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1 Introduction

Many questions in economics involve the causal effects of treatments z` which are computed
from multiple sources of variation, according to a known formula. Consider four examples.
First, when estimating spillovers from a randomized intervention, a typical z` counts the
number of individual `’s neighbors who were selected for the intervention. This treatment
combines variation in who was selected and variation in who neighbors whom. Second, in
studies of transportation infrastructure effects, a common z` measures the growth of regional
market access: a treatment determined both by the location and timing of transportation
upgrades and by the spatial distribution of economic activity in a country. A third example
is linear shift-share variables, z` =

∑
nw`ngn, which may average a set of national industry

shocks gn with a set of local employment share weights w`n. Finally, a z` capturing indi-
vidual `’s eligibility for a public program, such as Medicaid, is jointly determined by the
eligibility policy in `’s state and her household’s demographics and income.1

This paper develops new tools for estimating the effects of such composite variables (or
using them as instruments for other treatments) when some, but not all, of their determi-
nants are generated by a true or natural experiment. In simpler settings with conventional
experimentation, where z` is itself as-good-as-randomly assigned across observations, causal
inference is possible without imposing potentially strong non-experimental restrictions on
the unobservable determinants of an outcome, such as a parallel trends assumption. But
it is not clear whether and how this useful property of randomization extends to settings
where z` is determined jointly by a set of as-good-as-random “shocks” as well as other pre-
determined variables governing `’s “exposure” to these shocks. For instance, how can the
estimation of market access effects leverage a natural experiment in the timing of different
transportation upgrades when the other determinants of market access are non-random?

We first show how omitted variable bias (OVB) may confound conventional regression
approaches with such z`. Bias arises from different observations receiving systematically
different values of z` because of their non-random exposure to exogenous shocks. For ex-
ample, even when transportation upgrades are randomly assigned to different places in the
country, regions that are more central in the economic geography are likely to be closer to
them and thus may see a larger growth in market access. Identification of market access
effects then fails without an additional parallel trends assumption: that these more exposed
regions do not differ in their relevant unobservables, such as changes in local productivity or
amenities. Intuitively, randomizing transportation upgrades does not randomize the market
access growth generated by them.

1Characteristic examples of these four settings include Miguel and Kremer (2004), Donaldson and Horn-
beck (2016), Autor et al. (2013), and Currie and Gruber (1996a), respectively. We discuss many more
examples below.
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We then propose a general solution to this OVB challenge, based on the specification
of counterfactual shocks that might as well have been realized. This approach views the
observed shocks as one realization of some data-generating process—what we call the shock
assignment process—which can be simulated to obtain counterfactuals. In a true exper-
iment, the shock assignment process is given by the randomization protocol. Otherwise,
in natural experiments, shock counterfactuals make explicit the experimental contrasts of
interest, for instance by specifying permutations of the shocks that were as likely to have
occurred.2 For example, if the timing of comparable transportation upgrades is considered
as-good-as-random, one might produce counterfactual upgrade maps by randomly exchang-
ing the upgrades which happened earlier and later. Policy discontinuities, as commonly
used in regression discontinuity designs, can similarly justify local permutations of shocks.

Valid shock counterfactuals can be used to avoid OVB with such z`, which we generically
refer to as instruments, by measuring and appropriately adjusting for a single confounder:
the expected instrument, µ`. To do so, a researcher draws counterfactual shocks from the
assignment process, recomputes the instrument, and repeats many times. Then, for each
observation `, the instrument is averaged across these draws to obtain µ`. Finally, µ`
is subtracted from z` to obtain the recentered instrument z̃` = z` − µ`. We show that
using z̃` instead of z` as an instrument removes the bias from non-random shock exposure.
Intuitively, observations only get high vs. low values of z̃` because of the realization of
observed vs. counterfactual shocks, which is assumed to be by chance. For example, when
µ` is constructed by permuting the timing of transportation upgrades, regressions that
instrument with z̃` compare regions which received higher vs. lower market access growth
because proximate lines were constructed early vs. late, and not because of the economic
geography. Another solution, which leverages the same experimental comparisons, is to
include µ` as a regression control while instrumenting by z`.3

In contrast, more familiar identification strategies—such as instrumenting directly by
the exogenous shocks or controlling flexibly for shock exposure—are not appropriate in most
settings we consider, where the shocks are assigned at a different “level” than observations
and shock exposure is a complex object. In the market access example, upgrade shocks
vary at the level of transportation lines, necessitating a mapping from them to regional ob-
servations via features of economic geography. This exposure cannot be non-parametrically
controlled for, as each region’s market access depends on the entire spatial distribution of
economic activity. Similarly, controlling for the shares of all industries would remove all

2In this sense, shock counterfactuals formalize a natural experiment—what DiNardo (2008) defines as a
“serendipitous randomized trial”—in terms of a particular randomization protocol. See Titiunik (2020) for
alternative definitions.

3Controlling for µ` can be thought to combine recentering z` and taking out some residual variation in
the outcome. Typically this makes controlling weakly more efficient in large samples, reflecting the precision
gains that usually arise from including controls that are orthogonal to the instrument.
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variation from a shift-share instrument. Expected instrument adjustment can be viewed as
a systematic and transparent way to purge OVB from any mapping, via the appropriate
function of exposure µ`, where conventional controls or fixed effects may fall short.

We next show how the specification of shock counterfactuals can also be used to over-
come fundamental challenges with statistical inference. Realizations of z` are inherently
dependent across observations because of their common exposure to the exogenous shocks.
Such “exposure clustering” complicates asymptotic approaches to inference, which tend to
rely on independence between most pairs of observations (for example, those from different
clusters or separated by a geographic or network distance above some threshold, as in Con-
ley (1999)). Our solution adapts principles of randomization inference (RI) via the specified
shock counterfactuals. RI-based confidence intervals are exact under constant treatment ef-
fects, without any restrictions on the unobservables, and are robust to weak instruments
(Imbens and Rosenbaum 2005). RI is particularly attractive for placebo and specification
tests, where a constant effect of zero is a natural null.

We complement our framework for identification and finite-sample inference with an
analysis of consistency and asymptotic efficiency. Recentered instruments yield consistent
estimates and RI tests, regardless of the correlation structure of the unobservables, so
long as the observed shocks induce sufficient cross-sectional variation in the instrument
and treatment. Our characterization of asymptotically efficient instrument constructions
extends the classical analysis of Chamberlain (1987). It involves finding the best predictor
of the endogenous variable from the shocks and exposure, recentering it, and then adjusting
for the structural residual’s heteroskedasticity and dependence on shock exposure. While
this instrument is typically infeasible, it can guide the construction of powerful and feasible
recentered instruments.4

We apply this framework in two settings. First, we show how instrument recentering
can help leverage variation in the timing of transportation upgrades and purge OVB when
estimating the employment effects of market access (MA) growth due to new Chinese high-
speed rail (Zheng and Kahn 2013; Lin 2017). Simple regressions of employment growth
on MA growth suggest a large and statistically significant effect, which is only partially
reduced by conventional geography-based controls. But this effect is eliminated when we
adjust for expected MA growth, measured by permuting constructed HSR lines with similar
ones that were planned but not built. The conventional estimates thus reflect the fact that
employment grew in regions which were more exposed to high-speed rail upgrades, whether
or not construction actually occurred. Importantly, our counterfactual shocks pass RI spec-

4Adão et al. (2020) also follow Chamberlain (1987) in characterizing efficient instruments in a setting
with interdependence (specifically, in a model of spatial linkages). Our general characterization differs from
theirs by allowing for a complex data dependence structure, induced by common shocks, as well as the
endogeneity of shock exposure.
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ification tests: recentering successfully eliminates the correlation between MA growth and
predetermined geographic controls. We discuss how recentering relates to a long litera-
ture estimating transportation upgrade effects (e.g. Baum-Snow (2007), Donaldson and
Hornbeck (2016), Donaldson (2018), Bartelme (2018), Ahlfeldt and Feddersen (2018), and
Tsivanidis (2019)), contrasting the well-known challenge of strategically chosen transporta-
tion upgrades (Redding and Turner 2015) with the less discussed problem that regional
exposure to exogenous upgrades may be unequal.

Second, we show how our framework helps improve the efficiency of Medicaid eligi-
bility effect estimates when leveraging plausibly exogenous state-level variation in recent
Affordable Care Act expansions (Frean et al. 2017; Leung and Mas 2018). A conventional
“simulated instrument” approach isolates such variation by averaging over differences in
individual exposure to policy shocks, such as family structure and income (e.g., Currie and
Gruber (1996a, 1996b), Cohodes et al. (2016), Cullen and Gruber (2000) and Gruber and
Saez (2002)). We show how incorporating non-random exposure variation, while appropri-
ately recentering the instrument to isolate the same policy variation, improves the first-stage
prediction of eligibility and yields 60–70% smaller standard errors.

