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Abstract. The linear stability of isothermal Bondi accretion with a shock is studied analytically in the asymptotic limit of high
incident Mach numberM1. The flow is unstable with respect to radial perturbations as expected by Nakayama (1993), due to
post-shock acceleration. Its growth-time scales like the advection time from the shock rsh to the sonic point rson. The growth rate
of non-radial perturbations l = 1 is higher by a factorM2/3

1 , and is therefore intermediate between the advection and acoustic
frequencies. Besides these instabilities based on post-shock acceleration, our study revealed another generic mechanism based
on the cycle of acoustic and vortical perturbations between the shock and the sonic radius, independently of the sign of post-
shock acceleration. The vortical-acoustic instability is fundamentally non-radial. It is fed by the efficient excitation of vorticity
waves by the isothermal shock perturbed by acoustic waves. The growth rate exceeds the advection frequency by a factor
logM1. Unstable modes cover a wide range of frequencies from the fundamental acoustic frequency ∼c/rsh up to a cut-off
∼c/rson associated with the sonic radius. The highest growth rate is reached for l = 1 modes near the cut-off. The additional
cycle of acoustic waves between the shock and the sonic radius is responsible for variations of the growth rate by a factor up
to 3 depending on its phase relative to the vortical-acoustic cycle. The instability also exists, with a similar growth rate, below
the fundamental acoustic frequency down to the advection frequency, as vorticity waves are efficiently coupled to the region of
pseudosound. These results open new perspectives to address the stability of shocked accretion flows.
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1. Introduction

Hydrodynamic instabilities in accretion flows can help our un-
derstanding of the variability observed in the luminosity of
X-ray binaries. Numerical simulations have revealed the ex-
istence of such a hydrodynamical instability in the accretion
flow of a gas on a compact accretor moving at supersonic ve-
locity (Bondi-Hoyle-Lyttleton accretion). A first step towards
understanding the physical mechanism underlying this insta-
bility was made by Foglizzo & Tagger (2000, hereafter FT00)
who recognized the unstable cycle of entropic and acoustic per-
turbations between the shock and the sonic surface. This cycle
is unstable if there is a large enough temperature difference be-
tween the shock and the sonic surface. The academic case of
shocked Bondi accretion was studied by Foglizzo (2001, here-
after F01) who revealed the importance of non radial pertur-
bations, and vorticity in particular. Both vorticity and entropy
perturbations are advected from the shock to the accretor, and
both are coupled to the acoustic perturbations. This coupling
was formulated in a compact way by Howe (1975). If the adi-
abatic index is in the range 1 < γ ≤ 5/3, entropy and vorticity
perturbations are intimately related in the shocked Bondi flow
(Foglizzo 2002, in preparation), so that it is difficult to identify
their respective roles in the instability mechanism. By contrast,

? e-mail: foglizzo@cea.fr

their roles are well separated in the isothermal limit (γ = 1),
where entropy perturbations are absent from the problem. The
present paper is therefore dedicated to the study of the linear
stability of shocked accretion in the isothermal Bondi flow,
where the incident Mach number is the only parameter. The
stability of shocked isothermal flows was studied by Nakayama
(1992, 1993) in the more general context of flows with small
angular momentum. The study of Nakayama was restricted to
axisymmetric perturbations, thus precluding any possible vor-
tical acoustic cycle. In this approximation, Nakayama analyt-
ically obtained the result that the flow is unstable if the flow
accelerates immediately after the shock surface. In this respect
the shocked Bondi flow should be unstable. We are therefore
interested here in an extension of Nakayama’s results to the
case of non radial perturbations, in order to include the effect
of vorticity. It should be noted that isothermal flows are very
particular as far as Bondi-Hoyle-Lyttleton (hereafter BHL)
accretion is concerned, with unsettled issues concerning the
influence of the numerical resolution. The instability observed
in numerical simulations seems very weak in 3-D according to
Ruffert (1996), whereas it is violent in 2-D (Ishii et al. 1993;
Shima et al. 1998). Pogorelov et al. (2000) discussed the pos-
sible responsability of the numerical procedure in producing
the instability. With a different approach, the instability of the
shocked Bondi flow described in this paper could contribute to
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Fig. 1. Radial profile of the Mach number in the unperturbed shocked
flow, for M1 = 5 (full line). The subsonic cavity stands between the
sonic point and the shock radius. The dashed lines show the analytical
continuation of the solutions beyond the shock radius.

guide our physical understanding of more complex flows in-
volving isothermal shocks.

The paper is organized as follows. Perturbed equations are
described in Sect. 2 and eigenfrequencies are determined nu-
merically in Sect. 3. Analytical methods are used to disentangle
the effect of advection from the effect of the boundary. In the
spirit of F01, the coupling between the vorticity and acoustic
perturbations in the classical isothermal Bondi flow, without a
shock, is described in Sect. 4. Boundary conditions are taken
into account to build a vortical acoustic-cycle in Sects. 5 and 6.
The instability due to post-shock acceleration is analysed in
Sect. 7. The relationship between the vortical-acoustic instabil-
ity and existing numerical simulations of BHL accretion and
shocked discs is discussed in Sect. 8.

2. Linearized equations of the shocked Bondi flow

2.1. Properties of the unperturbed shocked flow

The Mach number in the unperturbed transonic flow satis-
fies the following equation deduced from the conservation of
the mass flux and Bernoulli constant B and the regularity at the
sonic radius:

r
rson
M 1

2 exp
(

rson

r
− M

2

4

)
= e

3
4 . (1)

The sonic radius is half of the Bondi radius GM/c2. The
Bernoulli constant,

B ≡ v2

2
+ c2 log ρ − 2rson

r
, (2)

is conserved along the flow lines. By contrast with the adia-
batic case γ > 1, this quantity is not conserved through a shock.
The shock radius rsh corresponding to an incident Mach num-
berM1 is determined from Eq. (1) together with the Rankine
Hugoniot jump conditionM2 = 1/M1. The Mach number pro-
file is shown in Fig. 1. It should be noted that the presence of

a radial shock is not guaranteed a priori, since the supersonic
preshock flow (r > rsh) could be continued without a shock
down to the accretor (dashed line in Fig. 1). Several physical
mechanisms could trigger the formation of a shock, such as the
heating of protons to temperatures at which the fluid becomes
collisionless (Mezaros & Ostriker 1983), the trapping of rela-
tivistic particules (Protheroe & Kazanas 1983) or the dissipa-
tion of magnetic fields (McCrea 1956; Scharlemann 1981). In
the context of Bondi-Hoyle-Lyttleton accretion, the existence
of a stagnation point behind the accretor implies that a frac-
tion of the supersonic flow decelerates to subsonic velocities,
and therefore naturally produces a shock. The shock radius de-
duced from Eq. (1) increases withM1 for spherical accretion:

rsh

rson
∼ e

3
4M 1

2
1 . (3)

Compared to BHL accretion, the presence of an accretion
shock at a distance exceeding the accretion radius 2GM/v2∞
is rather artificial and due simply to the assumption of purely
radial velocity. In the highly supersonic limit M1 � 1 ini-
tially considered by Hoyle & Lyttleton (1939), any trajectory
with an angular momentum larger than ∼2GM/v∞ would of
course miss the accretor. Bearing this feature in mind, the case
of strong shocks studied in this paper is still very useful in order
to understand the mechanisms involved, because of the separa-
tion of timescales it enables.

2.2. Scaling of timescales in the shocked Bondi flow

If the shock is strong, the timescale τadv associated with advec-
tion is much longer than the sound crossing time rsh/c:

τadv ≡
∫ rsh

rson

dr
|v| ∼

M1

3
rsh

c
� 2rsh

c
· (4)

The third fundamental timescale of the flow is related to the
presence of the sonic radius ∼rson/c. Together with Eq. (3),
the scaling of the three special timescales of the problem is
thus the following for strong shocks:

τadv � rsh

c
� rson

c
· (5)

2.3. Differential system for the perturbations
of the Bondi flow

As in the case γ > 1 studied by F01, the vorticity equa-
tion can be directly integrated, so that the three quantities
(r2δwr, rvδwθ, rvδwϕ) are conserved when advected. The pertur-
bations of the radial velocity δvr and density δρ in the isother-
mal Bondi flow are conveniently described by the functions f , g
defined by:

f ≡ vδvr + c2 δρ

ρ
, (6)

g ≡ δvr

v
+
δρ

ρ
· (7)

They satisfy the same differential equations as the func-
tions f , g in the Appendix B of F01, by suppressing the entropy
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Fig. 2. Schematic structure of the perturbed acoustic (full line) and
vorticity (dotted line) fields, depending on the frequency of the per-
turbation. The curve beyond the shock radius shows the acoustic
perturbation in the Bondi flow without a shock. The turning point rt

separates the region of pseudosound from the region of propagation of
acoustic pertrbations. The vortical-acoustic coupling is most efficient
in the region between rson and reff .

terms:

v
∂ f
∂r
+

iωM2 f
1 −M2

=
iωv2g

1 −M2
, (8)

v
∂g

∂r
+

iωM2g

1 −M2
=

iωµ2 f
c2(1 −M2)

+
iδKsh

r2ω
eiω

∫ r

rsh

dr
v , (9)

where the function µ(r, ω, l) is defined by:

µ2 ≡ 1 − ω
2
l

ω2
, (10)

ω2
l ≡

l(l + 1)
r2

(c2 − v2). (11)

The constant δK is related to vorticity as follows

δK ≡ r2v · (∇ × w). (12)

By contrast with the case of adiabatic flows (F01), δK is the
unique source term for the excitation of acoustic waves. For
radial perturbations (l = 0, δK = 0), the equations analysed by
Nakayama (1992, 1993), with Ψ ≡ f /iω, are recovered.

