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Abstract. A Ricci surface is defined as a Riemannian surface (M, gM ) whose

Gauss curvature satisfies the differential equation K∆K + gM
(
dK, dK

)
+

4K3 = 0. Andrei Moroianu and Sergiu Moroianu proved that a Ricci sur-
face with non-positive Gauss curvature admits locally a minimal immersion

into R3. In this paper, we are interested in studying non-compact orientable

Ricci surfaces with catenoidal ends. We use an analogue of the Weierstrass
data to obtain some classification results for such Ricci surfaces. We also give

an existence result for positive genus Ricci surfaces with catenoidal ends.

1. Introduction

A classical question in the theory of minimal surfaces is to study when a Rie-
mannian surface (M, gM ) can be locally isometrically immersed into R3 as a mini-
mal surface. In the history, the first result for this question was given by Gregorio
Ricci-Curbastro. He provided a necessary and sufficient condition for the existence
of such immersions near points with negative Gauss curvature (see [11]). Andrei
Moroianu and Sergiu Moroianu have proven later in [9] that the assumption of neg-
ative Gauss curvature could actually be left out. The main idea of their proof is to
study the differential equation

K∆K + gM
(
dK, dK

)
+ 4K3 = 0

satisfied by the Gauss curvature appearing in Ricci’s theorem. It is often called the
Ricci condition in the case K < 0. A Riemannian surface whose metric satisfies
this equation is called a Ricci surface.

The theory of compact Ricci surfaces is developed by Andrei Moroianu and Sergiu
Moroianu as well. To be more precise, they provided some methods in constructing
compact Ricci surfaces. We are therefore interested in considering non-compact
orientable Ricci surfaces. In 1958, Huber proved that a complete non-positively
curved Riemannian surfaces with finite total curvature has to be biholomorphic
to a compact Riemann surface with finite number of punctured points (see [6]).
Consequently, a problem which should be naturally posed is to determine all the
possible Ricci metrics on a given Riemann surface. However, this project seems
to be very ambitious because many cases may occur around punctured points.
The goal of our work is to classify Ricci surfaces by adding an assumption on the
punctured points which is called the condition for catenoidal ends.
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2 YIMING ZANG

In this paper, Section 2 is devoted to the recall of some basic properties of the
well-known Weierstrass representation for minimal immersions in R3. The definition
of Ricci surfaces is introduced in Section 3, then we focus on defining the Weierstrass
data for Ricci surfaces which will be our principal tools. In Section 4, we plan to
define catenoidal ends for Ricci surfaces, and we will prove a lemma providing a
local description of the Weierstrass data near a catenoidal end.

Our first main result is theorem 5.2 which will be proven in Section 5. This
theorem offers a complete classification of non-positively curved Ricci surfaces M '
C \ {0} with two catenoidal ends. It assures that a such Ricci surface can only be
isometric to one of the two classes of surfaces. We will give also an explanation for
the relations between our theorem and some related results. For example, theorem
5.2 is equivalent to a result of Troyanov which classified all the metrics of constant
Gauss curvature 1 on C̄ with two conical singularities at 0 and ∞ (see [13]).

In Section 6, we are going to discuss the case when the Ricci surface is biholo-
morphic to M ' C \ {0, 1} possessing three catenoidal ends. Since things become
much more complicated in this situation, it could be very hard to obtain a complete
classification as in the previous case. We restrict ourselves to several classification
results under some additional conditions on the total curvature and the reducibility
of induced metric (−K)gM . For concrete statements of these results, readers may
consult theorem 6.1, theorem 6.3 and theorem 6.4.

In the last section of this paper, we extend our discussion to Ricci surfaces with
positive genus. We have proven theorem 7.4 which assures that for k, n > 0, there
exists a Ricci surface with genus k and n catenoidal ends.

The author wishes to express his gratitude to his supervisor, Prof. Benôıt Daniel,
for his helpful discussions and encouragement.

2. Preliminaries

In this section, we plan to recall the Weierstrass representation for minimal
immersions in R3 which plays an essential role in our discussion.

Suppose that X : M → R3 is a minimal immersion, where M is a smooth
manifold of dimension 2. Taking a simply connected neighbourhood (U, (x, y)) of
p0 ∈ M with (x, y) the isothermal coordinates, then X being minimal means that
X is a harmonic map, or equivalently,

(2.1) φ = (φ1, φ2, φ3) :=
∂X

∂x
− i∂X

∂y
= 2

∂X

∂z

is holomorphic, where ∂
∂z = 1

2 ( ∂
∂x − i

∂
∂y ) and ∂

∂z̄ = 1
2 ( ∂
∂x + i ∂∂y ). It is not difficult to

verify that φdz is a globally defined vector valued holomorphic 1-form on M . With
the help of φdz, we may construct a meromorphic function g and a holomorphic
1-form η on M such that the minimal immersion X can be expressed as

(2.2) X(p) = X(p0) + Re

∫ p

p0

(
1

2

(
1− g2

)
η,
i

2

(
1 + g2

)
η, gη

)
.

Formula (2.2) is called the Weierstrass representation of the minimal immersion
X : M → R3 and the pair (g, η) is called the Weierstrass data of X. Since φdz is
a holomorphic 1-form which does not vanish, we see that whenever g has a pole of
order m at p ∈ M , η must have a zero of order 2m at p ∈ M . The function g is
also called the Gauss map. To see this, it is sufficient to realize that g is just the
classical Gauss map G : M → S2 composed by the stereographic projection from
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the north pole of S2. Moreover, it is worth noticing that all these formulas still hold
if we multiply η by an element eiθ ∈ S1, thus the new Weierstrass data (g, eiθη) give
another minimal immersion Xθ : M → R3. This leads to the following definition:

Definition 2.1. The immersions Xθ : M → R3 with θ ∈ R/2πZ are called associate
minimal immersions of X : M → R3.

We will discuss some geometric data of a minimal immersion with the help of
the Weierstrass representation.

Firstly, if we denote locally η by αdz, then the induced Riemannian metric gM
on M will be determined to be

gM =
1

4
|α|2

(
1 + |g|2

)2|dz|2.(2.3)

The second thing is to determine the Gauss curvature K of M . In use of the
Riemannian metric gM , the Gauss curvature can be computed as

K = −
[

4|g′|
|α|(1 + |g|2)2

]2

.(2.4)

We list in the end some examples of minimal immersions in R3 with their Weier-
strass data:

Example 2.2. (Enneper’s Surface) Let M = C, the Weierstrass data are given by
g(z) = z and η = dz.

Example 2.3. (Catenoid) Let M = C\{0}, the Weierstrass data are given by
g(z) = z and η = a

z2 dz, with a ∈ R\{0}.

3. Ricci metrics and Ricci surfaces

Andrei Moroianu and Sergiu Moroianu defined in their article [9] a class of sur-
faces called Ricci surfaces which can be regarded as a generalisation of minimal
surfaces in R3. In this section, we are going to introduce some basic properties of
Ricci surfaces. Throughout this paper, we only consider orientable Ricci surfaces.

The following theorem is an important fact which has been proven by Gregorio
Ricci-Curbastro [11]:

Theorem 3.1. A Riemannian surface (M, gM ) with negative Gauss curvature K <
0 has local isometric immersions as minimal surface in R3 if and only if one of the
three equivalent conditions holds:
i). The metric

√
−KgM is a flat metric;

ii). The metric (−K)gM is a metric of constant Gauss curvature 1;
iii). The Gauss curvature satisfies

K∆K + gM
(
dK, dK

)
+ 4K3 = 0.

The third condition in theorem 3.1 can even be studied without the hypothesis
K < 0. This observation inspires Andrei Moroianu and Sergiu Moroianu to give
the following definition.

