of the fcc cell) for the various cluster sizes, along with

cubic polynomial fits of the simulated points. We calculate the binding energy using the

standard approach; Ebind(per atom) = (E(n) − nE0)/n where E(n) is the energy of the

cluster/unit cell containing n atoms and E0 is the energy of a single atom. An important
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observation from these figures is the anharmonic nature of the binding energy.

The binding energies, evaluated in these simulations include along with the bulk cohe-

sive energy, the effects of surfaces, edges and corners. A classical interpretation of these

energies would suggest a scaling of the form

ǫn = ǫcoh + n−1/3ǫsurf + n−2/3ǫedge + n−1ǫcorn (29)

where, n represents the number of atoms, ǫcoh the cohesive energy of the bulk, ǫsurf the

surface energy, ǫedge the energy contributed by presence of edges and ǫcorn the energy

resulting from the corners. Figure 11 shows the plot of binding energy per atom of each

cluster in the relaxed configuration as a function of n−1/3. The relationship is almost

linear, which supports the scaling relation given in (29). Further, it shows that cohesive

and surface energies dominate edge and corners even for relatively small clusters. Finally,

this scaling allows us to extract the bulk cohesive energy of aluminum from the binding

energies of the clusters.

The values of the bulk modulus of these clusters are evaluated from the binding energy

calculations. Figure 12 shows the linear dependence of bulk modulus on n−1/3, implying

that bulk modulus can also be expressed as a scaling relation suggested by (29).

Table 4 shows the variation of the lattice constant with the cluster size. We do not find sig-

nificant dependence or a clear trend in the dependence of lattice constant on cluster size.

Table 5 shows a comparison of the bulk properties of aluminum obtained from our simu-

lations with other ab initio calculations (Goodwin et al., 1990) and experiments (Brewer,

1977; Gschneider, 1964). We have very good quantitative agreement in terms of both co-

hesive energies and bulk modulus. The lattice constant of 9× 9× 9 cluster is 7.42, which

is very close to that predicted by KS-LDA which is 7.44.

In all the simulations discussed so far, the ground state energy calculations were per-
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formed for fixed atomic positions. However, the formulation developed is capable of equi-

librating the nuclear positions and predicting the various stable configurations of atoms.

To this end, we perform simulations on small aluminum clusters to predict the binding

energies and the equilibrated structures of these clusters. Since the energy is non-convex

with respect to the positions of the nuclei, we start our simulations from various initial

configurations to predict the stable configurations of these clusters. We performed simu-

lations on small aluminum clusters consisting of two, three and four atoms. Table 6 shows

the results of our simulations and comparison with other DFT calculations (Ahlrichs &

Elliot, 1999). We successfully predict the various stable configurations of these clusters

and the binding energies of these clusters are in good agreement with other calculations.

However, there is some deviation in the predicted geometry. This deviation could be at-

tributed to the fact that the bonding in these small aluminum clusters is covalent in nature

and orbital-free kinetic functionals are not very appropriate for systems with covalent

bonds.

8 Conclusion

We have developed a non-periodic finite-element formulation of density functional cal-

culations based on orbital-free kinetic energy functionals to perform ground state energy

calculations. This formulation aids in addressing problems which are non-periodic in na-

ture like defects in solids which can not be treated with justice with existing techniques

employing periodic boundary conditions. The use of a finite-element basis and orbital-

free kinetic energy functionals enables us to solve large systems with thousands of atoms

effectively, which has been demonstrated through simulations on large aluminum clus-

ters. We have also established the convergence of the finite-element approximation using

Γ-convergence.

29



Gavini, Knap, Bhattacharya & Ortiz

The method was tested by carrying out simulations on atoms, molecules and large clus-

ters of aluminum in fcc structure. We have also predicted some stable structures in small

aluminum clusters. The results from these simulations which include energies of atoms,

binding energies and bond lengths of molecules, bulk properties of aluminum and stable

configurations of small aluminum clusters along with their binding energies are compared

with other ab initio calculations and experiments. In most cases the agreement has been

very good, except for molecules, where there is considerable deviation in the bond length

predicted. This can be attributed to the inability of the orbital-free kinetic energy function-

als to approximate the non-interacting kinetic energy well in systems with strong covalent

bonding.

The present formulation is a step towards a larger goal of studying defects with long range

interactions as are common in solids. This will require us to find a way to combine these

non-periodic cluster calculations with classical continuum theories in a seamless manner.