We further discuss implications of our framework for other common z`: network spillover
treatments, linear and nonlinear shift-share variables, model-implied instruments, instru-
ments based on centralized school assignment mechanisms, “free-space” instruments for
access to mass media, and variables leveraging weather shocks.5 We provide a general
formalization of OVB from non-random exposure in each of these settings, and a gen-
eral solution, which have previously been given only in some special cases. For example,
Borusyak et al. (2021) show how simple controls can address OVB when linear shift-share
instruments combine exogenous industry shocks and non-random exposure shares. Relative
to their paper, our framework also applies to nonlinear shift-share instruments—a class of
more recent empirical strategies where the OVB problem is more challenging. Similarly,
in the network setting, Aronow (2012) notes that the random selection of treated units
does not imply the randomization of network proximity to them while Aronow and Samii
(2017) propose a reweighting solution for when both such shocks and the z` are discrete
(see also Gerber and Green (2012, p. 261)). Our general framework applies to a broader
class of network settings by imposing no restrictions on the support of z` and shocks, with
a convenient regression implementation.6

5Examples include Miguel and Kremer (2004), Acemoglu et al. (2015), Jaravel et al. (2018), and Carvalho
et al. (2021) for network spillovers; Boustan et al. (2013), Berman et al. (2015), and Chodorow-Reich
and Wieland (2020) for nonlinear shift-share variables; Adão et al. (2020) for model-implied instruments;
Abdulkadiroglu et al. (2017, 2019) for school assignment; Olken (2009) and Yanagizawa-Drott (2014) for
access to mass media; and Gomez et al. (2007) and Madestam et al. (2013) for weather shocks.

6Aronow et al. (2020) distinguish between methods to estimate spillover effects that allow all units to
interact while imposing parametric structure (e.g., Manski (2013)) and those with unrestricted interactions
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From an econometric perspective, the expected instrument can be seen as a general-
ization of the propensity score of Rosenbaum and Rubin (1983). Conventional propensity
scores are defined in settings with randomly sampled data and a conditionally exogenous
binary treatment. Earlier generalizations have considered binary instruments (e.g. Abadie
(2003)) and non-binary treatments (e.g. Hirano and Imbens (2004)). Our setting accommo-
dates these extensions but also allows for the kinds of interdependent data that naturally
arise when exogenous shocks jointly affect the treatment of many observations.7 Adjusting
for the non-random shock exposure, as captured by the expected instrument, is relevant in
such cases even when the shocks are unconditionally exogenous.8

Our use of randomization inference builds on a rich statistical literature dating back
to Fisher (1935) and reviewed in Lehmann and Romano (2006, Ch. 15). RI was orig-
inally proposed for randomized control trials but has also been deployed in a range of
non-experimental settings.9 We apply RI to a broad class of settings where random or
as-good-as-random shocks drive some but not all variation in a treatment or instrument,
allowing for complex interdependencies across observations.

Broadly, this paper contributes to a growing literature on causal inference that focuses
on the assignment process of observed exogenous shocks (e.g. Lee (2008), Athey and Im-
bens (2018), Shaikh and Toulis (2019), and De Chaisemartin and Behaghel (2018)). Our
approach can be understood as combining a statistical model of how such shocks are drawn
with an economic model of how the shocks affect an outcome (i.e. through some observed
treatment). This approach contrasts with identification strategies that impose a statistical
model for the residual determinants of the outcome, such as difference-in-difference strate-
gies (e.g. Chaisemartin and D’Haultfœuille (2020) and Athey et al. (2021)) or fully-specified
structural models. Unlike assumptions on the residuals, specifications of the shock assign-
ment process come at no cost with true experiments, may be derived from institutional
knowledge with natural experiments, and can be directly tested with any observational
data.
among a small number of node pairs (e.g., Hudgens and Halloran (2008)). Like Aronow and Samii (2017),
we advance the former approach.

7While we focus on regression-based estimators, we show that shock counterfactuals can also be used for
inverse-probability weighting (as in Aronow and Samii (2017)) or in the two-step procedure of Hirano and
Imbens (2004) (see Doudchenko et al. (2020) for an application of this idea in bipartite network experiments).
Regression-based adjustment is more popular in applied research, avoids practical issues with propensity
scores close to zero or one, and is natural for structural outcome models with constant treatment effects.
With heterogeneous causal effects, recentered instrumental variable regressions identify a convex weighted
average under an appropriate monotonicity condition (see Appendix C.1).

8Simulation-based recentering is reminiscent of Ellison and Glaeser (1997)’s “dartboard approach” to
measuring spatial agglomeration. We correct biased estimates of causal effects, rather than descriptive
statistics.

9See, e.g., Rosenbaum (1984), Rosenbaum (2002), Bertrand et al. (2004), Imbens and Rosenbaum (2005),
Ho and Imai (2006), Abadie et al. (2010), Cattaneo et al. (2015), Dell and Olken (2018), Ganong and Jäger
(2018), Canay and Kamat (2018), and Shaikh and Toulis (2019).
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The remainder of this paper is organized as follows. The next section motivates our
analysis with a stylized example of the OVB and inference challenges in market access
regressions. Section 3 develops our general framework and results. Section 4 presents our
two applications and discusses other practical implications. Section 5 concludes.

2 A Motivating Experimental Example

We begin with an idealized example that illustrates the key insights of this paper: when
exogenous transportation shocks from a randomized control trial (RCT) are used to estimate
the local effects of market access growth. Market access (MA) is a statistic which captures
the average cost of transportation from a region ` to other regions of varying size (the exact
formula is unimportant at this point). We consider a linear structural equation relating its
growth, ∆ logMA`, to the growth of a regional outcome such as land value, ∆ log V`:

∆ log V` = β∆ logMA` + ε`. (1)

Here ε` captures unobserved shocks to local productivity and amenities occurring in region
` between two periods. This equation can be derived from standard models of economic
geography (e.g. Redding and Venables (2004)), in which β is a structural elasticity. Equa-
tion (1) can also be interpreted as a reduced-form causal model, in which β captures the
effect of interventions that affect MA but not the residuals. For these reasons equations like
(1), as first proposed by Donaldson and Hornbeck (2016), have become increasingly popular
in estimating the regional effects of transportation infrastructure upgrades (e.g. Bartelme
(2018) and Tsivanidis (2019)).

We imagine estimating β by leveraging experimental shocks to market access. Specif-
ically, we consider an RCT that changes transportation costs by randomly selecting for
construction a set of new roads that connect different regions. We assume that the other
determinants of MA are held fixed. New roads affect ∆ logMA` for all regions (typically
even those not directly connected by new roads) to different extents, according to the
known market access formula. While we are not aware of actual experimental studies of
MA, similar RCTs and natural experiments have been previously analyzed. For example,
Gonzalez-Navarro and Quintana-Domeque (2016) study an RCT that paved streets in ran-
dom neighborhoods across Mexico, while Volpe Martincus and Blyde (2013) exploit random
road disruptions in various parts of Chile due to an earthquake.

At first glance, it may seem that the experimental variation in ∆ logMA` is sufficient
to estimate β by a simple linear regression. Since the new roads are selected at random,
their construction is guaranteed to be exogenous: i.e., independent from all local produc-
tivity and amenity shocks in ε`. Exogenous transportation shocks are furthermore the only
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reason that ∆ logMA` is not identically zero across regions, since market size and other
determinants of transportation costs are held fixed in the RCT. When the linear model (1)
is correctly specified, this observed variation in ∆ logMA` fully captures the effects of the
transportation shocks on the outcome ∆ log V`.

The first key insight of this paper is that even in this idealized experimental example,
non-random exposure to exogenous transportation shocks can generate omitted variable
bias in regression estimates of β. Intuitively, randomizing transportation upgrades does not
randomize the MA growth generated by them. Even when new roads are placed randomly
in space, some regions will tend to see systematically higher MA growth because of their
position in the country’s economic geography. This tendency can bias regression estimates
of MA effects when unobserved productivity and amenity shocks differ systematically in
different areas—a scenario allowed by the economic theory underlying equation (1). For-
mally, ∆ logMA` and ε` need not be orthogonal, even though the transportation shocks
underlying ∆ logMA` are independent of ε`.

To see this OVB problem simply, consider a square island consisting of 64 equally-sized
regions ` with no initial connectivity, such that initial MA is identical for all regions. Sup-
pose new roads are constructed between regions completely at random: out of all potential
roads connecting adjacent regions, the RCT selects half for construction. One such draw
from this experiment is shown in Panel A of Figure 1, along with the resulting growth in
MA.10 Expectedly, regions that become connected by road tend to have higher ∆ logMA`.
However, the figure reveals another tendency: many of the regions with high MA growth are
in the center of the island. This concentration is not by chance. Panel B of Figure 1 shows
that the average growth of MA in each region, simulated across 1,000 counterfactual road
networks drawn randomly from the same assignment process (i.e. experimental protocol),
is also higher in the center of the map. We label this statistic µ`, and it can be thought
of as a region’s “expected” MA prior to the realization of exogenous shocks. The spatial
pattern of µ` indicates that more central regions are more exposed to the RCT: no matter
where random roads are built, central regions are more likely to be closer to them and thus
see a larger market access increase.

Systematic differences in shock exposure, as captured by µ`, can generate bias in or-
dinary least squares (OLS) estimates of β. The OLS estimates come from a comparison
of outcome growth between regions with high and low MA growth, which tend to be re-
gions with high and low µ`. Expected MA growth is predetermined with respect to the
experimental shocks but may nevertheless cross-sectionally correlate with the residual (i.e.,

10Market access in period t = 1, 2 is here given by MA`t =
∑

k
τ−θ`ktPk where τ`kt is a function of distance

and connectivity in period t and Pk denotes region k’s time-invariant market size (e.g., population). In this
simplified example Pk = 1 is constant across regions, θ = 1, and τ`kt = 20.1d`kt where d`kt is the distance by
road from ` to k in period t (or infinity if there is no path).