Definition 3.2. A Riemannian surface (M, gM ) whose Gauss curvature K satisfies
the following identity

K∆K + gM
(
dK, dK

)
+ 4K3 = 0(3.1)

is called a Ricci surface, the metric gM is called a Ricci metric.
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From theorem 3.1, we can see that all the immersed minimal surfaces in R3 are
Ricci surfaces. Moreover, Andrei Moroianu and Sergiu Moroianu proved in their
article the following result which shows that a Ricci surface with non-positive Gauss
curvature can be locally realized as an immersed minimal surface in R3.

Theorem 3.3. Let (M, gM ) be a connected Ricci surface, then its Gauss curvature
K does not change sign on M . If K ≤ 0, then M admits locally a minimal isometric
immersion into R3.

These two theorems indicate that the relation between Ricci surfaces with non-
positive Gauss curvature and minimal immersions in R3 is very close. Therefore,
we are inspired to use the tools in the theory of minimal immersions in R3 to study
Ricci surfaces. This is possible thanks to the next proposition.

Proposition 3.4. Let g0 = |dz|2 be a flat metric on some domain Ω ⊂ C and
f : Ω → R a smooth function. The metric gΩ = e−2fg0 admits locally a minimal
immersion in R3 if and only if near every x ∈ Ω there exists a pair of holomorphic
functions (a, b) such that e−f = |a|2 + |b|2.

Proof. (1). ⇒ If a such isometric immersion exists, then from the discussion in
Section 2, there are Weierstrass data η = αdz and g satisfying e−f = 1

2 |α|(1+ |g|2).
Since α can only have a zero of order 2m where g has a pole of order m, we may
find two holomorphic functions a and b such that

a2 =
α

2
, b = ag,

thus e−f = |a|2 + |b|2.
(2). ⇐ If there are two holomorphic functions a et b such that e−f = |a|2 + |b|2,

then a can be supposed to be non-vanishing on a disc D centered at x. Let us define
α := 2a2, g := b

a , then η := αdz is a holomorphic 1-form and g is a meromorphic
function. Additionally, zeroes of η are compatible with the poles of g as mentioned
in Section 2. Taking (g, η) as Weierstrass data, we may find an isometric minimal
immersion into R3 whose metric is gΩ. �

Moreover, Calabi has proven the following theorem of rigidity (see [2], [3]):

Theorem 3.5. Two minimal isometric immersions from a simply connected sur-
face M into R3 are associate, up to the action of Isom(R3) on R3.

Remark 3.6. This theorem tells us that the minimal isometric immersion from a
simply connected surface M into R3 is unique up to the action of Isom(R3) and the
S1-action (associate minimal immersions). Combining proposition 3.4 and Calabi’s
theorem 3.5, we may locally identify the non-positively curved Ricci surface with
the equivalent class of its minimal isometric immersions into R3. This identification
will be of great significance in our further discussion.

We are now interested in studying how the identification mentioned above allows
us to do with the Weierstrass data. Firstly, it is easy to be seen from (2.2) that the
Weierstrass data remain invariant under translations in R3. Secondly, definition
2.1 implies that we can multiply η by an element eiθ ∈ S1 while keeping g fixed.
Thirdly, let us make a rotation in R3, i.e., applying an element A ∈ SO(3,R) to

Weierstrass representation (2.2), then the new surface X̃ and its Gauss map G̃ are
written as

X̃ = AX, G̃ = AG.(3.2)
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Owing to the fact that ∂f
∂z = 2∂Ref

∂z for every holomorphic function f , we obtain

φ̃ := 2
∂X̃

∂z
= Aφ.(3.3)

It is known that the stereographic projection π and rotations preserve angles, so
the composite map

π ◦A ◦ π−1 : C̄→ C̄

is conformal, hence an element of Aut(C̄) = PSL(2,C). In order to find the new
Weierstrass data, we need the following classical result whose proof is standard.

Lemma 3.7. The map

ϕ : SO(3,R)→ PSL(2,C)

A 7→ π ◦A ◦ π−1

is an injective Lie group homomorphism with Imϕ = PSU(2), hence it induces an
isomorphism SO(3,R) ' PSU(2).

Now we are going to determine the new Weierstrass data after the rotation. As
we have already seen, g = π ◦G : M → C̄ is the Gauss map, hence

g̃ = π ◦A ◦G = π ◦A ◦ π−1 ◦ π ◦G = ϕ(A).g,(3.4)

where ϕ(A).g denotes the action of ϕ(A) on g. Then by combining (2.2), (3.3) and
(3.4), we may get the new Weierstrass data (g̃, η̃).

Let us consider the Hopf differential defined by Q := dg ⊗ η. It is a direct
observation from the previous calculation that Q is invariant under rotations in
R3. Therefore, the new Weierstrass data obtained by applying A ∈ SO(3,R) are
computed as

(3.5)


g̃ = ϕ(A).(g),

η̃ =
Q

dg̃
.

From the proof of proposition 3.4, a non-positively curved Ricci surface can
be locally equipped with the Weierstrass data. It is worthwhile noticing that the
Weierstrass data may not be globally defined on Ricci surfaces in general. However,
they are always well-defined on the universal cover of a Ricci surface. In fact, for a
non-positively curved Ricci surface (M, gM ), the metric defined by g1 := (−K)gM is
a metric of constant Gauss curvature 1, possibly with isolated conical singularities
at zeroes of K (see [9], [13]). It induces on the universal cover M̃ of M a metric
dσ2 of constant Gauss curvature 1. Then there exists a meromorphic function
g : M̃ → C̄ such that

dσ2 =
4dgdḡ

(1 + |g|2)2
.(3.6)

Moreover, this function g is unique up to an action of PSU(2) as in (3.4). Let us take
g as the Gauss map, then the Weierstrass data can be constructed with the help of
proposition 3.4 and theorem 3.5. To be convenient, we still call it the Weierstrass
data of this Ricci surface. A point that should be mentioned is that the metric
dσ2 is invariant under the action of the deck transformation group Deck(M̃/M).

It is immediate from the uniqueness of g that every deck transformation of M̃
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corresponds to an element in PSU(2). More precisely, if we identify the deck

transformation group Deck(M̃/M) with the fundamental group π1(M) of M , then
there exists a monodromy representation ρ : π1(M)→ PSU(2) such that

g ◦ τ−1 = ρ(τ).g,(3.7)

for all τ ∈ π1(M). This monodromy representation will be very important in our
further discussion.

Even though the Hopf differential Q is only defined on the universal cover M̃ in
general, its modulus |Q| is actually well-defined on the Ricci surface M itself. To
see this, since Q is invariant under the action of PSU(2) and it may differ just by
a possible multiplication of eiθ ∈ S1, the modulus |Q| is therefore independant of
all these actions. Hence it descends to a well-defined quantity on M .

Thanks to the identification mentioned in remark 3.6, all the Weierstrass data
under these operations are regarded to be equivalent. This equivalence class of
Weierstrass data is exactly what the Weierstrass data of the non-positively curved
Ricci surface means. From now on, once a representative pair of Weierstrass data
is fixed, we are allowed to apply all the operations discussed above.

To finish this section, we also give an example of Ricci surfaces. For CMC-1
immersions in the hyperbolic 3-space H3, we may define an analogue of the Weier-
strass representation (see [1], [14]). We know from the Lawson’s correspondence
(see [4]) that CMC-1 immersions in H3 are locally isometric to minimal immersions
in R3, hence it provides some Ricci surfaces. A typical example is the following:

Example 3.8. (Catenoid cousins) Let M = C\{0}, the representative Weierstrass
data are g(z) = zµ and η = az−µ−1dz, with a, µ ∈ R∗+ and µ 6= 1. In particular, if
µ is an integer, then it is isometric to a µ-fold cover of catenoid.

4. Definition of catenoidal ends

In this section we plan to define catenoidal ends for a non-positively curved
Ricci surface with the help of the Weierstrass data. Before beginning, we need
some preparation.

