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ABSTRACT

Type II strings in D = 5 contain particle-like 1/8 supersymmetric BPS
states. In this note we give a string-network representation of such states
by considering (periodic) non-planar (p, q, r)-string networks of eight di-
mensional type II string theory on T 3. We obtain the BPS mass formula
of such states, in terms of charges and generating-vectors of the torus, and
show its invariance under an SL(3, Z) × SL(3, Z) group of transforma-
tions. Results are then generalized to string-networks associated with the
SL(5, Z) U -duality in seven dimensions. We also discuss reinterpretation
of the above (D = 5) mass formula in terms of BPS states in world-volume
theories of U2-branes in D = 8.
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1 Introduction

Classification of type II BPS states with different supersymmetries have been dis-
cussed in several papers [1, 2]. They form U-duality multiplets of stings in various
dimensions. The corresponding black hole entropies are also given by duality invariant
expressions. However, its statistical understanding requires the degeneracy of states.
It has been suggested [3] that string networks [3–5] may provide the degeneracy of
such states, when considered on tori [3].

Network configurations have also been an important topic of discussion from var-
ious other angles in type II string theory [6–8], N = 4 gauge theories [9–11] and
non-commutative geometry [12]. In string theory, they provide 1/4, 1/8 and other
lower supersymmetric states [6–8, 3–5]. Moreover type IIB planar string networks
which end on D3-branes [9, 10] represent the 1/4 BPS dyonic states of N = 4 gauge
theories in four dimensions [11]. Network-like configurations, have also appeared in
other supersymmetric field theories [13], but are likely to have connections with those
mentioned above. Recently, extension of network configurations to strings carrying
1-form electric charges (per unit length) and currents was also presented [5]. These
can be of interest from the point of view of cosmological applications [14].

In this paper we study the application of string networks to D = 5 BPS states. It
is known that one can have 1/8 supersymmetric particle-like states in D = 5 [2]. We
give a string network representation of such states, by compactifying periodic D = 8
non-planar networks [4] of an SL(3, Z)-multiplet of type II strings on T 3. We also
generalize the results to the SL(5, Z) U-duality in seven dimensions.

Our exercise can also be used to write down mass formula of 1/8 BPS states,
in certain world-volume theories of 2-branes. These branes are themselves identified
as U-duality branes [15] obtained from toroidal compactification of ten-dimensional
branes. For the eight dimensional case, one notices that there exist 2-branes which
are invariant under the SL(3, Z) part of U-duality (for the purpose of this paper,
SL(3, Z) is the only relevant part of U-duality in eight dimensions). Masses of states,
which can be identified as a string-junction ending on these branes can then be found
from the above exercise. Such an analysis for D3-branes has been performed in great
detail, including for the case of non-abelian gauge groups etc. [9–11]. We expect that,
same should be possible for these U2-branes as well.

We now start by describing the periodic non-planar (p, q, r) string networks of
our interest, built out of basic structures as shown in figures-1. For convenience, we
first consider the string networks, whose basic building blocks are 4-string junctions
as in figure-1(a). The existence of such a junction can be seen from the general
structure of non-planar string networks of [4]. In the construction of [4], the basic
building blocks of the networks are 3-string junctions whose 3-prongs lie in a specific
two dimensional plane in a three dimensional space, now identified as T 3. However,
different junctions, including the adjacent ones can have their 3-prongs in different
two dimensional planes, giving them a non-planar form (see figure-1(b)). Then by
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shrinking the length of the intermediate links of such adjacent junctions, which is
a free parameter in these BPS constructions, one gets a 4-string junction. Such
objects have also been studied in [16]. A periodic structure of such 4-string junctions
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Figure 1: (a) A 4-string junction. (b) A non-planar 4-prong.

can then be constructed as a three dimensional generalization of the string network
lattice in [3]. However one now needs four strings with SL(3) charges: (pI , qI , rI),
I = 1, 2, 3, 4 to construct such 4-string junctions. By fixing the lengths of these
string-links to lI , (I = 1, 2, 3, 4), and by imposing charge conservation condition on
junctions:

∑4
I=1 pI =

∑4
I=1 qI =

∑4
I=1 rI = 0, one obtains a periodic lattice. Although

we do not present a pictorial representation of such 3-D periodic networks, their
existence is guaranteed from the existence of the three dimensional lattice vectors ~a,
~b and ~c given below in terms of the ‘link-vectors’ ~lI . These link-vectors themselves
are given by the lengths of the prongs mentioned above and their orientation is given
as in [4] in order to preserve 1/8 supersymemtry. More precisely, these orientations
for a string with SL(3, Z) quantum numbers (PI)i ≡ (pI , qI , rI) are given in terms of
components (XI)a, (a = 1, 2, 3) of a vector in real space (now identified as T 3):

~VI = (XI)aêa, (a = 1, 2, 3), (1)

with (XI)a given by:

(XI)a = (λ−1)ai(PI)i. (2)

‘êa’ in this paper always denotes orthogonal set of unit vectors in T 3, although its
index ‘a′ is chosen to be same as that of an internal SO(3) vector. λ−1 in the above
equation denotes the vielbein corresponding to the SL(3)/SO(3) moduli:

G =
(

g + aT ae−φ e−φaT

ae−φ e−φ

)
, (3)

with g being a 2 × 2 matrix:

g =
(

e(φ+α) + χ2e−α e−αχ
χe−α e−α

)
. (4)
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Then one has

λ−1 =




e−(φ+α)/2 −χe−(φ+α)/2 −e−(φ+α)/2a1 + χe−(φ+α)/2a2

0 eα/2 −eα/2a2

0 0 eφ/2


 . (5)

To summarize these definitions, PI ’s defined above are internal SL(3, Z) vectors as-
sociated with the I’th string, whereas XI ’s are internal SO(3) vectors constructed by
contracting PI ’s with the vielbein λ. This SO(3) is the maximal compact subgroup

of SL(3). Finally ~VI ’s in eqn.(1) are vectors in T 3, due to their dependence on unit
vector êa. Identification of its components with those of XI ’s in eqns. (1), (2) is a
property of the string networks, as the spatial and internal orientations of the links
in a network are always aligned in a specific manner.

Major exercise now is to start from the expression of the mass associated with the
above 4-string junction defining the unit cell [17] of a periodic network lattice and
to show that these can be rewritten in terms of three independent SL(3, Z) charges
(PI)i ≡ (pI , qI , rI), (I = 1, 2, 3), SL(3)/SO(3) moduli G, and three-dimensional

vectors: ~a,~b,~c defined in terms of the lengths lI ’s of the four legs of the string junction
as well as the unit vectors along these legs, n̂I ≡ ~VI/|VI |:

~a = ~l1 −~l4, ~b = ~l2 −~l4, ~c = ~l3 −~l4. (6)

In fact, as we will see below various combination of (~a,~b,~c) provide additional moduli
in the lower dimensional theory, after quantum numbers (p4, q4, r4) are eliminated in
favor of the remaining ones, using charge conservation conditions.

Technical non-triviality of our exercise, with respect to the one performed in [3]
for the planar network, is in dealing with the 3-dimensional problem in our case,
compared to the 2-dimensional one in [3]. To perform this exercise explicitly, we
first consider the case when SL(3)/SO(3) moduli, G, have a diagonal form. It will be
observed that the final expression that we derive, easily generalize to the most general
moduli as well. For the diagonal case, G has a form: G = diag.(eφ+α, e−α, e−φ).
Moreover for this case, the string tension is given as: TI = |XI | = [e−(φ+α)p2

I + eαq2
I +

eφr2
I ]

1
2 , (I = 1, 2, 3, 4).

We now use the above expressions to compute the mass of the BPS state, given
by the string network configuration built by the above 4-string junctions. It is given
by

m2
BPS = (l1T1 + l2T2 + l3T3 + l4T4)

2. (7)

Now, to eliminate the lengths of the link-vectors of the strings in favor of the gen-
erating vectors ~a,~b,~c, we use expressions of various scalar and vector combinations
formed from these by taking their dots and cross products: a2 = l21 + l24 −2~l1.~l4, ~a.~b =
~l1.~l2−~l1.~l4−~l2.~l4 + l24, ~a×~b = ~l1×~l2−~l1×~l4−~l4×~l2 etc.. Moreover, these expressions
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can be rewritten in terms of quantum numbers (pI , qI , rI), (I = 1, 2, 3), moduli fields
(φ, α), lengths of the links lI , and their string-tensions TI , by using relations:

~l1 ×~l2 =
l1l2
T1T2

[
ê1(q1r2 − q2r1)e

(φ+α)/2+

ê2(r1p2 − r2p1)e
−α/2 + ê3(p1q2 − p2q1)e

−φ/2 ] , (8)

and two other expressions obtained by taking cyclic permutations in indices (1, 2, 3)
and (p, q, r). Similarly,

~l1 ×~l4 = − l1l4
T1T4

[
ê1(q1(r2 + r3) − (q2 + q3)r1)e

(φ+α)/2+

ê2(r1(p2 + p3) − (r2 + r3)p1)e
−α/2 + ê3(p1(q2 + q3) − (p2 + p3)q1)e

−φ/2 ] , (9)

and again two others obtained by the above cyclic permutations.
With the help of above expressions, and after some algebra, one can show that

the mass of the BPS state, after T 3 compactification can be written as:

m2
BPS =

[
(~V1.~V1)a

2 + (~V2.~V2)b
2 + (~V3.~V3)c

2 + 2(~V1.~V2)(~a.~b) + 2(~V1.~V3)(~a.~c)+

2(~V2.~V3)(~b.~c) ] + 2
[
(~a ×~b).(~V1 × ~V2) + (~a × ~c).(~V1 × ~V3) + (~b × ~c).(~V2 × ~V3)

]
,

≡ m2
1 + m2

2, (10)

where m2
1 and m2

2 correspond to the terms in the two square brackets in eqn.(10).
This equation is one of the main result of this paper. It gives the BPS mass in terms
of nine integers (pI , qI , rI)’s, moduli (φ, α) (through their appearance in ~VI), as well

new set of moduli formed out of ~a,~b,~c. The generalization of the result, to the case
when the full set of SL(3)/SO(3) moduli are turned on, is straight-forward. In that

case, mass formula remains same as (10). However ~VI ’s and XI ’s involve general
SL(3)/SO(3) moduli through their dependence on the vielbein in eqn.(5).

We now show that the above mass formula has an SL(3, Z)U × SL(3, Z)u sym-
metry. The first SL(3, Z) is essentially the U-duality symmetry of type II strings
in eight dimensions. The second SL(3, Z) comes from the compactification of the
network on T 3.

We first show the SL(3, Z) × SL(3, Z) invariance of the terms in the first square
bracket in eqn.(10), identified as m2

1. These terms can be rewritten as:

m2
1 = P TMP, (11)

where P is 9 × 1 column vector with entries:

P =




P1

P2

P3


 , (12)
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and M is a matrix:

M =




a2G−1 (~a.~b)G−1 (~a.~c)G−1

(~b.~a)G−1 b2G−1 (~b.~c)G−1

(~c.~a)G−1 (~c.~b)G−1 c2G−1


 . (13)

One can then write down the action of two SL(3)’s mentioned above on charges

and moduli, including the ones constructed out of vectors ~a,~b,~c. SL(3)U has the

identical action as in eight dimensions. This leaves any T 3 vectors such as ~a,~b,~c etc.
invariant and acts on P through a diagonal action on PI ’s as:

PI → ΛUPI , G−1 → Λ−1
U

T
G−1Λ−1

U . (14)

with ΛU being SL(3, Z) matrices. Second symmetry, namely SL(3)u acts on P as:



P1

P2

P3


 → Λu




P1

P2

P3


 , (15)

namely, it mixes the indices (1, 2, 3) associated with SL(3) charges (p, q, r) of various
strings among themselves. In addition, one has

~A ≡



~a
~b
~c


 → Λ−1

u
T




~a
~b
~c


 . (16)

Due to the action of the symmetry group defined above, 9 × 9 moduli matrix in the
compactified theory (M), transforms under SL(3)’s as M → (Λ−1T

U ⊗ I3)M(Λ−1
U ⊗

I3), M → (I3 ⊗ Λ−1T
u )M(I3 ⊗ Λ−1

u ).
We have therfore shown an explicit SL(3, Z)U × SL(3, Z)u invariance of the first

part of the BPS mass formula (11). We also observe that by factoring out the volume

of the polyhedron formed out of vectors (~a,~b,~c) from the matrix M in (13), it can be
identified with a matrix parameterizing [SL(3/SO(3)] × [SL(3)/SO(3)] moduli.