The position of the turning point rt of non-radial acoustic
waves is defined by µ = 0 in Eq. (10). This turning point lies
inside the subsonic cavity if ω > ωsh, with

ωsh ≡ l
1
2 (l + 1)

1
2 (1 −M2

sh)
1
2

c
rsh
∝ c

rsh
· (13)

Below ωsh (or inside the turning point rt if it exists), the
acoustic perturbation is not propagating. It was named “pseu-
dosound” by Ffowcs Williams (1969).

The threshold between absorbed and trapped sound was in-
troduced in F01 through the cut-off frequency ωcut

l , which is
independent of the shock strength:

ωcut
l ∼

l
1
2 (l + 1)

1
2

2
c

rson
∝ c

rson
· (14)

This cut-off frequency used to be refered to as a “refraction”
cut-off in F01 for γ > 1, due to the non-homogeneity of the
sound speed which bends trajectories outwards. By contrast,
in the isothermal flow considered here, acoustic trajectories
are only bent inwards, due to the sole effect of flow acceler-
ation. The existence of a cut-off for non-radial acoustic waves
can be understood by considering the frequency dependence
of the direction ψ of propagation of the incoming acoustic
flux relative to the radial direction. This angle is approximated
in Appendix E in the WKB approximation (Eq. (E.11)). The
higher the frequency, the smaller ψ, so that high frequency
waves with a given order l are pointing towards the accretor
and are absorbed inside the sonic sphere.

The scaling of frequencies stressed in Eq. (5) for strong
shocks consequently separates three ranges of eigenmodes
schematized in Fig. 2:
(i) absorbed sound ωcut

l < ω,
(ii) trapped sound ωsh < ω < ωcut

l ,
(iii) pseudosound 1/τadv < ω < ωsh. The corresponding struc-
ture of the vorticity wave is also displayed in Fig. 2, in each
range of frequencies.

2.4. Boundary condition at the shock

The boundary conditions at the shock associated with the vari-
ables f , g can be computed with the same method as Nakayama
(1992), extended to the case of non radial perturbations. Let us
denote by ∆ζ the radial displacement of the shock produced by
a sound wave propagating against the stream in the subsonic
region, and ∆v = −iω∆ζ its velocity. The incident Mach num-
berM′1 in the frame of the shock is altered by the perturbations
of velocity and displacement as folllows:

M′1(rsh + ∆ζ) = M1(rsh) +
∆v

c
+ ∆ζ

∂M1

∂r
, (15)

= M1(rsh) +
(
1 − iηcM2

ωrsh

)
∆v

c
, (16)

where the parameter η measures the strength of the local gradi-
ent of the Mach number immediately after the shock:

η ≡ ∂ logM2

∂ log r
= − 2

1 −M2
2

(
1 − rson

rsh

)
, (17)

The boundary conditions fsh, gsh, written as functions of ∆v, are
deduced from the conservation of the mass flux and impulsion
across the shock:

fsh = −c2M2(1 −M2
2)

[
(1 −M2

2)
iηc
ωrsh

+M2

]
∆v

v2
, (18)

gsh = (1 −M2
2)
∆v

v2
· (19)

The non radial perturbation of the velocity, and the perturbed
vorticity computed in Appendix A enable us to relate δKsh

to ∆v:

δKsh = l(l + 1)c2(1 −M2
2)2

(
1 − iηcM2

ωrsh

)
∆v

v2
· (20)
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Equation (20) can be used together with Eqs. (18)–(19) in order
to express fsh, gsh as functions of δKsh for non-radial perturba-
tions. In Appendix C the boundary value problem is reduced to
a single equation incorporating the boundary conditions both
at the shock and at the sonic point. The eigenfrequencies sat-
isfy the following equation, where f0 is the unique homoge-
neous solution which is regular at the sonic point:

∂2 f0
∂r2
+

[
∂ log
∂r

(
1 −M2

M
)
− 2iωM

(1 −M2)c

]
∂ f0
∂r
+

ω2

c2 − L2

r2

1 −M2
f0 = 0,

(21)

[
(1 −M2

2)η −M2
iωrsh

c

]
∂ f0
∂r

(rsh)

+
iωrsh

c

1 +M2
2

1 −M2
2

iωrsh

c
−M2η

 f0(rsh)
rsh

=

l(l + 1)
( iωrsh

c
+M2η

) ∫ rsh

rson

f0
Mr2

eiω
∫ r

rsh

1+M2

1−M2
dr
v dr. (22)

Equation (22) is independent of the normalization of f0. It
should be noted that the integral on the right hand side is
well defined despite the singularity of the phase near the
sonic radius. This equation describes the perturbation of the
shock by the interplay of the acoustic and vortical perturba-
tions. The same calculation in any other potential (e.g. the
Paczynski-Wiita potential) would lead to the same system of
Eqs. (21)–(22), only the shape ofM (and its derivative η) de-
scribed by Eq. (1) would be affected. The left hand side of
Eq. (22) involves only the acoustic perturbation f0, and is in-
dependent of the vortical perturbation. By contrast, the integral
on the right hand side describes the acoustic feed back of the
vortical perturbation coupled to the acoustic field.

3. Spectrum of eigenfrequencies

3.1. Numerical procedure to determine the spectrum
of eigenfrequencies

The regularity of the solution at the sonic radius has already
been discussed in F01: the sonic point is a regular singularity
if γ < 5/3. For a given incident Mach number M1, numeri-
cal intergration is performed from the sonic point towards the
shock in order to determine the eigenfrequencies of perturba-
tions with a latitudinal number l. For a given value of ω, the
unique solution which is regular at the sonic point is expanded
in a Frobenius series in order to start the numerical integration
away from the singularity. A Runge-Kutta algorithm is then
used to simultaneously integrate four functions, namely f0(rsh),
g0(rsh), the integral on the right hand side of Eq. (22) and the
integral phase inside it. ω is varied and shooting is repeated
until Eq. (22) is satisfied.

3.2. Purely growing radial instability

The radial instability found numerically in Fig. 3 is consistent
with the result of Nakayama (1992, 1993), who found that the
local acceleration of the flow immediately after the shock is
a source of non-oscillating radial instability. The growth rate
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Fig. 3. Growth rate of the purely growing radial instability, multi-
plied by the advection time (thick dashed line). The thin dashed lines
correspond to the lower and upper bounds determined by Nakayama
(1993). Anticipating on the calculations of the rest of the paper, the
four other curves are analytical estimates of the growth rate of l = 1
perturbations at high Mach number. The growth rate of the entropic-
acoustic instability increases along the dotted line at low frequency
(Eq. (74)), and is bounded by the two thin lines at high fre-
quency (Eqs. (67)–(68)). The thick full line describes the most un-
stable branch (Eq. (85)).

is shown as a function of the incident Mach number, in units
of the advection time τadv. The lower and upper bounds found
analytically by Nakayama (1993, Eq. (27)) are also displayed
in Fig. 3:

|ν|
1 +M2

1

≤ ωi ≤ |ν|
1 +M1

, (23)

where the parameter ν describes the acceleration of the flow
and is proportionnal to η:

ν ≡ − 1
v2

(
∂Φ

∂r
− 2c2

rsh

)
, (24)

= (M2
1 − 1)

ηcM2

rsh
· (25)

Note that Eq. (24) is corrected for a factor of 2 for spherical
flows, as noticed by Nakayama (1993). The lower and upper
bounds of Eq. (23) cover a wide range of frequencies from the
advection frequency ∼2/(3τadv) up to the acoustic frequency
∼2c/rsh. In the present case of isothermal radial accretion, the
growth rate computed numerically converges precisely towards
the value 2/τadv.

3.3. Non-radial oscillatory instabilities

The effect of non radial perturbations (l ≥ 1) involves an inte-
gral on the right hand side of Eq. (22), which reflects the cu-
mulative excitation of acoustic waves by the vorticity pertur-
bations advected from the shock to the sonic radius. Figure 4
shows the eigenspectrum of the isothermal Bondi flow for
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l = 0, 1, 2, 3 in the isothermal flow, for M1 = 100 (cτadv/4πrsh ∼
2.8). The real part is measured in units of the cut-off frequency ωcut

1
(lower axis) and advection frequency (upper axis). The imaginary part
is normalized to the advection time. Analytical estimates of the growth
rates of the modes l = 0, 1, 2 at low freqency are indicated using big
symbols (Eqs. (78), (83) and (85) in Sects. 6 and 7).

M1 = 100, l = 0, 1, 2, 3. This spectrum is characterized as
follows:

(i) The most unstable mode is asymmetric (l = 1) and
well separated from the other eigenmodes. The growth rate
of this low frequency mode is significantly larger than the ad-
vection time, nearly four times faster than the unstable radial
mode. The analytical estimates of the growth rates at low fre-
quency correspond to Eqs. (77)–(78), (81)–(83) and (84)–(85)
in Sects. 6 and 7.

