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1 Introduction

Large N dualities relate gauge theories to string theories, and provide in principle a non-

perturbative definition of string theory on certain backgrounds. The genus expansion of

string theory amplitudes emerges then as an asymptotic, 1/N expansion of gauge theory

amplitudes. Most of the work on large N dualities has focused on the large N or planar

limit of the correspondence. One can also use these dualities to extract information about

subleading 1/N corrections, although this is typically more difficult and it has been com-

paratively much less explored. In principle, large N dualities could be also used to study

non-perturbative stringy effects, which correspond to corrections which are exponentially

suppressed as N becomes large. Results along this direction have been even rarer.

In this paper we use large N dualities to completely determine the non-perturbative

structure of the free energy of M-theory on AdS4 × S7/Zk. As a bonus, we obtain as
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well the non-perturbative structure for the free energy of topological string theory on the

Calabi-Yau manifold known as local P1 × P1, since both problems are formally identical.

The non-perturbative structure we find turns out to be encoded by the refined topological

string on local P1 × P1, in the so-called Nekrasov-Shatashvili (NS) limit [1].

The solution to this problem has been based on the convergence of many different

results. First of all, a large N dual to M-theory on AdS4 × S7/Zk was proposed already

in [2] in terms of the theory of N coincident M2 branes. In [3], based on previous work [4],

this theory was constructed as an N = 6 supersymmetric U(N) × U(N) Chern-Simons-

matter theory known as ABJM theory. In this large N duality, the geometric parameter

k in M-theory corresponds to the Chern-Simons coupling. The second ingredient was the

localization computation of [5], where the partition function of ABJM theory on the three-

sphere was reduced to a matrix integral which we will call the ABJM matrix model. This

matrix model has been intensively studied from many points of view, and a variety of

results have been found. The planar free energy, as well as the subleading 1/N corrections

in the standard ’t Hooft or genus expansion, were determined in [6]. This expansion makes

contact with the type IIA reduction of M-theory and it captures all worldsheet instanton

corrections to the partition function. However, in order to make contact with the M-theory

regime, one should study the ABJM matrix model in the so-called M-theory expansion,

where N is large but k is fixed. This was first done in [7], where the leading, large N

limit was studied. In order to understand in more detail the M-theory expansion, and

the corrections to the large N limit, a new method was introduced in [8], based on an

equivalence with an ideal Fermi gas. In this approach, the Planck constant of the quantum

gas is naturally identified with the inverse string coupling, and the semiclassical limit of the

gas corresponds then to the strong string coupling limit in type IIA theory. One of the main

virtues of the Fermi gas approach is that it makes it possible to calculate systematically

non-perturbative stringy effects. These effects were anticipated in [9], where they were

interpreted as membrane instanton effects in M-theory, or equivalently as D2-brane effects

in type IIA theory. Thus, the Fermi gas approach opened the way for a quantitative

determination of these effects in the M-theory dual to ABJM theory.

During the last year, the Fermi gas approach has led to many results on the partition

function of ABJM theory. The equivalence between this method and the TBA system

of [10, 11] has been particularly useful. We now have a lot of data, like for example WKB

expansions at small k of the membrane instanton corrections [8, 12]. The calculation of the

values of the partition function for various values of N and k [13–15], and their extrapo-

lation to large N , have produced numerical results for the exponentially small corrections.

In [15, 16], it was noticed that the corrections due to worldsheet instantons, which are

known explicitly, are singular for integer values of k. Since the partition function is reg-

ular for all k, it was postulated that these singularities should be cancelled by membrane

instanton corrections, as well as corrections coming from bound states of membranes and

fundamental strings. This principle, which we will call the HMO cancellation mechanism,

when combined with WKB expansions and numerical results, has led to conjectural exact

results in k for the very first membrane instanton corrections [12, 15, 16] and to a con-

jecture for the structure of bound states [16]. According to this conjecture, the bound
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states are completely determined by the worldsheet instantons and the membrane instan-

ton corrections. The remaining open problem is then to find an analytic description of the

membrane instanton corrections in the M-theory regime, i.e. as an expansion at large N

but exact in k.

In this paper we find precisely such a description. It turns out that the membrane

instanton expansion at large N , which involves two independent generating functionals,

is completely determined by the NS limit of the refined topological string on local P1 ×
P1. This limit is described by the two quantum periods of the mirror manifold [17–19],

which are equal to the two generating functionals we were looking for. The Chern-Simons

coupling k of ABJM theory corresponds to the quantum deformation parameter ~, and

the standard large radius expansion of the periods corresponds precisely to the large N

expansion in ABJM theory. Since the periods can be calculated exactly as a function of ~,

this equivalence solves the problem of computing the non-perturbative corrections to the

free energy of ABJM theory.

So far we are lacking a proof of this equivalence, which we have checked by comparing

the existing results on membrane instantons in ABJM theory to the explicit results for the

quantum periods, so our result here should be regarded as a conjecture. It can be stated

quite precisely as an equivalence between the solution of the TBA system describing the

ABJM partition function which is analytic at k = 0, and the problem of quantizing the

periods of local P1 × P1.

One of the first insights which made possible a precise quantitative understanding of

the ABJM matrix model is its equivalence [20] to the matrix model describing Chern-

Simons theory on RP3 [21], which is dual at large N to topological string theory on local

P1×P1 [22]. This implies, for example, that the worldsheet instanton corrections in ABJM

theory are determined by the worldsheet instanton corrections in this topological string

theory. We can then define the non-perturbative partition function of topological string

on local P1 × P1 through the ABJM matrix model. With this non-perturbative definition,

our computation of exponentially small corrections to this matrix model partition function

can be also regarded as a derivation of the full structure of non-perturbative effects for

topological string theory on local P1 × P1. The fact that the Fermi gas approach could

be used to obtain a precise quantitative understanding of non-perturbative effects in this

topological string model was pointed out in [8], and emphasized in [23].

The non-perturbative structure of topological strings has been the subject of much

speculation in recent years, and there are by now various proposals on how it should look

like. We would like to emphasize, however, that our derivation of the non-perturbative

structure in this particular example is done from first principles, once we define it through

the largeN matrix model dual, and it fits a large amount of data on the largeN asymptotics

of the matrix model. Our result says that the non-perturbative part of the standard

topological string free energy is determined by the refined topological string in the NS

limit, on the same background. Inspired by this concrete result, we make a proposal

for the non-perturbative structure of topological strings on arbitrary local CY manifolds,

where the non-perturbative effects are encoded in the refined topological string. It turns

out that our proposal (as well as our concrete, first-principles calculation for local P1×P1)
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is similar to a recent proposal by Lockhart and Vafa [24], which was inspired by localization

in five-dimensional supersymmetric Yang-Mills theories, and we point out the resemblances

as well as the differences between the two proposals.

The organization of this paper is as follows. In section 2 we review the known results

on the grand potential of ABJM theory obtained in [8, 12–16]. In section 3 we show that

these results are encoded in the NS limit of the refined topological string, and in particular

in the quantum periods. In section 4 we point out that this leads to the determination

of the non-perturbative structure of the topological string on local P1 × P1, and we make

a proposal on how to extend this to arbitrary, local CY manifolds. We also discuss the

relationship of our results and proposal to the work of [24]. Finally, in section 5 we conclude

and discuss some avenues for further research. In appendix A we explain how to calculate

the quantum A-periods from the TBA system of the Fermi gas, and in appendix B we

make some comments on the quantum mirror map.

2 The partition function of ABJM theory

2.1 The grand potential

As it was shown in [5], the partition function of ABJM theory on the three-sphere, Z(N, k),

is given by the matrix integral

Z(N, k)

=
1

N !2

∫
dNµ

(2π)N
dNν

(2π)N

∏
i<j

[
2 sinh

(
µi−µj

2

)]2 [
2 sinh

(
νi−νj

2

)]2

∏
i,j

[
2 cosh

(
µi−νj

2

)]2 exp

[
ik

4π

N∑
i=1

(µ2
i − ν2

i )

]
.

(2.1)

This matrix integral can be calculated in two different regimes. In the ’t Hooft expansion

one considers the limit

N →∞, λ =
N

k
fixed, (2.2)

and the partition function has the standard 1/N expansion,

Z(N, k) = exp

[ ∞∑
g=0

N2−2gFg(λ)

]
, (2.3)

which corresponds to the genus expansion of type IIA superstring theory on AdS4×CP3 [3].

The genus g free energies Fg(λ) can be calculated exactly as a function of λ, and order

by order in the genus expansion, by using matrix model techniques [6]. They contain

non-perturbative information in α′, since they involve exponentially small corrections of

the form

O
(

e−2π
√

2λ
)
. (2.4)

It was conjectured in [6] that these terms correspond to worldsheet instantons wrapping a

two-cycle CP1 ⊂ CP3, which were first considered in [27].
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In the M-theory expansion, one computes the partition function in the regime

N →∞, k fixed. (2.5)

This is the regime which is suitable for the dual description in terms of M-theory on

AdS4 × S7/Zk. In this regime, one expects to find as well non-perturbative effects in

the string coupling constant, which in type IIA theory correspond to Euclidean D2-brane

instantons wrapping three-cycles in the target space. In [9] an appropriate, explicit family

of generalized Lagrangian submanifolds with the topology of RP3 ⊂ CP3 was proposed as

an explicit candidate for this type of cycles, leading to exponentially small corrections of

the form

exp
(
−kπ
√

2λ
)
. (2.6)

In order to understand the M-theory expansion of the ABJM matrix integral, one

needs a suitable approach, different from the standard 1/N expansion of matrix integrals.

A first step in this direction was taken in [7], where the leading contribution to the partition

function at large N and fixed k was determined for various N = 3 Chern-Simons-matter

theories. A more systematic approach to the problem was introduced in [8], and it is based

on an analogy to a quantum, ideal Fermi gas. One first notices (see also [28]) that the

matrix integral (2.1) can be written as

Z(N, k) =
1

N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

(2πk)N
1∏

i 2 cosh
(
xi
2

)
2 cosh

(
xi−xσ(i)

2k

) . (2.7)

This in turn can be interpreted as the canonical partition function of a one-dimensional

Fermi gas with a non-trivial one-particle density matrix

ρ(x1, x2) =
1

2πk

1(
2 cosh x1

2

)1/2 1(
2 cosh x2

2

)1/2 1

2 cosh
(
x1−x2

2k

) . (2.8)

The one-particle Hamiltonian Ĥ of this system is then defined as

ρ̂ = e−Ĥ , 〈x1|ρ̂|x2〉 = ρ(x1, x2), (2.9)

and the Planck constant of the Fermi gas is

~FG = 2πk. (2.10)

The semiclassical or WKB expansion is then around k = 0, and it corresponds to the strong

string coupling expansion in the type IIA dual. The Fermi gas approach makes it possible

to determine both the subleading 1/N corrections and non-perturbative corrections due

to D2-brane instantons. Various aspects of this approach have been developed in [13–

16, 32, 33] and we will review some of them in this section.

The Fermi gas approach suggests to look instead to the grand partition function (see

also [29])

Ξ(µ, k) = 1 +

∞∑
N=1

Z(N, k)zN , (2.11)
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where

z = eµ (2.12)

plays the rôle of the fugacity and µ is the chemical potential. The grand potential is then

defined as

J(µ, k) = log Ξ(µ, k). (2.13)

The canonical partition function is recovered from the grand-canonical potential as

Z(N, k) =

∮
dz

2πi

Ξ(µ, k)

zN+1
. (2.14)

As explained in [15], the grand potential has a “naive” part, which is the one obtained with

the standard techniques in Statistical Mechanics, and an oscillatory part which restores

the 2πi periodicity in µ. It turns out that the contour in (2.14) can be deformed to the

imaginary axis if one replaces the grand potential by its “naive” part, which will be the

only one we will consider in this paper. Therefore, we can write

Z(N, k) =
1

2πi

∫ i∞

−i∞
dµ exp [J(µ, k)− µN ] , (2.15)

and compute J(µ, k) with standard techniques.