7



Figure 1: Market Access Growth in the Motivating Example

A. Line Construction and Market Access Growth

0.83
1.58
1.85
2.14
2.41

B. Expected Market Access Growth C. Recentered Market Access Growth

1.39
1.47
1.75
1.86
1.92

−1.5
−1.0
−0.5
 0.0
 0.5

Notes: This figure illustrates the OVB problem and our recentering solution in the market
access example. Panel A shows a random draw of the railroad construction experiment,
with lines indicating connected regions and shading indicating corresponding market access
growth (computed as described in the text). Panel B shows average MA growth over 1,000
such random draws. The shading in Panel C indicates the recentered MA measure which
subtracts expected MA in Panel B from realized MA in Panel A, with the lines again
indicating realized line construction.

be endogenous), biasing the regression comparisons. In the simple example of Figure 1,
OVB arises when unobserved productivity and amenity shocks differ between the center
and periphery of the map. For example, if rising sea levels reduce amenity values near the
edges of the island then central regions will tend to see both higher MA growth and higher
residuals, biasing OLS estimates of β upward.

The second insight of this paper is that this identification challenge has an intuitive
but non-standard solution, based on the same knowledge of the shock assignment process
that generated Panel B of Figure 1. In this experimental setting, one can simulate MA
growth across counterfactual draws of the RCT to compute the expected MA growth µ` of
each region `. One can then construct a recentered measure, z̃` = ∆ logMA` − µ`, which
subtracts each region’s expected MA growth from its observed MA growth. This z̃` is a
component of MA growth that can be used as an instrument in equation (1).11 Intuitively,

11Standard models of economic geography used to derive the MA statistic imply a constant elasticity β.
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observations only get high vs. low values of z̃` because of the realization of observed vs.
counterfactual shocks, which is by chance. In the example of Figure 1, observed MA growth
is no longer concentrated in the center of the map after recentering by µ` (see Panel C). The
same as-good-as-random variation can be leveraged by controlling for µ` in OLS estimation.

Simulating the road experiment and computing µ` can be seen as a systematic way
to pick the appropriate function of geography that purges bias from non-random exposure.
This function is not captured by conventional regression controls except in very special cases,
such as in Figure 1 where µ` simply measures geographic centrality. In general, µ` depends
intricately on the country’s economic geography and the road assignment process; Appendix
Figures A1 and A2 illustrate the potentially complex nature of µ` by considering non-
uniform regional populations and road construction probabilities, respectively. Controlling
for geography perfectly in such settings is of course not possible, as this would remove all
variation in market access growth.

The third insight of this paper is that problems with statistical inference on β can also
be overcome by simulating counterfactual transportation upgrades. The recentered MA
instrument is inherently correlated across regions because of their common exposure to
the experimental shocks. Such spatial dependence may generate challenges for the conven-
tional Conley (1999) asymptotic approach to inference, which specifies a geographic distance
threshold after which observations of z̃`ε` are uncorrelated. For the asymptotic approxima-
tion to hold this threshold should be sufficiently small, which may be implausible with all
regions exposed to all potential roads.12 We show in the next section how classical methods
of randomization inference (RI) can be applied to address such “exposure clustering.”

In most settings, of course, transportation upgrades are not drawn randomly on a map
with a known assignment process. In the next section we discuss how shock assignment
processes may generally be specified, simulated, and validated in observational data where
the exogeneity of shocks is ex ante plausible. In Section 4.1 we apply this approach to a
specific MA setting and relate it to existing approaches to estimating transportation effects,
with or without exogenous upgrades.

3 Identification, Inference, and Asymptotic Efficiency

We now develop a general econometric framework for settings with non-random exposure to
exogenous shocks. We introduce the baseline setting, develop our approach to identification

In such cases it does not matter which component of variation is used to estimate β as long as there is no
OVB. We show below that the recentering strategy more generally identifies an intuitive convex average of
causal effects when they are thought to vary across regions.

12Random upgrades to long roads, for example, will tend to cause regions which are far apart in space to
“cluster” by their common MA growth. If the unobserved shocks in ε` also tend to propagate widely then
z̃`ε` will tend to be correlated across long distances, invalidating spatially clustered standard errors.
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based on counterfactual shocks, and discuss how such counterfactuals can be specified in
Sections 3.1–3.3. We then show how shock counterfactuals can be used for finite-sample
inference, characterize asymptotically most efficient recentered instruments, and summarize
several extensions in Sections 3.4–3.6.

3.1 Setting

We suppose an outcome y` and treatment x` are observed for units ` = 1, . . . , L. Of interest
is a causal effect or structural parameter β, relating treatment to outcomes by

y` = βx` + ε`, (2)

where ε` denotes an unobserved residual. Initially we assume y` and x` are scalar and de-
meaned, and that the outcome model is linear with constant effects. We discuss extensions
to heterogeneous causal effects, additional control variables, multiple treatments, and non-
linear models in Section 3.6. Although we use a single index for observations, we note our
framework accommodates repeated cross-sections and panel data where it is also relevant.

Importantly for the generality of our framework, we do not assume that the observations
of (y`, x`) are independently or identically distributed (iid) as when arising from random
sampling. This allows for complex dependencies across ` due to the common exposure to
observed and unobserved shocks. The lack of random sampling is also consistent with set-
tings where the L units represent a population—for example, all regions of a country—and
conventional asymptotic frameworks are inappropriate (Abadie et al. 2020).

We suppose that to estimate β a researcher has constructed a candidate instrument z`
which incorporates variation from exogenous shocks, summarized by an N × 1 observed
vector g. However the instrument also incorporates additional predetermined variables
which govern a unit’s exposure to the shocks. Collecting these additional observables in the
set w, we write the instrument as

z` = f`(g;w), (3)

where {f` (·)}L`=1 is a set of known non-stochastic functions. In the previous motivating
example, g contained information on transportation network upgrades and w summarized
regional populations; the f` (·) functions combined g and w to form market access growth for
each region `. As another example, linear shift-share instruments set f`(g;w) =

∑N
n=1w`ngn

where the w`n are non-negative exposure share weights. We note that our framework allows
x` = z`, in which case β is the reduced-form causal effect of the instrument (as in the
motivating example).

Equation (3) is very general, nesting many applied examples (as we discuss in Section 4).
Any instrument that can be computed from a set of observed shocks g and other observed
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variables w can be described in this way.13 Mapping the shocks into the instrument using
some transformation f` (·;w) is generally necessary, for example, when the shocks are defined
at a different “level” than the unit of observation (e.g. industry shocks and regional data)
or when shocks to one observation have spillover effects on others. In some cases, such as
the market access and linear shift-share examples, the instrument specification may follow
from a particular model for the treatment variable. For example, when x` = f̃` (g, w, u) for
a known f̃` (·) and some (possibly unobserved) endogenous shocks u, an instrument may be
specified as the treatment prediction that shuts down these shocks: f` (g, w) = f̃` (g, w, 0).
For now we take the choice of f` (·) as given, addressing the question of which instrument
constructions may be more desirable in Section 3.5.

Partitioning the determinants of z` into a set of shocks g and other variables w allows
us to formalize the notion that some but not all sources of variation in the instrument are
exogenous. In an RCT the exogeneity of shocks can naturally arise from the experimental
intervention. With observational data, a researcher may appeal to an experimental ideal
in which the shocks in g are as-good-as-randomly assigned given predetermined variables
in w, which are not exogenous. For example, in shift-share designs it may be plausible
that the industry-level shocks in g arise from a natural experiment but that local industrial
composition w is endogenous (Borusyak et al. 2021).

We formalize shock exogeneity by the conditional independence of g from the residual
vector ε = {ε`} L`=1, given the other sources of instrument variation:

Assumption 1. (Shock exogeneity): g ⊥⊥ ε | w

This notion of shock exogeneity combines two conceptually distinct conditions. First, it
imposes an exclusion restriction: that the realization of shocks only affects the outcome of
each unit via its treatment x` and not through ε`. This condition may be violated when
the structural equation (2) is misspecified; for example, when market access inadequately
captures the local economic effects of new transportation.14 Second, Assumption 1 requires
the as-good-as-random assignment of shocks with respect to the unobserved outcome de-
terminants ε. This condition is satisfied when the shocks are fully randomly assigned, as in
an RCT: i.e., g ⊥⊥ (ε, w). More generally, Assumption 1 allows w to contain variables that
govern the shock assignment process. We discuss how such conditioning is useful for specify-
ing shock counterfactuals in Section 3.3. The exclusion and as-good-as-random assignment
assumptions are isolated in Appendix C.1, via a general potential outcomes model.

13Note that equation (3) does not contain a residual: it formalizes an algorithm for computing an instru-
ment rather than characterizing an economic relationship.

14The shock exclusion restriction may follow from a particular economic model, as in Donaldson and
Hornbeck (2016), or be relaxed by including multiple treatments in x` (e.g. allowing for both direct and
spillover effects of the same shocks, as in Miguel and Kremer (2004)).
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We consider identification of β from an instrumental variable (IV) regression of y` on x`,
with z` as an instrument (with OLS obtained as a special case when x` = z`). Identification
follows when z` is relevant to the treatment and orthogonal to the structural residual. In
our non-iid setting, we formalize these conditions as E

[
1
L

∑
` z`x`

]
6= 0 and

E
[

1
L

∑
`

z`ε`

]
= E

[
1
L

∑
`

z`y`

]
− β · E

[
1
L

∑
`

z`x`

]
= 0, (4)

which together imply that β is uniquely recoverable from the observable moments E
[

1
L

∑
` z`y`

]
and E

[
1
L

∑
` z`x`

]
. Here it is worth highlighting that full-data instrument orthogonality (4)

combines two dimensions of variation: over the stochastic realizations of g, w, and ε, and
across the cross-section of observations ` = 1, . . . , L. In the iid case it reduces to the more
familiar condition E [z`ε`] = 0.