(ii) Non radial unstable modes are very numerous and cover
a wide range of frequencies, from the advection frequency
(∼vsh/rsh), up to the cut-off frequency (∝ c/rson).

(iii) A striking feature of the eigenspectrum in Fig. 4 is the
apparent oscillation of the imaginary part as a function of the
real part of the frequency. This behaviour is explained in Sect. 5
on the basis of the vortical-acoustic cycle.

The variation of the growth rate with the incident Mach num-
ber is shown in Fig. 5. The higher the Mach number, the more
unstable the non radial modes, while the radial instability sat-
urates. The growth rate of the most unstable l = 1 mode in-
creases with the incident Mach number much faster than in the
other modes. The real part of its complex frequency is inter-
mediate between the advection and acoustic frequencies. It is
computed analytically in Sect. 7.

The rest of the paper is dedicated to understanding this ap-
parently complicated spectrum, and to questioning the role of
post-shock acceleration.
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Fig. 5. Real and imaginary parts of the eigenfrequencies of the modes
l = 1 in the isothermal flow, for different Mach numbers. Frequencies
are multplied by the advection time. The strong l = 1 instability due
to postshock acceleration corresponds to the thick line in both plots.
In the upper plot, the growth rate of the fastest of the mode l = 0
is also displayed (thick dashed line). The analytical approximation
of the fastest growth rates ω+i , ω

max
i of the l = 1 instabilities due to

the entropic-acoustic cycle and to post-shock acceleration are shown
as the thin dashed line (Eqs. (68)) and the thin dotted line Eq. (85).
In the bottom plot, the cut-off frequency ωcut

1 , the minimum acous-
tic frequency ωsh, and the frequency ωmax

r of the most unstable mode
(Eq. (84)) are indicated as references.

4. The sound of vorticity

4.1. Frequency dependence of the vortical-acoustic
coupling

Let us assume that a vorticity wave is advected from in-
finity towards the accretor: what is the sound produced by
the advection of this vorticity? This question is solved in
Appendix D by computing the coupling coefficient Qadv mea-
suring the outgoing acoustic flux F− associated with a vorticity
perturbation δK:

F− =
Ṁ0

c2
|Qadv|2|δK|2, (26)
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The relationship between the acoustic flux F± and the acoustic
perturbation f± is deduced from the WKB approximation in
Appendix B:

F± ∼ Ṁ0

c2

µ

M | f±|
2 . (27)

Thus the complex efficiency Qadv is defined at a radius R �
c/ω, in the region of propagation of acoustic waves, as follows:

Qadv(R) ≡
(
µ

M
) 1

2 f−
δK

, (28)

= − 1
2iωc

e
iω
c

∫ R

rt

µ−M
1−M2

dr
M

∫ R

rson

f0
Mr2

e−
iω
c

∫ r

R
1+M2

1−M2
dr
M dr. (29)

Qadv is approximately independent of R in the WKB region
of propagation of acoustic waves, i.e. away from their turning
point. This coefficient is approximated in Appendix D in the
low frequency limit c/R � ω � c/rson, i.e. below the cut-off
frequency, using the functionH(l) defined from an integral of
the Spherical Bessel function jl (Eq. (D.7)):

|Qadv| ∼ 3
l+1
3 e

2l−1
4

1 · 3 . . . (2l + 1)
H(l)

2

(
ωrson

c

) 2l−1
3

, (30)

with H(1) ∼ 0.45, H(2) ∼ 0.33 and H(3) ∼ 0.28. The di-
rect integration of Eq. (29) is compared to the approximation
obtained in Eq. (30) for l = 1, 2, 3 in Fig. 6. The asymptotic be-
haviour |Qadv| ∝ ω2l−1/3 is correctly reproduced. The scaling
factor of this power law obtained analytically is too low by
a factor 2 for l = 1 perturbations, which can be attributed to the
roughness of the approximation. This calculation clearly indi-
cates that the vortical-acoustic coupling is most efficient near
the cut-off frequency. The same conclusion was reached in F01
concerning the efficiency of the entropic-acoustic coupling.

4.2. Region of coupling

This approximation enables us to determine the region where
the coupling between the vorticity and the acoustic perturba-
tions is most efficient. It occurs mainly in the subsonic region
rson < r < reff where the wavelength of the vorticity perturba-
tion is largest (see Fig. 2):

ω

∫ reff

rson

dr
v
∼ 2π. (31)

A similar result was obtained in F01 concerning entropy per-
turbations for γ = 5/3. Due to the differences in velocity pro-
files in Eq. (31), reff ∝ ω−2/3 for γ = 5/3 at high frequency
(Eqs. (E.6), (E.11) and (E.12) of F01), whereas

reff ∝
(
ωrson

c

)− 1
3

rson (32)

in the isothermal flow at low frequency. It is therefore important
to note that the most efficient coupling at low frequency lies in
the region of pseudosound well within the turning point (rt ∼
c/ω) of acoustic waves:

rson � reff � rt. (33)

According to Eq. (31), the upper bound reff of the coupling
region for perturbations near the advection frequency coincides
with the shock radius.

5. Vortical-acoustic instability at high frequency

5.1. The vortical-acoustic cycle for ωsh � ω � ωcut
l

The formalism developed in FT00 for the entropic-acoustic cy-
cle within the WKB approximation can be transposed to the
case of the vortical-acoustic cycle. This formalism requires
the frequency to be high enough so that acoustic waves can be
identified and their propagation time measured. An initial per-
turbation of vorticity δK(t0, rsh) at the shock, advected towards
the accretor, triggers the excitation of an acoustic flux F− prop-
agating outwards. As it reaches the shock surface, this acous-
tic flux induces new vorticity perturbations δK(t0 + τQ, rsh),
where τQ is the duration of this cycle. The global efficiency
Q of the cycle is naturally

Q ≡ δK(t0 + τQ, rsh)
δK(t0, rsh)

· (34)

Q and τQ depend a priori on the frequencyωr and spatial struc-
ture l of the perturbation considered. The growth (or damping)
rate of the cycle is identified with the imaginary part of the
eigenfrequency, given by:

ωi ≡ 1
τQ

log |Q|. (35)

The timescale τQ is dominated by the advection timescale τadv

if the shock is strong (M2 � 1, rsh � rt):

τQ ∼
∫ rsh

rt

1
1 −M

dr
|v| ∼ τadv. (36)

The global efficiency Q can be decomposed in terms of the ef-
ficiencies of the coupling between F− and δK during advection
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(Qadv) and at the shock (Qsh), defined immediately after the
shock according to Eq. (28) and:

Qsh ≡
(M2

µ

) 1
2 δKsh

f−
, (37)

Q = QadvQshe−iωτQ . (38)

The modulus of Qsh is directly interpreted as a coupling effi-
ciency between F− and |δK|2:

|δKsh|2 = c2

Ṁ0
|Qsh|2F−. (39)

The efficiency Qsh is computed in Appendix E, following a
method introduced by D’Iakov (1958) and Kontorovich (1958,
1959). Qsh can be approximated by a WKB analysis when the
wavelength of the perturbation is small compared to the length-
scale of the local gradients of the flow, by keeping only the first
order terms inM2 and c/ωr, at high frequency and for strong
shocks:

Qsh ∼ −2l(l + 1)

M 1
2
2

(
1 −M2 − i

ηc
ωr

)
· (40)

This calculation proves that the flow reacceleration does not
affect the vortical-acoustic coupling at the shock for

ωr
c
� |η| ∼ 2, (41)

and that Qsh is approximately independent of frequency in the
rangeωsh � ω < ωcut

l . As a consequence of Eqs. (37) and (40),
the vorticity is produced at the shock with an efficiency propor-
tional to the shock strength:

δKsh ∝ M1 f− ∝ M1
δp−

p
· (42)

The global efficiencyQ should consequently peak near the cut-
off frequency, and drop abruptly above it. The frequency depen-
dence of Q appears in Fig. 8 (top picture, full line), as deduced
from Fig. 6 and Eq. (40) in the WKB approximation. Thus the
instability should be strongest near the cut-off frequency with
the following scaling, obtained from Eqs. (14), (30) and (40)
for ωsh � ω � ωcut

l :

|Q| ∼
(
ω

ωcut
l

) 2l−1
3

(M1

M0l

) 1
2

, (43)

where the scaling factorM0l depends on l through both Qadv

and Qsh:

M0l ∼
(

4

3e
3
2

) 2l−1
3 [1 · 3 . . . (2l + 1)]2

[l(l + 1)]
2l+5

3

1
3H2(l)

· (44)

M0l ∝ l2l/3 diverges for l � 10, thus favouring the instabil-
ity of low degree modes. According to Fig. 6, the extrapola-
tion of Eq. (43) to ω ∼ ωcut

l gives a very rough upper bound
of |Q|(ωcut

l ), particularly overestimlating it for high degree per-
turbations. Although M01 ∼ 1.96 exceeds M02 ∼ 0.95 and
M03 ∼ 0.69, the actual efficiency |Q| is maximal for the mode
l = 1, as checked in Fig. 8 by multiplying the curve |Qadv|

(Fig. 6) by |Qsh| (Eq. (40)). Using Eqs. (35) and (36), the growth
rate ωi at high frequency is deduced from Eq. (43):

ωsh � ωr � ωcut
l , (45)

ωi ∼ 1
2τadv

log
(
ω

ωcut
l

) 2(2l−1)
3 M1

M0l
, (46)

∼ 1
2τadv

log
(

2ω

e
3
4ωsh

) 2(2l−1)
3 M

2(2−l)
3

1

M0l
· (47)

Equation (47) indicates that the range of unstable frequencies
below the cut-off frequency gets narrower for l ≥ 2. This is also
confirmed by the eigenspectrum obtained numerically for l =
1, 2, 3 in Fig. 4. Note that the efficiency |Q| was estimated us-
ing |Qadv| which was computed for perturbations with a purely
real frequency. Thus the estimate of the growth rate in Eq. (46)
implicitly assumes that the imaginary part is small compared
to the real part. This is true since logM1/τadv � ωcut

l . This
calculation proves that the vortical-acoustic cycle is unstable
for strong shocks, with a growth rate exceeding the growth rate
of the radial mode, and a mechanism which is independent of
the sign of the local flow acceleration immediately after the
shock. A more refined description of the entropic-acoustic cy-
cle is developped in the next section in order to understand the
apparent oscillations in the spectrum obtained numerically in
Figs. 4 and 5.