As shown in [8], the grand potential is the sum of a perturbative and a non-perturbative

piece,

J(µ, k) = J (p)(µ, k) + J (np)(µ, k). (2.16)

The perturbative piece is a cubic polynomial in µ:

J (p)(µ, k) =
C(k)

3
µ3 +B(k)µ+A(k), (2.17)

where

C(k) =
2

π2k
, B(k) =

k

24
+

1

3k
. (2.18)

The coefficient A(k) can be computed in a WKB expansion around k = 0 [8], and the

all-orders result was conjectured in [30]. When inserted in (2.15), the perturbative piece

J (p)(µ, k) leads to the Airy function result for Z(N, k) first obtained in [25].

2.2 The structure of the non-perturbative corrections

In this paper we will be interested in the non-perturbative part of the grand potential

Jnp(µ, k). This function encodes the exponentially small, non-perturbative corrections at

large N to the matrix model (2.1). It has the following expansion at fixed k and large µ:

J (np)(k, µ) =

∞∑
`,m=0

(`,m)6=(0,0)

f`,m(k, µ) exp

[
−
(

2`+
4m

k

)
µ

]
, (2.19)

where `,m are non-negative integers. This structure is the expected one from the point of

view of M-theory. Indeed, as it is well-known [26], in M-theory both worldsheet instantons

– 6 –
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M W

RP3
CP1

S7/Zk

CP3

Figure 1. From the M-theory point of view, there are two types of non-perturbative effects in

ABJM theory: M2-branes can wrap a cycle M⊂ S7/Zk which descends to an RP3 ⊂ CP3 cycle in

the type IIA target; or they can wrap a cycle W which descends to CP1 ⊂ CP3. The most general

M2-brane configuration wraps ` times the cycle M and m times the cycle W.

and D2-brane instantons get unified in terms of M2-branes wrapping three-cycles. In our

case, D2-brane instantons correspond to a three-cycle M ⊂ S7/Zk which descends to a

three-cycle in type IIA theory; worldsheet instantons correspond to M2-branes wrapping

the three-cycle W = S3/Zk, which descends to the two-cycle CP1 ⊂ CP3. Therefore, from

the point of view of M-theory, there are two types of three-cycles,M andW, and the most

general M2-brane configuration wraps ` times the cycle M and m times the cycle W, see

figure 1. The term labelled by the integers (`,m) in (2.19) gives the contribution of such a

bound state. The large µ expansion (2.19), after plugged in (2.15), leads to the asymptotic

expansion of Z(N, k) at large N . Since, at large N , the Legendre transform of J(µ) sets

the value of µ to be at the saddle-point

µ ≈
√

N

C(k)
, (2.20)

the exponential in (2.19) gives the correct weight for a bound state of ` worldsheet instan-

tons and m D2-brane instantons in Z(N, k).

To determine the full non-perturbative grand potential, and therefore the full non-

perturbative structure of the ABJM partition function, we have to find a systematic way

of computing the coefficients f`,m(k, µ). Let us now review what is known about them.

2.2.1 Worldsheet instantons and the topological string

The contribution to (2.19) with ` = 0 will be denoted by JWS(µ, k), and it is due to

worldsheet instantons wrapping CP1 ⊂ CP3. It contains the same information than the

genus g free energies Fg(λ) appearing in the ’t Hooft expansion, but reorganized in a

different way, since in the M-theory expansion k is fixed. It is possible to write down an

explicit expression for JWS(µ, k) by relating it to topological string theory. Let us first

– 7 –
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recall some results from topological string theory. If X is a CY manifold with Kähler

parameters TI , I = 1, · · · , n, the free energy of topological string theory in the large radius

frame has the following form [31]:

F (Q, gs) =
∑
g≥0

∑
w≥1

∑
d

(−1)g−1

w
ndg

(
qw/2s − q−w/2s

)2g−2
Qwd. (2.21)

In this formula,

qs = egs , (2.22)

where gs is the topological string coupling constant, and we have denoted

d = (d1, · · · , dn), QI = e−TI , I = 1, · · · , n, (2.23)

as well as

Qd = Qd1
1 · · ·Qdnn . (2.24)

The integer numbers ndg are the Gopakumar-Vafa (GV) invariants of X at genus g and

degrees d = (dI).

The relevant manifold for the partition function of ABJM theory is the non-compact

CY known as local P1 × P1, which is the total space of the anti-canonical bundle over

the surface P1 × P1. This space has two Kähler moduli T1, T2, corresponding to the two

P1s, and GV invariants nd1,d2
g . In terms of these invariants, the contribution of worldsheet

instantons to the grand potential JWS(µ, k) is given by [15]:

JWS(µ, k) =
∑
g≥0

∑
w,d≥1

ndg

(
2 sin

2πw

k

)2g−2 (−1)dw

w
e−

4dwµ
k . (2.25)

In this formula, ngd is the “diagonal” GV invariant,

ndg =
∑

d1+d2=d

nd1,d2
g . (2.26)

This formula follows from the fact the ABJM matrix integral computes the partition func-

tion of topological string theory of the “diagonal” local P1 × P1, where the two Kähler

parameters are identified,

T1 = T2 = T, (2.27)

and in the orbifold frame [6, 20]. The grand potential J(µ) is related to this partition

function by an inverse Legendre transform, and by using the results of [34] it is easy to

see [8] that it is essentially given by the topological string free energy in the large radius

frame. This topological string free energy F (T, gs) depends on the diagonal Kähler modulus

T in (2.27) and on the topological string coupling constant gs, and by comparing (2.21)

with (2.25) we have the relationship [8, 15]

gs =
4πi

k
, T =

4µ

k
− πi. (2.28)

– 8 –
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The formula (2.25) reduces then the computation of the coefficient f0,m(k, µ) in (2.19) to

the solvable problem of computing the GV invariants of local P1 × P1. This can indeed be

done by the topological vertex [35, 36] or by direct integration of the holomorphic anomaly

equations [6, 37], for example.

Notice that the Gopakumar-Vafa representation of the free energy is precisely what

is needed for the M-theory expansion: it resums the genus expansion order by order in

the exponentiated parameter e−T , therefore it leads to an expansion at large N in ABJM

theory, but which is exact in k at each order in e−µ/k.

2.2.2 Membrane instantons and bound states

The contribution to (2.19) with m = 0 will be denoted by JM2(µ, k), and it is due to M2-

branes wrapping the three-cycle M. They lead to non-perturbative effects in the string

coupling constant of the type IIA superstring. As shown by explicit calculation in [8],

JM2(µ, k) has the following expansion for µ� 1,

JM2(µ, k) =
∑
`≥1

(
a`(k)µ2 + b`(k)µ+ c`(k)

)
e−2`µ. (2.29)

This is of course an expansion at large N . We will refer to the `-th term in the infinite

series (2.29) as the contribution of the `-membrane instanton. The coefficients a`(k), b`(k)

and c`(k) are non-trivial functions of k, and we will discuss how to compute them in the

next subsection.

The above results do not determine the contributions coming from bound states. A

conjecture for their structure was put forward in [16]. Let us define an “effective” chemical

potential µeff :

µeff = µ+
1

C(k)

∞∑
`=1

a`(k)e−2`µ, (2.30)

where C(k) is given in (2.18) and the coefficients a`(k) are the ones appearing in (2.29).

Then, it was conjectured in [16] that the contribution of bound states is obtained by

simply putting µeff instead of µ in JWS(µ, k). In other words, according to this conjecture,

J (np)(µ, k) is simply given by

J (np)(µ, k) = JWS(µeff , k) + JM2(µ, k). (2.31)

Since the worldsheet instanton contribution is known, this conjecture reduces the calcula-

tion of the non-perturbative grand potential to the determination of the coefficients of the

membrane instanton expansion (2.29).

Actually, another conjecture in [16] relates the coefficient c`(k) to the other two coeffi-

cients a`(k), b`(k). In order to write down this relationship in an elegant way, we introduce

generating functionals for the three sets of coefficients in JM2(µ, k),

Ja(µ, k) =
∞∑
`=1

a`(k)e−2`µ, Jb(µ, k) =
∞∑
`=1

b`(k)e−2`µ, Jc(µ, k) =
∞∑
`=1

c`(k)e−2`µ. (2.32)

– 9 –
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We now write the perturbative and membrane instanton part of the grand potential in

terms of the effective chemical potential µeff , as follows:

J (p)(µ, k) + JM2(µ, k) = J (p)(µeff , k) + µeff J̃b(µeff , k) + J̃c(µeff , k), (2.33)

where J̃b(µeff , k) and J̃c(µeff , k) are given by

J̃b(µeff , k) = Jb(µ, k)− Ja(µ, k)2

C(k)
, (2.34)

J̃c(µeff , k) = Jc(k, µ)− Ja(µ, k)Jb(µ, k)

C(k)
− B(k)

C(k)
Ja(µ, k) +

2Ja(µ, k)3

3C(k)2
.

We conclude that the total grand potential of ABJM theory can be written as

J(µ, k) = J (p)(µeff , k) + JWS(µeff , k) + µeff J̃b(µeff , k) + J̃c(µeff , k). (2.35)

The two functions J̃b(µeff , k) and J̃c(µeff , k), when expanded at large µeff , define the coef-

ficients b̃`(k), c̃`(k):

J̃b(µeff , k) =

∞∑
`=1

b̃`(k)e−2`µeff , J̃c(µeff , k) =

∞∑
`=1

c̃`(k)e−2`µeff . (2.36)

Of course, these coefficients are completely determined by the original coefficients a`(k),

b`(k) and c`(k). It was conjectured in [16] that one has the following relationship,

c̃`(k) = −k2 ∂

∂k

(
b̃`(k)

2`k

)
. (2.37)

This means that there are only two sets of independent coefficients left in (2.29), which

we will take to be a`(k), b`(k). The calculation of the non-perturbative grand potential is

then reduced to the determination of these two sets of coefficients. We will now review the

techniques to calculate these coefficients, as well as the evidence for the above conjectures.

2.3 Calculating the grand potential

The grand potential of the Fermi gas can be in principle computed from the one-particle

Hamiltonian (2.9). However, this Hamiltonian is not exactly solvable and in order to

find analytic answers one needs some sort of approximation. One obvious possibility is to

use the WKB approximation. Since k plays the role of the Planck constant, the WKB

approximation leads to perturbative expansions around k = 0. For example, the coefficient

a`(k) has an expansion of the form,

a`(k) =
1

k

∞∑
n=0

a`,nk
2n. (2.38)

A similar expansion holds for b`(k) and c`(k), with coefficients b`,n, c`,n, respectively. The

coefficients of these expansions can be in principle calculated systematically, and this pro-

vides a valuable source of information about the contribution of membrane instantons.
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Unfortunately, in the WKB approximation, the calculation of worldsheet instantons and

bound states is difficult since these effects are non-perturbative in k.