Definition 4.1. Let (M, gM ) be a complete surface, then the integral

K(M) :=

∫
M

KdA(4.1)

is called the total curvature of M , where dA is the area element and K is the Gauss
curvature.

It is well-know that every two-dimensional orientable smooth Riemannian man-
ifold can be equipped with a compatible complex structure so that it may also be
regarded as a Riemann surface. We announce here an important theorem proved
by Huber [6] and Osserman [10]:

Theorem 4.2. Let (M, gM ) be a complete non-positively curved orientable Rie-
mannian surface with finite total curvature. Then there exists a compact Riemann
surface Sk of genus k and a finite number of points p1, ..., pr on Sk such that M is
biholomorphic to Sk\{p1, ..., pr}.

Theorem 4.2 permits us to identify a complete non-positively curved Ricci surface
which has finite total curvature with a Riemann surface Sk\{p1, ..., pr}. It is natural
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for us to study the Ricci surface with some particular assumptions at the punctured
points.

Example 2.3 and 3.8 showed some complete non-positively curved Ricci surfaces
which are biholomorphic to C̄\{0,∞}. Their universal covers are isometric to that
of a classical catenoid. In addition, the Hopf differential Q of these examples is
meromorphic near each punctured points. We have seen in the previous section
that the Hopf differential Q is independent of isometries of R3, and it is unique up
to a multiplication by an element eiθ ∈ S1. Hence we are inspired to study the order
of Q at punctured points. At the punctured point 0, it is not difficult to observe
that ord0 Q = −2. Similarly, at the punctured point ∞, we replace z by 1

w , then
an easy calculation shows that ord∞ Q = −2 still holds. The condition ord Q = −2
is therefore valuable for us. Moreover, it is worth remarking that ord Q = −2 does
not depend on the choice of conformal parameters. For these reasons, we may give
the following definition.

Definition 4.3. A catenoidal end of a non-positively curved Ricci surface M '
Sk\{p1, p2, ..., pr} with finite total curvature is a punctured point pi which possesses
a neighborhood where the Hopf differential Q is well-defined and meromorphic,
satisfying ordpi Q = −2.

For a Ricci surface M ' C̄ \ {p1, p2, ..., pr} with r catenoidal ends, the Hopf
differential Q is a well-defined holomorphic quadratic differential on M . In fact, the
fundamental group π1(M) is generated by closed curves γ1, ..., γr surrounding each
punctured point. By definition 4.3, Q is independent of all the generators of π1(M),
thus well-defined on M . However, this property fails to hold for Ricci surfaces with
positive genus in general. This is because there will be other generators of the
fundamental group π1(M) than the closed curves mentioned above, hence Q may
not be well-defined on M itself.

Taking advantage of (2.3) and (2.4), we may observe that the modulus |Q| of
Q coincides with the metric

√
−KgM defined in theorem 3.1. Therefore, around a

catenoidal end which corresponds to z = 0 of a Ricci surface (M, gM ), the induced
flat metric

√
−KgM can be locally written as

√
−KgM =

(
a

|z|2
+ o

(
1

|z|2

))
|dz|2 ,(4.2)

with a ∈ R \ {0}. Actually, the consverse is also true. To see this, let us assume
that the induced metric

√
−KgM of a non-positively curved Ricci surface has a local

expression as in (4.2) near a punctured point z = 0. If we consider a closed curve
γ surrounding this point, then by Calabi’s rigidity theorem 3.5 and the definition
of Q, we must have

Q ◦ τ−1 = e2πiθQ

for some θ ∈ [0, 1), where τ = [γ] ∈ π1(M). It can be checked that P := z−θQ is a
well-defined meromorphic quadratic differential near 0. Moreover, the modulus of
P takes the form

|P | = |z|−θ|Q| =

(
a

|z|2+θ
+ o

(
1

|z|2+θ

))
|dz|2 ,

it implies that 0 is a pole of P and θ = 0. Hence Q is locally well-defined near 0
and z = 0 is a catenoidal end of the Ricci surface M . Consequently, the catenoidal
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end of a non-positively curved Ricci surface may be equivalently defined to be a
punctured point where the induced flat metric

√
−KgM has the expression as in

(4.2).
Apart from the metric

√
−KgM , we can say even more about the Weierstrass

data of the Ricci surface. The lemma below provides locally an explicit description
of the catenoidal end of Ricci surfaces.

Lemma 4.4. For a non-positively curved Ricci surface (M, gM ) with finite total
curvature, it has a catenoidal end at the punctured point corresponding to z = 0 if
and only if there exists an element A ∈ SO(3,R) such that after the rotation, the
Weierstrass data can be locally written as

(4.3)


η̃ = α̃dz =

(
a

zλ+1
+ o

(
1

zλ+1

))
dz,

g̃ = bzλ + o(zλ),

where a, b ∈ C\{0} and λ ∈ R∗+.

Proof. ⇐ If there is an element A ∈ SO(3,R) such that after the rotation, the
Weierstrass data η̃ and g̃ have form of (4.3), then it can be easily checked that
ord Q = −2 is verified at that point.
⇒ Conversely, given ord Q = −2 at the punctured point z = 0, we are obliged

to consider an element τ = [γ] ∈ π1(M), where γ is a closed curve around this
punctured point. Since each rotation of C̄ is conjugate to a rotation fixing 0 and
∞, in use of lemma 3.7, we may suppose that the function g satisfies

g ◦ τ−1 = e2πiθg,

with θ ∈ [0, 1). One may verify that h(z) := z−θg is a well-defined meromorphic
function near z = 0. The condition that the total curvature of M is finite tells us
that h is actually meromorphic at 0 (see [1], Prop 4), thus the Gauss map g can be

locally written as g = zµ(
∞∑
j=0

bjz
j) with µ ∈ R, bj ∈ C and b0 6= 0.

(1). Assume that µ > 0, then it is immediate from the definition of Q that



g = zµ

 ∞∑
j=0

bjz
j

 ,

η = z−µ−1

 ∞∑
j=0

ajz
j

 dz,

with a0, b0 ∈ C\{0}. This is the expression (4.3) and we can just take A = I.
(2). Now suppose that µ ≤ 0.

(i). If µ = 0, then g = b0 +
∞∑
j=1

bjz
j . The condition ord Q = −2 assures that

g is not a constant. Thus we may take a rotation g̃ = g−b0
b̄0g+1

. Since in this case g̃ is
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meromorphic near z = 0 and g̃(0) = 0, it must have the form

g̃ = zn

 ∞∑
j=0

cjz
j


for some n ∈ N∗, where cj ∈ C and c0 6= 0. The isomorphism constructed in
lemma 3.7 implies immediately the existence of such an element A ∈ SO(3,R). In
addition, the corresponding η̃ can be proved to be

η̃ = z−n−1

 ∞∑
j=0

ajz
j

 dz,

with aj ∈ C and a0 6= 0. This satisfies the expression (4.3).
(ii). In the case µ < 0, we will apply the transformation g̃ = − 1

g . It is easy

to see that the new Weierstrass data have the form as in (4.3). The corresponding
A ∈ SO(3,R) is also given by lemma 3.7. This completes the proof. �

With the help of this lemma, the Ricci metric can be locally written as

gM =

(
b

|z|2λ+2
+O

(
1

|z|2

))
|dz|2 ,(4.4)

where b ∈ R \{0} and λ ∈ R∗+. Moreover, taking (4.2) and (4.4) into consideration,
we obtain immediately from Ricci’s theorem 3.1 a local expression for (−K)gM
which is

(−K)gM =

(
c|z|2λ−2 + o

(
|z|2λ−2

))
|dz|2 ,(4.5)

with c ∈ R\{0}. Since λ > 0, the metric (−K)gM has a conical singularity of order
λ− 1 > −1 at the catenoidal end z = 0.

