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Abstract

We describe a novel approach for syntax-
based statistical MT, which builds on a
variant of tree adjoining grammar (TAG).
Inspired by work in discriminative depen-
dency parsing, the key idea in our ap-
proach is to allow highly flexible reorder-
ing operations during parsing, in combina-
tion with a discriminative model that can
condition on rich features of the source-
language string. Experiments on trans-
lation from German to English show im-
provements over phrase-based systems,
both in terms of BLEU scores and in hu-
man evaluations.

1 Introduction

Syntax-based models for statistical machine trans-
lation (SMT) have recently shown impressive re-
sults; many such approaches are based on ei-
ther synchronous grammars (e.g., (Chiang, 2005)),
or tree transducers (e.g., (Marcu et al., 2006)).
This paper describes an alternative approach for
syntax-based SMT, which directly leverages meth-
ods from non-projective dependency parsing. The
key idea in our approach is to allow highly flexible
reordering operations, in combination with a dis-
criminative model that can condition on rich fea-
tures of the source-language input string.

Our approach builds on a variant of tree adjoin-
ing grammar (TAG; (Joshi and Schabes, 1997))
(specifically, the formalism of (Carreras et al.,
2008)). The models we describe make use of
phrasal entries augmented with subtrees that pro-
vide syntactic information in the target language.
As one example, when translating the sentence
wir müssen auch diese kritik ernst nehmenfrom
German into English, the following sequence of
syntactic phrasal entries might be used (we show
each English syntactic fragment above its associ-
ated German sub-string):

S

NP

we

VP

must ADVP

also

NP

these criticisms

ADVP

seriously

VP

take

wir müssen auch diese kritik ernst nehmen

TAG parsing operations are then used to combine
these fragments into a full parse tree, giving the
final English translationwe must also take these
criticisms seriously.

Some key aspects of our approach are as fol-
lows:

• We impose no constraints on entries in the
phrasal lexicon. The method thereby retains the
full set of lexical entries of phrase-based systems
(e.g., (Koehn et al., 2003)).1

• The model allows a straightforward integra-
tion of lexicalized syntactic language models—for
example the models of (Charniak, 2001)—in addi-
tion to a surface language model.

• The operations used to combine tree frag-
ments into a complete parse tree are signifi-
cant generalizations of standard parsing operations
found in TAG; specifically, they are modified to be
highly flexible, potentially allowing any possible
permutation (reordering) of the initial fragments.

As one example of the type of parsing opera-
tions that we will consider, we might allow the
tree fragments shown above forthese criticisms
and take to be combined to form a new structure
with the sub-stringtake these criticisms. This step
in the derivation is necessary to achieve the correct
English word order, and is novel in a couple of re-
spects: first,these criticismsis initially seen to the
left of take, but after the adjunction this order is
reversed; second, and more unusually, the treelet
for seriouslyhas been skipped over, with the re-
sult that the German words translated at this point
(diese, kritik, andnehmen) form a non-contiguous
sequence. More generally, we will allow any two

1Note that in the above example each English phrase con-
sists of a completely connected syntactic structure; this is not,
however, a required constraint, see section 3.2 for discussion.



tree fragments to be combined during the transla-
tion process, irrespective of the reorderings which
are introduced, or the non-projectivity of the pars-
ing operations that are required.

The use of flexible parsing operations raises two
challenges that will be a major focus of this paper.
First, these operations will allow the model to cap-
ture complex reordering phenomena, but will in
addition introduce many spurious possibilities. In-
spired by work in discriminative dependency pars-
ing (e.g., (McDonald et al., 2005)), we add proba-
bilistic constraints to the model through a discrim-
inative model that links lexical dependencies in the
target language to features of the source language
string. We also investigate hard constraints on the
dependency structures that are created during pars-
ing. Second, there is a need to develop efficient
decoding algorithms for the models. We describe
approximate search methods that involve a signif-
icant extension of decoding algorithms originally
developed for phrase-based translation systems.

Experiments on translation from German to En-
glish show a 0.5% improvement in BLEU score
over a phrase-based system. Human evaluations
show that the syntax-based system gives a sig-
nificant improvement over the phrase-based sys-
tem. The discriminative dependency model gives
a 1.5% BLEU point improvement over a basic
model that does not condition on the source lan-
guage string; the hard constraints on dependency
structures give a 0.8% BLEU improvement.

