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Abstract

The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau

manifolds and the resulting quantum geometry is studied from a non-perturbative

perspective. The quantum differential and thus the quantum periods exhibit Stokes

phenomena over the combined string coupling and quantized Kähler moduli space. We

outline that the underlying formalism of exact quantization is generally applicable to

points in moduli space featuring massless hypermultiplets, leading to non-perturbative

band splitting. Our prime example is local P1×P1 near a conifold point in moduli space.

In particular, we will present numerical evidence that in a Stokes chamber of interest

the string based quantum geometry reproduces the non-perturbative corrections for

the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong

coupling found in the previous part of this series. A preliminary discussion of local P2

near the conifold point in moduli space is also provided.
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1 Introduction

This work constitutes the third part of our series [1, 2] on the non-perturbative com-

pletion of the Nekrasov-Shatashvili (NS) limit of four dimensional gauge theories with

eight supercharges in the Ω-background, β-ensembles and refined topological strings.

While we discussed mainly β-ensembles (at hand of the cubic) in the first part [1],

gauge theories (using SU(2) as illustrative example) in the second part, in this work

we move on to refined topological strings on toric Calabi-Yau manifolds.

The unifying theme of this series is the underlying perturbative (semi-classical)

quantum geometry (in the sense of [3, 4]), completely describing the NS limit of the

above theories. The models discussed in [1, 2] are on the level of the quantum geometry

essentially equivalent to well-known and simple one dimensional quantum mechanical

systems. Therefore the by now extensive knowledge about exact quantization of such

systems (see [5, 6] and references therein) was harvested in [1, 2] to infer the non-

perturbative completion of the models under consideration, which lead to the notion

of non-perturbative quantum geometry. Another notable work about the SU(2) case

along similar lines is [7].

On a more technical level, the cubic β-ensemble and SU(2) gauge theory have two

properties in common. Firstly, both models feature two underlying moduli, out of

which one is analytically continued to negative values. In case of the β-ensemble the

moduli are the number of eigenvalues localized in each of the two cuts, and for SU(2)

the two Cartans (vector multiplet moduli ai with a1 = −a2). Secondly, both models

feature massless hyper- or vector-multiplets at the point of expansion considered (in

the case of β-ensembles these correspond to the gaussian normalization factors). As

we will make more explicit in this work, the crucial properties for the non-perturbative

completion are the massless multiplet contributions to the quantum B-periods and the

analytic continuation thereof. This tells us that the same approach should be viable

to toric Calabi-Yaus, at least at particular points in moduli space featuring massless

states (as well as for specific phases of the moduli and ~ in the complex plane). The

prime example is the conifold point in moduli space.

In detail, the massless multiplet contribution in the NS limit possesses a log Γ-

function term depending on the moduli combination t/~, where t is the flat coordinate

near the point of expansion. Under the analytic continuation t/~ → −t/~ the quan-

tum B-period picks up an infinite series of non-perturbative corrections in powers of
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ζ = e−
iπt
~ , due to Eulers reflection formula for the Γ-function. One might see these

corrections as an NS analog of the so-called A-cycle instanton contributions, which

have been extensively discussed for topological strings and matrix models in [8].

The perturbative quantum geometry is based on the WKB solution of the wave

equation arising from quantizing the underlying geometry (algebraic curve). It was

observed in [1, 2] that (at least for the models under consideration) the exact quan-

tization condition, which essentially leads to normalizable bound or resonance state

wave-function solutions, is equivalent to the NS quantization condition [9]

∂tiW(t, ~) :=
ΠBi

(t, ~)

~
= 2πi ni , (1.1)

where ΠB denotes a quantum B-period, ni ∈ Z and W is the NS free energy. One may

also see the NS condition simply as the requirement that the wave-function does not

pick up a phase under monodromy along a B-cycle.

The NS (exact quantization) condition constrains the moduli of the system, as the

ti have to take particular values such that (1.1) is satisfied. To take an example that

has been extensively discussed in the previous parts of this series: if only a single

effective modulus is present, the corresponding quantum A-period becomes quantized

(the usual Bohr-Sommerfeld condition), and also receives non-perturbative corrections

in powers of ξ = e−
cX
~ (where cX is some constant), i.e., t ∼ ~N + O(ξ) (N is an

integer), at a point in moduli space with massless hypermultiplets present. Inserting

the corrected t (which is the non-perturbatively flat coordinate) into the dual B-period,

we infer that

ζ → (−1)N(1 +O(ξ)) .

Hence, exact quantization ensures that both the A- and B-period are well-defined

trans-series in ξ.

There is one important point which has not been explicitly mentioned in the pre-

vious parts of this series, namely that there is a sign degree of freedom in exact quan-

tization, i.e., the wave-function may also behave anti-periodic under monodromy. In

particular, this leads to the band splitting of energy levels E → E±, where the levels

differ by the non-perturbative terms in powers of ξ. As the NS quantization condition

only dictates the presence of one of the two bands (integer quantization), one might ask

if the other band (half-integer quantization) is a physically viable solution, or merely

a mathematical curiosity. We leave the answer to this question to follow-up works and

in the rest of this paper we will consider both signs in order to be fully general.
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The main purpose of the present work is to give some deeper insights into the non-

perturbative quantum geometry introduced in [4, 1, 2], which encodes the NS limit of

physical theories. In particular, we find it important to stress that the quantum curves

are actually complex. One implication is that taking a single real slice of the geometry

is usually not sufficient to obtain a complete picture. This is already very clear in the

case of the deformed conifold. Depending on how we take the real slice, and at what

point we sit in the combined ~ and complex structure moduli space, we either obtain

the 1d quantum theory of the harmonic oscillator or the parabolic barrier, which are

fundamentally different. In reality, the complex quantum theory interpolates between

both. This means that the wave-function solutions, and thus the quantum differential,

will have phase transitions between a bound state and a resonance solution, depending

on where we sit in the combined moduli space. In particular, the presence of non-

trivial non-perturbative effects depends on which solution we consider. This insight

is key to understanding how to reproduce the non-perturbative completion of SU(2)

gauge theory developed in [2] via geometric engineering. Furthermore, normalizability

of the wave-function shows a richer solution set in the complex setting, since we have

a choice of path and singularities to connect (the path between two singularities on

which to normalize the wave-function). In this work we will only give a rough but solid

sketch of the underlying fundamental story, leaving the task to working out a detailed

formalisation to future research.

The outline of this paper is as follows: In the next section we will briefly review the

formalism of quantum geometry along the lines of [4, 2], with special emphasis on the

occuring Stokes phenomena as the quantum modulus (to be defined in section 2) and

the coupling constant ~ are varied. In section 3 we will discuss the square potential

(geometrically corresponding to the deformed conifold), which is the core example from

which the essential aspects of the non-perturbative completion can already be inferred.

In particular, we will explain in this section why the formalism of [1, 2] extends to toric

Calabi-Yaus featuring a conifold singularity in their B-model complex structure moduli

space and beyond. In section 4 we will take a first detailed look at a toric Calabi-Yau,

namely local P1×P
1. It is well known that this geometry engineers a pure SU(2) gauge

theory [10]. Therefore, one would expect to be able to reproduce the non-perturbative

corrections found for SU(2) in [2] from this string geometry. We will show numerically

that this is indeed the case, by chosing a suitable wave-function basis. Furthermore,

we will present evidence that even away from the gauge theory limit non-perturbative
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effects are present and lead to band splitting for this wave-function basis. In contrast,

the other possible basis (harmonic oscillator expansion) is not corrected but is instead

calculable order by order via WKB. The final section, section 5, is used to present some

preliminary results for local P2. In appendix A some more details about the numerical

techniques invoked in this work are given.