It should be noticed that this lemma is just a local result. In order to do a
global discussion, we need to study the monodromy representation introduced in
the previous section. Inspired by Umehara and Yamada in their article [15], we will
give the following definitions.

Definition 4.5. Let dσ2 be a metric with constant constant Gauss curvature 1
and finite number of conical singularities on M ,

i). We call it an irreducible metric if the image of the corresponding monodromy
representation ρ : π1(M)→ PSU(2) is not abelian;

ii). We call it a non-trivially reducible metric if the image of ρ is abelian but not
trivial;

iii). It is called a trivially reducible metric if the image of ρ is trivial.

For a non-positively curved Ricci surface (M, gM ) with finite total curvature
and more than one ends, if the induced metric g1 := (−K)gM is reducible, then
we can apply lemma 4.4 one by one to all the catenoidal ends. Since the image
of the monodromy representation ρ is abelian, the order of this procedure does
not influence the final result. Hence in this case, we may do some global analysis.
However, this method does not work if the induced metric g1 is irreducible.
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5. M ' C \ {0} with two catenoidal ends

We are inspired by Huber’s theorem to study non-positively curved Ricci surfaces
with catenoidal ends. It is immediate from the Riemann uniformization theorem
that the universal cover of a such Ricci surface can only be the whole plane C
or the upper half plane H. In the C case, the corresponding Ricci surface M is
biholomorphic to either C \ {0} or C. The following theorem affirms that the case
when M ' C cannot appear.

Theorem 5.1. There does not exist non-positively curved Ricci surface M ' C
with exactly one catenoidal end.

Proof. Let us identify M with C̄ \ {0}, then the catenoidal end corresponds to
0. Applying lemma 4.4, we may assume that the Gauss map g has a pole at 0.
Since π1(M) is trivial, g can be written as g = z−nϕ(z), where n ∈ N∗ and ϕ is
a meromorphic function on C̄ satisfying ϕ(0) 6= 0. The condition for catenoidal
ends leads to the fact that ord η = −2 − (−n − 1) = n − 1 ≥ 0 at 0. Therefore, η
is a holomorphic 1-form on C̄ thus η ≡ 0. This implies that Q ≡ 0, which is not
possible. �

Thanks to theorem 5.1, we may focus on giving a classification of non-positively
curved Ricci surfaces M ' C \ {0} with two catenoidal ends.

Theorem 5.2. A complete non-positively curved Ricci surface M ' C\{0} with
two catenoidal ends can only be isometric to a catenoid, a catenoid cousin given as
in example 3.8 or the surface determined by the Weierstrass data

(5.1) g = zn + a, η = bz−n−1dz,

where a, b ∈ R∗+ and n ∈ N∗. Moreover, all these surfaces are mutually non-
isometric.

Proof. On the one hand, since Deck(M̃/M) ' π1(M) ' Z is a cyclic group, the
proof of lemma 4.4 tells us that h(z) := z−θg is a meromorphic function on C̄ for
some θ ∈ [0, 1). Therefore, we may assume that the Gauss map is g(z) = zµf(z),
where f is a meromorphic function on C̄ and µ > 0. Hence it must have the form

g(z) = zµ
ϕ(z)

ψ(z)
,(5.2)

where ϕ and ψ are coprime polynomials such that ψ(0) 6= 0 and ϕ(0) 6= 0. From
lemma 4.4 and the fact that η can only have a zero of order 2m where g has a pole
of order m, we obtain immediately

η = λz−µ−1ψ(z)2dz,(5.3)

where λ ∈ C\{0} is a constant number. On the other hand, as we have explained
in the previous section, the Hopf differential Q = dg ⊗ η is meromorphic on C̄
satisfying ord Q = −2 at 0 and ∞, thus it can be written as

Q =
ν

z2
dz ⊗ dz,(5.4)

where ν ∈ C\{0} is a constant number.
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Taking (5.2), (5.3) and (5.4) into consideration, we have

Q = dg ⊗ η
= λz−2[µϕψ + z(ϕ′ψ − ϕψ′)]dz ⊗ dz
= νz−2dz ⊗ dz.

Comparing these two expressions, we draw the following equation

µϕψ + z(ϕ′ψ − ϕψ′) =
ν

λ
.(5.5)

Differentiating the two sides of (5.5), it becomes

ψ[zϕ′′ + (1 + µ)ϕ′] = ϕ[zψ′′ + (1− µ)ψ′].

Since ϕ and ψ are coprime, there must be a polynomial h(z) such that

zϕ′′ + (1 + µ)ϕ′ = h(z)ϕ.(5.6)

The degree of the left-hand side of (5.6) is at most deg ϕ − 1, while the degree of
the right-hand side should be at least deg ϕ unless h(z) = 0. This comparison tells
us that h(z) = 0. Therefore, (5.6) is actually

zϕ′′ + (1 + µ)ϕ′ = 0.(5.7)

By solving differential equation (5.7), we get

ϕ = a+ bz−µ,(5.8)

where a, b ∈ C are constant numbers.
Similarly, we can get

ψ = czµ + d,(5.9)

where c, d ∈ C are constant numbers.
Since µ > 0 and ϕ is a polynomial, we must have b = 0.

(i). If µ /∈ N, then c = 0 because ψ should also be a polynomial. Thus the
Weierstrass data of the Ricci surface are

g =
a

d
zµ, η = λd2z−µ−1dz.

With a change of variables u = (ad )
1
µ z, these expressions can be simplified to be

g = uµ, η = λadu−µ−1du.

Moreover, by applying an S1-action if necessary, we may suppose λad to be a real
number ρ > 0, thus the Weierstrass data of the Ricci surface can be written as

g = uµ, η = ρu−µ−1du(5.10)

with ρ ∈ R∗+.
(ii). If µ ∈ N and c = 0, then the Weierstrass data have exactly the same form

as in (5.10). In these two cases, the Ricci surface M is isometric to a catenoid if
µ = 1, to a catenoid cousin if µ 6= 1.

(iii). If µ ∈ N and c 6= 0, the Weierstrass data will have the form

g =
azµ

czµ + d
, η = λ(czµ + d)2z−µ−1dz.(5.11)
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Denoting

r =
a

d

(
|c|2

|a|2
+ 1

)
, s =

c̄

ā
, t =

λd2

|c|2
|a|2 + 1

,

then a simple computation shows that after a rotation, the Weierstrass data of the
Ricci surface become

g̃ = rzµ + s, η̃ = tz−µ−1dz,(5.12)

where r, s, t ∈ C\{0}. With the help of a change of variables w = r−
1
µ z, (5.12) is

simplified as

g̃ = wµ + s, η̃ = trw−µ−1dw.(5.13)

Applying an S1-action if necessary, we may assume tr to be a positive real number
ρ, hence the Weierstrass data can be written as

g̃ = wµ + s, η̃ = ρw−µ−1dw,(5.14)

where s ∈ C\{0} and ρ ∈ R∗+. Moreover, if we denote s = ξeiθ with ξ ∈ R∗+ and
θ ∈ R/2πZ, then it will be immediate by a rotation and a change of variables that
the formula (5.1) is obtained.

From Ricci’s theorem 3.1, we know that a Ricci metric gM induces natually
a metric (−K)gM which is of constant Gauss curvature 1, possibly with conical
singularities. Therefore, we are able to compute the total curvature with the help
of Gauss-Bonnet formula with conical singularities

1

2π

∫
M

(−K)dA = χ(M̄) +

n∑
i=1

βi,(5.15)

where βi > −1 are the orders of conical singularities (see [13]). Taking advantage
of the two expressions (5.10) and (5.1), a direct computation shows that the metric
(−K)gM has two conical singularities of the same order at 0 and ∞, which is µ− 1
for (5.10) and n − 1 for (5.1). Hence the total curvature is −4πµ for (5.10) and
−4πn for (5.1). Since the total curvature is intrinsic, any two of such Ricci surfaces
with different total curvatures cannot be isometric.