We now see that the terms in the second square bracket of (10), namely m2
2, are

also invariant under the transformations (14), (15) and (16). We first consider SL(3)U ,

after writing vectors ~VI ’s as: ~VI = TI n̂I , (I = 1, 2, 3), with TI being the tensions of the
strings and n̂I being the unit vectors along them. SL(3, Z)U invariance of m2

2 then
follows from the fact that it acts on various quantities inside second square bracket
in (10) only through terms in the expressions of string tensions.

SL(3, Z)u symmetry of m2
2 is also clear by noticing that although ~VI ’s are spatial

(or T 3) vectors, they transform under SL(3, Z)u due to its action on quantum numbers
pI , qI , rI ’s in a similar manner as PI ’s mentioned above in (15). Then, using the

definition ~A as in (16), the invariance of m2
2 can be seen by writing it as:

m2
2 = ( ~AI × ~AJ ).(~VI × ~VJ). (17)
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We have therefore shown an SL(3, Z) × SL(3, Z) invariance of the mass formula
obtained from a periodic network of 4-string junctions in eight dimensions.

A similar analysis goes through for more general periodic string-networks con-
structed out of 4-prong structures as shown in figure-1(b). One now has lattice
vectors defined as:

~a = ~l1 − (~l4 +~l5), ~b = ~l2 − (~l4 +~l5), ~c = ~l3 −~l4. (18)

The mass of the 1/8 supersymmetric BPS state associated with the compactified
string network is now given by the expression:

m2
BPS = (

5∑
i=1

lITI)
2, (19)

with lengths and tensions now being associated with the string-links in figure-1(b).
This expression, after similar algebra as above, can now be written as:

m2
BPS = P T MP +

5∑
I=1

(~lI ×~lJ).(~VI × ~VJ). (20)

Then using the definitions of the lattice vectors in (18), and charge-conservations on
vertices O1 and O2 in figure-1(b), one can show that the final 1/8 BPS mass formula
is once again given by eqns. (10), (11) and (17).

We also obtain the SL(2, Z) × SL(2, Z) invariant formula of [3] by turning off
appropriate moduli and charges. For example, when only nonzero SL(3) charges are:
(pI , qI), (I = 1, 2), then by setting φ = a1 = a2 = 0 in (10) one reproduces exactly
the same expression as in [3]. This can be seen from the form of m2

1 in (11), which
reduces to the first term in eqn.(17) of [3] in these limits. Moreover, for m2

2 only one
of the term in the second square bracket in (10) is nonzero and gives precisely the
second term in eqn.(17) of [3].

We now comment on the connection of these results with U-duality in D = 5. The
full U-duality symmetry in D = 5 is E6(6) and gauge charges are in its 27-dimensional
representation. E6(6) however has an SL(6) subgroup whose origin can be seen from
the interpretation of the D = 5 theory as T 5 compactified M-theory. This SL(6), in
turn, has an SL(3)× SL(3) subgroup which can be identified with SL(3)U × SL(3)u

mentioned above. Nine charges represented by pI , qI , rI , (I = 1, 2, 3) are within 27
of E6, as can be seen by decomposing this under SL(6) and identifying them to lie
within 15 of SL(6).

The generalization of the result to SL(5, Z) U-duality (in D=7) is also straight-
forward. One can analogously consider the case of periodic network lattice involving
6-string junctions (as well as other similar structures) and define a set of five vec-

tors, ~̃AI (I = 1, .., 5) similar to ~a,~b,~c defined earlier. Similarly one has a set of

other five vectors, ~̃V I , whose components are given in terms of quantum numbers
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pI , qI , rI .. etc., as well as SL(5)/SO(5) moduli. The final mass formula, now with
1/32 supersymmetry has a form:

M2
BPS = (~̃V I .