2 Quantum Geometry

Consider an algebraic curve

Σ : f(x, p) = 0 ,

in C∗ × C∗, not necessarily polynomial. We should think about the curve as being a

fibration over the complex structure moduli space M, i.e.,

Σ → M .

We can always arrange via appropriately transforming the curve that one modulus is

separated. We will refer to this modulus as the quantum modulus, denoted in the

following as E. The perhaps simplest example is the curve

p2 + x2 = E , (2.1)

with the quantum modulus E ∈ M = C.

Canonical quantization of Σ amounts to promoting the coordinates x and p to

anti-commuting operators [x, p] 6= 0. In general we take

[x, p] = i~ = i |~|eiθ ∈ C .

Hence, p ∼ ∂x and the curve turns into a differential (or, if exponentials are involed,

difference) operator D~ eigenvalue problem with solutions Ψ(i)(x) and eigenvalues given

by the quantum modulus. Note that in this work we only consider curves which yield

under quantization an operator of second order.

Differentials dS on Σ can be defined via

dS ∼ ∂x logΨ(x) , (2.2)

where Ψ denotes a particular linear combination of the solutions (wave-functions), i.e.,

Ψ(x) :=
∑

i ciΨ
(i)(x). Possible linear combinations are constraint by the requirement
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that Ψ decays fast enough at infinity. However, as we are in the complex setting, a richer

structure of (normalizable) solutions emerges than in ordinary quantum mechanics.

This is because in requiring
∫

C
dxΨ(x)Ψ(x) < ∞ , (2.3)

we have the freedom to tune to a suitable contour C connecting different infinities of

Σ, instead of being constraint to the real line. In particular, in general there will be

multiple solutions connecting different pairings of inequvialent singularities.

A quantum curve is defined as the classical curve Σ equipped with one of the

differentials, i.e., a pair (Σ, dS). Periods Π can then be obtained as usual via integrating

over closed cycles,

Π =

∮
dS .

Note that consistent solutions Ψ and so differentials dS may not exist for all points in

M. Therefore the moduli space M~ of the quantum curve (Σ, dS) is in general only a,

perhaps discrete, subspace of M, i.e., M~ ⊂ M. More specifically, usually consistent

Ψ require a discrete and ~ dependent quantum modulus. One should view, both, the

quantum curve and the reduced moduli space M~ as a fibration over C, the value ~

the commutator takes. Pictorially,

(Σ, dS) M~

C

. (2.4)

Generally, the quantum curve (Σ, dS), or more specifically the differential dS, is not

smooth, both, under variations of the quantum modulus and of ~, i.e., exhibits phase

transitions (Stokes phenomena). The reason is that the underlying consistent linear

combination of solutions may jump under varying the moduli (including ~). We will

illustrate this fact in detail at hand of an explicit example in section 3.

In general, we do not know the wave-functions and so the quantum differentials

exactly, but rather only a WKB approximation for |~| small of the solutions of D~, i.e.,

Ψ±
WKB(x) ∼ e±

1
~

∫ x dS , (2.5)

such that Ψ ∼ c+Ψ
+
WKB + c−Ψ

−
WKB. Hence, the differential is expanded for small |~|,

dS =
∞∑

n=0

dS(n)
~
n ,
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and so the periods, leading to a semi-classical approximation, which is usually an

asymptotic expansion. Note that the rationale for the definition of the differential dS

(2.2) can be seen as rooted in the WKB Ansatz for Ψ.

The WKB Ansatz introduces an additional complication, as in the WKB approx-

imation the linear combination corresponding to a consistent Ψ may not only jump

under varying E and ~, but generally as fibration over Σ. However, one can infact

use this property to derive a condition on the moduli, as a consistent solution requires

that under analytic continuation over Σ a wave-function decaying at one infinity in the

complex plane continues to a decaying wave-function at another infinity. Essentially,

this is what exact quantization is about, i.e., finding bound states or resonances.

Surprisingly, as first found and used in [1], for certain models of interest with one

effective modulus, the exact quantiziation condition is equivalent to the Nekrasov-

Shatashvili quantization condition ((1.1) exponentiated) [9]

φ := e
ΠB(E)

~ = 1 . (2.6)

Physically, the NS condition ensures that we sit in a supersymmetric vacuum of the

corresponding effective 2d theory. It was further proposed in [1] to use this condition in

general, including for toric Calabi-Yaus, to infer non-perturbative information, simply

because (2.6) can only be satisfied if the quantum modulus E receives non-perturbative

corrections. Note that it is clear from (2.5) that φ corresponds to the phase of the WKB

wave-function under monodromy along the B-cycle.

In exact WKB (2.6) is however not the unique condition for the existence of bound

states/resonances, as φ = −1 is another possibility. At the time being, we do not

understand the meaning of φ = −1 in the effective 2d theory, i.e., if half-integer

values for the derivative of the effective superpotential (that is ni ∈ Z/2 in (1.1)) form

consistent solutions which have been overlooked in the literature or not (cf., [11]).

However, we know that mathematically both boundary conditions are consistent (cf.,

[12] and references therein), and in particular lead to energy band splitting,

E → E± .

This can be verify numerically, for instance for the Mathieu equation and thus SU(2)

gauge theory in the NS limit. Therefore, we impose in general as quantization condition

φ = ±1 in the following sections.

Note that in general we do not know the exact Ψ (or ΨWKB) as a function of the

complex structure moduli, but rather expansions thereof at particular points in the
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moduli space M~. The different expansions can be obtained via reparameterizations

of the curve Σ (as we will illustrate for some examples below) and hence the WKB

expansions at different points are related by the underlying modular group of the curve.

However, we like to stress here that the physical nature of the non-perturbative effects,

ensuring that (3.8) holds, change over moduli space, see [2] and in particular [7].

3 Deformed conifold

Exact square potential

Consider the curve (2.1). It is instructive to introduce an additional parameter ω and

take as curve p2 + ω2x2 = E. Quantization gives the operator

D~ :
∂2

∂x2
− κ2x2 +

E

~2
,

where we defined for convenience the parameter

κ :=
ω

~
.

The above operator leads to Weber’s equation with the two independent solutions given

in terms of the parabolic cylinder functions D(N, x) by

Ψ+(x) = D

(
1

2

(
E

~ω
− 1

)
,
√
2κ x

)
,

Ψ−(x) = D

(
−1

2

(
E

~ω
+ 1

)
, i
√
2κx

)
.

(3.1)

In general Ψ = c+Ψ
+ + c−Ψ

− is not square-integrable for arbitrary E
~ω

∈ C and

for arbitrary integration contours connecting infinities in the complex plane. However,

square integrable solutions can be found as follows. For N ∈ N the cylinder functions

reduce to the Hermite polynomials HN(x), i.e.,

D(N, x) =
1√
2N

e−
x2

4 HN

(
x√
2

)
,

which satisfy HN (−x) = (−1)NHN(x) and the orthogonality relation
∫ ∞

−∞
dx e−x2

Hm(x)Hn(x) = 2nn!
√
π δnm .

In particular we have
∫∞
−∞ dx e−x2|Hm(x)|2 < ∞. Hence, for ~ω ∈ R+ such that

E = ~ω(2N + 1) > 0 with N ∈ N we have a square integrable solution (over the real
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line) ΨE>0 ∼ Ψ+, with associated differential dSE>0 fibered over a discrete subspace

M~ ofM. The normalization can be fixed via the above orthogonality relation, yielding

ΨE>0(x) =
1√

2NN !