2 Relationship to Previous Work

A number of syntax-based translation systems
have framed translation as a parsing problem,
where search for the most probable translation is
achieved using algorithms that are generalizations
of conventional parsing methods. Early examples
of this work include (Alshawi, 1996; Wu, 1997);
more recent models include (Yamada and Knight,
2001; Eisner, 2003; Melamed, 2004; Zhang and
Gildea, 2005; Chiang, 2005; Quirk et al., 2005;
Marcu et al., 2006; Zollmann and Venugopal,
2006; Nesson et al., 2006; Cherry, 2008; Mi et
al., 2008; Shen et al., 2008). The majority of
these methods make use of synchronous gram-
mars, or tree transducers, which operate over parse
trees in the source and/or target languages. Re-
ordering rules are typically specified through rota-
tions or transductions stated at the level of context-
free rules, or larger fragments, within parse trees.
These rules can be learned automatically from cor-

pora.
A critical difference in our work is to allow

arbitrary reorderings of the source language sen-
tence (as in phrase-based systems), through the
use of flexible parsing operations. Rather than
stating reordering rules at the level of source or
target language parse trees, we capture reorder-
ing phenomena using a discriminative dependency
model. Other factors that distinguish us from pre-
vious work are the use of all phrases proposed by a
phrase-based system, and the use of a dependency
language model that also incorporates constituent
information (although see (Charniak et al., 2003;
Shen et al., 2008) for related approaches).

3 A Syntactic Translation Model
3.1 Background

Our work builds on the variant of tree adjoin-
ing grammar (TAG) introduced by (Carreras et
al., 2008). In this formalism the basic units
in the grammar are spines, which associate tree
fragments with lexical items. These spines can
be combined using asister-adjunctionoperation
(Rambow et al., 1995), to form larger pieces of
structure.2 For example, we might have the fol-
lowing operation:

NP

there

S

VP

is

⇒ S

NP

there

VP

is

In this case the spine fortherehas sister-adjoined
into the S node in the spine foris; we re-
fer to the spine forthere as being the modifier
spine, and the spine foris being the head spine.
There are close connections to dependency for-
malisms: in particular in this operation we see
a lexical dependency between the modifier word
there and the head wordis. It is possible to de-
fine syntactic language models, similar to (Char-
niak, 2001), which associate probabilities with
these dependencies, roughly speaking of the form
P (wm, sm|wh, sh, pos, σ), wherewm andsm are
the identities of the modifier word and spine,wh

and sh are the identities of the head word and
spine,pos is the position in the head spine that is
being adjoined into, andσ is some additional state
(e.g., state that tracks previous modifiers that have
adjoined into the same spine).

2We also make use of the r-adjunction operation defined in
(Carreras et al., 2008), which, together with sister-adjunction,
allows us to model the full range of structures found in the
Penn treebank.



S

NP

there

VP

is NP

NPB

no hierarchy

PP

of NP

discrimination

es gibt keine hierarchie der diskriminierung

Figure 1:A training example consisting of an English (tar-
get language) tree and a German (source language) sentence.

In this paper we will also considertreelets,
which are a generalization of spines, and which
allow lexical entries that include more than one
word. These treelets can again be combined us-
ing a sister-adjunction operation. As an example,
consider the following operation:

VP

be ADJP

able

SG

to VP

respond

⇒ VP

be ADJP

able SG

to VP

respond

In this case the treelet forto respondsister-adjoins
into the treelet forbe able. This operation intro-
duces a bi-lexical dependency between the modi-
fier word to and the head wordable.

3.2 S-phrases
This section describes how phrase entries from
phrase-based translation systems can be modified
to include associated English syntactic structures.
These syntactic phrase-entries (from here on re-
ferred to as “s-phrases”) will form the basis of the
translation models that we describe.

We extract s-phrases from training examples
consisting of a source-language string paired with
a target-language parse tree. For example, con-
sider the training example in figure 1. We as-
sume some method that enumerates a set of pos-
sible phrase entriesfor each training example:
each phrase entry is a pair〈(i, j), (k, l)〉 speci-
fying that source-language wordsfi . . . fj corre-
spond to target-language wordsek . . . el in the ex-
ample. For example, one phrase entry for the ex-
ample might be〈(1, 2), (1, 2)〉, representing the
pair 〈es gibt ⇒ there is〉. In our experiments
we use standard methods in phrase-based systems
(Koehn et al., 2003) to define the set of phrase en-
tries for each sentence in training data.

es gibt keine hierarchie der

S

NP

there

VP

is

DT

no

NP

NPB

hierarchy

PP

of

Figure 2:Example syntactic phrase entries. We show Ger-
man sub-strings above their associated sequence of treelets.4

