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NON-POLYCONVEXITY OF THE STORED ENERGY FUNCTION
OF A SAINT VENANT-KIRCHHOFF MATERIAL

ANNIE RAOULT

(Received October 15, 1984)

Summary. A direct proof of the non-polyconvexity of the stored energy function of a Saint
Venant-Kirchhoff material is given by means of a simple counter-example.
Keywords: polyconvexity, stored energy function, Saint Venant-Kirchhoff material.

In his famous paper [1] dealing with existence theorems in nonlinear elasticity,
John Ball introduced the notion of polyconvexity and proved the existence of an
equilibrium state — understood as a minimizer of the total energy function — for
hyperelastic materials whose stored energy function is polyconvex, subjected to
conservative applied forces. It is well known, for instance, that Ogden’s materials
are polyconvex materials [2], but as far as we know there has been no direct proof
of the non-polyconvexity of the usual Saint Venant-Kirchhoff model. The purpose
of this note is to provide such a direct proof by constructing an easy counter-example.
However, there exists an ‘“‘indirect” proof, where the non-polyconvexity is a con-
sequence of the non weak lower semi-continuity of the associated functional (cf.
Necas [4]).

Let M3 be the set of real matrices of order 3 and let M3 be the subset of matrices
with determinant > 0. Let us recall [1], [2] that a real-valued function W defined
on M? is polyconvex if and only if there exists a convex function g defined on M3 x
M3 x R** such that

(1) VFeM?3 , W(F)= g(F,adjF,detF)

where adj F = det F(F~'). Notice [1], [3] that M3 x M3 x R** coincides with
the convex hull of {(F. adj F, det F), F € M3 }. The stored energy function of a Saint
Venant-Kirchhoff material with Lamé’s coefficients 4 and p is

(2) W(F) = a, tr (F'F) + a, tr (F'F)* + b, tr adj (F'F)
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where

3+ 2u A+ 2u 2
3 a,=———, a,= , by =-.
(3) ! 4 2 8 Ty

We want to decide whether Wis polyconvex or not. It is well-known that for physical
reasons A and u are positive; therefore the first coefficient in W is negative and this
is the first indication that W need not be polyconvex (note that if all coefficients were
nonnegative polyconvexity would be immediate [1], [3]).

Theorem. W is not polyconvex.

Proof. Let us construct a counter-example. Let ¢ be a positive number, and let F
and F’ be the following elements of M3 :

F=¢l, F =c¢diag(l,1,3).
One immediately obtains
det F=¢>, adjF =¢%l, detF' =3¢, adjF =¢*diag(3,3,1),
F+F

= ¢ediag(1,1,2),

F+ F

det 5 = 2¢3, ade+F

= ¢? diag(2,2,1),

so that the following relations are satisfied, (of course, they do not hold for arbitrary
F and F' in M3):

(@) F+FeM1, ade+F=ade+ad_]F’ detF+F=
2 2 2
det F + det F’
=—5

If W were polyconvex, equations (1) and (4) would lead to

(5) W(F “; F ) < YW(F) + W(F')).

For the sake of brevity, let us write

N\ T 7
F'F = &2, FTF =gJ, <F+F) (FJ’F):eZK

2 2

with J = diag(1, 1,9), K = diag(1, 1, 4).
Then using expression (2), where the first term is homogeneous of degree 1 and the
remaining terms are homogeneous of degree 2 with respect to F'F, we derive from
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inequality (5)
aytrKe? + (ap tr K* + by tradjK) e* <

Hay(tr I + tr J) & + (ay(tr I + tr J?) + by(tr I + tr adj J)) &%)
and this inequality amounts to
a; + (25a, + 2by) e 2 0

which (recall that a, is negative) cannot be true for ¢ small enough. O
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Souhrn

NEPOLYKONVEXITA FUNKCE VNITRN{ ENERGIE
SAINT VENANTOVA-KIRCHHOFFOVA MATERIALU

ANNIE RAOULT

Je podan protiptiklad dokazujici, Ze funkce vnitfni energie Saint Venantova-Kirchhoffova
materialu neni polykonvexni.

Pe3ome

HE-TIOJIUBBINIYKJIOCTh BHYTPEHHEN ®VHKIIUUA MATEPUAJIA CEH BOHAH-
-KUPXT'ODA

ANNIE RAOULT

Haetcs mpumep matepuana Cen Banan-Kupxroda, ¢yHkuMs BHYTpeHHEH 3HEPrMH KOTOPOIO
He SIBJISICTCS IIOJMBBIIYKJION.
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