(κ
π

)1/4

e−
κx2

2 HN

(√
κx

)
. (3.2)

These are just the usual bound state solutions of the harmonic oscillator.

Additionally, we have another solution set with ~ω ∈ R+ in terms of the Hermite

polynomials for negative real energies E = −~ω(2N +1) < 0, where ΨE<0 ∼ Ψ− is the

wave-function. The normalized solution reads

ΨE<0 =
1

iN
√
2NN !

(κ
π

)1/4

e
κx2

2 HN

(
i
√
κx

)
.

As these solutions are not square-integrable on the real line, they are usually discarded

as unphysical in ordinary quantum mechanics. As we are here in the complex setting,

we are less constraint. For instance, ΨE<0 is square integrable instead on the imaginary

axis. More generally, in the Stokes chamber with |Imx| > |Rex|.
We conclude that there is a phase transition (Stokes phenomena) under analytically

continuing the modulus E through zero. That is, the quantum differential and so the

quantum periods jump. Up to normalization we can also rotate the solutions via κ

(and so ~) into each other, i.e.,

ΨE<0 ΨE>0
κ → −κ

. (3.3)

So far, we considered ~w and so κ to be real. However, we can also rotate κ into the

complex plane. For instance, rotating κ → iκ we obtain the solutions of the inverted

harmonic oscillator (parabolic barrier), which we will denote as Ψ∗ and which have

imaginary energy. Indeed, comparing with the solutions given for instance in [13], we

infer that up to normalization

ΨE<0 ΨE>0

Ψ∗
iE>0 Ψ∗

iE<0

κ → −κ

κ → iκ κ → iκ

κ → −κ

. (3.4)

Again, in the complex plane these solutions turn normalizable, as we can adjust the

contour accordingly. More generally, for arbitrary complex κ the two fundamental
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solutions Ψ+ and Ψ− are normalizable on the (discrete) line E = ±~2κ(2N +1) ⊂ M.

In particular, we have that

Ψ− = Ψ+(κ → −κ) .

The integration contours for (2.3) depends on the value κ takes. Fixing |Reκ| > |Imκ|,
the solution Ψ+ can be integrated over C+ = [−∞,∞] while Ψ− over C− = [−i∞, i∞].

Under varying the modulus κ and/or E we encounter Stokes phenomena switching

between Ψ±.

We conclude that in this example the quantum differential dS has indeed a non-

trivial phase structure over the combined moduli space of ~ and E.

WKB square potential

Let us now consider the same curve (2.1) in the WKB approximation for the quantum

differential. It is convenient to go to a point in the ~ moduli space such that we have

the quantization condition [x, p] = −~ with ~ ∈ N. The leading order of the differential

dS can be easily inferred from the WKB Ansatz (2.5) to be

dS(0) = i
√
E − x2 .

The curve has branch points at x = ±
√
E and therefore we have an A-period

ΠA =
1

πi

∫ √
E

−
√
E

dS =
E

2
+O(~) ,

and a dual B-period

ΠB = 2

∫ Λ

√
E

dS =
E

2

(
1− log

(
E

4Λ2

))
− Λ2 +O(~) ,

where we introduced a cutoff Λ, which will play an important role. In detail, keeping

Λ finite simulates general geometries, as we can approximate the potential barrier

between two vacua by a finite inverse square potential.

The higher order corrections to the periods can be inferred for instance as in [4]

via deriving operators D(n) with Π(n) = D(n)Π(0). We just state the result here. ΠA as

given above is perturbatively exact, while the first few orders of ΠB read

ΠB = −Λ2 +
E

2

(
1− log

(
E

4Λ2

))
− 1

12

~2

E
− 7

360

~4

E3
− 31

1260

~6

E5
+O(~8) .
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Note that the cutoff Λ only enters at order ~0. Comparing with the asymptotic expan-

sion of log Γ for large arguments, we infer that infact ΠB corresponds thereto, i.e.,

1

i~
ΠB(E) = log Γ

(
1

2
+

iE

2~

)
+

E

~
log

(
Λ

~

)
− Λ2

i~
− 1

2
log 2π , (3.5)

is the exact B-period.

The phase transition discussed above follows under varying iE
~

into the negative

domain of the complex plane from Euler’s reflection formula for the Γ-function

Γ(z)Γ(1 − z) =
π

sin(πz)
. (3.6)

For instance, under E → −E we have

ΠB(−E) = ΠB(E)− 2iE log

(
Λ

~

)
+ i~ log cos

(
πiE

2~

)
− i~ log π

= ΠB(E)− 2iE log

(
Λ

~

)
+

πE

2
− i~

∞∑

k=1

e−
kπE
~

k
− i~ log 2π .

(3.7)

We observe that the B-period picks up an infinite series of non-perturbative corrections

in powers of ζ := e−
πE
~ under the analytic continuation. Note that these terms are

independent of Λ.

The NS quantization condition (1.1) can be satisfied for ΠB(−E). In detail, follow-

ing the previous parts of this series [1, 2], for E < 0 we impose the exact quantization

condition (uniqueness of the wave-function)

e
ΠB(−E)

i~ = ±1 , (3.8)

where E denotes a new coordinate, which is non-perturbatively flat, i.e.,

E = E + Enp .

Enp denote the non-perturbative corrections to the perturbatively flat coordinate E.

Inserting (3.5) into (3.8), defining an instanton counting parameter

ξ := e−
Λ2

i~ , (3.9)

the exact quantization condition turns into

cos
(
πiE
2~

)

π
= ± 1√

2π Γ
(
1
2
+ iE

2~

)
(
Λ

~

)−E/~

ξ ,
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where we made use of Euler’s reflection formula. The above relation can be solved via

expanding Enp into powers of ξ such that

E± = E +
∞∑

n=1

E
(n)
±,np ξ

n .

The non-perturbative contributions E
(n)
±,np then can be obtained order by order in ξ, as

in [1, 2]. For instance, at order ξ0 we recover the usual Bohr-Sommerfeld quantization

condition

ΠA =
E

2
= i~(2N + 1) +O(ξ1) .

Note that for Λ → ∞ we have ξ → 0 and hence the corrections to the A-period vanish,

i.e., E = E. This is in accord with our exact discussion about the square potential

above.

Finally, we evaluate ΠB at the non-perturbatively flat coordinate −E . We see that

in fact ΠB turns into a trans-series in terms of the original coordinate E, i.e.,

ΠB(−E) = ΠB(E +O(ξ))− 2i(E +O(ξ)) log

(
Λ

~

)
− i~ log π − ~π +O(ξ) .

Hence, the exact quantization leads to a well-defined trans-series expansion of, both,

the A- and B-period in terms of ξ.