For each phrase entry, we add syntactic infor-
mation to the English string. To continue our ex-
ample, the resulting entry would be as follows:

es gibt ⇒ S

NP

there

VP

is

To give a more formal description of how syn-
tactic structures are derived for phrases, first note
that each parse treet is mapped to a TAG deriva-
tion using the method described in (Carreras et al.,
2008). This procedure uses the head finding rules
of (Collins, 1997). The resulting derivation con-
sists of a TAG spine for each word seen in the sen-
tence, together with a set of adjunction operations
which each involve a modifier spine and a head
spine. Given an English stringe = e1 . . . en, with
an associated parse treet, the syntactic structure
associated with a substringek . . . el (e.g.,there is)
is then defined as follows:

• For each word in the English sub-string, in-
clude its associated TAG spine int.

• In addition, include any adjunction operations
in t where both the head and modifier word are in
the sub-stringej . . . ek.

In the above example, the resulting structure
(i.e., the structure forthere is) is a single treelet.
In other cases, however, we may get a sequence of
treelets, which are disconnected from each other.
For example, another likely phrase-entry for this
training example is〈es gibt keine⇒ there is no〉
resulting in the first lexical entry in figure 2, which
has two treelets. Allowing s-phrases with multiple
treelets ensures that all phrases used by phrase-
based systems can be used within our approach.

As a final step, we add additionalalign-
ment information to each s-phrase. Con-
sider an s-phrase which contains source-language
wordsf1 . . . fn paired with target-language words
e1 . . . em. The alignment information is a vec-
tor 〈(a1, b1) . . . (am, bm)〉 that specifies for each
word ei its alignment to wordsfai

. . . fbi
in the

source language. For example, for the phrase en-



try 〈es gibt⇒ there is〉 a correct alignment would
be 〈(1, 1), (2, 2)〉, specifying thatthere is aligned
to es, andis is aligned togibt (note that in many,
but not all, casesai = bi, i.e., a target language
word is aligned to a single source language word).

The alignment information in s-phrases will
be useful in tying syntactic dependencies cre-
ated in the target language to positions in the
source language string. In particular, we will con-
sider discriminative models (analogous to models
for dependency parsing, e.g., see (McDonald et
al., 2005)) that estimate the probability of target-
language dependencies conditioned on properties
of the source-language string. Alignments may be
derived in a number of ways; in our method we
directly use phrase entries proposed by a phrase-
based system. Specifically, for each target wordei

in a phrase entry〈f1 . . . fn, e1 . . . em〉 for a train-
ing example, we find the smallest5 phrase entry
in the same training example that includesei on
the target side, and is a subset off1 . . . fn on the
source side; the wordei is then aligned to the sub-
set of source language words in this “minimal”
phrase.

In conclusion, s-phrases are defined as follows:

Definition 1 An s-phrase is a 4-tuple〈f, e, t, a〉
where: f is a sequence of foreign words;e is
a sequence of English words;t is a sequence of
treelets specifying a TAG spine for each English
word, and potentially some adjunctions between
these spines; anda is an alignment. For an s-
phraseq we will sometimes refer to the 4 elements
of q asf(q), e(q), t(q) anda(q).

3.3 The Model
We now introduce a model that makes use of s-
phrases, and which is flexible in the reorderings
that it allows. To provide some intuition, and some
motivation for the use of reordering operations,
figure 3 gives several examples of German strings
which have different word orders from English.

The crucial idea will be to use TAG adjunction
operations to combine treelets to form a complete
parse tree, but with a complete relaxation on the
order in which the treelets are combined. For ex-
ample, consider again the example given in the
introduction to this paper. In the first step of a
derivation that builds on these treelets, the treelet

5The “size” of a phrase entry is defined to bens + nt

where ns is the number of source language words in the
phrase,nt is the number of target language words.

1(a) [die verwaltung] [muss] [künftig] [schneller] [reagieren]
[können] 1(b) the administration must be able to respond
more quickly in future

1(c) NP

the
admin. . .