Similarly it will also require us to extend our approach to the exact Kohn-Sham density

functional theory. These are the subject of current research.
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Appendix

In this appendix we discuss briefly how the suggested approach can be extended to the

family of kinetic energy functionals with kernel energy. The kernel energy is of the form,

Tk(u) =
∫ ∫

f(u(r))K(|r − r
′

|)g(u(r
′

))drdr′

Different types of kernel energies differ in the functional form of f and g. However, most

of them have same functional forms for f and g. To keep the analysis simple we consider

the case when f and g have the same functional form. Thus, the kernel energy can be

written as,

Tk(u) =
∫ ∫

f(u(r))K(|r − r
′

|)f(u(r
′

))drdr
′

Choly & Kaxiras (2002) propose a real space approach to evaluate these integral by ap-

proximating the kernel in the reciprocal space by a rational function. Under this approxi-

mation, the kernel energy has a local form, given by,

Tk(u) =
m

∑

j=1

1

2Cj

Zj(u) + (
m

∑

j=1

Pj)
∫

Ω
f(u)2dr

(.1a)

Zj(u) = inf
wj∈H1

0 (Ω)

C

2

∫

Ω
|∇wj|

2dΩ +
Qj

2

∫

Ω
w2

jdΩ + Cj

∫

Ω
wjf(u)dΩ j = 1, ...m

(.1b)

where, C is a positive constant, Cj , Qj are constants determined from the fitted rational

function with degree 2m. The minimization in (.1) is well defined if C
CΩ

+ Qj > 0, where

CΩ is the constant from Poincaré inequality. This can be easily verified using Poincaré

inequality and Lax-Milgram Lemma.

The common functional form of f used in the kernel energy is f = u2α. For this functional

form its easy to verify, following the same recipe used to treat the electrostatic interaction
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energy from sections 3, 4 & 5, that all the previous mentioned results hold if α < 2. Other

functional forms of f must be treated on a more specific level.
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Table 1

Energies of atoms, computed by various techniques, in atomic units

Element DFT-FE KS-LDA Hartree-Fock Experiments

(Tong & Sham, 1966) (Clementi et al., 1962) (Tong & Sham, 1966)

He -2.91 -2.83 -2.86 -2.9

Li -7.36 -7.33 -7.43 -7.48

Ne -123.02 -128.12 -128.55 -128.94

Table 2

Binding energy and bond length of N2 molecule, computed by various techniques

Property DFT-FE KS-LDA Hartree-Fock Experiments

(Gunnarsson et al., 1977) (Cade et al., 1973) (Huber, 1972)

Binding energy (eV) -11.9 -7.8 -5.3 -9.8

Bond length (a.u.) 2.7 2.16 2.01 2.07

Table 3

Binding energy and bond length of CO molecule, computed by various techniques

Property DFT-FE KS-LDA Hartree-Fock Experiments

(Gunnarsson et al., 1977) (Hou, 1965) (Huber, 1972)

Binding energy (eV) -12.6 -9.6 -7.9 -11.2

Bond length (a.u.) 2.75 2.22 2.08 2.13
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Table 4

Relaxed lattice constants of various cluster sizes, computed using DFT-FE

Cluster size 1 × 1 × 1 3 × 3 × 3 5 × 5 × 5 9 × 9 × 9

Relaxed lattice constant (a.u.) 7.26 7.27 7.39 7.42

Table 5

Bulk properties of aluminum, computed using various techniques

Bulk Property DFT-FE KS-LDA Experiments

(Goodwin et al., 1990) (Brewer, 1977; Gschneider, 1964)

Cohesive energy (eV) 3.69 3.67 3.4

Bulk modulus (GPa) 83.1 79.0 74.0

Table 6

Comparison of properties of aluminum clusters Aln, n = 2, 3, 4, obtained from DFT-FE calcula-

tions with other DFT calculations; G denotes the symmetry group, Eb denotes the binding energy

per atom (eV), Re denotes equilibrium distances (a.u.)

n G DFT-FE AE (Ahlrichs & Elliot, 1999)

Eb Re/angle Eb Re/angle

2 D∞h -0.86 4.97 -0.78 4.72

3 D3h -1.24 5.06 -1.29 4.77

3 C2v -1.16 5.14 -1.22 4.91

4 D2h -1.38 5.22/71o -1.5 4.85/68o

4 C3v -1.31 -1.39
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Fig. 1. Surface mesh of a sliced cubical domain corresponding to the triangulation T
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Fig. 2. Surface mesh of a sliced cubical domain corresponding to the triangulation T
′
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Fig. 3. Close up of figure 2
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Fig. 4. Energy of hydrogen atom as a function of number of uniform subdivisions of triangulation
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Fig. 5. Radial distribution of electron density for hydrogen atom
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Fig. 6. Radial probability distribution of finding an electron around the hydrogen nucleus, com-

puted using DFT-FE
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Fig. 8. Contours of electron density on the mid plane of an aluminum cluster with 3x3x3 fcc unit

cells
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Fig. 9. Contours of electron density on the face of an aluminum cluster with 3x3x3 fcc unit cells
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Fig. 10. Binding energy per atom as a function of lattice constant in a fcc cluster with 1 × 1 × 1,

3 × 3 × 3, 5 × 5 × 5 and 9 × 9 × 9 unit cells of aluminum atoms, computed using DFT-FE
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Fig. 11. Relaxed binding energies per atom of aluminum clusters against n−1/3
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Fig. 12. Bulk modulus of aluminum clusters against n−1/3
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