Toric Calabi-Yaus at a conifold point

It is well known that the free energy of the topological string on a deformed conifold

can be obtained from a Schwinger integral due to integrating out a hypermultiplet

which becomes massless [14, 15]. Similarly, the contribution of a single massless hy-

permultiplet to the free energy in the Ω-background, and thus the refined topological

string on a deformed conifold, is governed by the Schwinger integral (see for instance

[16])

Fsing(t) =
1

4

∫ ∞

δ

dx

x

e−tx

sinh
(
ǫ1x
2

)
sinh

(
ǫ2x
2

) , (3.10)

where δ → 0 is a cutoff. The NS limit of the corresponding B-period is easily taken,

yielding

∂tWsing(t) := lim
ǫ2→0

ǫ2 ∂tF(t) = −1

2

∫ ∞

δ

dx

x

e−tx

sinh
(
~x
2

) = −
∫ ∞

δ

dx

x

e−(t−~/2)x

e~x − 1
,
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where we set ~ := ǫ1. Integrals of this kind have been discussed in the NS context

before in [17, 1], from which we can infer that

∂tWsing(t) = −~

δ
− t

~

(
log

δ

~
+ γ

)
− log Γ

(
1

2
+

t

~

)
+

1

2
log 2π ,

where γ denotes the Euler-Mascheroni constant. The singular terms for δ → 0 are an

artifact of the fact that the Schwinger integral (3.10) commonly used in the literature

is not properly regularized. Therefore we simply drop these singular terms such that

we arrive at

∂tWsing(t) = − t

~

(
log

1

~
+ γ

)
− log Γ

(
1

2
+

t

~

)
+

1

2
log 2π .

Note that this result can also be derived using the better behaved expression for the

multiplet contribution derived in the context of gauge theory in [18, 19], which yield

precisely the above finite expression (see appendix C of [2]), up to the term proportional

to γ. We suspect that this term is another artifact of the improper regularization of

(3.10), and therefore drop it as well. Taking the exponential yields

e−∂tWsing(t) =
1√
2π

(
1

~

) t
~

Γ

(
1

2
+

t

~

)
.

The above result is important, because the B-model complex structure moduli space

of toric Calabi-Yaus possess in general conifold points, where a deformed conifold sin-

gularity emerges. The singular terms of the refined topological string expanded near

such points in moduli space are precisely captured by the Schwinger integral of inte-

grating out a massless hypermultiplet in the Ω-background given in (3.10). However,

additional regular terms will be present due to the embedding into the Calabi-Yau,

i.e., in general we have

∂tW(t) = ∂tWsing(t) + ∂tWreg(t) ,

where essentially ∂tW = ΠB

~
(cf., [4]). Usually, the regular terms at the conifold point

in moduli space go like

∂tWreg(t) =
cX
~

+ Ap(t) ,

where cX refers to the leading non-singular term, which is generally a constant at the

conifold point in moduli space and Ap refers to the remaining regular contributions.
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Hence, from the previous discussions we immediately infer that

e−∂tW(t) =
1√
2π

(
1

~

) t
~

Γ

(
1

2
+

t

~

)
e−Ap(t) ξ ,

where we defined as instanton counting parameter

ξ := e−
cX
~ .

As the embedding of the conifold singularity into a Calabi-Yau provides a cutoff, this

result is equivalent to the pure deformed conifold discussed earlier, with cutoff Λ2 =

∂tWreg. Under the analytic continuation t/~ → −t/~ the free energy W(t) acquires

non-perturbative corrections due to Euler’s reflection formula (3.6), i.e.,

∂tWsing(−t/~) = ∂tWsing(t/~) + ∂tWnp(t/~) . (3.11)

We can impose the exact quantization condition, and calculate as in the previous parts

of this series non-perturbative corrections to the flat coordinate t at the conifold point

in moduli space, order by order in ξ.

Beyond conifold points

It is clear that the formalism extends to other points in moduli space and perhaps even

beyond the NS limit. The technical details and physical nature of the non-perturbative

effects will differ to some extend, see in particular [7]. However, the key underlying

concepts, namely the analytic continuation of the moduli in the complex plane, the

occuring phase transitions under which the B-period picks up non-perturbative correc-

tions and the need to introduce a non-perturbatively flat coordinate does not change.

It is instructive to consider again the Schwinger integral (3.10). Under ~ → i~ we

have that

sinh → i sin ,

and thereby obtaining poles on the integration axis. Similar as in Schwinger’s original

work, deforming the contour to avoid the poles we pick up in the asymptotic expansion

a non-perturbative contribution

∂tWnp(t) =
π

4
Resx= 2πn

~

e−tx

x sin
(
~x
2

) +
π

2

∞∑

n=1

Resx= 2πn
~

e−tx

x sin
(
~x
2

) . (3.12)
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Because δ → 0 we also take along the pole at zero, however, with an additional factor

of 1/2 as we should only correct by a quarter circle at zero. Calculating the residue

yields

∂tWnp(t) = − tπ

2h
+

1

2

∞∑

n=1

(−1)n

n
e−

2πnt
~ = −1

2
log cos

(
πt

~

)
− 1

2
log 2 .

Up to some constant this is precisely the non-perturbative term of the log Γ-function on

the Stokes line, cf., [20, 21]. The underlying important relation is the transformation

(3.11) under varying the moduli t and ~. Since a slight modification of the Schwinger

integral captures the (refined) topological BPS expansion at the large volume point in

moduli space, in general we will pick up an additional Wnp under the analytic contin-

uation (more precisely from the tree-level part, as discussed extensively for example in

[22]). Enforcing the NS (or exact) quantization condition (1.1), then leads to a non-

perturbatively corrected flat coordinate and so to a trans-series expansion of both the

A- and B-period. This is the story more or less already envisaged in our first part [1]

of the current series. However, we leave the general details at the large volume point in

moduli space still to future work, and instead consider here toric Calabi-Yau examples

at the conifold point in some more detail, thereby learning important lessons.

4 A first look at a toric Calabi-Yau

Let us consider the classical curve

Σ : −1 + ex + ep + z1e
−x + z2e

−p = 0 . (4.1)

This geometry corresponds to the mirror curve of local P1 ×P1. The parameterization

used is convenient, as we can directly extract via expansion for small zi the perturbative

(quantum) periods at the large volume point in moduli space, cf., [4].

Let us however change parameterization of the curve as follows. We redefine

x → ix+
1

2
log z1 , p → p+

1

2
log z2 .

The curve turns into

2λ cos(x) + ep + e−p = E , (4.2)

where we defined λ := i
√

z1
z2

and E := 1√
z2
. Note that at z1 = z2 we have λ = i and

recover (up to the reparameterization x → ix) the curve used for instance extensively
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in [26]. The large volume regime corresponds to E ≫ 1 with λ ∼ i . For us, it will be

important to keep explicitly λ as a free parameter. The quantization,

[x, p] = i~ , (4.3)

amounts to lift to a difference operator

ep + e−p → D = ei~∂x + e−i~∂x ,

such that we obtain the eigenvalue problem

(D + 2λ cos(x)) Ψ(x) = EΨ(x) . (4.4)

We will refer to the above equation as the quantum Mathieu equation, as in the classical

limit ~ ≪ 1 we have that

DΨ(x) = Ψ(x− i~) + Ψ(x+ i~) = 2Ψ(x)− ~
2Ψ′′(x) +

~4

12
Ψ′′′′(x) +O(~6) , (4.5)

and so (4.4) turns at leading order in ~ into a modified Mathieu equation

−Ψ′′(x) +
2λ

~2
cos(x)Ψ(x) +O(~2) =

(E − 2)

~2
Ψ(x) . (4.6)

The canonical form of the Mathieu equation,

(
∂2
x + α− 2q cos(2x)

)
Ψ(x) = 0 , (4.7)

can be obtained via redefining

x → 2x , λ → ~
2

4
q , E → 2 +

~
2

4
α . (4.8)

Note that we have λ real and E > 0 for the region in complex structure moduli space

with z1 < 0 real.