5.2. Additonnal contribution of the acoustic cycle

5.2.1. Dispersion relation for the double cycle

The role of the purely acoustic cycle had been anticipated in
FT00. It is characterized by a time scale τR and a global effi-
ciency R. Let us show how the simultaneous existence of the
two cycles can explain the apparent oscillation in the eigen-
spectrum of Fig. 4. The following extension of the analysis of
FT00 is valid for both entropic-acoustic and vortical-acoustic
cycles, by replacing “vortical” by “entropic”.

A perturbation f is influenced by the two cycles as follows:

f (t) = Q f (t − τQ) + R f (t − τR). (48)

A solution of the form f (t) ∝ exp(−iωt) satisfies Eq. (48) if the
complex eigenfrequency (ωr, ωi) is a solution of the following
dispersion equation (Eq. (25) of FT00):

QeiωτQ + ReiωτR = 1. (49)

This dispersion relation is recovered in Appendix F as a WKB
approximation of the exact dispersion relation (22). The analy-
sis of the dispersion relation (49) in Appendix G enables us to
extract physical information from the complicated eigenspec-
trum in Fig. 4, such as the ratio of timescales τQ/τR, and the
dimensionless efficiencies |Q| and |R|.

5.2.2. Ratio of the two cycles timescales τQ/τR
The timescale τR of the acoustic cycle for strong shocks can be
written approximately:

τR ∼
∫ rsh

rt

2
1 −M2

dr
c
∼ 2

rsh

c
∝ M 1

2
1 . (50)
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Fig. 7. Number of eigenmodes in each oscillation of the eigenspectrum
in Fig. 4, identified as the ratio of the timescales of the two cycles. For
strong shocks, τQ/τR ∼ M1/6.

According to Eqs. (36) and (50), the ratio τQ/τR for a strong
shock is simply:

τQ
τR
∼ M1

6
· (51)

As shown in Appendix G, this ratio is the average number of
eigenmodes in each oscillation of the eigenspectrum. As an
illustration, this number is reported in Fig. 7 for the modes
l = 1, 2, 3 in the case M1 = 100 corresponding to Fig. 4, in
good agreement with Eq. (51).

5.2.3. Efficiencies |Q| and |R|
As noticed in FT00, the acoustic cycle can be neglected (ωi ∼
log |Q|/τQ) if the efficiencies and timescales of the two cycles
are such that |α| � 1, with

α ≡ R
Q

τR
τQ
· (52)

If α is not negligible, the acoustic cycle can contribute to either
stabilize or destabilize the vortical-acoustic cycle. The most
stabilizing effect of the acoustic cycle is the effective reduction
of Q by a factor 2 (see Appendix G). By contrast, its desta-
bilizing contribution can be much larger comparatively, if the
acoustic time is short compared to the advection time. This is
the case for strong shocks. Depending on the relative phases
of the two cycles, the growth rate can then cover the following
range:

1
τQ

log
|Q|

1 + |α| ≤ ωi ≤ 1
τQ

log
|Q|

1 − |α| · (53)

Conversely, the values of the dimensionless physical param-
eters |Q|, |R| can be extracted from the eigenspectrum, as in
Fig. 4, by measuring
(i) the extremal values ω+i , ω

−
i ,

(ii) the period ∆ωr of the oscillations
(iii) the average number n of modes per period.
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Fig. 8. Global efficiencies |Q|, |R| asociated to non radial perturbations
l = 1, 2, 3 deduced from the eigenspectrum in Fig. 4 in the framework
of the double cycle model (dotted line), compared with the efficiencies
deduced from the calculation of Qadv,Qsh and Radv,Rsh.

As demonstrated in Appendix G, the timescale of the acoustic
cycle is simply τR = 2π/∆ωr. Thus the oscillations are well
resolved in the eigenspectrum only if the advection time is sig-
nificantly longer than the acoustic time (i.e.M1 > 6).

The values of |Q|, |R| are determined using the following
relations:

|Q| = cosh π ∆ωi
∆ωr

cosh(n − 1)π ∆ωi
∆ωr

exp 2nπ
ω̄i

∆ωr
, (54)

|R| = sinh nπ ∆ωi
∆ωr

cosh(n − 1)π ∆ωi
∆ωr

exp 2π
ω̄i

∆ωr
· (55)

where

ω̄i ≡
ω+i + ω

−
i

2
(56)

∆ωi ≡ ω+i − ω−i , (57)

As an illustration, Fig. 8 is obtained from the eigenspec-
trum of Fig. 4 using Eqs. (54) and (55). The accuracy of the
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measurements of ∆ωr,∆ωi and ωi is of course of the order
1/n. As a check of consistency, the value of |Q| obtained from
the product of |Qadv| (Fig. 6) and |Qsh| (Eq. (40)) is also dis-
played, showing an excellent agreement except for the low-
est frequency modes where WKB approximation breaks down.
It is remarkable that |Q| seems to be maximized at low fre-
quency for l = 1 whereas it is maximized near the cut-off
frequencyωcut

l for l ≥ 2. The efficiency |R| of the acoustic cycle
is bounded by one and decreases to zero above the cut-off fre-
quency, as could be expected from FT00 and F01.

5.2.4. WKB approximation of R and growth rate

The global efficiency R can be decomposed in terms of the ef-
ficiencies Radv and Rsh of the coupling between the acoustic
fluxes F±, such that the global efficiency R is

R ≡ RadvRshe−iωτR . (58)

The efficiencyRadv measures the outgoing acoustic flux F− pro-
duced by the deviation of an ingoing acoustic flux F+:

Radv ≡ f−
f+
, (59)

= R∗e iω
c

∫ rsh
rt

2µ
1−M2 dr

, (60)

F− = |Radv|2F+. (61)

Radv is simply the limit when γ→ 1 of the efficiency computed
in F01: it is close to unity below the cut-off frequency ωcut

l ,
and decreases exponentially above this cut-off. Conversely,
an acoustic flux F− reaching a shock produces a reflected in-
going acoustic flux F+ with the efficiency Rsh:

Rsh ≡ f+
f−
, (62)

F+ = |Rsh|2F−. (63)

Keeping only the first order terms inM2 and c/ωr, the complex
efficiency is computed in Appendix E:

Rsh ∼ −1 + 2M2 + 2i
ηc
ωr
· (64)

Thus the global efficiency |R| should be close to unity below the
cut-off frequency. The product |RshRadv| is displayed in Fig. 8
(bottom picture), in good agreement with the value of |R| de-
duced from Fig. 4 and Eq. (55).

The extremal values ω±i of the growth rate of the vortical-
acoustic cycle are computed in Appendix G (Eq. (G.7)) for
strong shocks:

ω±i ∼
1
τQ

log
|Q|

1 ∓ |α| · (65)

The asymptotic scaling of α is deduced from Eqs. (43), (51)
and (64) :

α ∼ 1 − 3
M1

log

M1

M0l

(
ω

ωcut
l

) 2
3 (2l−1)

 · (66)

Together with Eq. (36), and despite the roughness of the ap-
proximation in Eq. (30) near the cut-off frequency, the leading
order of the asymptotic values of ω±i is comparable to:

ω−i ∼
1

2τadv
log
M1

4M0l
, (67)

ω+i ∼
3

2τadv
log

M1

(9M0l)
1
3 log

2
3 M1
M0l

· (68)

The values of Q,R, τR/τQ are thus responsible for a dispersion
of the growth rate by a factor 3 in Eqs. (67)–(68) near the cut-
off frequency, depending on the relative phases of the two cy-
cles. This factor 3 is consistent with both Figs. 4 and 5.