S

VP

must

PP

in future

ADVP

more
quickly

SG

to VP

respond

VP

be ADJP

able

2(a) [meiner ansicht nach] [darf] [der erweiterungsprozess]
[nicht] [unnötig] [verzögert] [werden] 2(b) in my opinion the
expansion process should not be delayed unnecessarily

2(c) PP

in my
opinion

S

VP

should

NP

the. . . process

RB

not

ADVP

unnecessarily

VP

delayed

VP

be

Figure 3: Examples of translations. In each example (a)
is the original German string, with a possible segmentation
marked with “[“ and “]”; (b) is a translation for (a); and (c)
is a sequence of phrase entries, including syntactic structures,
for the segmentation given in (a).

for these criticismsmight adjoin into the treelet for
take, giving the following new sequence:

S

NP

we

VP

must ADVP

also

ADVP

seriously

VP

V

take

NP

these criticisms

In the next derivation stepseriouslyis adjoined to
the right oftake, giving the following treelets:

S

NP

we

VP

must ADVP

also

VP

V

take

NP

these criticisms

ADVP

seriously

In the final step the second treelet adjoins into the
VP abovemust, giving a parse tree for the string
we must also take these criticisms seriously, and
completing the translation.

Formally, given an input sentencef , a derivation
d is a pair〈q, π〉 where:

• q = q1 . . . qn is a sequence of s-phrases such
thatf = f(q1)⊕f(q2)⊕ . . .⊕f(qn) (whereu⊕v

denotes the concatenation of stringsu andv).
• π is a set of adjunction operations that

connects the sequence of treelets contained in
〈t(q1), t(q2), . . . , t(qn)〉 into a parse tree in the
target language. The operations allow a com-
plete relaxation of word order, potentially allow-
ing any of then! possible orderings of then s-
phrases. We make use of both sister-adjunction
and r-adjunction operations, as defined in (Car-
reras et al., 2008).6

6In principle we allow any treelet to adjoin into any other
treelet—for example there are no hard, grammar-based con-
straints ruling out the combination of certain pairs of non-
terminals. Note however that in some cases operations will
have probability0 under the syntactic language model intro-
duced later in this section.



DT

no

NP

NPB

hierarchy

PP

of

NP

discrimination

⇒ NP

NPB

hierarchy

PP

of

NP

DT

no

discrimination

Figure 4: A spurious derivation step. The treelets arise
from [keine] [hierarchie der] [diskriminierung].

Given a derivationd = 〈q, π〉, we definee(d)
to be the target-language string defined by the
derivation, andt(d) to be the complete target-
language parse tree created by the derivation. The
most likely derivation for a foreign sentencef
is arg maxd∈G(f) score(d), whereG(f) is the set
of possible derivations forf , and the score for a
derivation is defined as7

score(d) = scoreLM (e(d)) + scoreSY N (t(d))

+ scoreR(d) +
n∑

j=1

scoreP (qj) (1)

The components of the model are as follows:
• scoreLM (e(d)) is the log probability of the

English string under a trigram language model.
• scoreSY N (t(d)) is the log probability of the

English parse tree under a syntactic language
model, similar to (Charniak, 2001), that associates
probabilities with lexical dependencies.

• scoreR(d) will be used to score the pars-
ing operations inπ, based on the source-language
string and the alignments in the s-phrases. This
part of the model is described extensively in sec-
tion 4.1 of this paper.

• scoreP (q) is the score for an s-phraseq.
This score is a log-linear combination of var-
ious features, including features that are com-
monly found in phrase-based systems: for exam-
ple log P (f(q)|e(q)), log P (e(q)|f(q)), and lex-
ical translation probabilities. In addition, we in-
clude a featurelog P (t(q)|f(q), e(q)), which cap-
tures the probability of the phrase in question hav-
ing the syntactic structuret(q).

Note that a model that includes the terms
scoreLM (e(d)) and

∑n
j=1 scoreP (qj) alone

would essentially be a basic phrase-based
model (with no distortion terms). The terms
scoreSY N (t(d)) and scoreR(d) add syntactic
information to this basic model.

A key motivation for this model is the flexibility
of the reordering operations that it allows. How-
ever, the approach raises two major challenges:

7In practice, MERT training (Och, 2003) will be used to
train relative weights for the different model components.

Constraints on reorderings. Relaxing the op-
erations in the parsing model will allow complex
reorderings to be captured, but will also introduce
many spurious possibilities. As one example, con-
sider the derivation step shown in figure 4. This
step may receive a high probability from a syntac-
tic or surface language model—no discrimination
is a quite plausibleNP in English—but it should
be ruled out for other reasons, for example be-
cause it does not respect the dependencies in the
original German (i.e.,keine/no is not a modifier
to diskriminierung/discrimination in the German
string). The challenge will be to develop either
hard constraints which rule out spurious derivation
steps such as these, or soft constraints, encapsu-
lated inscoreR(d), which penalize them.