Mathieu energy spectrum

The perturbative energy spectrum of the Mathieu equation and thus of (4.6) can be

obtained for instance by making use of the recursive formula of [23]. For q = 4λ
~2

≫ 1,

the first few terms of the asymptotic expansion reads

E = 2(1− λ) + (2N + 1)
√
λ~− 1 + 2N + 2N2

16
~
2 − 1 + 3N + 3N2 + 2N3

256
√
λ

~
3 +O(~4) .

(4.9)
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The expansion can be easily obtained to any desired order (for a brief summary, see

appendix B of [2]).

The for us here relevant fact is that the asymptotic expansion (4.9) receives non-

perturbative corrections, inducing a split of the energy bands E → E±. This can

be verified via computing the true energy spectrum of the classical Mathieu equation

numerically, as is briefly sketched in appendix A.1.

The Mathieu equation completely describes the Nekrasov-Shatashvili limit of four

dimensional N = 2 SU(2) gauge theory in the Ω-background (see [24, 2, 7] and refer-

ences therein). The limit ~ → 0 keeping

α =
4(E − 2)

~2
, q =

4λ

~2
,

fixed therefore corresponds to an effective four dimensional field theory limit of (4.4)

(in the sense of geometric engineering). Phrased differently, for ~ sufficiently small, the

difference between the energy spectrum of the quantum Mathieu equation (4.4) and

the classical Mathieu equation (4.6) becomes negligible.

In particular, we learned in [2] (see also [7]) that this gauge theory has an intrin-

sicate non-perturbative structure inherited from the Mathieu equation. For instance,

in the regime q ≫ 1 in moduli space instanton tunneling generate non-perturbative

corrections to the quantum periods, measured by an instanton counting parameter ξ,

which depends on the dynamical scale of the gauge theory (the dynamical scale Λ re-

lates to our λ parameter as λ ∼ Λ2). The precise instanton counting parameter can

be estimated as follows. From exact quantization we know that the instanton action

is given by −Ap

~
with Ap referring to the leading (perturbative) term of the B-period.

The Matone relation [25] relates Ap to the non-flat coordinate E, i.e.,

1

~

∂E

∂N
∼ −c

√
λ
∂Ap

∂
√
λ
,

with c some constant. More precisely, in the normalization of [2] we have c = 1/4.

(The origin of the ~ on the left hand side lies in the quantization condition aD = ~N

for the flat coordinate aD.) Hence,

ξ = e−
√

λ
c~ = e−

√
q

2c . (4.10)

More details can be filled in from [2]. As it should be, the instanton parameter becomes

weaker for large λ and vice versa. Therefore we can use the extra parameter λ to keep

ξ relatively large, while keeping ~ small.
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Quantum Mathieu energy spectrum

In particular, via tuning λ in the quantum Mathieu equation (4.4) we can achieve that

ξ ≫ ~
2 ,

so that even for very small ~, where we can compare to the classical Mathieu equa-

tion, the non-perturbative corrections are stronger than the “stringy” perturbative

corrections. With (4.10) we infer that this is the case for

√
λ ≪ −1

2
~ log ~ . (4.11)

One might wonder why we make the effort to obtain the classical Mathieu energy

spectrum from (4.4). The reason is that we can fix in this way a good wave-function

basis to expand the solutions of (4.4) into, as the classical results should be reproduced.

Naively, as the leading non-constant term in ~ of (4.9) is given by the quantum harmonic

oscillator energy one might think that the harmonic oscillator wave-functions Ψ are a

good basis to expand into. For instance such an oscillator basis has been used in

[26] to calculate the energy spectrum of (4.4) at λ = i numerically (corresponding to

λ = 1 under x → ix). However, this is only part of the story. We learned in section

3 that in the complex setting we have in fact two different consistent solutions Ψ±,

and which one we have to use depends on where we sit in moduli space. However, the

precise identification depends on parameterization used. Here, due to the redefinition

x → ix, we actually arranged that Ψ+ is consistent for z1 < 0 and Ψ− for z1 > 0. The

two solutions Ψ± are fundamentally different, as is as well clear from section 3. One

constitutes an expansion into bound states, while the other into resonances. The latter

being more interesting from a non-perturbative point of view.

In our parameterization we can easily calculate the energy spectrum of (4.4) nu-

merically. For the readers convenience some more details of the numerical scheme used

are recalled in appendix A.2. Note that the rate of convergence is relatively low, for

example, we plotted in figure 1 (left) the ground and first excited state value versus

matrix size used in the numerical computation for the point (~ = 0.05, λ = 0.001) in

parameter space.

Let us take a more detailed look at this point in parameter space. At matrix size

2000 × 2000 we obtain E0 = 1.999346, and E1 = 1.999347 such that ∆E10 ∼ 10−6.

(We only display the first six subdecimal digits.) The string corrections are suppressed

by ~4 ∼ 6 × 10−6 ((4.6) has to be multiplied by ~2, therefore ~4). Hence the observed
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Figure 1: Left: The ground (lower blue dots) and first excited state energy of (4.4) for

~ = 0.05 and λ = 0.001 as a function of the matrix size N ×N used for numerical evaluation

(with step size 100). Right: The first 30 energy levels of (4.4) at N = 2000

first two levels actually both correspond to the ground state of the classical Mathieu

equation, which we calculate numerically to be Ec
0 = 1.999346. The classical Mathieu

equation gives for the first excited state Ec
1 = 1.999461 such that ∆Ec

10 ∼ 10−4 and

ΣEc
10 = 1.999403, where we defined Σ as the mean operator acting on the two energy

levels. We have ~2e−
2
√

λ
~ ∼ 10−4 and thus the gap ∆Ec

10 is of the expected non-

perturbative order. We easily verify that the perturbative energy (4.9) (we are at

q = 1.6) yields for the ground state Ep
0 = 1.999400, close to ΣEc

10.

It remains to identify the gap ∆Ec
10 of non-perturbative origin in the oscillator

based numerical energy spectrum E. As we saw before for the first two levels, in the

gauge theory limit the energy bands collapse (eigenvalues approximately degenerate)

and therefore the gaps are sparsely distributed. In particular, the number of eigenvalues

degenerating to a particular gauge theory band scales with the matrix dimension N .

The first 30 energy levels for N = 2000 are plotted in figure 1 (right). We observe that

there is a diffuse band of 26 eigenvalues around the expected Ec
1 and Ec

2, followed by a

gap with the 27th eigenvalue taking the value E27 = 2.001387. This level corresponds

to the third energy level of the classical Mathieu equation, which reads Ec
3 = 2.001385.

Hence, it is not easy to resolve the non-perturbative band splitting, i.e., distinguish

between Ec
1 and Ec

2 in the oscillator based numerics. Even so one can tune via the λ

parameter to a regime in which one can disentangle the non-perturbative contribution

from the stringy perturbative corrections (cf., (4.11)), it is difficult to directly resolve

the bands, as with increasing N eigenvalues sitting on higher bands fall down to a lower
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Figure 2: The 8th (lower blue), 16th (middle black) and 30th energy level (top purple dots)

of (4.4) at (~ = 0.05, λ = 0.001) as a function of N (with step size 50). The first six energy

levels of the classical Mathieu equation are indicated by the red lines.

band, thereby diffusing the band structure, as shown in figure 2. The numerical insta-

bility is rooted in the fact that using the Ψ+ wave-function basis essentially corresponds

to perturbation around an inharmonic oscillator. Nevertheless, the sharp transitions

(jumps) with increasing N can be used to indirectly infer the band structure, as also in-

dicated in figure 2, matching the expectation from the classical Mathieu equation. We

conclude that solving (4.4) numerically via expansion in a suitable harmonic oscillator

basis indeed reproduces the exact SU(2) gauge theory (classical Mathieu equation)

energy spectrum at strong coupling in a suitable decoupling limit.