6. Vortical-acoustic instability at low frequency

The region of efficient coupling between the vorticity and
acoustic perturbations lies in the region of pseudosound ac-
cording to Eq. (33). Thus it seems natural to expect an insta-
bility at low frequency as long as the coupling region deter-
mined from Eq. (32) lies inside the shock radius, i.e. down to
the advection frequency. This case is similar to the hole tone
instability (e.g. whistling kettle) studied by Chanaud & Powell
(1965), or in the oscillations of impinging shear layers (see a
review by Rockwell 1983). In some of these cycles, the vortic-
ity perturbations are coupled to the acoustic field in the region
of pseudosound. As stressed by Chanaud & Powell (1965), this
does not preclude the use of the term “acoustic feedback” so
that we may talk of a vortical-acoustic cycle even in this range
of frequencies. Although the problem cannot be treated in the
WKB limit, the homogeneous solution can be approximated
by a Spherical Bessel function of the first kind in the region
of pseudosound far from the sonic point. The calculation in
Appendix H shows that the case l = 1 and l ≥ 2 must be treated
separately. In the domain of pseudosound 1 � |ωτadv| � M1,
Eq. (22) is reduced to:

iωr
M2c

r2 ∂
2 f0
∂r2

∼ −l(l + 1)(l + η − 2) f0

+9 l eiωτadvΓ

(
l + 4

3

)
(iωτadv)

5−l
3 f0. (69)

6.1. Low frequency global cycle l = 1

The l = 1 acoustic perturbation is approximated in Appendix H
as f0 ∝ j1(ωr/c), and Eq. (69) is transformed into

9
5
M2

2 (iωτadv)3 =
2
3
+ (iωτadv)

4
3 Γ

(
5
3

)
eiωτadv . (70)

A branch of solutions with ωr � ωi corresponds to a vortical-
acoustic cycle between the shock and the sonic point:

ωiτadv ∼ log
[
3
2
Γ

(
5
3

)]
+

4
3

log |ωrτadv|,

if |ωτadv| � M
2
3

1 , (71)

ωiτadv ∼ log
[
5
9
Γ

(
5
3

)]
+ 2 logM1 − 5

3
log |ωrτadv|,

if |ωτadv| � M
2
3
1 . (72)
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The maximum growth rate of this branch of solution is reached
for a real frequency similar to the frequency of the local
instability.

ωr ∼
10

1
3M 2

3
1

3τadv
, (73)

ωi ∼ 8
9τadv

log
M1

M0
, (74)

M0 ≡ 2
5
8 3

3
8

5
1
2 Γ

9
8

(
5
3

) ∼ 1.17. (75)

This growth rate is compared to the results of numerical cal-
culations in Fig. 5. This growth rate exceeds the growth rate
of the vortical-acoustic instability at high frequency (Eq. (46)),
but is asymptotically smaller than the maximum growth rateω+i
reached when the purely acoustic and vortical acoustic cycles
are in phase (Eq. (68)).

6.2. Low frequency global cycle l ≥ 2

If l ≥ 2, the acoustic feedback due to an isolated vortical per-
turbation near the shock is negligible compared to the integral
effect for strong shocks. Eq. (69) is reduced to:

3Γ
(

l + 4
3

)
(iωτadv)

2−l
3 eiωτadv = l − 1. (76)

The most unstable modes are therefore the modes l = 2, with

ωr ∼ 2nπ
τadv

, with 1� n �M1, (77)

ωi ∼ log 3
τadv

> 0. (78)

These approximations are in excellent agreement with the nu-
merical result of Fig. 4.

By contrast with the case of high frequency perturbations,
it seems difficult to separate completely the effect of post-
shock acceleration from the global vortical-acoustic cycle in
this range of frequencies.

7. Effects of post-shock acceleration: A global
instability with a local criterion

The boundary condition (18) can be rewritten for strong shocks
as follows:

fsh

c2
∼ η∆ζ

rsh
for |ω| � |η|

M2

c
rsh
∼ |η|
M 1

2
2

c
rson
· (79)

This equation is similar to the argument of Nobuta & Hanawa
(1994) concerning the balance total pressures (thermal and dy-
namical) on both sides of the shock. Rather than treating the
shock surface as a material surface pushed by the local pres-
sures on both sides of it, Eq. (79) is interpreted as follows: an
excess of Bernoulli perturbation f (which we may call “en-
ergy”) on the subsonic side of the shock is associated with a
displacement of the shock in the direction of increase of the lo-
cal Mach number. If η < 0 (Eq. (17)), an excess of f produces

an outward displacement of the shock. This statement alone is
not conclusive: instability occurs only if the flow is not able
to evacuate this excess of energy. Although the displacement
of the shock indeed liberates some potential energy locally, the
instability depends on the leakage of energy through the sonic
radius (Nakayama 1993).

7.1. Asymptotic growth rate of the radial instability

For radial perturbations (l = 0), the only way of evacuating the
excess of energy is through acoustic perturbations. Acoustic
energy, however, is trapped in the subsonic region if the real
frequency of the mode is low enough. Thus a low frequency
instability is expected. Although the criterion of the instability
is indeed local, its growth rate depends on the spatial structure
of the acoustic perturbation from the sonic radius to the shock,
as illustrated by Eq. (22) for strong shocks:

∂ log f0
∂ log r

(rsh) ∼ 1
η

(
ωrsh

c

)2
(
1 +

iηcM2

ωrsh

)
· (80)

f0 is approximated as the acoustic perturbation of a uniform
medium in spherical coordinates (see Appendix B), using a
Spherical Bessel function f0 ∝ j0(ωr/c) for rsh � rson. The
solution of the dispersion relation (80) at low frequency is a
purely imaginary eigenfrequency:

ωr ∼ 0, (81)

ωi ∼ −η
3 + η

3M2c
rsh

, (82)

∼ −6
∂|v|
∂r
∼ 2
τadv
· (83)

The fact that the growth time scales like the advection time is
not obvious a priori.

7.2. Asymptotic growth rate of the l = 1 instability

Non radial perturbations generate vorticity, which contribute to
the energy balance in the subsonic part of the flow. Figure 9
illustrates the contribution of a vorticity perturbation to the
Bernoulli perturbation through the radial component of veloc-
ity v δvr. Thus the vorticity perturbation participates to increase
the local accretion rate (i.e. g > 0) in the regions where the
shock moves inward (∆ζ < 0). Comparing this statement with
g ∼ iω∆ζ/M2c deduced from Eq. (19), we conclude that the
vorticity contributes to the instability if ν < 0. A quantitative
calculation of the growth rate requires taking into account the
acoustic perturbation in the region from the shock to the sonic
point. The fastest instability of the flow, well isolated from all
the other modes of instability, is obtained by neglecting the last
term on the right hand side of Eq. (70):

ωmax
r =

5
1
3 3

1
2

2
2
3

c
rsh

1

M 1
3
1

, (84)

ωmax
i =

5
1
3

2
2
3

c
rsh

1

M 1
3
1

· (85)
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Fig. 9. Interaction of the vortex with the shock. The contribution of a
vorticity perturbation δKsh > 0 to the Bernoulli perturbation is positive
(vδvr > 0), and induces an increase of the local accretion rate (g > 0).
Depending on the sign of the postshock acceleration, a vorticity per-
turbation contributes to a local expansion (η > 0) or collapse (η < 0)
of the shock.

It is in excellent agreement with the numerical calculations in
Figs. 4 and 5. This growth rate is intermediate between the ad-
vection and the fundamental acoustic frequencies. The real and
imaginary parts being comparable, the growth rate is the time
taken by the vorticity perturbation to travel by one wavelength

2πv/ωmax
r ∝ M 2

3
2 rsh � rsh.

8. Discussion

8.1. Relationship with other shock instabilities

Most shock instabilities identified and studied in astrophysics
are related to the acceleration or deceleration of the shock itself.
The most famous is of course the Rayleigh-Taylor instability
of accelerated shocks, analysed by Bernstein & Book (1978).
Decelerated shocks are also unstable to a rippling instability,
studied by Vishniac (1983), Bertshinger (1986) and Vishniac &
Ryu (1989). By definition, stationary shocks are stable with re-
spect to these mechanisms, but can still be unstable. Nakayama
(1992, 1993) pointed out the radial instability of the shock if
the flow is immediately accelerated after the shock, in isother-
mal flows. The validity of the postshock acceleration criterion
for adiabatic flows is still uncertain, even for radial perturba-
tions (Nakayama 1994). The vortical-acoustic cycle studied in
the present paper resembles by many aspects to the entropic-
acoustic cycle studied by FT00 and F01 in adiabatic flows. Two
distinct mechanisms, however, are at work:

(i) the vortical-acoustic cycle is fed by the vorticity produc-
tion by a perturbed shock, which is highest for isothermal flows
with a strong shock,

(ii) the entropic-acoustic cycle is fed by the temperature
increase from the shock to the sonic radius, which is highest if
γ = 5/3 (FT00, F01).

A calculation similar to Appendix E for adiabatic flows would
show that the vorticity production by a perturbed shock is large
only in the isothermal limit:

∣∣∣∣∣δKsh

f−

∣∣∣∣∣ ∝ 1
M2

<

(
2γ
γ − 1

) 1
2

· (86)

Although shocked adiabatic flows with 1 < γ < 5/3 are subject
to both entropic-acoustic and vortical-acoustic cycles in prin-
ciple, their stability cannot be determined without a specific
calculation.