Efficient search. Exact search for the derivation
which maximizes the score in Eq. 1 cannot be
accomplished efficiently using dynamic program-
ming (as in phrase-based systems, it is easy to
show that the decoding problem is NP-complete).
Approximate search methods will be needed.

The next two sections of this paper describe so-
lutions to these two challenges.

4 Constraints on Reorderings
4.1 A Discriminative Dependency Model

We now describe the modelscoreR introduced in
the previous section. Recall thatπ specifiesk ad-
junction operations that are used to build a full
parse tree, wherek ≥ n is the number of treelets
within the sequence of s-phrasesq = 〈q1 . . . qn〉.

Each of thek adjunction operations creates a
dependency between a modifier wordwm within
a phraseqm, and a head wordwh within a phrase
qh. For example, in the example in section 3.3
where these criticismswas combined withtake,
the modifier word iscriticismsand the head word
is take. The modifier and head words have TAG
spinessm andsh respectively. In addition we can
define(am, bm) to be the start and end indices of
the words in the foreign string to which the word
wm is aligned; this information can be recovered
because the s-phraseqm contains alignment infor-
mation for all target words in the phrase, includ-
ing wm. Similarly, we can define(ah, bh) to be
alignment information for the head wordwh. Fi-
nally, we can defineρ to be a binary flag speci-
fying whether or not the adjunction operation in-
volves reordering (in thetake criticismexample,
this flag is set totrue, because the order in En-



VP

DT N

NP

N

criticismsthese take

nehmenernstwir müssen auch diese kritik

Figure 5: An adjunction operation that involves the mod-
ifier criticismsand the headtake. The phrases involved are
underlined; the dotted lines show alignments within s-phrases
between English words and positions in the German string.
TheΓ-dependency in this case includes the head and modi-
fier words, together with their spines, and their alignmentsto
positions in the German string (kritik andnehmen).

glish is reversed from that in German). This leads
to the following definition:

Definition 2 Given a derivationd = 〈q, π〉, we
define Γ(d) to be the set ofΓ-dependencies
in d. Each Γ-dependency is a tuple
〈wm, sm, am, bm, wh, sh, ah, bh, ρ〉 of elements as
described above.

Figure 5 gives an illustration of how an adjunction
creates one suchΓ-dependency.

The model is then defined as

scoreR(d) =
∑

γ∈Γ(d)

scorer(γ, f)

wherescorer(γ, f) is a score associated with the
Γ-dependencyγ. This score can potentially be
sensitive to any information inγ or the source-
language stringf ; in particular, note that the align-
ment indices(am, bm) and (ah, bh) essentially
anchor the target-language dependency to posi-
tions in the source-language string, allowing the
score for the dependency to be based on features
that have been widely used in discriminative de-
pendency parsing, for example features based on
the proximity of the two positions in the source-
language string, the part-of-speech tags in the sur-
rounding context, and so on. These features have
been shown to be powerful in the context of regu-
lar dependency parsing, and our intent is to lever-
age them in the translation problem.

In our model, we definescorer as follows. We
estimate a modelP (y|γ, f) wherey ∈ {−1,+1},
andy = +1 indicates that a dependency does exist
betweenwm andwh, andy = −1 indicates that a
dependency does not exist. We then define

scorer(γ, f) = log P (+1|γ, f)

To estimateP (y|γ, f), we first extract a set of la-
beled training examples of the form〈yi, γi, fi〉 for

i = 1 . . . N from our training data as follows:
for each pair of target-language words(wm, wh)
seen in the training data, we can extract associ-
ated spines(sm, sh) from the relevant parse tree,
and also extract a labely indicating whether or not
a head-modifier dependency is seen between the
two words in the parse tree. Given an s-phrase in
the training example that includeswm, we can ex-
tract alignment information(am, bm) from the s-
phrase; we can extract similar information(ah, bh)
for wh. The end result is a training example of the
form 〈y, γ, f〉.8 We then estimateP (y|γ, f) using
a simple backed-off model that takes into account
the identity of the two spines, the value for the flag
r, the distance between(am, bm) and(ah, bh), and
part-of-speech information in the source language.

4.2 Contiguity of π-Constituents
We now describe a second type of constraint,
which limits the amount of non-projectivity in
derivations. Consider again thek adjunction op-
erations inπ, which are used to connect treelets
into a full parse tree. Each adjunction operation
involves a head treelet thatdominatesa modifier
treelet. Thus for any treelett, we can consider its
descendants, that is, the entire set of treelets that
are directly or indirectly dominated byt. We de-
fine aπ-constituentfor treelett to be the subset
of source-language words dominated byt and its
descendants. We then introduce the following con-
straint onπ-constituents:

Definition 3 (π-constituent constraint.) Aπ-
constituent iscontiguousiff it consists of a con-
tiguous sequence of words in the source language.
A derivation π satisfies theπ-constituent con-
straint iff all π-constituents that it contains are
contiguous.