In comparison, let us observe what we would have obtained if we use instead the

other basis Ψ−. As described in the appendix, in the numerical evaluation one can

rotate between Ψ± simply via reparameterizing the curve Σ by x → ix. Hence, this

corresponds to the numerics invoked in [26]. We plot the first two obtained energy

levels at the same point ~ = 0.05, λ = 0.001 in figure 3. For instance, we obtain for the

ground state E0 = 2.003717, which matches the perturbative energy Ep
0 = 2.003725

obtainable from (4.9) under ~ → −i~ and λ → −λ up to stringy corrections of order

~4. In particular, we do not observe band splitting.

An Explanation

Let us give an explanation why the numerics performed works and what it actually

calculates. Consider the curve (4.2) and rescale coordinates by a small factor l. This
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Figure 3: The 1th (lower blue) and 2nd (black) energy level of (4.4) at (~ = 0.05, λ = 0.001)

solved via the Ψ− basis as a function of N (with step size 50). The first two energy levels

of the perturbative solution of the classical Mathieu equation (under ~ → −i~, λ → −λ) are

indicated by the red lines.

yields,

E = 2(1 + λ) + (p2 − λx2)l2 +O(l3) . (4.12)

Hence, close to the origin the geometry is described at leading order by a deformed

conifold. In particular, the discussion of section 3 applies.

Note that in the geometry (4.1) we can introduce local coordinates ∆i near a conifold

point via (see for example [27])

z1 =
1

8
− 1

8(2 + ∆1(∆2 − 1)−∆2)
, z2 =

∆2 − 1

8(2 + ∆1(∆2 − 1)−∆2)
. (4.13)

For simplicity, let us consider the case with λ = 1 of [26]. This translates to ∆1 = 0,

and we denote the remaining modulus simply as ∆. The map to the E coordinate of

the curve (4.2) reads then

E = 2

√
2(∆− 2)

∆− 1
= 4 + ∆+O(∆2) . (4.14)

Comparing with (4.12), we deduce that the numerics actually calculates the mirror

map at the conifold point in moduli space. Let us verify this explicitly.

Inserting the coordinates (4.13) into (4.1) (and rotating for convenience x → ix)

we obtain the difference equation

(2−∆+
1

8
(∆− 1)e−x + (∆− 2)ex)Ψ(x) + (∆− 2)Ψ(x+ ~) +

1

8
(∆− 1)Ψ(x− ~) = 0 .
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We can solve the difference equation perturbatively via a WKB Ansatz. That is, we

set

Ψ(x) = e
S(x;~)

~ ,

with

S(x; ~) =

∞∑

n=0

S(n)(x) ~n ,

and solve for ∂xS
(n) order by order in ~. Expanding for small ∆ and taking residue at

− log 4 we obtain a (perturbative) quantum flat coordinate

tc =

∞∑

n=0

t(n)c ~
n , (4.15)

with the first few

t(n)c = Res ∂xS
(n) , (4.16)

reading

t(0)c = −i

(
1

2
∆ +

13

32
∆2 +

521

1536
∆3 +

4749

16384
∆4 +O(∆5)

)
,

t(1)c = −1

2
,

t(2)c = i

(
− 1

32
+

1

512
∆ +

9

8192
∆2 +

165

262144
∆3 +

3091

8388608
∆4 +O(∆5)

)
,

t(3)c = 0 ,

t(4)c = i

(
13

49152
− 275

1572864
δ − 597

8388608
∆2 − 3517

134217728
∆3 +O(∆4)

)
.

(4.17)

Note the non-vanishing t
(1)
c . Inverting the WKB flat-coordinate tc yields

∆(0)
p = i2tc +

13

4
t2c − i

493

96
t3c −

12427

1536
t4c +O(t5c) ,

∆(1)
p =

1

2
∂tc∆

(0)
p ,

∆(2)
p =

3

4
− i

233

64
tc −

93

8
t2c − i

756253

24576
t3c −

211675

98304
t4c +O(t5c) ,

∆(3)
p = −i

103

192
− 5429

1536
tc − i

351443

24576
t2c −

211675

49152
t3c +O(t4c) ,

∆(4)
p = −195

512
+ i

156421

49152
tc −

5005231

1572864
t2c + i

5756235

8388608
t3c +O(t4c) .

(4.18)

22



~ E(∆p(0) +O(~4)) E(∆p(0) +O(~6)) E0

0.10 4.1012552083 4.1012553358 4.1012553359

0.25 4.2578938802 4.2578987002 4.2578987246

0.50 4.5319010416 4.5319739024 4.5319753251

0.75 4.8225097656 4.8228570580 4.8228719839

1.00 5.1302083333 5.1312377929 5.1313156016

1.25 5.4554850260 5.4578319589 5.4581090443

1.50 5.7988281250 5.8033496856 5.8041260743

Table 1: The perturbative energies E(∆p(0)) for various ~ obtained via (4.14) from the

conifold coordinate (4.19) versus the numerical result in the harmonic oscillator basis for ma-

trix size 200× 200. Matching digits are underlined. We show only the leading 10 subdecimal

digits.

Invoking the usual Bohr-Sommerfeld quantization for the A-period, i.e., tc = ~N , we

obtain (we also rotated ~ → −i~)

∆p(N) = (2N + 1)~− 3 + 13N + 13N2

4
~
2 +

103 + 699N + 1479N2 + 986N3

192
~
3

− 585 + 5429N + 17856N2 + 24854N3 + 12427N4

1536
~
4 +O(~5) .

(4.19)

We have now everything at hand to compare the perturbative WKB mirror map against

the numerical computation in the harmonic oscillator phase. We list the obtained

E(∆p(0)) and numerical E0 for various ~ in table 1. We infer that the perturbative

WKB energies appear to converge with increasing WKB order to the numerical E0.

More precisely, up to Borel resummation, as has been observed and discussed before

in [28] via a high order WKB calculation of (4.12).1 As a side remark, note that for

increasing N we are moving away from the conifold point and the expansion (4.19)

starts to break down. Similarly, the numerical approximation becomes less and less

accurate with increasing energy level.

Let us consider now the other phase, that is where we expand into an inharmonic

oscillator basis. We set λ = −1 to reach this phase. From (4.12) we learn that in this

1We like to thank Y. Hatsuda for related discussions.
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case

E = ∆ .

However, ∆ is not the same conifold coordinate as above, because (4.13) is not a good

coordinate around z1 = −z2. Instead, we directly solve (4.4) via a WKB Ansatz, since

this will directly yield the appropriate ∆ via taking residue at zero.

We obtain for the quantum A-period expansion

t(0)c = −1

2
∆− 1

384
∆3 − 9

163840
∆5 +O(∆7) ,

t(1)c = −1

2
,

t(2)c = − 1

128
∆− 5

16384
∆3 − 35

2097152
∆5 +O(∆7) ,

t(3)c = 0 ,

t(4)c = − 19

98304
∆− 223

6291456
∆3 − 14245

3221225472
∆5 +O(∆7) .

(4.20)

Inversion yields,

∆(0)
p = −2tc +

1

24
t3c +

7

7680
t5c +O(t7c) ,

∆(1)
p =

1

2
∂tc∆

(0)
p ,

∆(2)
p =

1

16
tc +

7

1536
t3c +

203

491520
t5c +O(t7c) ,

∆(3)
p =

1

48
+

7

1536
t2 +

203

196608
t4c +O(t6c) ,

∆(4)
p =

7

3072
tc +

1571

1179648
t3c +

107287

754974720
t5c +O(t7c) .