An important technical and conceptual tool in the analysis of the Fermi gas is that, as

noticed in [8], its grand potential can be computed by using a variant of the Thermodynamic

Bethe Ansatz (TBA). This formulation is based on [10, 11] and it has been explored in [12–

16]. Let us briefly review it here. Consider the set of coupled non-linear equations for the

two functions ε(x), η(x):

U(x) = ε (x) +

∫ ∞
−∞

dx′

2πk

log
(
1 + η2(x′)

)
cosh

(
x−x′
k

) ,

η(x) = −z
∫ ∞
−∞

dx′

2πk

e−ε(x
′)

cosh
(
x−x′
k

) , (2.39)

where

U(x) = log
(

2 cosh
x

2

)
. (2.40)

Let us also define,

R+(x|z) = e−ε(x),

R−(x|z) = R+(x|z)
∫ ∞
−∞

dx′

πk

arctan η(x′)

cosh2
(
x−x′
k

) , (2.41)

which are even and odd functions of z, respectively. Let us denote the even and odd parts

of J(z) as,

J±(z) =
1

2
(J(z)± J(−z)) . (2.42)

Then, one has

∂J±
∂z

=
1

4πk

∫ ∞
−∞

dxR± (x|z) , (2.43)

and this makes it possible to calculate the grand potential from the solution to the TBA

equations (2.39).

The TBA equations can be analyzed in two different ways. First, one can study them

in the small k regime, but exactly in µ. This is equivalent to the WKB expansion of the

Fermi gas. It leads to a very efficient method to calculate the expansion around k = 0 of

the membrane instanton contribution [12]. Second, one can study them at fixed values of k,

and for small µ. This makes it possible to calculate the partition function Z(N, k) for small

values of N [13, 14]. Notice that, in order to make contact with the expansion (2.29), one

should study the TBA equations at large µ but exactly in k. However, as pointed out in [12],

one encounters a phase transition as µ grows (related to Bose-Einstein condensation) which

makes it difficult to obtain analytic results in this regime. In [15], the values of Z(N, k)

for small N were extrapolated numerically to obtain precise estimates of the first terms

appearing in the large µ expansion of the grand potential. One finds, for example, for
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k = 1, 2 [15],

J (np)(1, µ) =

[
4µ2 + µ+ 1/4

π2

]
e−4µ +

[
−52µ2 + µ/2 + 9/16

2π2
+ 2

]
e−8µ

+

[
736µ2 − 152µ/3 + 77/18

3π2
− 32

]
e−12µ +O(e−16µ),

J (np)(2, µ) =

[
4µ2 + 2µ+ 1

π2

]
e−2µ +

[
−52µ2 + µ+ 9/4

2π2
+ 2

]
e−4µ

+

[
736µ2 − 304µ/3 + 154/9

3π2
− 32

]
e−6µ +O(e−8µ).

(2.44)

Finally, a very important guiding principle in the determination of the grand potential

is the cancellation mechanism discovered in [15], which we will call, following [12], the

HMO cancellation mechanism. This mechanism is based on the following observation: the

Gopakumar-Vafa representation (2.25) of JWS(µ, k) shows that it has double poles at all

integer values of k. Since the original matrix integral (2.1) is not singular for any value

of k, there must be some way of canceling these divergences. The proposal in [15] is that,

for any fixed, integer value of k, singularities are cancelled order by order in the expansion

in e−µ. Generically there are many bound states (`,m) which contribute to a given order

in e−µ, therefore the HMO cancellation mechanism gives a precise relationship among the

pole structure of these contributions [16].

The HMO mechanism has deep conceptual implications in M-theory. It shows, in a

precise and quantitative way, that the genus expansion based on perturbative strings is

essentially meaningless: in the non-perturbative completion of type IIA string theory at

finite, integer k through M-theory, only the combination of membrane instantons, world-

sheet instantons and their bound states makes sense. In practice, this mechanism can be

used to constrain the structure of the contribution of bound states, and this leads to the

conjecture (2.31) of [16]. In combination with the WKB expansion, it also leads to closed,

conjectural expressions for the first few coefficients a`(k), b`(k) and c`(k) [12, 15, 16]. One

finds, for example, for the first a`, up to ` = 3,

a1(k) = − 4

π2k
cos
(πk

2

)
,

a2(k) = − 2

π2k

(
4 + 5 cos(πk)

)
,

a3(k) = − 8

3π2k
cos
(πk

2

)(
19 + 28 cos(πk) + 3 cos(2πk)

)
,

(2.45)

and for the b`(k), also up to ` = 3,

b1(k) =
2

π
cos2

(
πk

2

)
csc

(
πk

2

)
,

b2(k) =
4

π2k
(1 + cos (πk)) +

1

2π
csc (πk) (17 + 24 cos (πk) + 9 cos (2πk)) ,

b3(k) =
4

π2k

[
13 cos

(πk
2

)
+ 5 cos

(3πk

2

)]
+

1

3π
csc
(3πk

2

)
(241 + 405 cos(πk) + 222 cos(2πk) + 79 cos(3πk) + 9 cos(4πk)).

(2.46)
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From these values, one can deduce the b̃`(k), which have a somewhat simpler expression,

b̃1(k) =
2

π
cot

(
πk

2

)
cos

(
πk

2

)
,

b̃2(k) =
1

π
cot(πk)

(
4 + 5 cos(πk)

)
,

b̃3(k) =
4

3π
cot

(
3πk

2

)
cos

(
πk

2

)(
13 + 19 cos(πk) + 9 cos(2πk)

)
.

(2.47)

In summary, the results of [8, 12–16] lead to concrete results as well as precise con-

jectures on the grand potential J(µ). The contribution of worldsheet instantons is fully

determined by topological string theory on local P1×P1. The conjectures (2.31) and (2.37)

reduce the calculation of membrane instanton and bound state contributions to the de-

termination of the coefficients a`(k), b`(k). These conjectures have been tested in detail

against the WKB expansions of the TBA/Fermi gas, numerical extrapolations at large N ,

and the HMO cancellation mechanism. Moreover, using all these inputs, it is possible to

conjecture the exact form of the very first coefficients a`(k), b`(k).

3 Membrane instantons as quantum periods

Clearly, in order to give a complete description of Jnp(µ), we need an efficient way to

compute the coefficients a`(k), b`(k) exactly as a function of k. The goal of this section

is to provide overwhelming evidence that these coefficients are determined by the refined

topological string on local P1 × P1 in the NS limit, and therefore [17–19] by the quantum

periods of the spectral curve of local P1 × P1. This fact allows us to compute these co-

efficients systematically up to any desired order. We first observe that the leading order

coefficients a`,0 and b`,0 in the WKB expansion (2.38) are interpreted as classical periods

in the topological string. We then find that the full coefficients a`(k) and b`(k) just cor-

respond to the “quantum” corrected periods. We also show that these expressions indeed

guarantee the pole cancellation coming from the worldsheet instanton correction.

3.1 The refined topological string

When defined on a local CY manifold, topological string theory can be “refined” by intro-

ducing a further coupling constant. This refinement has its origin in Nekrasov’s instanton

calculation in N = 2 gauge theories, and it can be interpreted in terms of a so-called

“Omega background” for the gauge theory [38]. In topological string theory, a natural

point of view to understand the refinement is to consider the GV invariants which ap-

pear in the large radius expansion (2.21) of the topological string free energy [39]. These

invariants are interpreted by considering M-theory compactified on the CY X. In this

compactification, M2 branes wrapping a two-cycle of X with degree d lead to BPS states

in five dimensions, with spins (jL, jR) with respect to the rotation group SU(2)L×SU(2)R.

The index for such states, which we denote by Nd
jL,jR

, is not invariant under deformations

on a general CY manifold. However, in a local CY it is a topological invariant and it can

– 13 –
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be used to define the refined topological string free energy at large radius. In order to write

down this free energy, we introduce the SU(2) character,

χj(q) =
q2j+1 − q−2j−1

q − q−1
. (3.1)

Notice that, with our conventions, jL and jR are generically half-integers. The refined

topological string free energy is a function of the Kähler moduli TI , I = 1, · · · , n, and two

parameters ε1,2 which “refine” the topological string coupling constant. We also introduce

(see for example [40, 41])

εL =
ε1 − ε2

2
, εR =

ε1 + ε2
2

, (3.2)

and

q1,2 = eε1,2 , qL,R = eεL,R . (3.3)

Then, the refined topological string free energy, in terms of the BPS index Nd
jL,jR

, is

given by

F (Q, ε1, ε2) =
∑

jL,jR≥0

∑
w≥1

∑
d

1

w
Nd
jL,jR

χjL(qwL )χjR(qwR)(
q
w/2
1 − q−w/21

)(
q
w/2
2 − q−w/22

)Qwd. (3.4)

It is also very useful to introduce another set of integer invariants ndgL,gR by the following

equality of generating functionals,∑
jL,jR≥0

Nd
jL,jR

χjL(qL)χjR(qR)

=
∑

gL,gR≥0

(−1)gL+gRndgL,gR

(
q

1/2
L − q−1/2

L

)2gL
(
q

1/2
R − q−1/2

R

)2gR
.

(3.5)

In terms of these invariants, the refined free energy reads

F (Q, ε1, ε2) =
∑

gL,gR≥0

∑
w≥1

∑
d

1

w
(−1)gL+gRndgL,gR×

×

(
q
w/2
L − q−w/2L

)2gL

q
w/2
1 − q−w/21

(
q
w/2
R − q−w/2R

)2gR

q
w/2
2 − q−w/22

Qwd. (3.6)

Sometimes it is also useful to consider the perturbative expansion of the free energy, which

following [40] we will write as

F (Q, ε1, ε2) =
∑
n,g≥0

(ε1 + ε2)2n (ε1ε2)g−1 F (n,g)(Q). (3.7)

The standard topological string is a particular case of the refined topological string, corre-

sponding to

ε1 = −ε2 = gs. (3.8)
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In this limit, since qR = 1, the only invariants which survive in (3.6) have gR = 0. They

correspond to the original Gopakumar-Vafa invariants appearing in (2.21),

ndg = ndg,0, (3.9)

and the expression (3.6) becomes the original Gopakumar-Vafa formula for the topological

string free energy (2.21). In the expansion (3.7), only the terms with n = 0 survive, and

one recovers the genus expansion of standard topological string theory. In particular,

F (0,g)(Q) = (−1)g−1Fg(Q) (3.10)

is, up to a sign, the genus g free energy of topological strings.

One obvious problem in topological string theory is the calculation of the refined free

energy and of the corresponding BPS invariants. At large radius, one can use the refined

topological vertex of [39], or formulate the problem in terms of stable pair invariants [41].

From the B-model point of view, a refined version of the holomorphic anomaly equation

of [42] has been conjectured in [40, 43]. In this formulation one can calculate the re-

fined string free energy in any symplectic frame (appropriate for example for orbifold and

conifold points).