In this paper we constrain all derivations to sat-
isfy theπ-constituent constraint (future work may
consider probabilistic versions of the constraint).

The intuition behind the constraint deserves
more discussion. The constraint specifies that the
modifiers to each treelet can appear in any or-
der around the treelet, with arbitrary reorderings
or non-projective operations. However, once a
treelet has taken all its modifiers, the resultingπ-
constituent must form a contiguous sub-sequence

8To be precise, there may be multiple (or even zero) s-
phrases which includewm or wh, and these s-phrases may
include conflicting alignment information. Givennm differ-
ent alignments seen forwm, andnh different alignments seen
for wh, we createnm×nh training examples, which include
all possible combinations of alignments.



of the source-language string. As one set of exam-
ples, consider the translations in figure 3, and the
example given in the introduction. These exam-
ples involve reordering of arguments and adjuncts
within clauses, a very common case of reordering
in translation from German to English. The re-
orderings in these translations are quite flexible,
but in all cases satisfy theπ-constituent constraint.

As an illustration of a derivation that violates
the constraint, consider again the derivation step
shown in figure 4. This step has formed a par-
tial hypothesis,no discrimination, which corre-
sponds to the German wordskeineand diskrim-
inierung, which do not form a contiguous sub-
string in the German. Consider now a complete
derivation, which derives the stringthere is hier-
archy of no discrimination, and which includes the
π-constituentno discriminationshown in the fig-
ure (i.e., where the treeletdiscriminationtakesno
as its only modifier). This derivation will violate
theπ-constituent constraint.9

5 Decoding
We now describe decoding algorithms for the syn-
tactic models: we first describe inference rules
that are used to combine pieces of structure, and
then describe heuristic search algorithms that use
these inference rules. Throughout this section,
for brevity and simplicity, we describe algorithms
that apply under the assumption that each s-phrase
has a single associated treelet. The generalization
to the case where an s-phrase may have multiple
treelets is discussed in section 5.3.

5.1 Inference Rules
Parsing operations for the TAG grammars de-
scribed in (Carreras et al., 2008) are based on
the dynamic programming algorithms in (Eisner,
2000). A critical idea in dynamic programming al-
gorithms such as these is to associate constituents
in a chart withspansof the input sentence, and
to introduce inference rules that combine con-
stituents into larger pieces of structure. The crucial
step in generalizing these algorithms to the non-
projective case, and to translation, will be to make
use ofbit-stringsthat keep track of which words in
the German have already been translated in a chart
entry. To return to the example from the intro-
duction, again assume that the selected s-phrases

9Note, however, that the derivation step show in figure 4
will be considered in the search, because ifdiscrimination
takes additional modifiers, and thereby forms aπ-constituent
that dominates a contiguous sub-string in the German, then
the resulting derivation will be valid.

0. Data structures:Qi for i = 1 . . . n is a set of hypotheses
for each lengthi, S is a set of chart entries

1. S ← ∅
2. InitializeQ1 . . .Qn with basic chart entries derived

from phrase entries
3. For i = 1 . . . n
4. For anyA ∈ BEAM(Qi)
5. If S contains a chart entry with the same signature

asA, and which has a higher inside score,
6. continue
7. Else
8. AddA to S
9. For any chart entryC that can be derived from

A together with another chart entryB ∈ S ,
addC to the setQj wherej = length(C)

10. Return Qn, a set of items of lengthn

Figure 6: A beam search algorithm. A dynamic-
programmingsignature consists of the regular dynamic-
programming state for the parsing algorithm, together with
the span (bit-string) associated with a constituent.

segment the German input into[wir müssen auch]
[diese kritik] [ernst] [nehmen], and the treelets are
as shown in the introduction. Each of these treelets
will form a basic entry in the chart, and will have
an associated bit-string indicating which German
words have been translated by that entry.

These basic chart entries can then be combined
to form larger pieces of structure. For example,
the following inferential step is possible:

NP/0001100

these criticisms

VP/0000001

V

take

⇒ VP/0001101

V

take

NP

these criticisms

We have shown the bit-string representation for
each consituent: for example, the new constituent
has the bit-string0001101 representing the fact
that the non-contiguous sub-stringsdiese kritik
andnehmenhave been translated at this point. Any
two constituents can be combined, providing that
the logicalAND of their bit-strings is all0’s.