Now we are going to prove that two Ricci surfaces with the same total curvature
−4πn but different pair (a, b) in (5.1) could not be isometric. Assuming that there
is an isometry τ : M1 → M2, where M1,M2 ' C\{0} are endowed with metrics
defined as in (5.1) with (a1, b1) 6= (a2, b2). Then τ can be lifted to a biholomorphic
map τ̃ : C → C through the universal covering map exp : C → C\{0}, hence τ̃ is
actually an affine function. More precisely, there exists a pair (α, β) ∈ C2 such that

(5.16)

 g = en(αu+β) + a1 = enu + a2,

η = b1αe
−n(αu+β)du = b2e

−nudu.

By comparing both sides of (5.16), we get α = 1, a1 = a2, enβ = 1 and b1 = b2,
contradiction. This completes the proof of the theorem. �

The previous proof is inspired by Umehara and Yamada (see [14]). We give here
another proof, which provides a sight of the method that we will use for our further
discussion.
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Proof. For the same reason, we suppose that the Weierstrass data have the forms
as in (5.2) and (5.3).

(1). If ψ is holomorphic at ∞, then it should be a constant function, thus
η = az−µ−1dz with a ∈ C. This means that f does not have poles on C \ {0}. In
fact, if f has a pole on C \ {0}, then η should have zero at this point, thus a = 0
and η ≡ 0. This leads to the result Q ≡ 0, which is a contradiction to the condition
of a catenoidal end. Therefore, f is holomorphic on C.

(i). If f is also holomorphic at ∞, then f must be a constant function, hence
g = bzµ with b ∈ C. In this case, we get a catenoid or a catenoid cousin.

(ii). If f has poles at ∞, it should be a polynomial

f(z) = ν(z − a1)...(z − ap)(5.17)

with ν, ai ∈ C \ {0} and p ∈ N∗. Let us make a substitution z = 1
w , then we get{

g = νw−µ−p(1− a1w)...(1− apw),

η = −awµ−1.

The condition of catenoidal end at ∞ becomes

ord Q = −p− 2 = −2,

which results in p = 0, contradiction.
(2). If ψ has poles at ∞, it must have the form

ψ(z) = (z − b1)...(z − bq)(5.18)

with bi ∈ C \ {0} and q ∈ N∗. As a consequence, f has the expression

f(z) =
ξ(z − c1)...(z − cr)
(z − b1)...(z − bq)

,(5.19)

where r ∈ N and ξ, cj ∈ C \ {0} satisfying bi 6= cj for all (i, j). Replacing z by 1
w ,

we obtain  g = ξw−µ−r+q
(1− c1w)...(1− crw)

(1− b1w)...(1− bqw)
,

η = −λwµ−2q−1(1− b1w)2...(1− bqw)2.

(i). If −µ − r + q 6= 0, then the condition of catenoidal end at ∞ implies
−r − q − 2 = −2, thus r + q = 0, which is not possible.

(ii). The only case left is µ = q − r ∈ N∗. Applying g̃ = g−ξ
ξ̄g+1

, we get the

following formula

g̃ = ξ
(1− c1w)...(1− crw)− (1− b1w)...(1− bqw)

ξξ̄(1− c1w)...(1− crw) + (1− b1w)...(1− bqw)
.(5.20)

On the one side, it can be seen that ord g̃ ≤ q because q > r. On the other side,
since ord η̃ = ord η = µ− 2q − 1 = −q − r − 1, we can compute

ord dg̃ = −2− ord η̃ = q + r − 1 ≥ 0,
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hence ord g̃ = q+r. We deduce from this comparison that r = 0. Combining (5.20)
with the fact that ord g̃ = q, we may observe that

I1 :=
∑

1≤i≤n

ci = 0,

I2 :=
∑

1≤i<j≤n

cicj = 0,

...

In−1 :=
∑

1≤i1<i2<...<in−1≤n

ci1 ...cin−1
= 0,

In := c1c2...cn 6= 0.

Consequently, the Weierstrass data take the same form as in (5.11), hence the
conclusion can be drawn by utilizing the same argument as in the first proof. �

From the proofs of this theorem, we may easily obtain the following conclusion.

Corollary 5.3. A complete non-positively curved Ricci surface M ' C\{0} whose
total curvature is −4πµ with µ ∈ R∗+ \ N must be isometric to a catenoid cousin.

Remark 5.4. Umehara and Yamada have proven in [14] a similar result for com-
plete CMC-1 surfaces in the hyperbolic 3-spaceH3. Then by the Lawson correspon-
dence, these surfaces correspond to Ricci surfaces. It is worthwhile to mention that
theorem 5.2 gives actually more surfaces than theirs. In fact, the main difference
between our theorem and the result of Umehara and Yamada is the catenoid case
and that they have for the case (5.1) a supplementary condition

n2 + 4bn = m2(5.21)

with m ∈ N∗. Condition (5.21) implies that b = m2−n2

4n ∈ Q, but we just require
b to be a real number. Then the previous argument says that we have indeed
more surfaces. Moreover, up to applying a homothety, our result implies that every
complete non-positively curved Ricci surface M ' C\{0} with two catenoidal ends
admits an isometric CMC-1 immersion in H3.

Remark 5.5. Troyanov has classified all the metrics of constant Gauss curvature
1 on C̄ with two conical singularities at 0 and ∞ (see [13]). In fact, he affirms that
if dσ2 is a such metric, then there exists λ ≥ 0 and β > −1, such that dσ2 has the
expression

dσ2 = (2 + 2β)2 |z|2β |dz|2

(|1 + λzβ+1|2 + |z|2β+2)2
,(5.22)

where β is either an integer, or λ = 0. In theorem 5.2, the condition for catenoidal

ends at 0 and∞ implies that we should have a flat metric |Q| = ν |dz|
2

|z|2 with ν ∈ R∗+.

Let us fix this flat metric, then each metric dσ2 in Troyanov’s theorem gives rise to a
desired Ricci surface for us (see [9], Lemma 2.3). Conversely, for every Ricci surface
in theorem 5.2, since the induced flat metric

√
−KgM coincides with |Q| which does

not vanish on C \ {0}, its Gauss curvature K has no zeroes on C \ {0}. Hence the
metric (−K)gM is of constant Gauss curvature 1 with two conical singularities at
0 and ∞. It is a direct verification that (−K)gM has the same expression as in
(5.22). Therefore, our result and Troyanov’s theorem are equivalent.
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6. M ' C \ {0, 1} with three catenoidal ends

After giving a complete classification for non-positively curved Ricci surface M '
C \ {0} with two catenoidal ends, we are naturally interested in studying the case
when the Ricci surface is topologically M ' C \ {0, 1} with three catenoidal ends
at 0, 1,∞. However, since π1(M) ' Z ∗ Z is not abelian, we have to pay attention
to the monodromy representation ρ : π1(M)→ PSU(2), as mentionned in the end
of Section 4.

We will only consider the case when the induced metric (−K)gM is reducible.
Let us denote τ1, τ2 the two generators of π1(M) ' Z ∗ Z which are represented by
two closed curves γ1, γ2 surrounding 0 and 1, respectively. On the one hand, since
the image of ρ is abelian, we may choose a proper g such that

g ◦ τj−1 = e2πiθjg, j = 1, 2,

where θj ∈ [0, 1). Imitating the proof of lemma 4.4, one can verify that the function
h(z) := (z − 1)−θ2z−θ1g is meromorphic on C̄, thus a rational function. Therefore,
g should be written as

g = (z − 1)θ2+pzθ1+q ϕ(z)

ψ(z)
,

where p, q ∈ Z and ϕ,ψ are coprime polynomials without zeroes at 0, 1. By inter-
changing the roles of 0, 1 and applying a rotation if necessary, we may devide the
Weierstrass data into two possible situations:
Case 1:

(6.1)

 g = λ(z − 1)µzν
ϕ(z)

ψ(z)
,

η = κ(z − 1)−µ−1z−ν−1ψ2(z)dz,

where λ, κ ∈ C \ {0}, µ > 0, ν ∈ R∗ and ϕ,ψ are coprime polynomials without
zeroes at 0, 1.
Case 2:

(6.2)

 g = λ(z − 1)µ
ϕ(z)

ψ(z)
,

η = κ(z − 1)−µ−1z−ν−1ψ2(z)dz,

where λ, κ ∈ C \ {0}, µ > 0, ν ∈ N∗ and ϕ,ψ are coprime polynomials without
zeroes at 0, 1.