There is a special limit of the refined topological string which was first identified in [1]

and has remarkable properties. In this limit, one of the parameters (ε1, ε2) goes to zero

while the other is kept finite,

ε1 = ~, ε2 → 0. (3.11)

This is usually called the Nekrasov-Shatashvili (NS) limit. The refined free energy (3.6)

has a simple pole in this limit, and we define the NS free energy as

FNS(Q, ~) = lim
ε2→0

ε2F (Q, ε1, ε2), (3.12)

which has the following expansion at large radius in terms of integer invariants,

FNS(Q, ~) =
∞∑
g=0

∑
w≥1

∑
d

1

w2
n̂dg

(
qw/4 − q−w/4

)2g
qw/2 − q−w/2 Qwd, (3.13)

where

q = e~ (3.14)

and

n̂dg =
∑

gL+gR=g

(−1)gndgL,gR (3.15)

are the integer invariants appearing in the NS limit. They shouldn’t be confused with

the original Gopakumar-Vafa invariants appearing in (2.21). An expression equivalent

to (3.13), which will be useful later on, is

FNS(Q, ~) =
∑

jL,jR≥0

∑
w≥1

∑
d

1

w2
Nd
jL,jR

χjL(qw/2)χjR(qw/2)

qw/2 − q−w/2 Qwd. (3.16)
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From (3.7) one finds the following perturbative expansion

FNS(Q, ~) =
∑
n≥0

~2n−1F (n,0)(Q), (3.17)

and the first term corresponds (up to an overall sign) to the genus zero free energy, i.e. to

the classical prepotential of special geometry. The free energies F (n,0) have been studied

from the point of view of the holomorphic anomaly equations in [44].

It is well known that, in some cases, N = 2 supersymmetric gauge theories can be en-

gineered as particular limits of topological string theory [45]. In these cases, the topological

string free energy in the NS limit has been related [1] to the quantization of the classical

integrable system associated to the N = 2 theory. In [17, 18], Mironov and Morozov in-

terpreted the quantization in terms of quantum periods of the spectral curve describing

the integrable system. The appearance of quantum periods was clarified and extended to

general, local CY geometries in [19] from the point of view of mirror symmetry. In the

local B-model, the mirror CY geometries are described by a curve of the form

H(x, p) = 0. (3.18)

This describes a genus n Riemann surface and defines (locally) a function p(x). Let us

choose a symplectic basis AI , BI , I = 1, · · · , n. The classical periods of the meromorphic

one-form

λ = p(x)dx, (3.19)

are given by

ΠAI (zI) =

∮
AI

λ, ΠBI (zI) =

∮
BI

λ, I = 1, · · · , n. (3.20)

Here, the zI are complex deformation parameters appearing in the equation of the spectral

curve (3.18). In terms of these classical periods, the classical prepotential F (0,0) is defined

as follows:

− TI = ΠAI (zI), −QI∂QIF (0,0) = ΠBI (zI), I = 1, · · · , n. (3.21)

The first equation gives the mirror map, relating the flat coordinates TI to the complex

deformation parameters zI . We can now “quantize” the classical spectral curve (3.18) by

promoting x, p to operators x̂, p̂ with commutation relations

[x̂, p̂] = −~, (3.22)

so that, in position space, p̂ acts as ~∂x. The quantization of the spectral curve amounts

to solving the time-independent Schrödinger equation

H (x, ~∂x) Ψ(x, ~) = 0. (3.23)

We then write

Ψ(x, ~) = exp

(
1

~
S(x, ~)

)
(3.24)
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and interpret

∂S = ∂xS(x, ~)dx (3.25)

as a “quantum” differential. Indeed, the function S(x, ~) has a WKB expansion

S(x, ~) =
∑
n≥0

Sn(x)~2n, (3.26)

and it follows immediately from (3.23) that

∂xS0(x) = p(x). (3.27)

One can then consider the quantum periods

ΠAI (zI ; ~) =

∮
AI

∂S, ΠBI (zI ; ~) =

∮
BI

∂S, I = 1, · · · , n, (3.28)

which define the “quantum” mirror map and quantum prepotential FNS(~) through,

− TI(~) = ΠAI (zI ; ~), −QI∂QIFNS(~) =
1

~
ΠBI (zI ; ~), I = 1, · · · , n. (3.29)

It is clear from the above discussion that, in the WKB expansion,

FNS(~) =
1

~
F (0,0) +O(~2) . (3.30)

The claim of [17–19], following [1], is that the function FNS(~) defined in this way is the

NS limit of the refined free energy of topological string theory. This claim was tested in

various examples by comparing the result obtained from the quantum periods with existing

results on FNS(~). In [19] the approach based on quantum periods was justified by using

the dual matrix model description of the refined string in terms of β-ensembles, which

exists in some cases, and deriving the Schrödinger equation directly in the matrix model

(such a derivation was first discussed in [46]).

3.2 Classical limit

Our goal in this section is to show that the functions Ja(µ, k), Jb(µ, k) are essentially

quantum periods of the local P1 × P1 geometry, where k plays the rôle of the quantum

deformation parameter ~. Since quantum periods become the classical periods of special

geometry when ~ → 0, we will first show that the classical limits of Ja,b(µ, k), which can

be computed in closed form, are these classical periods.

Let us then consider the leading coefficients a`,0 and b`,0 in the WKB expansion, defined

in (2.38) (and a similar equation for b`(k)). We first notice that in the WKB expansion of

the even/odd parts of the grand potential,

J±(µ, k) =
1

k

∞∑
n=0

J±,n(µ)k2n, (3.31)

the leading order corrections are given by [8, 12]

∂J+,0

∂z
=

1

2π
K

(
z2

16

)
,

∂J−,0
∂z

= − z

4π2 3F2

(
1, 1, 1;

3

2
,
3

2
;
z2

16

)
. (3.32)
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As observed in [12], the coefficients a`,0 and b`,0 can be read off only from ∂zJ+,0, and we

have the relation

∂JM2
+,0

∂z
=
∑
`≥1

[(
2πi log z − π2

)
`a`,0 + πi (`b`,0 − a`,0)

]
z−2`−1. (3.33)

Using the asymptotic expansion of (3.32), one finds,

a`,0 = − 1

π2`

(
Γ
(
`+ 1

2

)
Γ(1

2)`!

)2

16`,

b`,0 =
2

π2`

(
Γ
(
`+ 1

2

)
Γ(1

2)`!

)2

16`
[
ψ

(
`+

1

2

)
− ψ(`+ 1) + 2 log 2− 1

2`

]
,

(3.34)

where ψ(x) is the digamma function.

Now, we would like to show that the functions

Ja,0(µ) =

∞∑
`=1

a`,0e
−2`µ, Jb,0(µ) =

∞∑
`=1

b`,0e
−2`µ, (3.35)

are related to the classical periods (3.21) of the topological string on local P1×P1, restricted

to the “diagonal” case T1 = T2. A useful approach to determine the periods is to use the

fact that they solve differential equations of the Picard-Fuchs type. In the case of local

P1×P1, the periods are in general functions of two moduli for deformations of the complex

structure, z1 and z2. They are annihilated by the pair of differential operators (see for

example [6, 37] for a summary of these results)

L1 = z2(1− 4z2)ξ2
2 − 4z2

1ξ
2
1 − 8z1z2ξ1ξ2 − 6z1ξ1 + (1− 6z2)ξ2,

L2 = z1(1− 4z1)ξ2
1 − 4z2

2ξ
2
2 − 8z1z2ξ1ξ2 − 6z2ξ2 + (1− 6z1)ξ1,

(3.36)

where

ξi =
∂

∂zi
. (3.37)

The A-periods are given by

ΠAI (z) = log zI + Π̃A(z1, z2), I = 1, 2, (3.38)

where

Π̃A(z1, z2) = 2
∑
k,l≥0,

(k,l)6=(0,0)

Γ(2k + 2l)

Γ(1 + k)2Γ(1 + l)2
zk1z

l
2 = 2z1+2z2+3z2

1 +12z1z2+3z2
2 +· · · (3.39)

There are two independent B-periods, ΠBI (z1, z2), I = 1, 2, which are related by the

exchange of z1 and z2,

ΠB2(z1, z2) = ΠB1(z2, z1). (3.40)
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The B1 period is given by

ΠB1(z1, z2) = −1

8

(
log2 z1 − 2 log z1 log z2 − log2 z2

)
+

1

2
log z2 Π̃A(z1, z2) +

1

4
Π̃B(z1, z2)

(3.41)

where

Π̃B(z1, z2) = 8
∑
k,l≥0,

(k,l)6=(0,0)

Γ(2k + 2l)

Γ(1 + k)2Γ(1 + l)2
(ψ(2k + 2l)− ψ(1 + l)) zk1z

l
2

= 8z1 + 22z2
1 + 40z1z2 + 4z2

2 + · · ·
(3.42)

Notice that the diagonal case T1 = T2 simply corresponds to z1 = z2 = z. One finds, after

this specialization, that

Ja,0(µ) = − 1

π2
Π̃A(z, z),

Jb,0(µ) =
1

2π2
Π̃B(z, z),

(3.43)

under the identification1

z = e−2µ. (3.44)

The relation (3.43) can be proved by resumming the coefficients in (3.39) and (3.42).

Equivalently, one can restrict the problem to the one-modulus case from the very beginning.

The Picard-Fuchs operator for local P1 × P1 along the diagonal z1 = z1 = z takes the

form [47]

L = θ3 − 16z

3∏
i=1

(θ − ai + 1) , (3.45)

where

θ = z
d

dz
(3.46)

and the constants ai (i = 1, 2, 3) are given by

a1 =
1

2
, a2 =

1

2
, a3 = 1. (3.47)

The A- and B-periods can then be found by using the Frobenius method: one first computes

the fundamental period,

Π0(z, ρ) =
∑
n≥0

an(ρ)zn+ρ, (3.48)

with

an(ρ) = 16n
Γ2
(
n+ ρ+ 1

2

)
Γ(n+ ρ)

Γ3(n+ ρ+ 1)

Γ3(ρ+ 1)

Γ2(ρ+ 1
2)Γ(ρ)

. (3.49)

The A- and B-periods are then given by

ΠA(z, z) =
d$0(z, ρ)

dρ

∣∣∣∣
ρ=0

, ΠB(z, z) =
1

4

d2$0(z, ρ)

dρ2

∣∣∣∣
ρ=0

. (3.50)

1One should not confuse this deformation parameter z = e−2µ in the topological string with the fugacity

z = eµ in the Fermi-gas system.
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In this way one finds,

Π̃A(z, z) =
∑
n≥1

1

n

(
Γ
(
n+ 1

2

)
Γ(1

2)n!

)2

16nzn,

Π̃B(z, z) =
∑
n≥1

4

n

(
Γ
(
n+ 1

2

)
Γ(1

2)n!

)2

16n
[
ψ

(
n+

1

2

)
− ψ(n+ 1) + 2 log 2− 1

2n

]
zn,

(3.51)

and one verifies (3.43).

Thus we conclude that the leading order membrane instanton corrections are inter-

preted as the classical periods in the topological string on local P1×P1. To avoid confusion,

note that the notation of a`(k), b`(k) comes from the Fermi gas formalism of ABJM theory,

while the A- and B-periods are the standard notation in special geometry. Surprisingly,

these two notations match well.

3.3 Membrane instantons and quantum periods

In the previous subsection, we have observed that the leading order functions Ja,0(µ) and

Jb,0(µ) correspond to the classical periods of the topological string on local P1×P1. Let us

recall that the Chern-Simons level k plays the role of the Planck constant in the Fermi gas

formulation, see (2.10). This suggests that the counterparts of the full functions Ja(µ, k)

and Jb(µ, k) may be certain “quantum” corrected periods. This is indeed the case: in this

subsection, we will give overwhelming evidence that the functions Ja(µ, k) and Jb(µ, k)

correspond to the quantum periods, in the sense of [17–19] reviewed above. Notice how-

ever that the quantum parameter ~ is not the topological string coupling constant, but

rather its inverse. Therefore, the weakly coupled WKB expansion of the quantum periods

corresponds here, as in the Fermi gas approach, to a strongly coupled topological string.