8.2. Constraints on the instability mechanism of BHL
accretion

The stability of BHL accretion can be addressed with new
tools, using the present results and the entropic-acoustic cycle
of FT00 and F01. Although a detailed analysis of the exist-
ing numerical simulations of BHL accretion is postponed to a
forthcoming paper, let us outline the possible consequences of
the entropic-acoustic and vortical-acoustic mechanisms on this
specific flow. Numerical simulations of BHL accretion in 3-D
show a strong instability for adiabatic flows with γ = 5/3 and
small accretors (Ruffert & Arnett 1994; Ruffert 1994): this co-
incides nicely with the properties of the entropic-acoustic cy-
cle, which is most unstable if the temperature gradient in the
subsonic part of the flow is strongest (FT00, F01). By con-
trast, nearly isothermal flows are rather stable in 3-D numeri-
cal simulations (Ruffert 1996). This could seem puzzling given
the strong vortical-acoustic instability described in the present
paper: why would the entropic-acoustic cycle be relevant for
the BHL instability with γ = 5/3, and the vortical-acoustic
cycle be irrelevant to the BHL stability for γ = 1? This ap-
parent contradiction can be partly solved by remembering the
difference of topology between the spherical Bondi flow and
the BHL flow, following the remark of Sect. 2.1. All the nu-
merical simulations of isothermal BHL accretion seem to agree
with the fact that the shock is attached to the accretor, whereas
it is detached in high resolution simulations of adiabatic flows
with γ ≥ 4/3. This can be understood qualitatively in terms of
the weakness of pressure forces in isothermal flows compared
to adiabatic flows (P ∝ ργ). More quantitatively, Foglizzo &
Ruffert (1997) proved that the shock in the isothermal BHL
flow cannot be detached unless the sonic surface extends up
to distances comparable to the Bondi radius GM/c2, i.e. much
larger than the accretion radius. In view of this topological dif-
ference between isothermal and adiabatic BHL flows, it seems
easier to extend the results obtained for shocked Bondi accre-
tion to the subsonic region ahead of the accretor, for detached
shocks, than in the very non-radial region of accretion behind
the accretor for attached shocks. Although true, however, this
argument is not conclusive. Even in a non radial isothermal
flow, a small pressure perturbation of the shock is able to gen-
erate vorticity perturbations very efficiently. The lack of insta-
bility of isothermal BHL accretion in 3-D must be sought for in
the lack of acoustic feedback from the advected vorticity per-
turbation. Unfortunately we do not have quantitative arguments
to explain why the acoustic feedback is so weak, apart from
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noticing that geometric compression of the vorticity perturba-
tion from the shock to the sonic radius might be insufficient in
the BHL flow. Any coherent explanation should of course also
account for the strong instability observed in 2-D simulations
of BHL accretion (Shima et al. 1998).

8.3. Relationship with the numerical simulations
of shocked inviscid flows with low angular
momentum

Inviscid accretion flows with low angular momentum are much
more complex than the Bondi flow in the sense that the shock
position is not unique (Fukue 1987; Chakrabarti 1989). The nu-
merical simulations of Nobuta & Hanawa (1994) did not detect
the effects of vorticity perturbations since they were restricted
to axisymmetric motion. These simulations showed the evolu-
tion of the radial instability due to postshock acceleration: the
unstable shock is either absorbed by the accretor or inflates to
reach the stable outer position.

Molteni et al. (1999) performed non axisymmetric numer-
ical simulations of shocked inviscid accretion flows with low
angular momentum, for γ = 4/3. Unstable m = 1 oscillations
were observed, with no physical explanation. The entropic-
acoustic and vortical-acoustic cycles might provide a physical
basis to understand this instability.

8.4. Non linear evolution of the instability

If the existence of the shock is postulated a priori, as in the
present study, the flow might simply converge towards another
solution, as illustrated by the dashed lines in Fig. 1. The shock
can either be absorbed by the accretor, leading to the fully su-
personic solution, or could expand towards infinity to establish
the Bondi solution if the outer boundary condition allows it.

In accretion flows stable with respect to the postshock ac-
celeration criterion, but unstable through the vortical-acoustic
(or entropic-acoustic) cycle, the instability might be saturated
by the effect of the geometric dilution of the acoustic energy in
the subsonic cavity. Let us assume that advected vorticity per-
turbations generate an acoustic flux propagating outward F− ∝
|Qadv|2|δKsh|2 (Eq. (26)), and that the acoustic perturbation pro-
duces in turn a vorticity perturbation |δKsh| ∝ M1|δp−/p|
(Eq. (42)). The amplitude of the pressure perturbation
|δp−/p| depends on the volume in which the acoustic flux F−
is diluted through Eq. (27): |δp−/p| ∝ (rsh/r)F1/2

− . Thus the
vortical-acoustic cycle is naturally stabilized when the shock
reaches a distance rmax defined by

rmax ∼ |Q|rsh, (87)

where |Q| is the global efficiency of the vortical-acoustic cycle
in the linear regime. If the shock is not simply absorbed by the
accretor, the non linear evolution of the instability could lead
to quasi periodic oscillations of amplitude comparable to rmax.
However, given the number of unstable modes in a spectrum
like Fig. 4, the vortical-acoustic instability might as well satu-
rate into turbulence rather than be dominated by a single QPO.
This issue can only be solved with numerical simulations.

9. Conclusions

The linear stability of shocked isothermal Bondi accretion has
been studied by comparing the complex eigenfrequencies ob-
tained through a direct numerical integration (Sect. 3) to the
analytical results obtained for strong shocks by two different
methods:

(i) an analytical estimate of the growth rate corresponding
to a cycle of perturbations with a purely real frequency, ob-
tained by separating the effects of advection from the bound-
ary effects of the shock. This WKB approximation, valid in the
range of acoustic waves (c/rsh � ω � c/rson), was used in
Sects. 4 and 5,

(ii) an analytical estimate of the complex eigenfrequencies
in the range of pseudosound (vsh/rsh � ω � c/rsh) using
Spherical Bessel functions (Sects. 6 and 7).
The results obtained by these methods are summarized as
follows:

– As expected by the postshock acceleration of Nakayama
(1993), the isothermal Bondi accretion with a shock is unstable
with respect to radial perturbations. Its growth rate is compara-
ble to the advection time from the shock to the sonic point.

– The present analysis has revealed the existence of a new
instability, based on the cycle of vortical and acoustic pertur-
bations in the subsonic part of the flow. The analytical study of
this instability at high frequency (c/rsh � ω � c/rson) proves
that it is independent of the postshock acceleration criterion
established by Nakayama (1992, 1993). It is fed by the effi-
cient production of vorticity perturbations when the shock is
perturbed non radially (Eq. (42)), and by the vortical-acoustic
coupling in the region of the sonic radius which enables the
acoustic feedback. In this sense this non radial instability is
generic and can be expected in more complex situations such as
shocked flows with a weak angular momentum accreting into
a black hole, even if the flow is decelerated immediately after
the shock.

In the shocked Bondi flow the vortical-acoustic instability
is faster than the radial instability if the shock is strong, by a
factor ∝ log(M1).

The vortical-acoustic instability occurs for low degree per-
turbations on a wide range of frequencies below the cut-off
frequency ∼c/rson. A branch of unstable l = 1 eigenmodes cor-
responds to a vortical-acoustic cycle in which the acoustic feed-
back is produced in the pseudosound domain (vsh/rsh < ω <
c/rsh). The resulting growth rate is comparable to the growth
rate of the vortical-acoustic cycle at high frequency.

The role of the purely acoustic cycle was pointed out at high
frequency in order to explain the large variations of the growth
rate from one mode to another. More generally, the formalism
developped in Appendix G concerning the simultaneous acous-
tic and vortical-acoustic cycles applies to any context where the
efficiencies Q,R and timescales τQ, τR can be defined.

– A strong l = 1 oscillatory instability was found in
the pseudosound domain, at a frequency which is intermedi-
ate between the acoustic and advection frequencies (ωmax

i ∝
M1/3

1 c/rsh). With comparable real and imaginary parts of the
eigenfrequency, vorticity perturbations are advected over a very
short distance during one growth time. On the basis of the
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contribution of a vortex to the Bernoulli perturbation sketched
in Fig. 9, this strong instability is a non radial consequence of
post-shock acceleration.

– As outlined in Sect. 8, the vortical-acoustic mechanism
can be used as a tool in order to analyse the instability observed
in numerical simulations of more complicated accretion flows.
The specific application to BHL accretion or shocked flows
with low angular momentum will be developped in a forthcom-
ing paper.

Appendix A: Vorticity perturbations produced
by the perturbed shock

The non radial perturbation of velocity is deduced from the
continuity of the velocity parallel to the shock, as in Landau
& Lifshitz (1987, Chap. 90, p. 336):

δvθ =
v1 − v2

r
∂∆ζ

∂θ
, (A.1)

δvϕ =
v1 − v2

r sin θ
∂∆ζ

∂ϕ
· (A.2)

The perturbed vorticity in the flow is deduced from the
Eqs. (A.1)–(A.2) and the Euler equation:

wr = 0, (A.3)

wθ = (1 −M2
2)2

(
1 − iηcM2

ωrsh

) M2
1

r sin θ
∂∆v

∂ϕ
, (A.4)

wϕ = −(1 −M2
2)2

(
1 − iηcM2

ωrsh

)M2
1

r
∂∆v

∂θ
· (A.5)

The conserved quantity δKsh defined by Eq. (12) is deduced
from Eqs. (A.4)–(A.5), resulting in Eq. (20).