Inference steps such as that shown above will
have an associated score corresponding to the
TAG adjunction that is involved: in our mod-
els, bothscoreSY N andscoreR will contribute to
this score. In addition, we add state—specifically,
word bigrams at the start and end of constituents—
that allows trigram language model scores to be
calculated as constituents are combined.

5.2 Approximate Search
There are2n possible bit-strings for a sentence of
length n, hence the search space is of exponen-
tial size; approximate algorithms are therefore re-
quired in search for the highest scoring derivation.
Figure 6 shows a beam search algorithm which
makes use of the inference rules described in the



previous section. The algorithm stores setsQi

for i = 1 . . . n, wheren is the source-language
sentence length; each setQi stores hypotheses of
length i (i.e., hypotheses with an associated bit-
string with i ones). These sets are initialized with
basic entries derived from s-phrases.

The function BEAM(Qi) returns all items
within Qi that have a high enough score to fall
within a beam (more details for BEAM are given
below). At each iteration (step 4), each item in
turn is taken from BEAM(Qi) and added to a
chart; the inference rules described in the previ-
ous section are used to derive new items which are
added to the appropriate setQj, wherej > i.

We have found the definition of BEAM(Qi) to
be critical to the success of the method. As a first
step, each item inQi receives a score that is a sum
of an inside score (the cost of all derivation steps
used to create the item) and a future score (an esti-
mate of the cost to complete the translation). The
future score is based on the source-language words
that are still to be translated—this can be directly
inferred from the item’s bit-string—this is similar
to the use of future scores in Pharoah (Koehn et al.,
2003), and in fact we use Pharoah’s future scores
in our model. We then give the following defini-
tion, whereN is a parameter (the beam size):

Definition 4 (BEAM) GivenQi, defineQi,j for
j = 1 . . . n to be the subset of items inQi which
have theirj’th bit equal to one (i.e., have thej’th
source language word translated). DefineQ′

i,j to
be theN highest scoring elements inQi,j . Then
BEAM(Qi) = ∪n

j=1Q
′

i,j.

To motivate this definition, note that a naive
method would simply define BEAM(Qi) to be
the N highest scoring elements ofQi. This def-
inition, however, assumes that constituents which
form translations of different parts of a sentence
have scores that can be compared—an assumption
that would be true if the future scores were highly
accurate, but which quickly breaks down when fu-
ture scores are inaccurate. In contrast, the defi-
nition above ensures that the topN analyses for
each of then source language words are stored at
each stage, and hence that all parts of the source
sentence are well represented. In experiments, the
naive approach was essentially a failure, with pars-
ing of some sentences either failing or being hope-
lessly inefficient, depending on the choice ofN .
In contrast, definition 4 gives good results.

System BLEU score
Syntax-based 25.2
Syntax (noScoreR) 23.7 (-1.5)
Syntax (noπ-c constraint) 24.4 (-0.8)

Table 1:Development set results showing the effect of re-
movingScoreR or theπ-constituent constraint.

5.3 Allowing Multiple Treelets per s-Phrase

The decoding algorithms that we have described
apply in the case where each s-phrase has a sin-
gle treelet. The extension of these algorithms
to the case where a phrase may have multiple
treelets (e.g., see figure 2) is straightforward, but
for brevity the details are omitted. The basic idea
is to extend bit-string representations with a record
of “pending” treelets which have not yet been in-
cluded in a derivation. It is also possible to enforce
the π-constituent constraint during decoding, as
well as a constraint that ensures that reordering op-
erations do not “break apart” English sub-strings
within s-phrases that have multiple treelets (for ex-
ample, for the s-phrase in figure 2, we ensure that
there is noremains as a contiguous sequence of
words in any translation using this s-phrase).

6 Experiments

We trained the syntax-based system on 751,088
German-English translations from the Europarl
corpus (Koehn, 2005). A syntactic language
model was also trained on the English sentences
in the training data. We used Pharoah (Koehn et
al., 2003) as a baseline system for comparison; the
s-phrases used in our system include all phrases,
with the same scores, as those used by Pharoah,
allowing a direct comparison. For efficiency rea-
sons we report results on sentences of length 30
words or less.10 The syntax-based method gives
a BLEU (Papineni et al., 2002) score of 25.04,
a 0.46 BLEU point gain over Pharoah. This re-
sult was found to be significant (p = 0.021) under
the paired bootstrap resampling method of Koehn
(2004), and is close to significant (p = 0.058) un-
der the sign test of Collins et al. (2005).