Our evidence is based on direct computation of the quantum periods and comparison

to the known results of quantum grand potential. Let us first consider the A-period. The

quantum correction to the classical A-period was computed in [19]. We briefly review their

method here. We start with the mirror curve for local P1 × P1,

− 1 + ex + ep + z1e−x + z2e−p = 0. (3.52)

In this curve, z1,2 are the complex deformation parameters of the geometry appearing

in (3.36). The Schrödinger equation (3.23) reads in this case,

(−1 + ex + z1e−x)Ψ(x) + Ψ(x+ ~) + z2Ψ(x− ~) = 0. (3.53)

This equation can be solved perturbatively in ~, by using the WKB expansion. However,

there is a more efficient way to compute the periods, at all orders in ~ [19].2 For this

purpose, we introduce the new function

V (x) =
Ψ(x+ ~)

Ψ(x)
. (3.54)

2We are thankful to D. Krefl for detailed explanations on this issue.
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Then, we obtain the difference equation

V (x) = 1− ex − z1e−x − z2

V (x− ~)
. (3.55)

This equation can be solved around z1 = z2 = 0 in a power series expansion,

V (X) = 1−X − z1

X
− z2

1− q−1X
+O(z2

i ), (3.56)

where X = ex and q = e~, as in (3.14). The quantum A-period is given by

ΠAI (z1, z2; q) = log zI + Π̃A(z1, z2; q) I = 1, 2, (3.57)

where Π̃A is given by

Π̃A(z1, z2; q) = −2 ResX=0 log

[
V (X)

1−X

]
. (3.58)

Notice that here we write the dependence on the quantum parameter ~ in exponentiated

form, through q. This quantum period defines the quantum mirror map,

QI(z1, z2; q) = zIe
Π̃A(z1,z2;q), I = 1, 2. (3.59)

Using the solution of (3.55), we find

Π̃A(z1, z2; q) = 2(z1 + z2) + 3(z2
1 + z2

2) + 2(4 + q + q−1)z1z2 +
20

3
(z3

1 + z3
2)

+ 2(16 + 6q + 6q−1 + q2 + q−2)z1z2(z1 + z2) +O(z4
i ) ,

(3.60)

where q is given in (3.14). In the classical limit q → 1, the quantum period becomes the

classical period (3.39):

lim
q→1

Π̃A(z1, z2; q) = Π̃A(z1, z2), (3.61)

as it should.

Let us now make contact with the function Ja(µ, k) appearing in the membrane in-

stanton contribution to ABJM theory. If we identify the parameters z1, z2 as

z1 = q
1
2 z, z2 = q−

1
2 z, (3.62)

the quantum A-period becomes

Π̃A(q
1
2 z, q−

1
2 z; q) = 2(q1/2 + q−1/2)z +

(
8 + 5(q1/2 + q−1/2)

)
z2

+
2
(
3q5 + 31q4 + 66q3 + 66q2 + 31q + 3

)
3q5/2

z3 +O(z4) .

(3.63)

If we now set the deformation parameter ~ to be

~ = πik, (3.64)
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or, equivalently,

q = eπik, (3.65)

we see that the coefficient of z` in the quantum period just gives the membrane instanton

coefficients a`(k) appearing in (2.45), up to an overall factor of −1/π2. In fact, we have

checked that this is the case up to order ` = 10 by comparing the quantum period to

the result for the coefficients a`(k) obtained from the TBA equations and explained in

appendix A.

We conclude that the function Ja(µ, k) is given, up to an overall constant, by the

quantum A-period evaluated on the slice (3.62) ,

Ja(µ, k) = − 1

π2k
Π̃A

(
q

1
2 z, q−

1
2 z; q

)
, (3.66)

and with the identifications (3.64) and (3.44).

Let us now consider the quantum B-periods ΠBI (z1, z2; q). As in the undeformed,

classical case, there are two of them, but they are related by the exchange of the moduli,

ΠB2(z1, z2; q) = ΠB1(z2, z1; q). (3.67)

The quantum counterpart of (3.41) is

ΠB1(z1, z2; q) = − 1

8

(
log2 z1 − 2 log z1 log z2 − log2 z2

)
+

1

2
log z2 Π̃A(z1, z2; q)

+
1

4
Π̃B(z1, z2; q).

(3.68)

As noticed in [19], the quantum period Π̃B(z1, z2; q) can be computed by first extracting

the finite part of the integral

− 16

∫ Λ

δ

dX

X
log V (X), (3.69)

where δ, Λ are cut-offs and V (X) is defined in (3.54), and then by symmetrizing w.r.t. the

exchange ~↔ −~. By using the explicit solution for V (X), we find

Π̃B(z1, z2; q) = 8

[
q + 1

2(q − 1)
log q

]
z1 + 4

[
1 +

5q2 + 8q + 5

2(q2 − 1)
log q

]
z2

1

+ 8

[
1 +

(1 + q)3

2q(q − 1)
log q

]
z1z2 + 4z2

2 +O(z3
i ).

(3.70)

In the classical limit q → 1, one recovers the classical period defined in (3.42):

lim
q→1

Π̃B(z1, z2; q) = Π̃B(z1, z2). (3.71)
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Let us now consider the specialization (3.62), and let us symmetrize w.r.t. z1, z2. We

obtain

Π̃B

(
q

1
2 z, q−

1
2 z; q

)
+ Π̃B

(
q−

1
2 z, q

1
2 z; q

)
=

4(q + 1)2 log(q)

(q − 1)
√
q

z +

[
2
(
3q2 + 4q + 3

)2
log(q)

q (q2 − 1)
+

8(q + 1)2

q

]
z2

+

[
4
(
9q8 + 79q7 + 222q6 + 405q5 + 482q4 + 405q3 + 222q2 + 79q + 9

)
log(q)

3q5/2 (q3 − 1)

+
8
(
5q3 + 13q2 + 13q + 5

)
q3/2

]
z3 +O(z4).

(3.72)

As in the A-period case, and after using the identifications (3.64) and (3.44), we find

that, up to an overall factor 1/(4π2k), the coefficients in this expansion are precisely the

coefficients b`(k) appearing in (2.46). We then propose the following identification:

Jb(µ, k) =
1

4π2k

(
Π̃B

(
q

1
2 z, q−

1
2 z; q

)
+ Π̃B

(
q−

1
2 z, q

1
2 z; q

))
. (3.73)

We have verified this equality up to sixth order in z.

We then conclude that the problem of computing the membrane instanton corrections

to the partition function of ABJM theory is completely solved by the above conjectural

equivalence with quantum periods, i.e. with the refined topological string in the NS limit.

Note that the natural solution of the Schrödinger equation that we have presented here,

following [19], is an expansion in z but exact in ~. This is precisely what is needed for the

M-theory expansion of the ABJM partition function, since it corresponds to an expansion

at large N but exact in the geometric parameter k. In particular, we can systematically

compute the membrane instanton corrections a`(k) and b`(k) by using the connection with

the refined topological string.

It is important to notice that the worldsheet instanton expansion involves the quantum

parameter

qs = e
4πi
k , (3.74)

while the membrane instanton expansion involves the quantum parameter

q = eπik. (3.75)

Therefore, we have some sort of S-duality acting on the coupling 1/k. We will comment

on this issue in section 4.

As reviewed in subsection 3.1, the quantum periods can be used to determine the

topological string free energy in the NS limit. We will now see how this point of view

explains some of the structures discovered in [16], like the appearance of an “effective”

chemical potential and the function J̃b(µ, k). By using (3.29) as well as (3.41), one finds

that the full free energy in the NS limit, FNS(Q1, Q2; q), is defined by the equations,

Q1∂Q1FNS(Q1, Q2; q) = − 1

4~

(
Π̃B(z1, z2; q)− Π̃A(z1, z2; q)2

)
,

Q2∂Q2FNS(Q1, Q2; q) = − 1

4~

(
Π̃B(z2, z1; q)− Π̃A(z2, z1; q)2

)
.

(3.76)
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Here we only consider the instanton part of the free energy, and we dropped quadratic

terms in the moduli T1, T2 which are not relevant for our purposes. By using the explicit

results for the quantum periods listed above, one finds

FNS(Q1, Q2; q) = − 1 + q

q − 1
(Q1 +Q2)− q2 + 1

4 (q2 − 1)

(
Q2

1 +Q2
2

)
− (q + 1)2

(
q2 + 1

)
q (q2 − 1)

Q1Q2 + · · · (3.77)

One can extract from this expression the GV invariants (3.15). They agree, up to an overall

sign (−1)g, with the results listed in [41].

We are now ready to interpret the relationship (2.30) in the light of the refined topo-

logical string. As we have shown, the coefficients a`(k) are, up to an overall constant, the

coefficients of the quantum mirror map, evaluated at the slice (3.62). It is easy to see that

this slice in the z1 − z2 space corresponds, in terms of the QI variables, I = 1, 2, to a slice

which we can parametrize as

Q1 = q1/2Q, Q2 = q−1/2Q. (3.78)

Since µ corresponds to the variable z in the moduli space, through the identification z =

e−2µ, we find from (2.30) that the flat coordinate Q is given by,

Q = e−2µeff , (3.79)

Therefore, the relationship between the effective chemical potential (2.30), which incorpo-

rates bound states in the ABJM partition function, and the “bare” chemical potential µ is

just the quantum mirror map.

Using now (3.66) and (3.73), as well as (3.76), we find that the combination defining

the function J̃b(µeff , k), and introduced in the first line of (2.34), is precisely what is needed

to obtain the symmetric combination of quantum periods,

J̃b(µeff , k) = − i

π
(Q1∂Q1FNS (Q1, Q2; q) +Q2∂Q2FNS (Q1, Q2; q)) , (3.80)

evaluated at the slice (3.78), and where the variables in the l.h.s. are related to those in

the r.h.s. by (3.79) and (3.65).

As we reviewed in (3.1), the refined topological string free energy can be expressed in

terms of refined GV invariants, which in the case of local P1 × P1 depend on two degrees,

nd1,d2
gL,gR . They have the symmetry property

nd1,d2
gL,gR

= nd2,d1
gL,gR

. (3.81)

In the NS limit, the free energy of local P1 × P1 has the integrality structure (3.13). This,

together with (3.80), gives the following expression for the coefficients b̃`(k) of J̃b(µeff , k)

in terms of refined GV invariants:

b̃`(k) = − i

π

∑
g≥0

∑
d|`

d2

`
n̂dg(q

`/d)

(
q`/4d − q−`/4d

)2g
q`/2d − q−`/2d . (3.82)
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Here,

n̂dg(q) =
∑

d1+d2=d

n̂d1,d2
g q(d1−d2)/2, (3.83)

and the invariants n̂d1,d2
g are defined in (3.15). We can use explicit results for the refined

GV invariants to check that the above expression matches with (2.47).

3.4 The HMO cancellation mechanism in terms of BPS invariants

As we have reviewed in section 2, the partition function of ABJM theory, i.e. the matrix

integral (2.1), is finite for any value of k. This means that the poles appearing at integer

values of k in the worldsheet instanton contribution JWS(µ, k) should be cancelled by

poles appearing in the membrane instanton and bound state contribution. This is the

HMO cancellation mechanism discovered in [15].