(4.21)

Quantization of the period via tc = ~N leads to

−∆p(N) = (2N + 1)~− 1 + 3N + 3N2 + 2N3

48
~
3

+
7(1 + 5N + 10N2 + 10N3 + 5N4 + 2N5)

15360
~
5 +O(~7) .

(4.22)

The first two energy levels obtained numerically in the Ψ− phase are listed for

various ~ in table 2. We observe non-perturbative band splitting, with the width of

bands scaling exponentially, as expected from our discussions in section 3. However, one

should keep in mind that the obtained values for E±
0 and ∆E10 are only qualitative
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~ E(∆p(0) +O(~6)) E±
0 ∼ ∆E10

0.25 0.2496740341
0.24967403015556

0.24967403015556
< 10−15

0.50 0.4973815917
0.49738101940237

0.49738110400013
9× 10−8

0.75 0.7411027908
0.74106083750997

0.74112122095652
6× 10−5

1.00 0.9787109375
0.97735708912389

0.97814526674647
8× 10−4

1.25 1.2079191207
1.19868743160450

1.20405179498400
5× 10−3

1.50 1.4262268066
1.39390178777156

1.41203707527623
2× 10−2

Table 2: The perturbative WKB energy (sign flipped), the first two numerical energy levels

via the inharmonic oscillator basis and the resulting band widths for matrix size 100 × 100.

The numerical energy correspond to a non-perturbative completion of the quantum mirror

map (4.22) of local P1 × P
1 at z2 → ∞ and λ = −1. Matching digits are underlined.

in nature due to the intrinsic instability of the numerics (cf., figure 2 and previous

discussions).2

Note that the perturbative WKB expansion is not able to resolve the bands, but

rather

E(∆p(0)) ∼ ΣE10 ,

with increasing accuracy for more WKB orders taken into account. Hence,

E0 = E(∆p(0))±O(ξ) ,

where ξ denotes an instanton counting parameter. We conclude that in this phase the

WKB expansion is non-perturbatively corrected, in contrast to the phase discussed

before. This confirms statements about the non-perturbative completion of the NS

limit of topological strings made in the first part of this series [1].

2Precise results can be obtained via a different numerical scheme, confirming the qualitative results

given in table 2. Details will appear elsewhere.
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5 Local P2

The classical curve in a parameterization convenient to extract the large volume periods

at z ≪ 1 reads

Σ : −1 + ex + ep + ze−x−p = 0 . (5.1)

We redefine similar as in [26]

z → 1

E3
, x → x− logE , p → p− x

2
− logE ,

yielding the curve

ex + e−
x
2
+p + e−

x
2
−p = E . (5.2)

Note that under this redefinition the large volume regime is now located at E ≫ 1.

The geometry develops a conifold singularity at z = 1
27

and we introduce a local

coordinate ∆ as

z =
1−∆

27
.

Hence, we have a simple map between the E and ∆ coordinates

E =
3

(1−∆)1/3
= 3 +∆ +O(∆2) . (5.3)

Note that the above map can also be inverted. The inverse series for Ẽ := (E − 3)/3

reads

∆(Ẽ) =
1

2

∞∑

n=2

(−1)n n(n + 1) Ẽn−1 .

Rescaling in (5.2) the coordinates by l and expanding for small l yields

E = 3 +

(
p2 +

3x2

4

)
l2 +O(l3) . (5.4)

Hence, close to the origin the geometry corresponds in the parameterization (5.2) at

leading order to a deformed conifold, similar as in the previous section. In particular,

we infer from (5.3) that the complex structure modulus thereof reads ∆.

The curve (5.1) can be quantized as usual. However, one should keep in mind

that according to the above discussion the ground state sits close to the conifold point

in moduli space (and can be mapped thereto via (5.3)). This explains why one can

numerically approximate the quantum energies via expansion into an oscillator basis.

In particular, the discussion of section 3 applies.
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In order to infer the perturbative quantum periods at the conifold point in moduli

space, it is more convenient to directly parameterize the curve (5.1) in terms of ∆,

yielding

1− 27(1− ex)ex+p + 27ex+2p = ∆ .

Expanding p(∆) for small ∆, we observe that p has a pole at x∗ = − log 3. Taking

residue, yields

Res p(∆) = − i√
3

(
∆+

11

18
∆2 +

109

243
∆3 +

9389

26244
∆4 +

88351

295245
∆5 +O(∆6)

)
.

Denoting the flat coordinate at the conifold point as t
(0)
c , we infer that (see for instance

[29])

t(0)c = 3i Res p(∆) .

The perturbative quantum geometry, as reviewed in section 2, arises via canonical

quantization. For [x, p] = −~, and making use of the Baker-Campell-Hausdorff formula

(cf., (A.4)), we obtain the quantum curve

(1−∆)Ψ(x)− 27e
~

2 ex(1− e
~

2 ex) Ψ(x+ ~) + 27e~ex Ψ(x+ 2~) = 0 . (5.5)

Performing a WKB Ansatz for Ψ and expanding for ∆ small, we obtain similar as in

the previous section for the periods (4.16)

t(1)c = −3i

2
,

t(2)c = −
√
3

(
1

36
+

1

324
∆ +

5

4375
∆2 +

35

59049
∆3 +

385

1062882
∆4 +O(∆5)

)
,

t(3)c = 0 ,

t(4)c = −
√
3

(
19

139968
− 91

1259712
∆− 89

2834352
∆2 − 3521

229582512
∆3 +O(∆4)

)
.

(5.6)

(t
(n>1)
c vanishes for n odd.) Up to overall normalization, and the constant at order ~1,

the expansions given above are in accord with [30], where the higher order t
(n)
c have been

obtained by acting with certain differential operators on t
(0)
c , similar as has been done

before in the case of the periods of the Seiberg-Witten curve [3] and Dijkgraaf-Vafa

geometries [4]. The non-vanishing term of order ~1 is however quite important.

Inverting the WKB flat-coordinate tc as given through (4.15) and (4.16), yields the
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perturbative coordinate ∆p(tc). The first few orders in ~ read

∆(0)
p = − 1√

3
t− 11

64
t2c −

145

1458
√
3
t3c −

6733

472392
t4c +O(t5) ,

∆(1)
p =

3i

2
∂tc∆

(0)
p ,

∆(2)
p =

31

72
+

415

648
√
3
tc +

19487

104976
t2c +

116831

944784
√
3
t3c +O(t4) ,

∆(3)
p =

125i

432
√
3
+

223i

1296
tc +

110239i

629856
√
3
t2c −

367i

118098
t3c +O(t4) ,

∆(4)
p = − 16073

279936
− 302785t

2519424
√
3
tc +

115931

17006112
t2c −

9126013

2754990144
√
3
t3c +O(t4) .

(5.7)

Note that due to the non-vanishing order ~1 in (5.6) the quantum coordinate ∆p will

be a series in even and odd powers of ~. Under quantizing tc = 3i~N and rotating

~ → i~ we obtain

∆p(N) =

√
3(2N + 1)

2
~− 31 + 132N + 132N2

72
~
2 +

5(25 + 166N + 348N2 + 232N3)

432
√
3

~
3

− 16073 + 144504N + 467688N2 + 646368N3 + 323184N4

279936
~
4 +O(~5) .