~̃V J)(~̃AI .
~̃AJ) + (~̃V I × ~̃V J).(~̃AI × ~̃AJ). (21)

To conclude the discussion of the compactified non-planar networks as lower di-
mensional BPS states, we like to point out that several other possibilities of network
compactification can be discussed by restricting to smaller subgroups of U-duality.
For example, one can construct planar periodic networks of (p, q, r)-strings in eight
dimensions, by considering SL(2, Z) subgroups of SL(3, Z). One then has 1/4 super-
symmetric BPS states in six dimensions after compactifying these networks on T 2.
It however remains to be seen whether one can obtain complete multiplets of the full
duality symmetry, by combining various such possibilities of compactified networks.

We now discuss the application of the results to certain world-volume theories of
branes, following a similar exercise for the case of planar IIB string networks [9, 10].
The planar IIB configurations are of interest from the point of view of 1/4 BPS
dyon solutions of N = 4 gauge theory. These N = 4 theories in turn are considered
to be the linearized approximation of the world-volume theories of D3-branes that
are invariant under the SL(2, Z) duality of the IIB theory. Moreover electric and
magnetic charges also transform under this SL(2, Z). In eight dimensional type II
theories, a similar role is played by 2-branes which are invariant under SL(3, Z) and
are known as U2-branes [15]. From the point of view of branes, this SL(3) acts on
charges originating from three different components of N = 1, D = 10 gauge fields
defining the world-volume theory. As an example, such charges can be identified
in a 2-brane of this type by compactifying D4-branes on T 2. The SL(3, Z) then
acts on three charges, originating from the two internal components of the D4-brane
gauge fields (A3, A4) and a third one obtained by a Hodge-dualization of the three-
dimensional gauge fields Aµ [18]. In a theory of parallel multi-branes, these fields are
expected to form appropriate adjoint representations of the enhanced symmetries.
Existence of the SL(3, Z) symmetry on the world-volume can also be argued from
the point of view of heterotic strings in D = 3. The full duality symmetry of heterotic
strings in D = 3 is known to be O(8, 24, Z) [19]. The above SL(3, Z), in this picture,
then belongs to the SL(8, Z) subgroup of O(8, 24, Z) , which transforms various
components of ten-dimensional gauge fields, once again after Hodge-dualizations, in
vector representations.

Then, to generalize the results of [9] we consider a configuration of four such
branes and above configuration of 4-string junction is formed by strings ending on
these U2-branes. For example, in figure-1(a), points (A, B, C, D) can be identified
with the positions of these branes. The world-volume of the branes is orthogonal to
the three dimensional space of strings and junctions. Vectors ~a,~b,~c described above
parameterize the vacuum expectation values of the adjoint Higgs fields in the resulting
N = 8 supersymmetric theory. Now, to give a mass formula for such states while
making connection with the work of [9], we choose special values for pI , qI , rI to be:
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(p1, q1, r1) = (1, 0, 0), (p2, q2, r2) = (0, 1, 0), (p3, q3, r3) = (0, 0, 1). In this case, BPS
mass formula (10) reduces to

M2 = e−(φ+α)|~a|2 + eα|~b|2 + eφ|~c|2 + 2[(~a ×~b).ê3e
−φ/2+

(~a × ~c).ê2e
−α/2 + (~b × ~c).ê1e

(φ+α)/2]. (22)

Following [9], we now interpret this as the mass of a 1/8 supersymmetric bound state
in the world-volume theory described above. For this we define charges, similar to
those in [9]:

~Q1 = e−(φ+α)/2~a, ~Q2 = eα/2~b, ~Q3 = eφ/2~c. (23)

Since the role of the couplings on the world-volume theory is played by the space-
time moduli φ, α etc., and (~a,~b,~c) define the vacuum expectation values of scalars in

this world-volume theory, ~Qi’s above can be identified with the physical charges in
this theory. The subscripts in expression of charges now have their origins in fields
A4, A5, Aµ mentioned above, whereas vector sign above them can be interpreted to
be along certain R-symmetry directions. Similar form of energy expressions, for 1/2
BPS states involving these fields, were observed in [18]. However it is of interest to
verify these results directly from the point of view of world-volume gauge theories,
following a similar exercise in D = 4 in [20] and to further examine the properties of
such bound states.

Acknowledgement: I would like to thank Aalok Misra for useful communica-
tions.
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