As noticed in [16], in order to study the cancellation mechanism in full generality,

it is convenient to look at the expression (2.35). Since the perturbative part is regular

for any k, we have to make sure that the poles appearing in JWS(µeff , k) are cancelled by

similar poles in the last two terms of (2.35). In previous subsections we have shown that the

contribution of membrane instantons can be written in terms of the free energy of the refined

topological string. In particular, in (3.80) and (3.82) we have related the function J̃b(µeff , k)

to refined GV invariants. By the conjectured equality (2.37), the function J̃c(µeff , k) can

be also written in terms of these invariants. In this subsection we will show that the

conjectures (3.82) and (2.37) make it possible to explain the cancellation mechanism by

using the refined integrality structure as well as properties of the refined BPS invariants.

In order to proceed, it is more elegant to express the relevant functions in terms of the

BPS indices Nd1,d2
jL,jR

of the local P1×P1 geometry (a list of these invariants for the first few

degrees d1, d2 can be found in [41]). Using the GV integrality (2.21), together with (3.5),

the worldsheet instanton part can be written as

JWS(µeff , k) =
∑
m≥1

dm(k)e−4mµeff/k, (3.84)

where

dm(k) =
∑
jL,jR

∑
m=dn

∑
d1+d2=d

Nd1,d2
jL,jR

2jR + 1

(2 sin 2πn
k )2

sin
(

4πn
k (2jL + 1)

)
sin 4πn

k

(−1)m

n
. (3.85)

On the other hand, we can rewrite (3.82) as

b̃`(k) = − `

2π

∑
jL,jR

∑
`=dw

∑
d1+d2=d

Nd1,d2
jL,jR

q
w
2

(d1−d2) sin πkw
2 (2jL + 1) sin πkw

2 (2jR + 1)

w2 sin3 πkw
2

. (3.86)

Here, n and w denote the multi-covering numbers for the worldsheet instanton and mem-

brane instanton, respectively.

The HMO cancellation mechanism states that, order by order in e−µeff , the total grand

potential (2.35) should be regular. The coefficient (3.85) has double poles when k ∈ 2n/N.

The coefficient (3.86) has a simple pole when k ∈ 2N/w, and due to (2.37) the coefficient
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c̃`(k) will have a double pole at the same values of k. These poles contribute to terms of

the same order in e−µeff precisely when k takes the form

k =
2n

w
=

2m

`
. (3.87)

We have then to examine the pole structure of (2.35) at these values of k. Since both (3.85)

and (3.86) involve a sum over BPS multiplets with quantum numbers given by degrees

(d1, d2) and spins (jL, jR), we can look at the contribution to the pole structure of each

multiplet. In the worldsheet instanton contribution, the singular part associated to a BPS

multiplet around k = 2n/w is given by

(−1)m

π2

[
n

w4
(
k − 2n

w

)2 +
1

k − 2n
w

(
1

w3
+

m

nw2
µeff

)]
(1 + 2jL)(1 + 2jR)Nd1,d2

jL,jR
e−

2mw
n

µeff .

(3.88)

The singular part in µeff J̃b(µeff , k) associated to a BPS multiplet is given by

− eπikw(d1−d2)/2

π2

`

w3
(
k − 2n

w

)(−1)n(2jL+2jR−1)(1 + 2jL)(1 + 2jR)Nd1,d2
jL,jR

µeffe−2`µeff . (3.89)

Using (2.37), we find that the corresponding singular part in J̃c(µeff , k) is given by

− eπikw(d1−d2)/2

π2

[
n

w4
(
k − 2n

w

)2 +
1

w3
(
k − 2n

w

)]×
× (−1)n(2jL+2jR−1)(1 + 2jL)(1 + 2jR)Nd1,d2

jL,jR
e−2`µeff . (3.90)

By using (3.87), one notices that

eπikw(d1−d2)/2 = (−1)m (3.91)

and it is easy to see that all poles in (3.88) cancel against the poles in (3.89) and (3.90),

for any value of µeff , provided that

(−1)n(2jL+2jR−1) = 1. (3.92)

However, this is the case, since for local P1 × P1 the only non-vanishing BPS indices

Nd1,d2
jL,jR

have

2jL + 2jR − 1 ≡ 0 mod 2. (3.93)

This can be justified by the following geometric argument.3 The spins jL and jR are

related to the Lefshetz decomposition of the cohomology of the moduli space of an M2-

brane wrapping the two-cycle with degree d [31, 48]. We will denote the cohomology class

of this cycle by C. This moduli space is, as described in [31, 48], a torus fibration T2g over

the geometric deformation space MC of the two-cycle, where g is the genus of a smooth

curve in the class C. The maximal value of 2jL is given by g, while the maximal value

3We are thankful to Albrecht Klemm for explaining this argument to us.

– 26 –



J
H
E
P
0
9
(
2
0
1
4
)
1
6
8

5 10 15

20

40

60

80

100

120

5 10 15

5

10

15

20

25

Figure 2. A plot of log |a`(q)| for ` = 1, · · · , 20, evaluated at q = 1/4 (left) and q = exp(πi/2)

(right), displaying the behaviors (3.98) and (3.99), respectively.

of 2jR is given by the dimension of the moduli space MC . This space can be taken to

be |C| ∼= PH0(O(C)), the complete linear system associated to C. Using the adjunction

formula together with Riemann-Roch, we find [48]

2jmax
L = g(C) =

C2 +KC

2
+ 1,

2jmax
R = h0(O(C))− 1 = g(C) + d(C)− 1,

(3.94)

where

d(C) = −KC (3.95)

is the degree of the curve C w.r.t. the anti-canonical class. We then find,

2jmax
L + 2jmax

R − 1 = 2g(C)− 2 + d(C) (3.96)

and

(−1)2jL+2jR−1 = (−1)d(C). (3.97)

Now, in the case of local P1 × P1, a curve in the class (d1, d2) has degree w.r.t. to the

anticanonical class given by d(C) = 2d1 + 2d2, which is even. (3.93) follows, and this

guarantees the cancellation of the poles.

We conclude that the relation between membrane instantons and quantum periods

that we have conjectured guarantees the HMO cancellation mechanism and implements it

through the properties of the refined BPS invariants.

3.5 Analytic properties of the grand potential

Now that we have completely determined the structure of the grand potential, including all

non-perturbative corrections, it is interesting to ask what are its properties as an expansion

at large µ. Since we are interested in the M-theory point of view, we want to understand

the behavior of the power series expansions in e−2µ, e−4µ/k (i.e. at large N) for k fixed. In

particular, we want to determine how the coefficients a`(q), b`(q), c`(q) in (2.29) and d`(qs)

in (3.84) grow with ` . We have written their dependence w.r.t. k in terms of the variables

q and qs, defined in (3.75) and (3.74), respectively.
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Figure 3. A plot of log |d`(qs)| for the topological string on local P2 and ` = 1, · · · , 15, and

evaluated at qs = 1/4 (left) and qs = exp(2πi/19) (right). They display the behaviors (3.98)

and (3.99), respectively.

Using the values of these coefficients, we have found an interesting pattern. It turns

out that their growth with ` depends crucially on the value of q and qs, regarded as complex

parameters. When |q|, |qs| 6= 1, these coefficients grow like

∼ exp(C`2), `� 1. (3.98)

However, when |q|, |qs| = 1 we have the milder growth

∼ exp(C`), `� 1. (3.99)

As an example, we show in figure 2 the growth of log |a`(q)| for ` = 1, · · · , 20 for two

values of q (one with |q| 6= 1 and another one with |q| = 1), which illustrate our claim.

When k = 2n is an even integer, one can compute the generating functional of the a`(k)

explicitly [16], and one finds

∞∑
`=1

a`(2n)e−2`µ =
2(−1)n−1

nπ2
e−2µ

4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; (−1)n16e−2µ

)
, (3.100)

which confirms the growth (3.99). Notice that, when q and qs are roots of unity (in

particular, when they are of the form (3.75) and (3.74) and k is an integer), the coefficients

b`(q), c`(q) and d`(qs) have poles for an infinite subsequence of values of `. We find however

that the growth of the coefficients which are finite is still of the form (3.99).

We have verified that our observation is also valid for the coefficients d`(qs) appearing

in the Gopakumar-Vafa expansion of the topological string free energy in other models.

In figure 3 we show the growth of log |d`(qs)| for ` = 1, · · · , 15 in local P2, for two values

of q, and we conjecture that this is a general feature of local CYs. It is also natural to

conjecture that the growth properties of the coefficients a`(q), b`(q) that we have found in

local P1×P1 will be also found in the coefficients of the quantum periods of any local CYs.

The main consequence of this conjectural growth is that the expansion (2.19) is not

just an asymptotic expansion for µ� 1: when k is an integer, as required in ABJM theory,

the expansion has actually a finite radius of convergence around µ =∞. This can be seen

for example by looking at the expressions (2.30) and (2.31): if our conjecture is true, (2.30)

defines µeff as an analytic function of e−µ, around µ =∞, while (2.31) defines an analytic

function of µeff .
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It was argued in [49] that the coefficients of membrane instanton generating functionals

should grow like (3.98). Here we find, however, that this generic behavior becomes milder

for integer (and even real) k. The growth (3.98) was used in [49] to argue for the existence

of non-perturbative corrections due to 5-branes, by using the standard argument on the

ambiguities associated to asymptotic series. Since in our case the grand potential is given

by a convergent series, this non-perturbative ambiguity is absent.

4 A proposal for non-perturbative topological strings

In the previous section, we have seen that the coefficients a`(k) and b`(k) (or b̃`(k)) of

membrane instantons are given by the quantum A- and B-periods, respectively. Therefore,

if we also use (2.37), we see that membrane instanton corrections are determined by the

refined topological strings in the NS limit. We have also seen that poles coming from

worldsheet instantons and membrane instantons cancel with each other. This cancellation

does not depend on the details of the invariants Nd
jL,jR

, and the cancellation occurs within

each BPS multiplet.

This suggests that we can generalize the pole cancellation mechanism for arbitrary

local CY, and find the non-perturbative completion of topological string partition functions

using the HMO mechanism as a guiding principle. In fact, it is natural to expect that the

partition function is a smooth function of the string coupling so that we can go smoothly

from the weak coupling to the strong coupling: this is basically the raison d’être of M-

theory. The analysis in [12, 15, 16] shows that the pole cancellation gives a very strong

constraint which almost determines the expression of free energy.

4.1 From ABJM theory to arbitrary local Calabi-Yau manifolds

In order to generalize the expression of the ABJM grand potential to arbitrary local CY, let

us take a closer look at the membrane instanton part of the ABJM grand potential (2.35)

JM2(µeff , k) =

∞∑
`=1

[
b̃`(k)µeff − k2 ∂

∂k

(
b̃`(k)

2`k

)]
e−2`µeff , (4.1)

where we have used the relation between c̃`(k) and b̃`(k) in (2.37). Notice that −k2∂k is

essentially the derivative w.r.t. the string coupling constant gs in (2.28). As we will see

below, it is convenient to introduce a different normalization of the string coupling constant

λs =
2

k
. (4.2)

In terms of λs, the quantum parameters for the worldsheet instantons (3.74) and the

membrane instantons (3.75) are simply related by the inversion of the coupling λs → 1/λs

qs = e
4πi
k = e2πiλs , q = eiπk = e

2πi
λs . (4.3)

Also, one can easily see that JM2 can be written as a total derivative w.r.t. λs if we treat

the parameter

T =
4µeff

k
(4.4)
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and λs as independent variables, i.e. ∂T /∂λs = 0. We find,

JM2 =
∂

∂λs

[
λs

∞∑
`=1

b̃`(k)

2`
e−`

T
λs

]
. (4.5)

We can further rewrite JM2 in a form which is more suitable for a generalization to

arbitrary local CY. Plugging the expansion of b̃`(k) (3.86) into (4.5), one finds that JM2 is

written as a derivative of the refined free energy in the NS limit4

JM2 =
1

2πi

∂

∂λs

[
λsFNS

(
T eff

1

λs
,
T eff

2

λs
,

1

λs

)]
. (4.6)

Here T eff
1 and T eff

2 denote

T eff
1 =

4µeff

k
− iπ, T eff

2 =
4µeff

k
+ iπ. (4.7)

The derivative w.r.t. λs in (4.6) is again taken by assuming that T eff
i are independent of

λs. The parameters T eff
i , i = 1, 2, can be also written in terms of the Kähler parameter T

of local P1 × P1 in the diagonal slice, which was defined in (2.28), as

T eff
1 = T − λsΠ̃A

(
T

λs
,
T + 2πi

λs
; q

)
,

T eff
2 = T + 2πi− λsΠ̃A

(
T

λs
,
T + 2πi

λs
; q

)
.