Table 1 shows results for the full syntax-based
system, and also results for the system with the
discriminative dependency scores (see section 4.1)
and theπ-contituent constraint removed from the
system. In both cases we see a clear impact of
these components of the model, with 1.5 and 0.8
BLEU point decrements respectively.

10Both Pharoah and our system have weights trained using
MERT (Och, 2003) on sentences of length 30 words or less,
to ensure that training and test conditions are matched.



R: in our eyes , the opportunity created by this directive of introducing longer buses on international routes is efficient .
S: the opportunity now presented by this directive is effective in our opinion , to use long buses on international routes.
P: the need for this directive now possibility of longer buses on international routes to is in our opinion , efficiently .
R: europe and asia must work together to intensify the battleagainst drug trafficking , money laundering , international
crime , terrorism and the sexual exploitation of minors .
S: europe and asia must work together in order to strengthen the fight against drug trafficking , money laundering , against
international crime , terrorism and the sexual exploitation of minors .
P: europe and asia must cooperate in the fight against drug trafficking , money laundering , against international crime ,
terrorism and the sexual exploitation of minors strengthened .
R: equally important for the future of europe - at biarritz and later at nice - will be the debate on the charter of fundamental
rights .
S: it is equally important for the future of europe to speak onthe charter of fundamental rights in biarritz , and then in nice .
P: just as important for the future of europe , it will be in biarritz and then in nice on the charter of fundamental rights to
speak .
R: the convention was thus a muddled system , generating irresponsibility , and not particularly favourable to well-ordered
democracy .
S: therefore , the convention has led to a system of a promoterof irresponsibility of the lack of clarity and hardly coincided
with the rules of a proper democracy .
P: the convention therefore led to a system of full of lack of clarity and hardly a promoter of the irresponsibility of the rules
of orderly was a democracy .

Figure 7: Examples where both annotators judged the syntactic systemto give an improved translation when compared to
the baseline system. 51 out of 200 translations fall into this category. These examples were chosen at random from these 51
examples.R is the human (reference) translation;S is the translation from the syntax-based system;P is the output from the
baseline (phrase-based) system.

Syntax PB = Total
Syntax 51 3 7 61

PB 1 25 11 37
= 21 14 67 102

Total 73 42 85 200

Table 2: Human annotator judgements. Rows show re-
sults for annotator 1, and columns for annotator 2.Syntax
and PB show the number of cases where an annotator re-
spectively preferred/dispreferred the syntax-based system.=
gives counts of translations judged to be equal in quality.

In addition, we obtained human evaluations on
200 sentences chosen at random from the test data,
using two annotators. For each example, the ref-
erence translation was presented to the annota-
tor, followed by translations from the syntax-based
and phrase-based systems (in a random order). For
each example, each annotator could either decide
that the two translations were of equal quality, or
that one translation was better than the other. Ta-
ble 2 shows results of this evaluation. Both an-
notators show a clear preference for the syntax-
based system: for annotator 1, 73 translations are
judged to be better for the syntax-based system,
with 42 translations being worse; for annotator 2,
61 translations are improved with 37 being worse;
both annotators’ results are statistically significant
with p < 0.05 under the sign test. Figure 7 shows
some translation examples where the syntax-based
system was judged to give an improvement.

7 Conclusions and Future Work
We have described a translation model that makes
use of flexible parsing operations, critical ideas
being the definition of s-phrases,Γ-dependencies,

the π-constituent constraint, and an approximate
search algorithm. A key area for future work
will be further development of the discriminative
dependency model (section 4.1). The model of
scorer(γ, f) that we have described in this paper is
relatively simple; in general, however, there is the
potential forscorer to link target language depen-
dencies to arbitrary properties of the source lan-
guage stringf (recall thatγ contains a head and
modifier spine in the target language, along with
positions in the source-language string to which
these spines are aligned). For example, we might
introduce features that: a) condition dependencies
created in the target language on dependency re-
lations between their aligned words in the source
language; b) condition target-language dependen-
cies on whether they are aligned to words that
are in the same clause or segment in the source
language string; or, c) condition the grammatical
roles of nouns in the target language on grammat-
ical roles of aligned words in the source language.
These features should improve translation qual-
ity by giving a tighter link between syntax in the
source and target languages, and would be easily
incorporated in the approach we have described.
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