Appendix B: Approximations of the acoustic
perturbation

B.0.1. High frequency limit: WKB approximation

If the wavelength of the perturbation is shorter than the length-
scale of the flow inhomogeneity (ωr/c � 1), a WKB ap-
proximation enables us to describe the propagation of acoustic
waves in the direction of the flow ( f +0 ) or against it ( f +0 ):

f ±0 ∼
M 1

2 c2

µ
1
2

exp iω
∫ r

rt

M∓ µ
1 −M2

dr
c
, (B.1)

where we have chosen the normalization of f ±0 such that the
lower bound of the integral is the turning point rt. The condition
that rt < rsh defines a minimum frequency ωsh

l≥1 using Eq. (11)
and L2 ≡ l(l + 1):

ωsh
l≥1 ≡ ωl(rsh) = L

csh

rsh

(
1 −M2

sh

) 1
2 . (B.2)

B.0.2. Low frequency limit: Uniform steady medium
approximation

Far from the accretor, the flow velocity decreases like ∝ 1/r2

and the density of the gas is uniform. If the shock is strong

(rsh � rson), the homogeneous equation associated with
Eq. (C.1) is approximated for r � rson and ω � c/(rM) as
follows:
∂2 f
∂r2
+

2
r
∂ f
∂r
+

(
ω2

c2
− L2

r2

)
f = 0, (B.3)

which is nothing more than the equation of acoustic waves in
a uniform steady medium, in spherical coordinates. The solu-
tion f0 can therefore be approximated with a spherical Bessel
function of the first kind jl, which is normalized here as in
Eq. (B.1):

f0 ∼ e
3
4 c2ωrson

c

( πc
2ωr

) 1
2

Jl+ 1
2

(ωr
c

)
, (B.4)

≡ e
3
4 c2ωrson

c
jl
(
ωr
c

)
. (B.5)

Appendix C: Formulation of the boundary value
problem

The differential system (8-9) is written as a single differential
equation of second order:

∂2 f
∂r2
+

[
∂ log
∂r

(
1 −M2

M
)
− 2iωM

(1 −M2)c

]
∂ f
∂r

+

ω2

c2 − L2

r2

1 −M2
f = − δKsh

(1 −M2)r2
eiω

∫ r

rsh

dr
v . (C.1)

Following the method used in F01, the general solution of
Eq. (C.1) can be written using the solutions f0, f1 of the ho-
mogeneous equation, where f0 is the unique solution which is
regular at the sonic radius. Let us normalize f0 using the fol-
lowing definition of the WKB solutions f ±0 (Eq. (B.1)). The
complex coefficient R∗ is defined by:

f0 ≡ f +0 + R∗ f −0 . (C.2)

The wronskien of the couple of solutions f +0 , f −0 is deduced
from Eqs. (B.1) and (C.1):

∂ f +0
∂r

f −0 −
∂ f −0
∂r

f +0 = −
2iωMc3

1 −M2
e

2iω
c

∫ r

rt
M

1−M2 dr
. (C.3)

Let us normalize f1 such that the wronskien of the couple of
solutions f0, f1 is the same as in Eq. (C.3). The general solution
is then:

f =
δKsh

2iωc3
e−iω

∫ rsh
rt

dr
v

{
f0

[
A0 +

∫ r

rsh

f1
Mr2

e−
iω
c

∫ r

rt
1+M2

1−M2
dr
M dr

]

− f1

[
A1 +

∫ r

rson

f0
Mr2

e−
iω
c

∫ r

rt
1+M2

1−M2
dr
M dr

]}
· (C.4)

A Frobenius analysis of f0, f1 near the sonic points leads to:

f0 ∼ f0(rsh) + O(r − rson), (C.5)

f1 ∝ (r − rson)−
iω
Ṁc . (C.6)

thus the integrals in Eq. (C.4) are converging when r → rson if
ωi > c(∂M/∂r)(rson). The regularity at the sonic radius there-
fore requires A1 = 0. A combination of Eq. (C.4) and its deriva-
tive at the shock radius leads to eliminate A0 as follows:(
∂ f0
∂r

f − ∂ f
∂r

f0

)
rsh

=
M2

1 −M2
2

δKsh

∫ rsh

rson

f0
Mr2

e−
iω
c

∫ r

rsh

1+M2

1−M2
dr
M dr.

(C.7)
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Equations (18)–(20) provide the boundary conditions at the
shock in order to replace f (rsh), ∂ f /∂r(rsh) and δKsh in
Eq. (C.7), resulting in Eq. (22).

Appendix D: Calculation of Qadv

The analytical expression for Qadv can be determined by writ-
ting the solution corresponding to zero acoustic flux F+ at
an outer boundary R, using the couple of homogeneous solu-
tions ( f +0 , f −0 ):

f =
δKR

2iωc3
e−iω

∫ R

rt
dr
v

{
f +0

[
B0 +

∫ R

rson

f −0
Mr2

e−
iω
c

∫ r

rt
1+M2

1−M2
dr
M dr

]

− f −0

[
B1 +

∫ R

rson

f +0
Mr2

e−
iω
c

∫ r

rt
1+M2

1−M2
dr
M dr

]}
· (D.1)

The regularity at the sonic radius requires

B1 = −R∗B0. (D.2)

The condition of absence of an incoming acoustic flux at the
outer boundary is obtained by canceling the coefficient of f +0 at
r = R, in the WKB limit of high frequency (ω� c/R):

B0 = −
∫ R

rson

f −0
Mr2

e−
iω
c

∫ r

rt
1+M2

1−M2
dr
M . (D.3)

Together with Eqs. (D.2) and (D.3), Eq. (D.1) at the outer
boundary becomes:

f (R) = − δKR

2iωc3
e

iω
c

∫ R

rt
dr
M

f −0

∫ R

rson

f0
Mr2

e−
iω
c

∫ r

rt
1+M2

1−M2
dr
M dr. (D.4)

Qadv(R), defined by Eq. (28), is deduced from the asymptotic
behaviour of f −0 in the WKB approximation (Eq. (B.1)). This
calculation is formally similar to the calculation of QK in F01,
corrected for a phase shift. The efficiency Qadv involved in the
vortical-acoustic cycle is deduced from Eq. (29), with R = rsh.
In the strong shock limit, below the cut-off frequency (c/rson �
ω � c/rsh), the acoustic efficiency Qadv is approximated using
the Spherical Bessel function jl (B.5):

|Qadv| ∼ e−
3
4

2
c

ωrson

∣∣∣∣∣
∫ ∞

0
e−iλx3

jl(x)dx
∣∣∣∣∣ , (D.5)

λ ≡ e−
3
2

3

(
c

ωrson

)2

· (D.6)

For λ � 1, a functionH(l) may be defined such that

∣∣∣∣∣
∫ ∞

0
e−iλx3

jl(x)dx
∣∣∣∣∣ ∼ 1

1 · 3 . . . (2l + 1)
H(l)

λ
l+1
3

· (D.7)

The main contribution to the integral in Eq. (D.7) comes
from the region x ∼ λ−1/3. Equation (30) is obtained from
Eqs. (D.5) and (D.7)

Appendix E: Decomposition of the perturbation
onto vorticity waves and acoustic waves
in the WKB approximation

The perturbations f , g immediately after the shock, defined by
Eqs. (18) and (19) are decomposed as follows:

f (rsh) = f− + f+ + fK , (E.1)

g(rsh) = g− + g+ + gK , (E.2)

where fK , gK correspond to the vorticity wave associated with
the vorticity perturbation δK, and f±, g± correspond to the
purely acoustic waves propagating in the direction of the flow
(index +) or against the flow (index −). An exact calculation
can be made in the case of the reflexion of an acoustic wave
δp− with wavevector (k‖, k⊥) on a plane shock in Cartesian co-
ordinates, in the absence of a gradient ofM. The vorticity wave
fK , gK is advected at the velocity of the fluid:

∂ fK

∂r
=

iω
v

fK , (E.3)

∂gK

∂r
=

iω
v
gK . (E.4)

Replacing these derivatives in Eqs. (8), (9), we obtain:

fK =
M2

2c2δK

r2ω2 + v2L2
, (E.5)

gK =
δK

r2ω2 + v2L2
(E.6)

g± = ± f±
M2c2

· (E.7)

Equations (E.5)–(E.7) are used with Eqs. (18), (19) in order to
obtain Eq. (20) and

f± =
M2c2

2µ
∆v

v
(1 −M2

2)
(µ ∓M2)2

1 ∓ µM2
, (E.8)

where µ in Cartesian coordinates is also defined by Eq. (10),
but replacing l(l + 1)/r2 by the wavenumber k2⊥. According to
the definitions of Qsh and Rsh in Eqs. (37) and (62), together
with Eqs. (20) and (E.8):

Rsh = −
(
µ −M2

µ +M2

)2 (
1 + µM2

1 − µM2

)
, (E.9)

Qsh = −2l(l + 1)
(
µ

M2

) 1
2 (1 + µM2)(1 −M2

2)

(µ +M2)2
· (E.10)

These equations show the decrease of the vortical-acoustic cou-
pling for weak shocks (M2 ∼ 1), and the existence of maxi-
mal efficiency at low frequency. Indeed, the maximum Qsh ∼
3