(4.8)

The notation in the arguments of Π̃A in (4.8) means that the quantum A-period (3.39) is

evaluated at

z1 = exp

(
− T
λs

)
, z2 = exp

(
−T + 2πi

λs

)
. (4.9)

There are two important remarks to be made on the effective Kähler parameters intro-

duced in (4.8). First of all, they differ from the conventional Kähler parameters by non-

perturbative terms, given by the quantum A-period, which are needed to take into account

bound states. This period is not evaluated on the usual complex deformation parameters,

but on the variables (4.9), which are non-perturbative and not analytic as λs = 0. Second,

since Kähler parameters are defined only modulo 2πi (this is the periodicity of the B-field),

the relative shift between T eff
1 and T eff

2 in (4.7) is not visible in the worldsheet instanton

4In this section, we use a slightly different notation for the free energies of the ordinary (unrefined)

topological string (2.21) and the refined topological string in the NS limit (3.16)

Ftop(T, λs) = −
∞∑
n=1

∑
d

∑
jL,jR

Nd
jL,jR

(2jR + 1)χjL(qns )(
q
n/2
s − q

−n/2
s

)2

e−nd·T

n
,

FNS

(
T

λs
,

1

λs

)
=

∞∑
w=1

∑
d

∑
jL,jR

Nd
jL,jR

χjL(qw/2)χjR(qw/2)

q
w
2 − q−

w
2

e
−w d·T

λs

w2
,

with qs and q given by (4.3).
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sector, and the “effective” Kähler parameters T eff
i , i = 1, 2, still belong to the diagonal

slice of local P1 × P1 in the sense that

e−T
eff
1 = e−T

eff
2 . (4.10)

Thus, the worldsheet instanton part of the ABJM grand potential (2.35) is also written in

terms of the T eff
1 , T eff

2 in (4.7), as

JWS(µeff , k) = Ftop(T eff
1 , T eff

2 , λs), (4.11)

where Ftop is the (unrefined) topological string free energy. Finally, we arrive at an elegant

formula for the non-perturbative part of the ABJM grand potential

J (np)(µeff , k) = Ftop(T eff
1 , T eff

2 , λs) +
1

2πi

∂

∂λs

[
λsFNS

(
T eff

1

λs
,
T eff

2

λs
,

1

λs

)]
. (4.12)

Note as well that the shift in T eff
2 w.r.t. T eff

1 by 2πi units is relevant in the membrane

instanton sector, since there this shift is divided by λs. Therefore, it also appears in the

arguments of the quantum period Π̃A in (4.7).

As we mentioned in the introduction, the results of [6, 20] indicate that the ABJM

matrix model derived in [5] provides a non-perturbative definition of topological string

theory on local P1 × P1. Here we are restricting ourselves to the ABJM slice where the

gauge groups of ABJM theory have the same rank, N1 = N2 = N , and so we obtain local

P1 × P1 along the diagonal direction. The grand potential of ABJM theory can then be

interpreted as the non-perturbative topological string free energy of local P1 × P1, in the

large radius frame. Our result in (4.12) can be then interpreted as a calculation of the

expansion of the non-perturbative free energy, along the slice T1 = T2 = T , for Re(T )� 1,

and λs > 0 (in particular, the topological string coupling is imaginary). Therefore, we have

F (np)(T, λs) = Ftop(T eff
1 , T eff

2 , λs) +
1

2πi

∂

∂λs

[
λsFNS

(
T eff

1

λs
,
T eff

2

λs
,

1

λs

)]
, (4.13)

where the relationship between T eff
i , i = 1, 2 and T is spelled out in detail in (4.8).

We want to emphasize that this is a first-principles calculation of the expansion of the

free energy at large T , including the full series of non-perturbative corrections. Although

our formula (4.13) is conjectural, it agrees with a large amount of data concerning the

matrix model, as we have explained in the previous section of this paper. Let us make

some remarks on the structure of the answer (4.13).

1. It contains terms which are not analytic at λs = 0, of the form

e−T/λs . (4.14)

These non-perturbative terms are encoded in the quantum periods, therefore they are

determined by the NS limit of the topological string. They appear both as corrections

to the Kähler parameters in (4.8), and in the NS free energy in (4.13). They seem to

correspond to some sort of “topological membrane instantons.” Also, the coefficients

appearing in the quantum periods are functions of q = e2πi/λs are therefore are not

analytic at λs = 0.
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2. In the limit λs → 0, the non-perturbative corrections drop out and we are left with

the perturbative, topological string free energy Ftop(T, T, λs) along the diagonal of

local P1 × P1.

3. The quantum A-periods lead to mixed terms of the form,

e−nT/λs−mT (4.15)

which seem to correspond to bound states of perturbative worldsheet instantons and

membrane instantons, as in the M-theory dual to ABJM theory.

4. The total free energy satisfies the HMO cancellation mechanism, i.e. there are no

poles in λs, order by order in e−T .

Notice that, for general, complex values of λs, the expansion we have found is an

asymptotic expansion at large T , and the form of the expansion might change along different

directions of the complex plane due to the Stokes phenomenon. This was displayed in detail

in a closely related situation in [50].

Since the expression of F (np)(T, λs) is completely written in the language of refined

topological strings, it seems straightforward to generalize it to an arbitrary, local CY: the

total free energy should be the sum of the standard, perturbative topological string free

energy, evaluated at some “effective” Kähler parameters, plus the derivative of the NS

free energy appearing in (4.13). However, for the pole cancellation mechanism to work,

we have to be careful about an extra minus sign which was absent in the ABJM case.

By generalizing (4.12) to arbitrary local CY and repeating a similar computation of the

residue in the previous section, one can easily see that the pole at λs = w/n almost cancels

between Ftop and FNS, except for a sign difference (−1)n(2jL+2jR−1). Here n and w denote

the multi-covering numbers in Ftop and FNS, respectively. This sign was absent in the local

P1 × P1 case since (−1)2jL+2jR−1 = 1, while this is not the case in general local CY. As

shown in (3.97), this sign is related to the degree of the curve d(C) = −KC, where K

denotes the canonical class of the base of local CY. Therefore, this extra sign can be taken

care of by turning on a discrete B-field, B = πK, along the worldsheet instantons

e−i
∫
C B = e−iπKC = (−1)2jL+2jR−1. (4.16)

Below, we denote this discrete B-field by K = (K1,K2, . . . ), which plays a crucial role in

the pole cancellation mechanism. As above, the I-th component KI is given by the integral

of B along the two-cycle with complexified size TI , and takes a half-integer value. The final

answer will involve “effective” Kähler parameters T eff
I , I = 1, · · · , n. These are allowed to

differ from the perturbative Kähler parameters in a shift by another B-field 2πin, with

n = (n1, n2, . . . ), and a non-perturbative part involving the quantum A-periods. Here we

propose the relationship of TI and T eff
I ,

T eff
I = TI + 2πinI − λsΠ̃AI

(
TI + 2πinI

λs
; q

)
, I = 1, · · · , n. (4.17)
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In this equation and the following ones, the string coupling constant λs is defined by (4.3).

The quantum A-periods are written as

ΠAI (zI ; q) = log zI + Π̃AI (zI ; q), (4.18)

and the notation in (4.17) means that the Π̃AI (zI ; q) are evaluated at

zI = exp

(
−TI + 2πinI

λs

)
. (4.19)

In the diagonal, local P1 × P1, one has the B-field shift n1 = 0, n2 = 1. Cancellation of

the poles also require the nI to be integers, so that their presence is only visible in the

membrane instanton sector. From this argument, we propose the following expression of

the non-perturbative topological string free energy for an arbitrary local CY:

F (np)(T + πiK, λs) = Ftop(Teff + πiK, λs) +
1

2πi

∂

∂λs

[
λsFNS

(
Teff

λs
,

1

λs

)]
. (4.20)

Notice that, when written in this form, the natural perturbative Kähler parameter (i.e. the

Kähler parameter appearing in the worldsheet instanton part) is given by T + πiK and

includes the half-integer shift by K. Equivalently, we can redefine the Kähler parameter

in such a way that the shift appears in the membrane instanton part.

To summarize, as a natural generalization of the ABJM grand potential (4.12), we

arrived at our proposal (4.20) for the non-perturbative topological string free energy as a

sum of the unrefined free energy and the refined free energy in the NS limit. In addition,

from the requirement of pole cancellation, we have to turn on a discrete B-field flux πiK

along the worldsheet instantons. There is in principle a non-trivial, “non-perturbative”

B-field 2πin in the membrane instanton contribution which can not be fixed a priori, but

this is the only unknown datum of our proposal.

4.2 Toward non-perturbative refined topological strings

Our result (4.13), as well as our general proposal (4.20), seem to be related to a recent

suggestion by Lockhart and Vafa in [24], where a proposal for the calculation of non-

perturbative effects in refined topological strings was put forward. This proposal is based

on the formal similarity between the refined topological string partition function, and the

triple sine function which appears in the integrand of the partition function of superconfor-

mal theories on squashed S5 [24, 51]. However, as emphasized in [24], the triple sine func-

tions cannot be simply identified with the partition functions of refined topological strings.

Instead, Lockhart and Vafa proposed that the partition function of non-perturbative refined

topological strings is defined by a triple product of refined partition functions:

Z(LV)
np = Zref(T, τ1 + 1, τ2)Zref

(
T

τ1
,

1

τ1
,
τ2

τ1
+ 1

)
Zref

(
T

τ2
,
τ1

τ2
+ 1,

1

τ2

)
, (4.21)
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where the refined partition function is given by the exponential of (3.4)

Zref(T, τ1, τ2) =
∏
d

∏
jL,jR

jL∏
mL=−jL

jR∏
mR=−jR

∞∏
n1,n2=0

(1− qmL+mR+n1+ 1
2

1 q
−mL+mR−n2− 1

2
2 e−d·T)

Nd
jL,jR , (4.22)

and we have denoted, as in [24],

ε1,2 = 2πiτ1,2. (4.23)

Notice that the first factor in (4.21) is the perturbative, refined topological partition func-

tion, while the second and third factors involve non-analytic terms in the coupling constants

τ1,2. This proposal is similar to (4.13) and (4.20): in both of them, the non-perturbative

corrections involve a refined topological string on a different “slice” of the τ1 − τ2 space,

the coupling constants are inverted, and the corrections are of the form e−T/τi . In order

to make a more detailed comparison to our results, we should consider a particular case

of (4.22) in which the perturbative sector is the ordinary topological string with ε1 = −ε2.