While our primary focus is on identification and finite-sample inference, some of our
results consider the asymptotic properties of the IV estimator:

β̂ =
1
L

∑
` z`y`

1
L

∑
` z`x`

, (5)

which is the solution to the sample analog of (4). We establish asymptotic properties by
considering a sequence of data-generating processes, indexed by L, for the complete data
(y, x, g, w). Consistency, for example, is defined as β̂ p−→ β as L → ∞, while asymptotic
efficiency considers large-L approximations to the variance of β̂. We emphasize that this
asymptotic sequence should be viewed as a way to approximate the finite-sample distribution
of the IV estimators, rather than as a description of the sampling process for the data.15

3.2 Identification and Instrument Recentering

Our first result formalizes the omitted variable bias problem: exogeneity of the shocks
underlying z` is not generally enough for identification of β, even when they are fully
randomly assigned. We then derive a simple but non-standard recentering of z` that purges
OVB in this setting. We conclude this subsection with results on recentered IV consistency.

Identification under Assumption 1 fails when predetermined exposure to the natural
experiment is endogenous. While this exposure variation is potentially high-dimensional,
our first result shows that OVB is governed by a particular one-dimensional confounder:
the expected instrument, µ`.

15This is similar to how Bekker (1994) studies IV regressions with many instruments. As he writes,
“the [asymptotic] sequence is designed to make the asymptotic distribution fit the finite sample distribution
better. It is completely irrelevant whether or not further sampling will lead to samples conforming to this
sequence” (p. 658).
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Lemma 1. Under Assumption 1,

E
[

1
L

∑
`

z`ε`

]
= E

[
1
L

∑
`

µ`ε`

]
, (6)

where µ` = E [f`(g;w) | w]. Thus β is not identified by the instrument z` when µ` is en-
dogenous, in the sense of E

[
1
L

∑
` µ`ε`

]
6= 0.

Proof. E
[

1
L

∑
` z`ε`

]
= E

[
1
L

∑
` E [f`(g;w)ε` | w]

]
= E

[
1
L

∑
` µ`E [ε` | w]

]
= E

[
1
L

∑
` µ`ε`

]
.

The first and third equality follow from the law of iterated expectations, while the second
equality follows by Assumption 1 and the definition of µ`.

The expected instrument is defined as the average value of z` across different realizations of
the shocks conditional on w. Lemma 1 shows that the exogeneity of shocks makes z` a valid
instrument if and only if this µ` is orthogonal to the residual ε`. Absent further assumptions,
adjustment for µ` is thus generally necessary to remove OVB. Note that adjustment is
generally necessary even if the shocks are unconditionally as-good-as-randomly assigned,
i.e. when g ⊥⊥ (ε, w) in Assumption 1.

When shock exposure is endogenous but Assumption 1 holds, Lemma 1 suggests a
simple but non-standard recentering of z` that identifies β. In fact, a weaker notion of
shock exogeneity suffices.

Assumption 2. (Weak shock exogeneity):
(i) E [ε` | g, w] = E [ε` | w] almost surely for each `.
(ii) E [ε`εm | g, w] = E [ε`εm | w] almost surely for each ` and m.

Such mean and covariance independence of the residuals from the shocks is implied by
Assumption 1 and will also be sufficient for some of our later asymptotic results. Here we
use the first condition to show that β is identified by a recentered instrument z̃`, given a
non-zero first-stage:

Proposition 1. Suppose Assumption 2(i) holds and let z̃` = z` − µ`. Then

E
[

1
L

∑
`

z̃`ε`

]
= 0, (7)

such that β is identified by the instrument z̃` provided E
[

1
L

∑
` z̃`x`

]
6= 0.

Proof. See Appendix B.1.

A recentered IV regression compares units with a higher-than-expected value of z`, because
of the realization of the shocks, to units affected less than expected. The validity of z̃` thus
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stems from the exogeneity of shocks (specifically, Assumption 2(i)), even though it continues
to vary cross-sectionally due to heterogeneous shock exposure. First-stage relevance holds
when the units with higher-than-expected values of z` have systematically different values
of the treatment x`.16

A closely related regression-based solution to OVB is also implied by Lemma 1: includ-
ing the expected instrument µ` as a control while using the original z` as an instrument.
Controlling for µi can be thought of as recentering zi while also removing the residual vari-
ation in yi which is cross-sectionally correlated with µi. Formally, this regression yields the
reduced-form and first-stage moments E

[
1
L

∑
` z`y

⊥
`

]
and E

[
1
L

∑
` z`x

⊥
`

]
, where v⊥` denotes

the residuals from a cross-sectional projection of v` on µ`. Appendix B.1 shows that these
moments also identify β under Assumption 2(i). This result clarifies the role of conven-
tional controls and fixed effects in purging OVB under our assumptions: shock exogeneity
is sufficient to identify β without recentering z` or restricting unobservables only when the
included controls absorb µ`.17 As usual, removing this residual variation may generate
precision gains in large samples; similar gains may arise from including (a fixed number of)
any predetermined controls in a recentered IV regression.18

Given identification of β, one may be interested in consistency of the recentered IV
estimator which instruments x` with z̃`. Establishing consistency with our general asymp-
totic sequence is non-trivial, as we cannot rely on conventional sampling-based arguments
for iid data. Instead, Proposition S2 in Appendix C.2 shows how consistency is achieved
given an asymptotic first stage and weak mutual cross-sectional dependence of z̃`. In line
with our general approach, we make no restriction on the mutual dependence of residuals,
imposing only a weak regularity condition on ε`. The substantive assumption on z̃` requires
the recentered instrument construction to well-differentiate observations by their exposure
to the exogenous shocks, yielding a law of large numbers that brings β̂ close to β for large
L. Lower-level conditions sufficient for this assumption are also given in Appendix C.2.

16Whenever the shocks induce some variation in treatment, there exist f` (·) constructions such that the
corresponding recentered instrument satisfies the relevance condition. Formally, when Var [E [x` | g, w] | w]
is not almost-surely zero at least for some `, the recentered instrument constructed as z̃` = E [x` | g, w] −
E [x` | w] is relevant.

17In panel data with z`t = f`t(gt, wt), for example, unit fixed effects generally purge OVB only when the
expected instrument is time-invariant, which generally requires the f`t(·) mapping, the value of wt, and the
distribution of gt to be time-invariant. While plausible in some applications, these conditions (in particular,
stationarity of the shock distribution) are quite restrictive. For instance, when roads tend to be built more
than destroyed expected market access will tend to grow over time.

18Appendix C.9 shows that controlling for µ` always reduces asymptotic variance of the estimator when
z` | w is homoskedastic, while also giving a counterexample under heteroskedasticity. See Appendix C.6 for
our framework extended to predetermined controls.
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3.3 Specifying Shock Counterfactuals

Our solution to the OVB challenge involves measuring the expected instrument, which
typically requires specifying counterfactual shocks that may well have occurred. Here we
formalize this specification of counterfactual shocks and discuss general ways in which it
may be accomplished. In Section 4 we discuss and illustrate specific approaches in the
context of various applied settings.

Formally, we denote the shock assignment process by the conditional distribution of
g | w, which we write as G (g | w). When G (·) is known, the expected instrument µ` =∫
f`(γ;w)dG(γ | w) can be computed and used to purge OVB. To emphasize such knowledge,

we state it as an assumption:

Assumption 3. (Known assignment process): G (g | w) is known in the support of w.

Specification of G(·) is most straightforward when the shocks are actually determined by
a known randomization protocol, as in an RCT. Literal randomization of g given w implies
both the exogeneity of shocks (i.e. Assumption 1, given shock exclusion) and Assumption
3. Policy discontinuities (as in regression discontinuity designs) also fit in this case, when
viewed as generating a local RCT around the cutoffs (Lee 2008; Cattaneo et al. 2015).19

When randomization of shocks occurs naturally, scientific or institutional knowledge
may yield G(·). For instance, when the locations of earthquake disruptions are viewed as
exogenous shocks (e.g. Volpe Martincus and Blyde (2013) and Carvalho et al. (2021)), the
probability distribution of counterfactual locations can be given by geological knowledge.
Similarly, appropriate historical weather data may serve as counterfactuals for observed
weather shocks (see Appendix D.8).

In observational data, specifying G(g | w) makes explicit the features of shocks which are
considered as-good-as-random (e.g. the placement vs. timing of transportation upgrades)
and the corresponding experimental contrasts. For instance, the researcher may be willing
to specify permutations of the g vector that were as likely to have occurred. To see how
this satisfies Assumption 3, suppose that all permutations of g are equally likely to arise, as
when the shocks gn are iid across n. In this case G(g | w) is known to be uniform when w
is augmented by the permutation class Π(g) = {π(g) | π (·) ∈ ΠN}, where ΠN denotes the
set of permutation operators π(·) on vectors of length N (e.g. Lehmann and Romano 2006,
p. 634). The marginal distribution of gn (conditionally on other components of w) then
need not be specified; the expected instrument is the average z` across all permutations of

19Assumption 3 requires specification of G(· | w) for all possible w. However, it is without loss to view w
as a fixed object (i.e. part of {f` (·)}L`=1), in which case this is not restrictive. We allow w to be stochastic
only for full generality and to make non-random exposure more explicit. With w viewed as stochastic, the
support condition of Assumption 3 is still not restrictive when g arise from an RCT or satisfy conditional
exchangeability, as discussed below.
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shocks, which serve as counterfactuals:

µ` = 1
N !