In fact, if θ2 + p 6= 0, then up to replacing g by 1
g , we will obtain (6.1) or (6.2).

In the case when θ2 + p = 0 but θ1 + q 6= 0, we may apply a Mobius transformation
σ(z) = 1− z to interchange the role of 0 and 1, then we are back to the first case.
For the last case, if both θ2 + p and θ1 + q are zero, then we may use a rotation
to get a new g which has zeroes at 1. Since such a rotation does not change the
orders of dg and η at 1, we will find (6.1) or (6.2) again.

On the other hand, we know from Section 4 that the Hopf differential Q is holo-
morphic on M with three poles of order 2 at 0, 1 and ∞, thus it can be determined
to be

Q = α
(z − a1)(z − a2)

z2(z − 1)2
dz ⊗ dz,(6.3)
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where a1, a2 ∈ C\{0, 1} and α ∈ C\{0}. Combining (6.1), (6.2) with the definition
of Hopf differential Q = dg⊗η, we can see that no matter which case shall we take,
dg actually has a uniform expression

dg =
α

κ
(z − 1)µ−1zν−1 (z − a1)(z − a2)

ψ2(z)
dz.(6.4)

Therefore, we obtain two differential equations with respect to the two cases:
For case 1, we have

[(µ+ ν)z − ν]ϕψ + z(z − 1)(ϕ′ψ − ϕψ′) =
α

λκ
(z − a1)(z − a2).(6.5)

For case 2, the equation is

µϕψ + (z − 1)(ϕ′ψ − ϕψ′) =
α

λκ
zν−1(z − a1)(z − a2).(6.6)

Any solution ϕ,ψ of (6.5) or (6.6) will give rise to a desired Ricci surface. However,
these two equations are very complicated to solve directly, so we need to do a more
general discussion.

(1). Suppose that a1 6= a2. If ψ has a zero c of order higher than 1, then by
analysing (6.5) and (6.6), we have (z − c)|(z − a1)(z − a2), hence c = a1 or c = a2

and the order of (z − c) is exactly 2.

(i). If ψ(z) = (z−a1)2(z−a2)2ψ̂, then ψ̂ should be a polynomial whose zeroes

are all distinct. Let us denote ψ̂(z) =
∏n
j=1(z − bj). The existence of g requires

that all the residues at poles of dg (zeroes of ψ) to be zero, whence we get the
following conditions:

µ− 1

bi − 1
+
ν − 1

bi
− 3

bi − a1
− 3

bi − a2
−
∑
j 6=i

2

bi − bj
= 0, ∀i ∈ {1, 2, ..., n},(6.7)

(µ− 1)(µ− 2)

(a1 − 1)2
+

2(µ− 1)(ν − 1)

a1(a1 − 1)
+

(ν − 1)(ν − 2)

a2
1

+
12

(a1 − a2)2

−
(
µ− 1

a1 − 1
+
ν − 1

a1

) 6

a1 − a2
+

n∑
j=1

4

a1 − bj

+
6

a1 − a2

 n∑
j=1

2

a1 − bj

(6.8)

+

 n∑
j=1

2

a1 − bj

2

+

n∑
j=1

2

(a1 − bj)2
= 0,

and

(µ− 1)(µ− 2)

(a2 − 1)2
+

2(µ− 1)(ν − 1)

a2(a2 − 1)
+

(ν − 1)(ν − 2)

a2
2

+
12

(a2 − a1)2

−
(
µ− 1

a2 − 1
+
ν − 1

a2

) 6

a2 − a1
+

n∑
j=1

4

a2 − bj

+
6

a2 − a1

 n∑
j=1

2

a2 − bj

(6.9)

+

 n∑
j=1

2

a2 − bj

2

+

n∑
j=1

2

(a2 − bj)2
= 0.
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(ii). Let us consider the case when ψ(z) = (z − a1)2ψ̂, where ψ̂ is the same as
in case (i). A similar computation yields that

µ− 1

bi − 1
+
ν − 1

bi
− 3

bi − a1
+

1

bi − a2
−
∑
j 6=i

2

bi − bj
= 0, ∀i ∈ {1, 2, ..., n},(6.10)

and

(µ− 1)(µ− 2)

(a1 − 1)2
+

2(µ− 1)(ν − 1)

a1(a1 − 1)
+

(ν − 1)(ν − 2)

a2
1

+
2(ν − 1)

a1(a1 − a2)

+
2(µ− 1)

(a1 − 1)(a1 − a2)
−

 n∑
j=1

4

a1 − bj

( µ− 1

a1 − 1
+
ν − 1

a1
+

1

a1 − a2

)
(6.11)

+

 n∑
j=1

2

a1 − bj

2

+

n∑
j=1

2

(a1 − bj)2
= 0,

should be satisfied.
(iii). The last case is when all the zeroes of ψ are distinct. We will keep the

notation as in the two previous cases, then we must have

µ− 1

bi − 1
+
ν − 1

bi
+

1

bi − a1
+

1

bi − a2
−
∑
j 6=i

2

bi − bj
= 0, ∀i ∈ {1, 2, ..., n}.(6.12)

(2). Now let us assume that a1 = a2. In this case, if ψ has a zero with multiplicity,
then it could be (z − a1)2 or (z − a1)3.

(i). For the case when ψ does not have zeroes with multiplicity, we easily get

µ− 1

bi − 1
+
ν − 1

bi
+

2

bi − a1
−
∑
j 6=i

2

bi − bj
= 0, ∀i ∈ {1, 2, ..., n}.(6.13)

(ii). If ψ(z) = (z − a1)2ψ̂, then the conditions are

µ− 1

bi − 1
+
ν − 1

bi
− 2

bi − a1
−
∑
j 6=i

2

bi − bj
= 0, ∀i ∈ {1, 2, ..., n},(6.14)

and

µ− 1

a1 − 1
+
ν − 1

a1
−

n∑
j=1

2

a1 − bj
= 0, ∀i ∈ {1, 2, ..., n}.(6.15)

(iii). The only case left is when ψ(z) = (z − a1)3ψ̂. Similarly, the conditions
can be computed to be

µ− 1

bi − 1
+
ν − 1

bi
− 4

bi − a1
−
∑
j 6=i

2

bi − bj
= 0, ∀i ∈ {1, 2, ..., n},(6.16)
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and

2

(
µ− 1

a1 − 1
+
ν − 1

a1

)11(

n∑
j=1

1

a1 − bj
)2 + 5

∑
i6=j

1

(a1 − bi)(a1 − bj)


+3

[
(µ− 1)(µ− 2)

(a1 − 1)2
+

2(µ− 1)(ν − 1)

a1(a1 − 1)
+

(ν − 1)(ν − 2)

a2
1

] n∑
j=1

2

a1 − bj


+

(µ− 1)(µ− 2)(µ− 3)

(a1 − 1)3
+

3(µ− 1)(ν − 1)(µ− 2)

a1(a1 − 1)2
(6.17)

+
3(µ− 1)(ν − 1)(ν − 2)

a2
1(a1 − 1)

+
(ν − 1)(ν − 2)(ν − 3)

a3
1

−
n∑
j=1

32

(a1 − bj)3
−
∑
i 6=j

60

(a1 − bi)2(a1 − bj)

−
∑
i 6=j 6=k

16

(a1 − bi)(a1 − bj)(a1 − bk)
= 0.