As discussed in [24], some of the factors in (4.21) can be moved to the denominator by

analytic continuation. Combining this with the symmetry of the refined partition function

Zref(T, τ1, τ2) = Zref(T,−τ2,−τ1), (4.24)

we can rewrite (4.21) as

Z(LV)
np = Zref(T, τ1 + 1, τ2)

Zref

(
T
τ1
, 1
τ1
, τ2τ1 + 1

)
Z ′ref

(
T
τ2
, 1
τ2
,− τ1

τ2
− 1
) , (4.25)

where the prime signifies that SU(2)L and SU(2)R are exchanged.

To reproduce our expression (4.20) in the single coupling case, we have to modify (4.25)

by changing some of the signs in the denominator

Znp = Zref(T, τ1 + 1, τ2)
Zref

(
T
τ1
, 1
τ1
, τ2τ1 + 1

)
Z ′ref

(
−T
τ2
,− 1

τ2
,− τ1

τ2
− 1
) . (4.26)

We should stress that our proposal (4.26) is not the unique expression which reduces

to (4.20) in the single coupling case. We choose (4.26) just as a simple modification of the

proposal (4.25) in [24].

It is natural to identify the first factor of (4.26) as the worldsheet instanton corrections

and the second factor as the “membrane instanton” corrections. Note that the extra sign

for the worldsheet instanton

e2πi(mL+mR+ 1
2

) = (−1)2jL+2jR−1 (4.27)

naturally appears from the shift τ1 → τ1+1 in the first factor of (4.26). It is interesting that

this sign was introduced in [24] by a very different argument from ours. In our case, this
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sign was introdued from the requirement of pole cancellation, while the argument of [24]

is based on the consideration of spin structure.

Now let us specialize to the one parameter case τ1 + τ2 = 0. Then, the first factor

of (4.26) becomes the unrefined topological string partition function with the discrete B-

field turned on, as we have seen in the previous subsection. For the second factor of (4.26),

due to the shift of parameter by one, setting τ1 + τ2 = 0 amounts to taking the NS limit.

Also, the derivative of FNS in (4.20) can be reproduced by taking the limit τ1 + τ2 → 0

carefully. Namely, we set

τ1 = λs + ε, τ2 = −λs, (4.28)

and take the limit ε → 0 at the end of computation. Recall that in the NS limit only the

diagonal SU(2)diag ⊂ SU(2)L × SU(2)R couples non-trivially to q1 and hence the exchange

of SU(2)L and SU(2)R does not matter in the NS limit. Thus, the log of the second factor

of (4.26) becomes

lim
ε→0

[
Fref

(
T

λs + ε
,

1

λs + ε
,

ε

λs + ε

)
− F ′ref

(
T

λs
,

1

λs
,
ε

λs

)]
= lim
ε→0

[
λs + ε

2πiε
FNS

(
T

λs + ε
,

1

λs + ε

)
− λs

2πiε
FNS

(
T

λs
,

1

λs

)]
=

1

2πi

∂

∂λs

[
λsFNS

(
T

λs
,

1

λs

)]
, (4.29)

which shows that (4.26) almost reduces to our conjectured form of the non-perturbative

free energy for the single coupling case (4.20). One difference with our proposal in the

previous subsection is that the Kähler parameters should be promoted to “effective” Kähler

parameters incorporating the effects of the bound states, as well as the non-perturbative

B-field. In that sense, the proposal of [24] seems to lead to a complete factorization between

perturbative and non-perturbative sectors and misses the contribution of bound states. It

would be interesting to understand the modification (4.26) in the context of [24]. It might

be due to the fact that the ordinary topological string is a degenerate case of the formalism

in [24], since τ1,2 are aligned. On top of that, our expansion of the free energy corresponds

to λs real and positive, therefore Im τ1 = Im τ2 = 0, and one should be more careful with

the convergence properties of the triple sine functions.

Notice that we could regard (4.26) as an appropriate generalization of our proposal to

the case of refined topological strings, since it essentially reduces to our proposal in the

case of standard, unrefined strings. However, since for general refined strings we do not

have a notion of quantum A-period, it is not obvious how to extend our proposal for the

effective Kähler parameters (4.17) to the general, refined case.

5 Conclusions and prospects for future work

In this paper we have determined the complete non-perturbative expansion of the partition

function of ABJM theory on the three-sphere. The resulting picture is beautiful and

appealing: worldsheet instanton corrections are determined by the standard topological

string on local P1 × P1. Membrane instanton corrections are determined by the refined
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topological string on the same CY, and in the Nekrasov-Shatashvili limit. Mathematically,

this means that the large µ expansion of the grand potential (which is a large N expansion),

as determined by the TBA equations appearing in the Fermi gas approach, agrees with the

large radius expansion of the quantum periods. Since this expansion can be computed at

finite k, we also have an efficient method to calculate the large N expansion at fixed k, as

required in the M-theory expansion.

Although we have overwhelming evidence for this equivalence, it remains a conjecture.

It would be very interesting to prove it in order to establish our claim. Mathematically, this

would provide an interesting link between the TBA formulation of the Fermi gas and the

problem of calculating the quantum periods of this local CY. Given the deep relationship

between refined topological strings and integrable systems [1], this link is maybe not that

surprising, but its clarification could lead to additional insights on this relationship. Notice

that the TBA equations appearing in the Fermi gas approach are very close to those

calculating indices in two-dimensional, N = 2 theories [52]. Since the NS limit of the

refined topological string also leads naturally to a N = 2 theory in two dimensions [1], the

connection might be due to this common two-dimensional origin.

The answer we have found for the non-perturbative membrane effects gives also the full

set of non-perturbative corrections to the free energy of topological string theory on local

P1 × P1, along the diagonal direction. In doing this we assumed that the non-perturbative

partition function of local P1 × P1 is given by the ABJM matrix model. This is certainly

natural from the point of view of the duality between this topological string and Chern-

Simons theory on RP3 [22], and the relation between the Chern-Simons matrix model

on RP3 and the ABJM matrix model [20]. Based on this result, we have also made a

proposal for the non-perturbative effects of topological string theory on arbitrary, local CY

manifolds. It would be certainly important to test if this proposal is true. One possible

strategy is to consider the class of general AN−1 fibrations over P1, which have Chern-

Simons/matrix model descriptions [22], and try to compute the non-perturbative effects in

these models in a similar way.

We have also pointed out that our result bears some resemblance to the proposal

of [24], although some important aspects of our concrete, first-principles calculation (like

the presence of bound states) do not seem to be captured by the proposal in [24]. The moral

lesson of [24] seems to be that the triple sine function, or some modification thereof, has

the right properties to encode the perturbative topological string free energy as well as its

non-pertubative corrections. It would be interesting to understand better the relationship

between our proposal and the approach in [24].

Finally, it would be interesting to study non-perturbative effects in more general Chern-

Simons-matter theories. One obvious, simple generalization of this work is ABJ theory [53],

but one could consider the more general class of N = 3 theories which can be formulated

as free Fermi gases [8].
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A Quantum A-periods from the TBA system

In this appendix, we improve the analyis of the TBA system done in [12] in order to extract

the coefficients a`(k) in closed form. As shown in [12], the TBA equations (2.39) can be

written as

1 + η2(x) = R+

(
x+

πik

2

)
R+

(
x− πik

2

)
exp

{
U

(
x+

πik

2

)
+ U

(
x− πik

2

)}
,

−zR+(x) = η

(
x+

πik

2

)
+ η

(
x− πik

2

)
.

(A.1)

where U(x) is given by (2.40). We can now plug the second equation into the first one and

obtain a single equation for η, as in [11]. If we introduce the variables

X = ex, q = eπik, λ =
1

z2
, (A.2)

as well as

η̃ = iη, (A.3)

this equation reads,

1− η̃2(x) + λ [η̃ (qX) + η̃ (X)]
[
η̃
(
q−1X

)
+ η̃ (X)

] (
X +X−1 + q1/2 + q−1/2

)
= 0. (A.4)

This can be solved in a power series in λ,

η̃(X) =
∑
n≥0

ηn(X)λn = 1 + 2
(
X +X−1 + q1/2 + q−1/2

)
λ+ · · · (A.5)

From the equality [12]

1

4πk

∫ ∞
−∞

R+(x) dx =
∑
`≥1

[(
2πi log z − π2

)
`a`(k) + πi (`b`(k)− a`(k))

]
z−2`−1 (A.6)

it follows that the coefficient a`(k) can be obtained from the real part of the integral of

R+(x), which can be computed by contour deformation as a residue at infinity. Since

R+(X) = −iλ1/2ω(X), (A.7)

where

ω(X) = η̃(q1/2X) + η̃(q−1/2X) =
∑
n≥0

ωn(X)λn, (A.8)
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we conclude that

ka`(k) = − 1

2π2`
ResX=0 ω`(X). (A.9)

This gives a very efficient way to compute the coefficients a`(k) appearing in the grand

potential J(µ, k), which can then be compared to the quantum A-periods of local P1× P1.

B Quantum mirror map

As we have shown in section 3.3, the relation between µ and µeff can be interpreted as a

quantum mirror map. As discussed in [16], when one inverts the the relation between µ

and µeff as

µ = µeff +
1

C(k)

∞∑
`=1

e`(k)e−2`µeff , (B.1)

one finds that the coefficients e`(k) take a simpler form than the original a`(k). We will

see that this map can be expressed in terms of some integer invariants.

Using the quantum A-period in (3.60), we find that the quantum mirror map of local

P1 × P1 (3.59) has a multi-covering structure

1

2
log

QI
zI

=

∞∑
n=1

∑
d1,d2

∑
j

(−1)(n−1)dN d1,d2
j χj(q

n)
(Qd1

1 Q
d2
2 )n

n
, (B.2)

where d = d1+d2 denotes the total degree andN d1,d2
j are integer numbers. This implies that

the factor (QI/zI)
1
2 appearing in the open flat coordinate, which represents the instanton

corrections to the disk amplitude [54], has the following product expression(
QI
zI

) 1
2

=
∏
d1,d2

∏
j

j∏
m=−j

(
1 + (−1)d−1q2mQd1

1 Q
d2
2

)(−1)d−1N d1,d2j
. (B.3)

The integers N d1,d2
j might be interpreted as a refined version of the number of BPS states in

the presence of a D-brane domain wall [54], in the NS limit. These invariants are symmetric

in d1, d2: N d1,d2
j = N d2,d1

j . The first few non-zero values are given by

N 1,n
j = δj,n

2
(n ≥ 0), N 2,2

1 = 1, N 2,2
3
2

= 4, N 2,2
2 = 1. (B.4)

We also observed that Md1,d2(q) =
∑

j N
d1,d2
j χj(q) can be factorized by χ d−1

2
(q) and the

remaining part has an interesting pattern of coefficients:

M2,2 = χ 3
2
(χ 1

2
+ 4χ0), M2,3 = χ2(χ1 + 4χ 1

2
+ 8χ0),

M2,4 = χ 5
2
(χ 3

2
+ 4χ1 + 8χ 1

2
+ 12χ0), M3,3 = χ 5

2
(χ2 + 4χ 3

2
+ 12χ1 + 24χ 1

2
+ 30χ0).

(B.5)

Here we have suppressed the argument q.

By specializing to the ABJM case Q1,2 = q±
1
2 e−2µeff , we find that e`(k) in (B.1) is

written in terms of the integer invariants N d1,d2
j as

1

C(k)
e`(k) =

∑
d|`

∑
d1+d2=d

∑
j

d

`
(−1)`−dN d1,d2

j χj(q
`
d )q

`(d1−d2)
2d . (B.6)
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