∑
π(·)∈ΠN

f`(π(g);w). (8)

Such µ` are easy to compute (or approximate with a random set of permutations, when N
is large).20 This scenario highlights the potentially dual role of w: as a means of satisfying
exogeneity (Assumption 1) and as a way to simplify the specification of shock counterfactuals
(Assumption 3).

Similar expected instrument calculations follow under weaker shock exchangeability con-
ditions. When the gn are iid within, but not across, a set of known clusters, Assumption
3 is satisfied when the class of within-cluster permutations is conditioned on and used to
draw counterfactuals. Other symmetries in the joint shock distribution can also be used to
construct valid counterfactuals, as we illustrate in a shift-share setting in Appendix D.4.

We emphasize that expected instrument adjustment generally requires some outside
knowledge of G (g | w), since µ` is typically not non-parametrically identified with non-iid
data.21 Nevertheless, as discussed below, our framework can apply with G (g | w) specified
up to a low-dimensional vector of unknown parameters—allowing, for example, parameter-
ized heteroskedasticity of otherwise exchangeable shocks. We further note that in observa-
tional data it is imperative to corroborate an ex ante argument for Assumptions 1 and 3 by
empirical tests. The next section shows that these assumptions yield testable implications
and a natural testing procedure. Finally, we note that even incorrect specification of the
shock assignment process may be useful as a robustness check: if Assumption 1 holds and
there is already no OVB because the included controls perfectly capture either the endoge-
nous features of exposure or the expected instrument, then controlling for any misspecified
expected instrument m`(w) cannot change the estimand.22

3.4 Randomization Inference and Testing

Specification of the shock assignment process can be used to construct valid statistical
tests and confidence intervals for β, following a long tradition of randomization inference

20Approximating µ` is sufficient for identification because the recentered IV still identifies β in this case:
i.e. E

[
1
L

∑
`

(f`(g, w)− f`(π(g), w)) ε`
]

= 0 under Assumption 2(i), for any fixed or randomly drawn π (·).
21This is in contrast to conventional propensity score calculations with iid data. To see the difference,

suppose z` = f(g, w`), where f(·) is common across ` and w` is observation-specific, low-dimensional, and
iid. Then there is no need to specify G (g | w) explicitly: µ` = µ̃ (w`) is a common function of w` which
can be flexibly estimated from observations of (z`, w`). This scenario, however, does not fit the majority of
interesting cases of our setup.

22Formally, suppose either E [ž` | w] = 0 or E [ε̌` | w] = 0 for each `, where v̌` denotes the cross-sectional
residualization of variable v` on some functions of w used as controls. Then E

[
1
L

∑
`
ž⊥` ε̌

⊥
`

]
= 0, where here

v⊥` denotes the residuals from a cross-sectional projection of v` on m`(w).
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(Fisher 1935). Under constant effects the RI approach guarantees correct coverage in finite
samples, of both observations and shocks, even when the observations exhibit complex
dependencies.23 We focus on a particular type of RI tests which is tightly linked to the
recentered IV estimator and which is expected to have favorable large-sample power. We
then discuss how RI can be used to validate Assumptions 1 and 3, through exact falsification
and specification tests.

In general, RI tests and confidence intervals for β are based on a scalar test statistic
T = T (g, y − bx, w), where b is a candidate parameter value. Under the null hypothesis
of β = b and Assumption 1, the distribution of T = T (g, ε, w) conditional on ε and w is
implied by the shock assignment process G(g | w). One may simulate this distribution,
by redrawing (e.g., permuting) the shocks in g and recomputing T . If the original value
of T is far in the tails of the simulated distribution, one has grounds to reject the null
that β = b. Appendix C.3 formalizes this logic and explains how inversion of such tests
yields confidence interval for β by collecting all b that are not rejected. These intervals have
correct size, both conditionally on (ε, w) and unconditionally. Valid RI confidence intervals
can be obtained for any test statistic, although the the choice of T generally affects the
power against alternative hypotheses.24

We address the practical issue of choosing a powerful randomization test statistic, and
draw a tight link between T and the recentered IV estimator β̂, by building on the theory of
Hodges and Lehmann (1963). Specifically, we consider a T (g, y − bx, w) which β̂ rationalizes
as being typical under the null, in the following sense:

Lemma 2. Let T = T (g, y − bx, w) and T ∗ = T (g∗, y − bx, w), where g∗ is distributed
according to G (· | w), independently of (g, x, y), conditionally of w. Define the Hodges-
Lehmann estimator as the b ∈ R that solve T = E [T ∗ | y, x, w]. Then the recentered IV esti-
mator is the Hodges-Lehmann estimator associated with T = 1

L

∑
` (f`(g, w)− µ`) (y` − bx`).

Proof. See Appendix B.2.

This result shows that the recentered IV estimator of β equates the sample covariance
between the recentered instrument z̃` and implied residual y` − bx` with the expectation
of its randomization distribution (specifically, zero), satisfying our definition of a Hodges-
Lehmann estimator.25 Notably, the same randomization tests, confidence intervals, and
Hodges-Lehmann estimators are obtained from the statistic based on the non-recentered

23Valid inference with heterogeneous effects and interdependent data is a difficult challenge, even in a
more standard asymptotic approach (Adão et al. 2019).

24There are no general results on the relative power of different RI statistics, But good power properties
have been established in some special contexts (Lehmann and Romano 2006, Section 15.2.2).

25This definition follows Rosenbaum (2002) and Imbens and Rosenbaum (2005). The original definition
in Hodges and Lehmann (1963) is the value of β that maximizes the p-value of the randomization test. For
two-sided confidence interval this means equating T to its median, rather than its mean.
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instrument, 1
L

∑
` f`(g, w) (y` − bx`).26 In this sense, the RI approach performs the recen-

tering needed for identification of β automatically.
Statistics chosen on the basis of Hodges-Lehmann estimators can inherit their power

properties. While we are not aware of existing general results, Proposition S2 in Appendix
C.2 shows that randomization tests of Lemma 2 are generally consistent, in the sense of
having power that asymptotically increases to one for any fixed alternative, under the
conditions which make the recentered IV estimator consistent. This asymptotic result
reinforces the tight connection between T and β̂.27 We note, however, that as in other
settings (e.g. Abadie et al. 2010; Mackinnon and Webb 2020) the finite-sample validity of
RI may be most useful when the conditions for consistency are not met, such as when there
are few shocks with concentrated exposure. We discuss an example of such a setting in
Appendix D.3 and illustrate good power of RI for shift-share instruments with few shocks
in Appendix D.4.

Randomization inference can also be used to perform falsification tests on our key As-
sumptions 1 and 3. Recentering implies a testable prediction that z̃` is orthogonal to any
variable r` satisfying g ⊥⊥ r | w, which holds for r = {r`}L`=1 that are either functions of
w or some other observables thought to be determined prior to (or independent of) the
shocks g. To test this restriction, one may check that the sample covariance 1

L

∑
` z̃`r` is

sufficiently close to zero by re-randomizing shocks and checking that T is not in the tails of
its conditional-on-(w, r) distribution. Multiple falsification tests, based on a vector of pre-
determined variables R`, can be combined by an appropriate RI procedure, e.g. by taking
T to be the sample sum of squared fitted values from regressing z̃` on R`.28

Falsification tests are useful in two ways. First, when r` is a lagged outcome or another
variable thought to proxy for ε`, they provide an RI implementation of conventional placebo
and covariate balance tests of Assumption 1. While the use of RI for inference on causal
effects may be complicated by treatment effect heterogeneity, the sharp hypothesis of zero
placebo effects is a natural null. Second, RI tests will generally have power to reject false
specifications of the shock assignment process, i.e. violations of Assumption 3, even when r`
does not proxy for ε`. For r` = 1, for example (which is trivially conditionally independent
of g), the test verifies that the sample mean of z` is typical for the realizations of the specified
assignment process. Setting r` = µ` instead checks that the recentered instrument is not

26This follows because recentering shifts both T and T ∗ by the same value, 1
L

∑
`
µ` (y` − bx`), which does

not depend on g. Appendix B.2 further shows that the µ`-controlled IV estimator is the Hodges-Lehmann
estimator corresponding to the residualized covariance statistic 1

L

∑
`
z`
(
y⊥` − bx⊥`

)
.

27One might instead consider computing confidence intervals from the distribution of the recentered estima-
tor itself with re-randomized shocks g∗. This idea fails in IV since the re-randomized instrument f`(g∗, w)−µ`
has a true first-stage of zero. The distribution of reduced-form coefficients across re-randomized shocks is
also not useful, except for testing β = 0, as that distribution is centered around zero rather than β.

28Formally, this T = z̃′R (R′R)−1
R′z̃ can be seen as a quadratic form of the vector-valued statistic

1
L

∑
`
z̃`R`, weighted by (R′R)−1, where R is the matrix collecting R` and z̃ is the vector collecting z̃`.
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correlated with the expected instrument that it is supposed to remove.