3
2

8 l(l + 1)M2
1 is reached for a frequency such that µ ∼ M2/3,

with Rsh ∼ −1/4.
The angle ψ between the direction of propagation of the

wave and the vector orthogonal to the shock surface is given by:

tanψ =


(
ω

k⊥c

)2

+M2 − 1


−1

· (E.11)
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As remarked by Kontorovich (1958), the reflected sound wave
propagates away from the shock with the same angle as the in-
cident wave (ψ+ = ψ−), as in a classical reflexion. The presence
of a gradient ofM2 in the Bondi flow precludes the use of these
formulae at low frequency. In the following calculation we as-
sume ωr/c � 1 and M2 � 1, and keep only the first order
terms in M2 and c/ωr. Thus µ ∼ 1. Neglecting the coupling
between the vorticity and acoustic waves in the vicinity of the
shock, the vorticity wave fK , gK is still advected at the velocity
of the fluid. Eqs. (E.5) and (E.6) are now approximated at high
frequency by

fK ∼
M2

2c2δK

r2ω2
, (E.12)

gK ∼ δK
r2ω2

· (E.13)

Acoustic waves are described by Eqs. (8), (9) in the absence
of vorticity perturbations, i.e. when δK = 0. Using the WKB
approximation of Eq. (B.1), the radial derivative of f± is ap-
proximated by:

∂ f±
∂r
∼ iω

c

(
∓1 +M2 − iηc

2ωr

)
f±. (E.14)

g± is deduced from Eqs. (8) and (E.14):

g± ∼
(
±1 +

iηc
2ωr

) f±
M2c2

· (E.15)

Equations (E.12), (E.13) and (E.15) are used with Eqs. (18),
(19) in order to obtain Eq. (20) and

f± ∼ M2c2

2
∆v

v

(
±1 −M2 − i

ηc
ωr

)
, (E.16)

Combining Eq. (20) with Eq. (E.16), we obtain the expres-
sions for Rsh,Qsh in Eqs. (40) and (64). The pressure pertur-
bations δp± associated with the acoustic waves f± are deduced
from Eqs. (6)–(7) and Eq. (E.15):

δp±
p
=

f± − v2g±
c2 − v2

, (E.17)

∼ (1 ∓M2)
f±
c2
· (E.18)

Appendix F: WKB approximation of the dispersion
relation

Using the integral expression of Qadv (Eq. (29)), Eq. (22) can
be approximated as follows for strong shocks (M2 � 1):[
η −M2

iωrsh

c

] c
iω
∂ f0
∂r
+

[ iωrsh

c
−M2η

]
f0 ∼

−2l(l + 1)

M 1
2
2

[ iωrsh

c
+M2η

]
Qadv f +0 . (F.1)

In the WKB limit ωrsh/c � 1, Eq. (F.1) can be simplified into

f +0 + R∗ f −0 ∼ −2l(l + 1)Qadv
f +0

M 1
2
2

· (F.2)

Using the expressions for Qsh and Rsh (Eqs. (40) and (64)),
and the definition of Q and R (Eqs. (38) and (58)), the global
dispersion relation (49) is recovered.

Appendix G: Analysis of the phase relation
of the two cycles

Let us introduce the new complex variable

z ≡ QeiωτQ . (G.1)

The resolution of the dispersion relation (49) is then equivalent
to finding the complex number z satisfying:

z + αzε = 1, (G.2)

where the dimensionless parameter ε ≡ τR/τQ < 1 and |α| < 1
is defined by Eq. (52). The minimum and maximum values z±
of |z| satisfy an equation similar to Eq. (E3) of FT00:

z± ∓ |α|zε± = 1. (G.3)

The minimum and maximum effect of the acoustic cycle on the
growth rate ω±i are directly related to z± through Eq. (G.1):

ω±i ≡
1
τQ

log
|Q|
z∓
· (G.4)

From Eq. (G.3),

z+ + z− = 2, (G.5)

we deduce that the maximum stabilizing effect of the acoustic
cycle is to divide the efficiency Q by a factor 2:

1 < z+ ≤ 2. (G.6)

If the acoustic time is much shorter than the advection time
(ε � 1), we deduce from Eq. (G.3) the values of x±:

z± ∼ 1 ± |α|. (G.7)

Thus the acoustic cycle may participate efficiently to the insta-
bility if ε � 1 and |α| ∼ 1. In the more general case where
0 < ε < 1, the following bounds on x are obtained from
Eq. (G.2):

1 − |α| ≤ |z| ≤ 1
1 − |α| · (G.8)

The resolution of Eq. (G.2) can be decomposed into a phase
condition applied to the points of a continuous curveC, defined
by:

|z − 1| = |α||z|ε . (G.9)

C is a closed curve containing the point (1, 0) in its interior,
and (0, 0) in its exterior. It can be described in a univoque way
by the angle ϕ ≡ Arg(z − 1) ∈ [−π, π]. Let us define the angle
θ ≡ Arg(z) ∈ [−π, π]. The solutions of Eq. (G.2) are recovered
by applying to the solutions of Eq. (G.9) the following phase
condition:

ϕ + 2kπ = ε(θ + 2k′π), (G.10)

where k, k′ are two integers. Since (0, 0) is exterior to C, the
range of values covered by θ when ϕ covers [−π, π] is limited
to |θ| ≤ θmax < π. The discrete solutions of the phase Eq. (G.10)
can be seen in a graphic way as the intersection of the peri-
odic curve θ(ϕ) with the straight line θ = ϕ/ε. The number of
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solutions in each phase ϕ ∈ [0, 2π] is therefore equal to 1/ε
on average. Comparing Eq. (G.1), Eq. (G.9) with the defini-
tions of ϕ, θ, one period of ϕ corresponds to a variation of ωr

of 2π/τR, and one period of θ corresponds to 2π/τQ. The val-
ues of |Q| and |R| in Eqs. (54) and (55) can be determined from
the measurement of ω+i , ω−i and the average number n = τQ/τR
of eigenmodes per period ∆ωr = 2π/τR, by eliminating |α|, x±
from the set of Eqs. (G.3), (G.4), and (52).

Appendix H: Pseudosound approximation
of the dispersion relation

The integral involved in Eq. (22) can be approximated in the
low frequency limit by introducing the complex variable z:

dz
dr
≡ i

ω

Mc
1 +M2

1 −M2
· (H.1)

The contour of integration is deformed in the complex plane
introducing a point on the real axis at +∞, and performing two
integrations by parts:

rsh

∫ rsh

rson

f0
Mr2

e−i ωc
∫ r

rsh

1+M2

1−M2
dr
M dr =

rshc
iω

ezsh

×
{∫ +∞

zson

f0
r2

1 −M2

1 +M2
e−zdz +

∫ +∞

zsh

e−z ∂
2

∂z2

(
f0
r2

1 −M2

1 +M2

)
dz

}

− c
iωrsh

1 −M2

1 +M2

 f0 +
Mcr2

sh

iω
∂

∂r

(
f0
r2

1 −M2

1 +M2

)
rsh

· (H.2)

The turning point in the Bondi flow would be at rt ∼ Lc/ω.
For r � rson, the homogeneous solution f0 is approximated
by a Spherical Bessel function of the first kind jl(ωr/c). For
ωr/c � 1, it is approximated as follows:

f0(r) ∼ f0(rsh)
(

r
rsh

)l

· (H.3)

The first integral on the right hand side of Eq. (H.2) is approx-
imated using a Gamma function:

z ∼ iωr
3Mc

, (H.4)

rshc
iω

∫ +∞

zson

f0
r2

1 −M2

1 +M2
e−zdz ∼ f0(rsh)

3Mz
l+1
3

sh

∫ +∞

0
z

l−2
3 e−zdz, (H.5)

∼ f0(rsh)

3Mz
l+1
3

sh

Γ

(
l + 1

3

)
· (H.6)

The second integral on the right hand side of Eq. (H.2) is neg-
ligible if rt � rsh � rson. In view of the particular case l = 1,
the differential equation satisfied by f0 is used to sum up terms
of same order:

ηr
∂ f0
∂r
+ l(l + 1) f0 = r2(1 −M2)

∂2 f0
∂r2
+

(
ωr
c

)2
f0

−M2

(
η +

2iωr
cM

)
r
∂ f0
∂r
· (H.7)

Using Eqs. (H.2), (H.6) and (H.7), the dispersion relation (22)
is approximated in the pseudosound domain as follows:

r2 ∂
2 f0
∂r2
+

l(l + 1)
3zsh

[
r
∂ f0
∂r
+ f0

∂ log
∂ log r

(M
r2

)]
∼ 3l

f0ezsh

z
l−2
3

sh

Γ

(
l + 4

3

)
·

(H.8)

The left hand side of Eq. (H.8) is dominated by the second
derivative of f0 if l ≥ 2:

l − 1
3

z
l−2
3

sh e−zsh ∼ Γ
(
l + 4

3

)
· (H.9)

If l = 1, the second derivative of f0 is approximated as follows:

j1(x) ∼ x
3
, (H.10)

x2 ∂
2 j1
∂x2
∼ − x3

5
· (H.11)

Thus Eq. (H.8) becomes:

9
5
M2z3

sh +
2
9

[
1 +

∂ log
∂ log r

(M
r2

)]
∼ z

4
3

shezshΓ

(
5
3

)
· (H.12)
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