(5.8)

We can now compare ∆p(0) against the ground state E0 obtained via numerically

approximating the energies of the quantum curve resulting from (5.2) under quantizing

[x, p] = i~ and using the Ψ+ basis with κ =
√
3

2~
(cf., appendix A.2). The results are

listed in table 3. We infer that the perturbative E(∆p(0)) converges with increasing

WKB order to the numerical E0 (up to Borel resummation, cf., [28]). Hence, as

is already clear from (5.3) and (5.4), the numerical energy E0 in the Ψ+ (harmonic

oscillator) phase just corresponds to the conifold mirror map, which in this case does

not receive non-perturbative corrections.

The from a non-perturbative perspective actually interesting case corresponds to

the other possible wave-function solution Ψ− obtainable via a suitable parameterization

of the curve, as is clear from (5.4). According to our discussions in section 3 we expect

a non-trivial non-perturbative structure to be present in this phase. The reason is that

in this case we have a parabolic barrier which is cutoff (regularized) by the embedding

into the Calabi-Yau. However, things are technically more involved as in our previous

discussions. Firstly, cX ∼ π
3
+ 1.678699904i is complex valued [27], and so will be the

instanton counting parameter ξ. In particular, this implies that the resulting energy
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~ E(∆p(0) +O(~4)) E(∆p(0) +O(~6)) E0

0.10 3.0873036671 3.0873036489 3.0873036489

0.25 3.2209510395 3.2209503752 3.2209503734

0.50 3.4512090998 3.4511996751 3.4511995539

0.75 3.6914006459 3.6913590292 3.6913576372

1.00 3.9421521430 3.9420398804 3.9420320545

1.25 4.2040900561 4.2038630151 4.2038333141

1.50 4.4778408505 4.4774675954 4.4773797291

Table 3: The perturbative energies E(∆p(0)) for various ~ obtained via (5.3) from the

conifold coordinate (5.8) versus the numerical result in the oscillator basis for matrix size

300× 300. Matching digits are underlined. We show only the leading 10 subdecimal digits.

bands have an imaginary part. Secondly, because we do not have another moduli to

rotate as for P
1 × P

1 discussed before, we have to rotate instead ~ → i~ in order to

obtain a consistent Ψ− solution. However, this solution sits at sign flipped energies.

In particular, the energy decreases (and turns negative) with increasing energy level.

This obscures the numerics in a similar way as shown in the previous section in figure

2. However, in the current case things are inverted, that is the eigenvalues flow down

from the ground state with increasing matrix dimension, and not towards it as we

had before. Nevertheless, we can still perform a qualitative check. For instance at

~ = −0.5 we obtain from (5.8) the first few digits ∆p(0) = 2.583498. The numerics

at matrix dimension 200 × 200 yields for the groundstate (now corresponding to the

highest energy level) E0 = 2.583503 + i8.280180× 10−6. Hence,

(E0 −∆p(0))|~=0.5 ∼ 10−5 − i10−5 ,

and indeed we have a small real and imaginary perturbation away from the perturbative

WKB solution. Inspection of the eigenvalue distributions for various ~ suggest that the

magnitute of the perturbation scales exponentially, as is implied by section 3. However,

as the eigenvalues in the numerics are diffused in both the real and imaginary direction,

we refrain here to perform a more quantitative analysis. We leave this topic for another

research project, perhaps making use of some better behaved numerical scheme to solve

the difference equation at the point in moduli space of interest.
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A Numerics

A.1 Numerical Mathieu spectrum

We compute the energy spectrum of (4.6) numerically following [31]. According to

Floquet’s theorem, there exists always a solution to Mathieu’s equation (4.7) of the

form Ψ(x) = eiν(α,q)x ̟(x) , where ν is called characteristic exponent and ̟(x) some

periodic function of period π. We can distinguish different solutions by the values ν

takes. For us of relevance is ν = N ∈ Z, corresponding to bounded and periodic (in

π or 2π) solutions. These are the Mathieu functions of the first kind. Clearly, for ν

integer, Ψ(x) is periodic with period π or 2π (depending on if N is even or odd) and

therefore we can insert a Fourier Ansatz into (4.7) to obtain a recurrence relation for

the expansion coefficients ck, given by the matrix equation (M − αI)c = 0 with

M =




. . .

32 q

22 q

q 12 q

q 02 q

q 12 q

q 22

q 32

. . .




. (A.1)

This linear system has non-trivial solutions if det(M − αI) = 0. Hence, the energy

spectrum E of (4.6) is approximated by the eigenvalues of M , i.e.,

E(N) = 2 +
~2

4
Ev(M)|N ,

where we made use of the relation (4.8) and Ev(M)|N refers to the Nth eigenvalue of

M , ordered in increasing order.

A.2 Oscillator basis expansion

Recall from section 3 that the wave-functions

Ψn(x; κ) =
1√
2nn!

(κ
π

)1/4

e−
κx2

2 Hn(
√
κx) ,
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form a solution basis for the complex square potential operator. The real section (quan-

tum mechanics in 1d) interpretation of the wave-functions depends on the particular

value κ takes in the complex plane. In particular, for κ real and positive these wave-

functions form the well-known basis of the quantum harmonic oscillator to positive

energy. In the complex plane we should distinguish between the two solutions Ψ± re-

lated to each other via κ → −κ, as the integration contour has to be taken either along

the real or imaginary axis. Therefore, we have two different matrix elements M±,

M±
n1,n2

=
〈
Ψ±

n1

∣∣ f(ex, ep)
∣∣Ψ±

n2

〉
=

∫

C±
dx ,Ψn1(κ; x)f(e

x, ep)Ψn2(x; κ) , (A.2)

with f some polynomial in ex and ep. (Depending on the geometry f there can also

be more inequivalent matrix elements.) Let us first consider an expansion into the Ψ+

basis (we fix κ such that |Reκ| > |Imκ|) and proceed as in [26]. In order to evaluate

(A.2), we make use of the integral (for n ≤ m)
∫ ∞

−∞
dx e−x2

Hn(x+ y)Hm(x+ z) = 2m
√
πn! zm−nL(m−n)

n (−2yz) ,

with L
(α)
n the Laguerre polynomials. We infer

〈
Ψ+

n1

∣∣ eab
2 eax+b∂x

∣∣Ψ+
n2

〉
=

√
2n2 n1!

2n1 n2!

(
a+ bκ

2
√
κ

)n2−n1

e
a2−b2κ2

4κ

× L(n2−n1)
n1

(
b2κ2 − a2

2κ

)
,

(A.3)

and hence M+ can be easily calculated up to some desired matrix size. Note that we

included the additional factor e
ab
2 in the matrix element as such a factor arises under

quantization from the Baker-Campell-Hausdorff formula,

eXeY = eX+Y+ 1
2
[X,Y ] , (A.4)

for central commutator. The energy spectrum follows as usual via calculating the

eigenvalues, i.e.,

E(N) = Ev(M)|N ,

where the set of eigenvalues is taken to be ordered in increasing order as in appendix

(A.1).

It remains to discuss the case with Ψ− (|Reκ| < |Imκ|). We take as integration

contour in this case C− = [−i∞, i∞]. Note that we can rotate C− to C+ via x → −ix

and can absorb the gained −i in the wave-functions via sending κ → −κ. Hence,

M−
n1,n2

=
〈
Ψ+

n1

∣∣ f(e−ix, ep)
∣∣Ψ+

n2

〉
,

31



which can be evaluated as above. Note that the rotation of contour is performed after

the operator p acts on the wave-function, therefore the quantization condition does not

change.
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