3.5 Asymptotic Efficiency

While any instrument f` (g, w) can be made valid by appropriate recentering and used for
valid randomization inference, the choice of instrument construction from the set of possible
{f` (·)}L`=1 will generally matter for power. Proposition 2 in Appendix B.3 shows that the
following instrument minimizes the asymptotic variance of recentered IV, under appropriate
regularity conditions:

z∗ = E
[
εε′ | w

]−1 (E [x | g, w]− E [x | w]) . (9)

This characterization extends the classic result of Chamberlain (1987) to our setting in
showing how exogenous shocks can be efficiently leveraged. Appendix C.4 further establishes
that this z∗ maximizes the local power of RI-based tests.

Constructing such optimal instruments may not be feasible in practice, and typically
requires an economic model for both the dependence of treatment on shocks and the endo-
geneity of exposure: E [x | g, w]] and E [εε′ | w], respectively. Our characterization neverthe-
less provides guidance for constructing recentered instruments, by showing what researchers
may strive for when choosing between alternative IV estimators.

To build intuition for the optimal instrument, we establish the following Lemma:

Lemma 3. Let z̃ = E [x | g, w]−E [x | w], ψ = E [ε | w], and Ω = Var [ε | w]. Then z∗ from
(9) satisfies

z∗ = Ω−1 (z̃ − νρψ) , (10)

where ρψ = ψ′Ω−1z̃
ψ′Ω−1ψψ is the Ω−1-weighted projection of z̃ on ψ and ν = ψ′Ω−1ψ

1+ψ′Ω−1ψ .

Proof. See Appendix B.3.

Equation (10) permits an intuitive four-step description of the optimal instrument. First,
one takes the best predictor of treatment given by the shocks and predetermined variables,
E [x | g, w]. Second, one recenters this predictor by E [x | w] to remove the potential OVB
from non-random shock exposure, obtaining z̃. Third, one partially residualizes the recen-
tered instrument on the predictable component of the residual, ψ.29 Finally, one adjusts

29This residualization is partial (i.e. ν ∈ [0, 1)) for the same reason as why, in the conventional panel data
context, the random effects estimator demeans the data within each unit only partially (e.g. Wooldridge
2002, p. 286). As with unit-specific means in the panel setting, ψ` is orthogonal to z̃` in expectation and
so provides an additional moment for identifying β. We also note that if ψ is completely known, a more
efficient but less robust instrument than (9) is available, which replaces y with y − ψ and ε with ε − ψ
(without adjusting x) and uses the original z. Since E [ε− ψ | w] = 0, instrument recentering that isolates
variation in g but reduces power is unnecessary. However, this efficiency gain is obtained at the cost of losing
robustness to misspecification of the residual model.
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for the residual variance Ω, as in generalized least squares. While steps 1 and 4 follow the
optimal instrument construction in Chamberlain (1987), steps 2 and 3 are new, stemming
from the potential endogeneity of w.

Predicting treatment from shocks and exposure (step 1) is trivial when x` is a function
of (g, w), since then E [x` | g, w] = x`. Otherwise, powerful z` may be given by an economic
model for treatment.30 Specifically, when x` = f̃` (g, w, u) for a known f̃` (·) and a set of
unobserved shocks u, a reasonable stand-in for E [x` | g, w] may be obtained by f̃` (g, w, 0);
that is, a treatment prediction which shuts down the role of unobserved shocks. This
approach has been taken, for example, by Bartelme (2018) in the market access setting
(see also Berry et al. (1999) for the same idea in an entirely different context). Instrument
recentering is then generally necessary to isolate exogenous variation in shocks (step 2).

The third and fourth steps in Lemma 3 may be more difficult to implement as they
require models of unobservables rather than the observed treatment. Practically, Step 3
calls to control for predetermined variables which may be correlated with the residual, as
including these controls may approximate the projection of z̃ on ψ. By the logic of Propo-
sition 1 such controls are orthogonal to z̃ in expectation and will not weaken the first stage,
but their inclusion will generally improve efficiency by reducing residual variance. Step 4 is
a more standard correction for heteroskedasticity and mutual correlation of residuals. We
expect that performing the more feasible steps 1 and 2 alone will typically improve power,
although there is no guarantee (see Appendix A.4 for a counterexample discussed in the
context of the application in Section 4.2).

3.6 Extensions

Appendices C.1 and C.5–C.8 extend our basic identification and inference results in several
ways. Appendix C.1 first shows that in presence of treatment effect heterogeneity the
recentered IV estimator captures a convexly weighted average of causal effects under an
appropriate monotonicity condition, extending the classic result of Imbens and Angrist
(1994) to this general setting. For example, in reduced-form models of the form y` =
β`z` + ε` the heterogeneous effects β` are weighted by the conditional variance of z̃` |
w across counterfactual shocks. This appendix further shows how a particular rescaling
of the recentered instrument—with a factor given by the shock assignment process—can
identify local average treatment effects in the traditional setting of a binary treatment and
instrument, and how the approach of Hirano and Imbens (2004) can also be adapted.31

30Obtaining E [x` | g, w] without a treatment model is challenging in our general non-iid setup, in contrast
to other settings where the first stage can be non-parametrically estimated (e.g. Newey (1990)).

31We note that this heterogeneous effects extension applies to our results on identification but not to
RI (which generally requires constant effects) or efficiency (since the choice of the instrument affects the
estimand).
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Appendix C.5 shows how recentered IVs can be constructed, and RI applied, when the
shock assignment process is only partially specified. We allow for a vector of unknown
parameters of G(·) which may govern, for example, how shocks vary systematically with
observables and can be consistently estimated. Appendix C.6 shows how predetermined ob-
servables can be included as regression controls to reduce residual variation and potentially
increase power. Appendix C.7 discusses identification and inference with multiple treat-
ments or instruments. Finally, Appendix C.8 extends the framework to nonlinear outcome
models.

4 Practical Implications and Applications

We now present two empirical applications showing how our theoretic framework can be used
to avoid OVB and improve efficiency in practice. Specifically, we estimate the market access
effects of Chinese high-speed rail and the insurance coverage effects of Medicaid expansions.
In both applications we contrast recentered IV estimation with existing approaches. We
conclude this section by summarizing practical implications for other empirical settings.

4.1 Effects of Transportation Infrastructure

We first apply our framework to estimate the effect of market access growth on Chinese
regional employment growth over 2007–2016, leveraging the recent construction of high-
speed rail (HSR). We show how counterfactual HSR shocks can be specified, and how
correcting for expected market access growth can help purge OVB. We then discuss how
our approach to estimating transportation infrastructure effects relates to existing methods.

The recent construction of Chinese HSR has produced a network longer than in all
other countries combined (Lawrence et al. 2019). The network mostly consists of dedicated
passenger lines and has developed rapidly since 2007. Construction was started by the
Medium- and Long-Term Railway Plan in 2004; this plan was later expanded in 2008, as
part of the stimulus package during the financial crisis, and again in 2016. Construction ob-
jectives included freeing up capacity on the low-speed rail network and supporting economic
development by improving regional connectivity (Lawrence et al. 2019; Ma 2011). While
affordable fares make HSR popular for different purposes, business travel is an important
component of rail traffic, ranging between 28% and 62%, depending on the line (Ollivier
et al. 2014; Lawrence et al. 2019). The role of HSR may also extend beyond directly con-
nected regions, as passengers frequently transfer between HSR and traditional lines (and
between intersecting HSR lines). An early analysis by Zheng and Kahn (2013) finds positive
effects of HSR on housing prices, while Lin (2017) similarly finds positive effects on regional
employment.

21



We analyze HSR-induced market access effects for 340 sub-province-level administrative
divisions in mainland China. We follow Potlogea and Cheng (2017) in referring to these units
as prefectures: although most are officially called “prefecture-level cities,” they typically
include multiple urban areas. We measure market access in 2007 and 2016 by combining
data on the development of the HSR network and each prefecture’s location and population
(as measured in the 2000 census). A total of 83 HSR lines opened between these years,
with the first in 2008; a further 66 lines (which we refer to as “planned”) were completed
or under construction as of April 2019.32 We compute a simple market access measure in
each prefecture ` and year t based on the formula in Zheng and Kahn (2013): MA`t =∑
k exp (−0.02τ`kt) ·Pk,2000. The summation is over all prefectures (including k = `), Pk,2000

denotes the predetermined population of prefecture k, and τ`kt denotes predicted travel
time between regions ` and k in year t (in minutes). Travel time predictions are based on
the operational speed of each HSR line as well as geographic distance, which proxies for
the travel time by car or a low-speed train. We relate MA growth, z` = logMA`,2016 −
logMA`,2007, to the corresponding growth in prefecture’s urban employment y` from the
Chinese City Statistical Yearbooks. This yields a set of 275 prefectures with non-missing
outcome data; see Appendix A.1 for details on the sample construction and market access
measure. Panel A of Figure 2 shows the Chinese HSR network as of the end of 2016, along
with the implied growth of market access relative to 2007.