If a Ricci surface induces a reducible metric (−K)gM of constant Gauss curvature
1, then it must satisfy equation (6.5) or (6.6) and one of the previous cases; the
converse is also true. Therefore, so as to find all the desired Ricci surfaces, we may
firstly solve algebraic equations (6.7)–(6.17) of each case to completely determine
the polynomial ψ. Then the problem is reduced to searching solutions to first
order equations (6.5) and (6.6) with a known polynomial ψ. We summarize these
arguments in the following theorem:

Theorem 6.1. Given µ > 0, ν ∈ R∗ and a1, a2 ∈ C \ {0, 1}, a complete non-
positively curved Ricci surface M ' C \ {0, 1} with a reducible metric (−K)gM and
three catenoidal ends exists if only if one of the following cases is verified:

(i). If a1 6= a2, there exist n ∈ N and mutually distinct b1, ..., bn ∈ C\{0, 1, a1, a2}
such that (6.7)–(6.9) are satisfied and equation (6.5) or (6.6) admits a polynomial
solution ϕ with ψ = (z − a1)2(z − a2)2

∏n
j=1(z − bj);

(ii). If a1 6= a2, there exist n ∈ N and mutually distinct b1, ..., bn ∈ C \
{0, 1, a1, a2} such that (6.10)–(6.11) are satisfied and equation (6.5) or (6.6) admits
a polynomial solution ϕ with ψ = (z − a1)2

∏n
j=1(z − bj);

(iii). If a1 6= a2, there exist n ∈ N and mutually distinct b1, ..., bn ∈ C \
{0, 1, a1, a2} such that (6.12) are satisfied and equation (6.5) or (6.6) admits a
polynomial solution ϕ with ψ =

∏n
j=1(z − bj);

(iv). If a1 = a2, there exist n ∈ N and mutually distinct b1, ..., bn ∈ C \ {0, 1, a1}
such that (6.13) are satisfied and equation (6.5) or (6.6) admits a polynomial solu-
tion ϕ with ψ =

∏n
j=1(z − bj);

(v). If a1 = a2, there exist n ∈ N and mutually distinct b1, ..., bn ∈ C \ {0, 1, a1}
such that (6.14)–(6.15) are satisfied and equation (6.5) or (6.6) admits a polynomial
solution ϕ with ψ = (z − a1)2

∏n
j=1(z − bj);

(vi). If a1 = a2, there exist n ∈ N and mutually distinct b1, ..., bn ∈ C \ {0, 1, a1}
such that (6.16)–(6.17) are satisfied and equation (6.5) or (6.6) admits a polynomial
solution ϕ with ψ = (z − a1)3

∏n
j=1(z − bj).
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Remark 6.2. In the case when M ' C \ {0, 1}, we are not allowed to use the
method mentioned in remark 5.5 to study Ricci surfaces. This is because the flat
metric |Q| vanishes at a1, a2 ∈ C \ {0, 1}, which should coincide with zeroes of the
Gauss curvature K. It means that the hypothesis V > 0 of Lemma 2.3 in [9] fails to
be satisfied. Therefore, we are obliged to take advantage of the method as above.

Now we plan to use theorem 6.1 to do some classification for Ricci surfaces with a
reducible metric (−K)gM and with finite total curvature −4π. Denote deg ψ = N
and deg ϕ = m, then by using Gauss-Bonnet formula with conical singularities
(5.15) again, we are able to compute the total curvature. The expression of total
curvature should be divided into several cases:

(1). Suppose that the Weierstrass data take the form as in (6.1) with ν > 0.
The induced metric (−K)gM can be determined to be

(−K)gM =
4|λα|2

|κ|2
· |z − 1|2(µ−1)|z|2(ν−1)|z − a1|2|z − a2|2

(|ψ|2 + |λ|2|z − 1|2µ|z|2ν |ϕ|2)2
|dz|2.

(a). If N > µ + ν + m, then this metric has conical sinularities of order
ν − 1, µ − 1, 2N − 2 − µ − ν, 1, 1 at 0, 1,∞, a1, a2, respectively. Hence the total
curvature is −4πN . The hypothesis that the total curvature should be −4π implies
N = 1, thus m = 0 and 0 < µ+ν < 1. In this case, we have ϕ = 1 and ψ(z) = z−b
for some b ∈ C \ {0, 1}. Comparing two sides of equation (6.5), we can see that if

ν(ν − 1) = (µ+ ν − 1)[ν(a1 + a2)− (µ+ ν)a1a2](6.18)

is verified, then b = (µ+ν−1)a1a2
ν is uniquely determined. Moreover, theorem 6.1

tells us that b should satisfy condition (6.12) or (6.13).
(b). If N = µ+ ν+m and N +m ≥ 2, then the total curvature is also −4πN .

Hence we must have N = 1 and m = 0, which is not possible.
(c). If N < µ + ν + m, then the total curvature is −4π(µ + ν + m). The

condition µ + ν + m = 1 tells us that m = 0 and N = 0. In this case, ψ = ϕ = 1
and that condition (6.12) or (6.13) is obviously satisfied. However, equation (6.5)
will not hold because the degrees on the two sides are not coincident. Hence this
case cannot appear.

(2). Now assume that the Weierstrass data also take the form as in (6.1) but
with ν < 0. In this case, we have

(−K)gM =
4|λα|2

|κ|2
· |z − 1|2(µ−1)|z|−2(ν+1)|z − a1|2|z − a2|2

(|z|−2ν |ψ|2 + |λ|2|z − 1|2µ|ϕ|2)2
|dz|2.

(d). If N > µ + ν + m, then the total curvature is −4π(N − ν), thus we get
N = 0 and ν = −1. Moreover, 1 > µ + m implies m = 0. The same argument as
in (c) shows that this is impossible.

(e). If N < µ+ ν+m, then the total curvature is −4π(µ+m). Again, we will
obtain m = 0 and N = 0, not possible.

(f). If N = µ + ν + m and N + m ≥ 2, then the total curvature is also
−4π(N − v). This leads to N = m = 0, impossible.

(3). Suppose now that the Weierstrass data have the expression as in (6.2),
where ν ∈ N∗. A similar computation shows

(−K)gM =
4|λα|2

|κ|2
· |z − 1|2(µ−1)|z|2(ν−1)|z − a1|2|z − a2|2

(|ψ|2 + |λ|2|z − 1|2µ|ϕ|2)2
|dz|2.
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(g). If N > µ + m, the total curvature is −4πN , thus N = 1 and m = 0. In
this case, ϕ = 1 and ψ(z) = z − b for some b satisfying (6.12) or (6.13). However,
the degree of the left-hand side of (6.6) is 1 while the degree of the right-hand side
is at least 2, contradiction.

(h). If N < µ+m, the total curvature is −4π(µ+m). This implies m = N = 0.
A similar argument as in (c) shows that equation (6.6) will never hold, thus it is
impossible.

(i). If N = µ + m and N + m ≥ ν + 2, the total curvature is −4πN . In
this case, we get N = 1 and m = 0, but N + m = 1 contradicts to the condition
N +m ≥ ν + 2.

These arguments can be concluded as the following theorem:

Theorem 6.3. Assuming that M ' C\{0, 1} is a complete Ricci surface with three
catenoidal ends and a reducible induced metric (−K)gM , if it has finite total cur-
vature −4π, then it must be isometric to the surface determined by the Weierstrass
data

(6.19)


g = λ(z − 1)µzν

1

z − (µ+ν−1)a1a2
ν

,

η = κ(z − 1)−µ−1z−ν−1

(
z − (µ+ ν − 1)a1a2

ν

)2

dz,

where a1, a2 ∈ C \ {0, 1}, λ, κ ∈ C \ {0}, µ, ν ∈ R∗+ satisfying 0 < µ+ ν < 1, (6.18)
and (6.12) (or (6.13)).

Moreover, we get instantly the following result from the previous discussion.

Theorem 6.4. There is no complete Ricci surface M ' C \ {0, 1} with three
catenoidal ends which induces a reducible metric (−K)gM and has finite total cur-
vature −4πl for 0 < l < 1.

With the help of theorem 6.3, we may construct an example.

Example 6.5. Taking µ = 1
4 , ν = 1

2 , then condition (6.18) becomes

4 = 2(a1 + a2)− 3a1a2.

By a direct computation, we can verify that (6.12) or (6.13) is true for b = − 1
2a1a2.

Therefore, we may take a1 = 6
5 and a2 = −1, then (6.19) will give us a desired

example of Ricci surface.

For Ricci surfaces M ' C\{0, 1} with total curvature −4πl for l > 1, things will
become much more complicated. However, it is always beneficial to mention the
trinoid constructed by Jorge and Meeks in [7], which is a typical example of such
Ricci surfaces whose induced metric (−K)gM is reducible.

Example 6.6. (Trinoid) The classical Weierstrass data of a trinoid are

g = z2, η =
dz

(z3 − 1)2
,
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defined on C̄ \ {1, ξ, ξ2}, where ξ = e
2πi
3 . After a Mobius transformation and a

rotation, we may find a new pair of Weierstrass data defined on C \ {0, 1} as

(6.20)


g =

ξ − 1

ξ + 1
· (w − 1)(w + 1)

(w − 2−
√

3)(w − 2 +
√

3)
,

η =
−1

9(2ξ + 1)
· (w − 2−

√
3)2(w − 2 +

√
3)2

w2(w − 1)2
dw.

Then a little computation shows a1 = 1+
√

3i
2 and a2 = 1−

√
3i

2 . It can be checked
that conditions (6.12) and equation (6.6) are satisfied. Additionally, by using Gauss-
Bonnet formula (5.15) again, we know that its total curvature is −8π.

7. Higher genus Ricci surfaces

As we have seen in Section 6, it is very difficult to give a total classification
of Ricci surfaces with catenoidal ends in general. However, the existence of Ricci
surfaces M ' C̄ \ {p1, p2, ..., pn} with n catenoidal ends (n ≥ 2) is well-known,
which is given by the n-noid (see [16]).

Example 7.1. (n-noid) Suppose M ' C̄ \ {1, ξ, ..., ξn−1} with ξ = e
2πi
n , then the

Weierstrass data of the n-noid are given by

g = zn−1, η =
dz

(zn − 1)2
.

Now we are interested in discussing non-positively curved Ricci surfaces with
positive genus and finitely many catenoidal ends. Our goal of this section is to
prove that there exist Ricci surfaces M ' Sk \ {p1, p2, ..., pn} with n catenoidal
ends for k, n > 0, where Sk is a compact orientable surface of genus k. To achieve
this, we will use the method introduced by Andrei Moroianu and Sergiu Moroianu
as mentioned in remark 5.5. The first tool that we need is the following theorem
proved by Gabriele Mondello and Dmitri Panov (see [8], Theorem A).

Theorem 7.2. Let χ ≤ 0 be an even number and v1, ..., vn ∈ R∗+ be such that

χ+

n∑
j=1

(vj − 1) > 0,(7.1)

then there exists a compact Riemann surface Sk of genus k = 2−χ
2 ≥ 1, a set of

distinct points {p1, p2, ..., pn} ⊂ Sk and a metric g1 of constant Gauss curvature 1
on Sk such that g1 has conical singularities of order vj − 1 at pj.

In order to get a Ricci metric on M ' Sk \ {p1, p2, ..., pn}, we have to construct
a proper flat metric. This is possible due to a result of Andrei Moroianu and Sergiu
Moroianu (see [9], Lemma 6.1).

Lemma 7.3. Given a compact Riemann surface Sk of genus k, let p1, p2, ..., pn ∈ Sk
and β : {p1, p2, ..., pn} → R be a function which satisfies

n∑
j=1

(β(pj)− 1) = −χ(Sk),(7.2)
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then there exists a flat metric g0 on Sk \{p1, p2, ..., pn} compatible with the complex
structure of Sk such that near each pi, it has the form

g0 = e2u|z|2β(pi)−2|dz|2(7.3)

with some smooth function u ∈ C∞(Sk,R).

Thanks to these two results, we are able to prove the existence of Ricci surfaces
with arbitrary genus and arbitrary number of catenoidal ends.

Theorem 7.4. For k, n > 0, there exists a non-positively curved orientable Ricci
surface M of genus k with n cetenoidal ends.

Proof. Firstly, let us take χ = 2 − 2k ≤ 0, v1, ..., vn ∈ R∗+ and vn+1 = 2(2k − 2 +
n) + 1 > 0, then it is easy to verify that

χ+

n+1∑
j=1

(vj − 1) =

n∑
j=1

vj + 2k + n− 2 > 0.

Hence by theorem 7.2, we will have a compact Riemann surface Sk of genus k, a
set of points {p1, p2, ..., pn+1} ⊂ Sk and a metric g1 of constant Gauss curvature 1
on Sk with conical singularities of order vj − 1 at pj .

Secondly, we define a function β : {p1, p2, ..., pn+1} → R as β(pi) = 0 for i =
1, 2, ..., n and β(pn+1) = 2k − 1 + n. This function β satisfies the equality (7.2),
thus from lemma 7.3, there is a flat metric g0 on Sk \ {p1, p2, ..., pn+1} which is
conformal to g1 and takes the form as in (7.3) near every punctured point.

Both of g1 and g0 do not vanish on Sk \ {p1, p2, ..., pn+1}. Since g0 is conformal
to g1, there is a positive function V defined on Sk \ {p1, p2, ..., pn+1} such that
g1 = V g0. It follows that g := V −1g0 is a Ricci metric on Sk \ {p1, p2, ..., pn+1}
(see [9], Lemma 2.3). Near the point pn+1, it is known that the metric g1 can be
written as

g1 =
4v2
n+1|z|4(2k−2+n)|dz|2

(1 + |z|4(2k−2+n)+2)2
(7.4)

for a suitable complex coordinate z. From lemma 7.3, the flat metric g0 has also a
local expression around pn+1 which is

g0 = e2u|z|2(2k−2+n)|dz|2(7.5)

for some smooth function u. A direct computation shows that the Ricci metric g
is of the form

g =
1

4
v−2
n+1e

4u(1 + |z|4(2k−2+n)+2)2|dz|2(7.6)

near pn+1. Hence g is actually well-defined and smooth at pn+1, thus a Ricci metric
on Sk \ {p1, p2, ..., pn}. In addition, near each pi ∈ {p1, p2, ..., pn}, g0 has the form

g0 = e2u|z|−2|dz|2.

This means p1, p2, ..., pn are catenoidal ends of this Ricci surface (see the discussion
after definition 4.3). Consequently, we have constructed an orientable Ricci surface
of genus k with exactly n catenoidal ends. �

Example 7.5. Wayne Rossman and Katsunori Sato have constructed a genus 1
catenoid cousin which is a CMC-1 immersion into the hyperbolic 3-space H3 (see
[12]). This is an example of theorem 7.4 in the case k = 1 and n = 2.
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Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
Email address: yiming.zang@univ-lorraine.fr


	1. Introduction
	2. Preliminaries
	3. Ricci metrics and Ricci surfaces
	4. Definition of catenoidal ends
	5. MC0 with two catenoidal ends
	6. MC0,1 with three catenoidal ends
	7. Higher genus Ricci surfaces
	References