Column 1 of Table 1, Panel A, reports the coefficient from a simple regression of em-
ployment growth on MA growth; Appendix Figure A3 visualizes this relationship.33 The
estimated elasticity of 0.23 is large. Given an average MA growth of 0.54 log points, it im-
plies a 12.4% employment growth attributable to the HSR for an average prefecture—almost
half of the 26.6% average employment growth over this period. The estimate is also highly
statistically significant using the spatially-clustered standard errors of Conley (1999), echo-
ing the findings of Lin (2017) (while not being directly comparable due to our use of later
years and a different specification).

Panel A of Figure 2, however, gives immediate reason for caution against interpreting
the OLS coefficient as causal. Prefectures with high MA growth, which serve as the effective
treatment group, tend to be clustered in the main economic areas in the southeast of the
country where HSR lines are concentrated. Areas near major cities, such as Shanghai and

32We define a line by a contiguous set of inter-prefecture HSR links that were proposed together and
opened simultaneously. One experimental HSR line between Qinhuangdao and Shenyang opened in 2003.
We include it in our market access measure but focus on the majority of HSR-induced changes in the network
over 2007–2016.

33This regression can be viewed as a reduced form of a hypothetical IV regression, in which the treatment
variable is a measure of market access that accounts for changing population. We focus on the reduced form
here because of data constraints: we observe annual population for all 340 prefectures only in the Census
year of 2000. We discuss the potential roles of controls below.
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Figure 2: Chinese High Speed Rail and Market Access Growth, 2007-2016

A. Completed Lines and Market Access Growth

B. All Completed and Planned Lines

Notes: Panel A shows the completed China high-speed rail network by the end of 2016,
with shading indicating MA growth relative to 2007. Panel B shows the network of all HSR
lines, including those planned but not yet completed as of 2016 (in red).
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Table 1: Employment Effects of Market Access: Unadjusted and Recentered Estimates

Unadjusted Recentered Controlled
OLS IV OLS
(1) (2) (3)

Panel A. No Controls
Market Access Growth 0.231 0.081 0.067

(0.075) (0.098) (0.094)
[-0.280, 0.330] [-0.187, 0.339]

Expected Market Access Growth 0.319
(0.095)

Panel B. With Geography Controls
Market Access Growth 0.133 0.053 0.043

(0.064) (0.089) (0.092)
{0.089} {0.509} {0.569}

[-0.132, 0.281] [-0.154, 0.284]
Expected Market Access Growth 0.216

(0.072)
Recentered No Yes Yes
Prefectures 275 275 275

Notes: This table reports coefficients from regressions of employment growth on MA growth
in Chinese prefectures from 2007–2016. MA growth is unadjusted in Column 1. In Column
2 this treatment is instrumented by MA growth recentered by permuting the opening status
of built and planned HSR lines with the same number of cross-prefecture links. Column
3 instead estimates an OLS regression with recentered MA growth as treatment and con-
trolling for expected MA growth given by the same HSR counterfactuals. The regressions
in Panel B control for distance to Beijing, latitude, and longitude. Standard errors which
allow for linearly decaying spatial correlation (up to a bandwidth of 500km) are reported
in parentheses. 95% RI confidence intervals based on the HSR counterfactuals are reported
in brackets. In Panel B, the p-values for the equivalence of coefficients with and without
controls are also shown in braces.

Beijing, also tend to see high MA growth as they are connected by the HSR network. A
comparison between these prefectures and the economic periphery may be confounded by
the effects of unobserved policies, both contemporaneous and historical, that differentially
affected the economic center.

We quantify the systematic nature of spatial variation in MA growth in Column 1 of
Table 2, by regressing it on a prefecture’s distance to Beijing, its latitude, and its longitude.
These simple predictors capture over 80% of the variation in MA growth, as measured by
the regression’s R2. The high significance suggests an OVB concern: for causal interpreta-
tion of the Table 1 regression, one would need to assume that all unobserved determinants
of employment growth (such as local productivity shocks) are uncorrelated with such geo-
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Table 2: Regressions of Market Access Growth on Measures of Economic Geography

Unadjusted Recentered

(1) (2) (3) (4)
Distance to Beijing −0.291 0.066 0.087

(0.062) (0.039) (0.045)
Latitude/100 −3.324 −0.324 −0.147

(0.646) (0.274) (0.315)
Longitude/100 1.321 0.455 0.404

(0.458) (0.234) (0.236)
Expected Market Access Growth 0.030 0.059

(0.056) (0.067)
Constant 0.536 0.017 0.017 0.017

(0.029) (0.018) (0.020) (0.018)
Joint RI p-value 0.510 0.715 0.558
R2 0.824 0.077 0.010 0.080
Prefectures 275 275 275 275

Notes: This table reports coefficients from regressing the unadjusted and recentered MA
growth of Chinese prefectures (2007–2016) on predetermined geographic controls. Recen-
tering is done by permuting the opening status of built and planned lines with the same
number of cross-prefecture links. All regressors are measured for the prefecture’s main city
and demeaned such that the constant in each regression captures the average outcome value.
Distance from Beijing is measured in 1,000km. Standard errors which allow for linearly de-
caying spatial correlation (up to a bandwidth of 500km) are reported in parentheses. Joint
RI p-values are based on the 999 HSR counterfactuals and the sum-of-square fitted values
statistic, as described in footnote 28.

graphic features. While one could of course control for the specific geographic variables from
Table 2 (as we explore below), controlling perfectly for prefecture geography is impossible
without removing all variation in z`.

Our solution is to view certain features of the HSR network as realizations of a natural
experiment. By specifying a set of counterfactual HSR networks, which we corroborate
with appropriate falsification tests, we can compute the appropriate function of geography
µ` to remove the systematic variation in MA growth. The recentered regression leverages
contrasts between actual and counterfactual realizations of the HSR assignment process,
and not other cross-sectional variation.

Our specification of counterfactual upgrades exploits the heterogeneous timing of HSR
construction. Specifically we permute the 2016 completion status of the built and planned
lines, assuming that the timing of line completion is conditionally as-good-as-random. Panel
B of Figure 2 compares the built and planned lines which form our counterfactuals. Planned
lines tend to be concentrated in the same areas of China as built lines, reinforcing the
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fact that (unlike in our motivating example in Section 2) construction is not uniformly
distributed in space. Although planned lines are of similar length, they tend to connect more
regions: the average number of cross-prefecture “links” is 3.19 and 2.48 for built and planned
lines, respectively, with a statistically significant difference (p = 0.048). To account for this
difference we construct counterfactual upgrades by permuting 2016 completion status only
among lines with the same number of links. This procedure generates counterfactual HSR
maps that are visually similar to the actual 2016 network (see Appendix Figure A4 for an
illustrative example) and which isolate more plausibly exogenous variation. For example
the main Beijing to Shanghai HSR line, which has the greatest number of links, is always
included in the counterfactuals.

Columns 2–4 of Table 2 validate this specification of the HSR assignment process by
the test described in Section 3.4. Column 2 shows that recentering according to this spec-
ification (based on 999 counterfactual maps) successfully removes systematic geographic
variation in market access. Specifically, it regresses the resulting recentered MA growth
on a constant and the same controls as in Column 1 (distance to Beijing, latitude, and
longitude). The regression coefficients and R2 fall dramatically relative to Column 1, while
a permutation-based p-value for their joint significance (based on the regression’s sum-of-
squares, as suggested in footnote 28) is 0.51. Columns 3 and 4 further show that recentered
MA growth is uncorrelated with the expected instrument. These results are consistent
with correct specification of counterfactuals (i.e. we cannot reject Assumption 3), though
we note they do not provide direct support for the exogeneity of HSR construction to the
unobserved determinants of employment (Assumption 1).34

Figure 3 plots expected and recentered MA growth (µ` and z̃`) given by the permutations
of built and planned lines. The effect of recentering is apparent by contrasting the dark-
and light-shaded regions in Panel A of Figure 2 (indicating high and low MA growth) with
the solid and striped regions in Panel B of Figure 3 (indicating high and low recentered
MA growth). The recentered z̃` no longer places western prefectures in the effective control
group, as their MA growth is as low as expected, and therefore z̃` ≈ 0. Similarly, some
prefectures in the east (such as Tianjin) are no longer in the effective treatment group,
as they saw an expectedly large increase in MA. At the same time, recentering provides a
justification for retaining other regional contrasts. Hohhot, for example, expected higher
MA growth than Harbin due to the planned connection to Beijing. This line was still under
construction in 2016, however, resulting in lower MA growth in Hohhot than Harbin.

34While our specification tests pass for the 2007–2016 long difference, and are robust to using long dif-
ferences ending in 2014 or 2015, we have verified in unreported results that the same assignment process is
rejected in specifications which focus on earlier years of HSR development, when the network is much less
dense and it is more difficult find good experimental contrasts. Focusing on the long difference also alleviates
concerns of dynamic employment adjustments.
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Figure 3: Expected and Recentered Market Access Growth from Chinese HSR

A. Expected Market Access Growth

B. Recentered Market Access Growth

Notes: Panel A shows the variation in expected 2007–16 MA growth across Chinese pre-
fectures, computed from 999 counterfactuals that permute the opening status of built and
planned lines with the same number of cross-prefecture links. Panel B plots the variation
in corresponding recentered MA growth: the difference between the MA growth shown in
Panel A of Figure 2 and expected MA growth. The HSR network as of 2016 is also shown
in this panel.
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Column 2 of Table 1, Panel A, shows that instrumenting MA growth with its recen-
tered measure reduces the estimated employment elasticity substantially, from 0.23 to 0.08.
Controlling for expected MA growth yields a similar corrected estimate of 0.07 in Column
3. Neither of the two adjusted estimates is statistically distinguishable from zero according
to either Conley (1999) spatial-clustered standard errors or permutation-based inference
based on Lemma 2 (which yields a wider confidence interval in this setting). The difference
between the unadjusted and adjusted estimates is explained by the fact that employment
growth is strongly predicted by expected MA growth: in Column 3 we find a large coefficient
on µ`, of 0.32.35 This means employment grew faster in prefectures that were more highly
exposed to new HSR construction, whether or not the nearby lines have been built yet.36

Panel B of Table 1 shows that the geographic controls from Table 2 do not isolate
the same variation as expected MA growth adjustment. Including these controls in the
unadjusted regression of Column 1 yields a smaller but still economically and statistically
significant estimate, of 0.13. In contrast, Columns 2 and 3 show that the finding of no
significant MA effect after adjusting for µ` is robust to including these conventional controls.
The µ` adjustment alone appears sufficient to remove the geographic dependence of MA,
as Table 2 also showed.

Additional robustness checks are given in the appendix. In Appendix Table A1 we first
show that the role of the expected instrument adjustment is virtually unchanged with two
modifications to the market access regression often found in the literature. Specifically, we
use a leave-one-out MA measure (e.g. Donaldson and Hornbeck 2016) and drop influen-
tial prefectures, which we define as province capitals, from the sample (e.g. Chandra and
Thompson 2000). We also find similar results when replacing the MA treatment with a sim-
pler measure of prefecture’s connectivity to the HSR network (e.g. Faber 2014; Donaldson
2018). We further explore sensitivity to adding province fixed effects, which here bring the
unadjusted coefficient on MA growth closer to zero while again confirming the robustness
of the adjusted estimates. In Appendix Table A2, we show that recentering eliminates the
effects on other measurements of employment growth, but not on rail passenger traffic (pro-
viding a useful reality check). In Table A3 we find that the estimates are similar when using
a more restrictive assignment process which matches built and unbuilt lines not only on the
number of regions they connect but also on the quartile of the distance to Beijing (measured

35Appendix Figure A5 visualizes these findings. We use recentered (rather than unadjusted) MA growth
as the treatment in Column 3 of Table 1. This does not change the estimate of β, but makes the coefficient
on the expected instrument more interpretable: the Column 1 estimate is then a weighted average of the
two Column 3 coefficients.

36Appendix Figure A6 shows that the µ`-adjusted estimates capture an average treatment effect corre-
sponding to a diverse and reasonably representative set of regions, alleviating concerns that the difference
relative to Column 1 of Table 1 may be compositional. Specifically, we plot the weights that the recentered
IV implicitly places on each prefecture in the sample if the effects β` are linearly heterogeneous (see Corollary
S1 in Appendix C.1).
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as a minimum across all stops), and permutes lines only within matched groups.37 A more
restrictive class of permutations expectedly results in wider confidence intervals.

While our primary interest is to illustrate the above methodology, we note that there
are several possible explanations for the substantive finding of a small employment effect
of MA after recentering. Unlike other networks used for trading goods, the Chinese HSR
network operates passenger trains. Its scope for directly affecting production is therefore
smaller, although it could still facilitate cross-regional business relationships. In addition,
the employment effects of growing market access could be positive for some regions but
negative for others, as easier commuting between regions relocates employers. We leave
analyses of such mechanisms and heterogeneity for future study.

In Appendix D.1 we discuss how the idea of recentering market access relates to the
literature estimating the effects of transportation infrastructure upgrades on regional and
bilateral outcomes, which remains challenging despite a long history in economics (Redding
and Turner 2015). We first contrast the well-known challenge of strategically chosen trans-
portation upgrades with the less discussed problem that regional exposure to exogenous
upgrades may be unequal. We then explain how common strategies to address the former
issue (e.g. by leveraging historical routes or inconsequential places) can be incorporated in
our framework, at least in principle. At the same time, we highlight that recentering may
still be needed to address the latter issue. We further discuss how some of the existing
approaches naturally yield specifications of counterfactual networks (e.g. the placebos in
Donaldson (2018) and Ahlfeldt and Feddersen (2018)) and summarize the conceptual and
practical advantages of our approach relative to employing more conventional controls. We
finally emphasize that even when a convincing specification of counterfactuals is challeng-
ing to obtain, any specification can yield a useful robustness check on these alternative
identification strategies (see footnote 22).

4.2 Effects of Policy Eligibility

We next show how our framework can be used to construct more efficient instruments when
estimating the effects of policy eligibility, relative to the commonly employed simulated
instrument approach of Currie and Gruber (1996a, 1996b). Validity of our instruments
relies on the same policy exogeneity assumptions, but power is increased by incorporating
predictive endogenous variation in policy exposure and applying appropriate recentering.
We first describe the general approach, drawing on the optimal IV results of Section 3.5.
We then illustrate the power gains in an application estimating the take-up and crowd-out
effects of Medicaid eligibility.

37Table A4 confirms that MA growth recentered in this way is still uncorrelated with predetermined
geographic controls.
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General Approach Suppose that β captures the causal effect of eligibility x` ∈ {0, 1} of
individual ` for a public program (such as Medicaid or unemployment insurance) on some
outcome y` (such as program takeup, health status, or educational attainment). Eligibility
is a function—possibly a complicated one—of regional (e.g. state-level) government policy
and individual characteristics such as income and family structure. We suppose the variation
in state policies can plausibly be viewed as exogenous, while the individual characteristics
are potentially correlated with the residual.

In such settings Currie and Gruber (1996a, 1996b; henceforth CG) propose the use of
simulated instruments to isolate the exogenous policy variation.38 The CG procedure mea-
sures the generosity of each state’s policy as the average eligibility of a simulated nationally
representative sample of individuals, if they were to reside in that state. We write this
generosity as h(gn), indexing states by n = 1, . . . , 50 and denoting policies by gn. Each
individual ` is then assigned the generosity of policy in their state of residence State` as the
instrument, zCG` = h(gState`). Since the CG instrument is a function of state policies only,
it is valid when these policies arise in a natural experiment (as formalized below).39

The Section 3 framework suggests a different and likely more powerful approach, which
leverages the same natural policy experiment. Indeed, eligibility can be written as x` =
f(gState` ; v`), where v` denotes the demographics relevant to the policies (which we assume
are observed by the econometrician and determined prior to the policies) and f(·) is a
known mapping. It can therefore be perfectly predicted from the policies g and observables
(s = {State`} and v = {v`}) and, once recentered, coincides with the inner term of the
optimal instrument in equation (9). To make recentering feasible, we formalize the natural
experiment by assuming exchangeability of the policies gn across states, conditional on (s, v)
and error terms ε. This implies both Assumption 1 and Assumption 3, as the distribution
of gn conditional on w = {s, v,Π(g)} is uniform across the 50 values of gn and therefore
known.40

With this formalization, one can purge OVB from an OLS regression of y` on x` by
measuring each individual’s expected eligibility over the possible policy counterfactuals,
µ` = E [x` | w] = 1

50
∑
n f(gn; v`), and either instrumenting x` by z̃` = x`−µ` or controlling

for µ`. This procedure contrasts with the simulation in CG’s approach: rather than apply-
ing `’s state policy to random individuals in order to construct an instrument for x`, our

38For example, Currie and Gruber (1996a) write that their aim is “to achieve identification using only
legislative variation in Medicaid policy” (p. 445). We interpret this as positing exogenous variation in
policies across states.

39It is straightforward to verify that under the assumptions of the natural experiment, the expected
instrument corresponding to zCG` is constant across individuals, and therefore there is no need to recenter.

40Like in Section 3.3, Π(g) denotes the permutation class of g. Other specifications of counterfactuals, such
as permutations within clusters, are similarly allowed. We illustrate such an approach in the application. We
also note that statistical inference in this setting is straightforward with both zCG` and z̃`: when eligibility
policies are iid across states, conventional state-clustered standard errors suffice.

30



approach applies random state policies to individual ` in order to construct a control µ`.
The power gains with z̃` relative to zCG` arise from a better first-stage prediction of

x`. This can be understood by considering individuals who have the same eligibility under
every state’s policy, such that x` = µ`. The presence of such individuals weakens the CG
first stage, since their treatment status is unaffected by variation in zCG` . The recentered
IV estimator effectively removes these inframarginal individuals, for whom z̃` = 0.

In Appendix D.2 we extend these insights by showing how more efficient instruments
can be constructed when some individual determinants of eligibility are unobserved (as
in Cohodes et al. (2016)) or endogenously respond to the state policies (as in East and
Kuka (2015)). The results similarly apply in settings where only some policy variation is
exogenous, as our application next illustrates. We further discuss in Appendix D.2 the
advantages of our recentered IV relative to controlling for individual characteristics flexibly,
as is common in the related literature on the eligibility effects of unemployment insurance
(e.g., Cullen and Gruber 2000).

Application We illustrate our approach by estimating the insurance coverage effects of
a partial expansion of Medicaid eligibility in 2014. Medicaid is the largest U.S. health in-
surance program, covering around 29 million poor, non-disabled adults. One of the goals of
the 2009 Affordable Care Act (ACA) was to extend Medicaid eligibility to all U.S. citizens
and legal residents earning below 138% of the federal poverty line (FPL), replacing older
eligibility rules that were mostly stricter and varied widely across U.S. states. The con-
stitutionality of such an expansion was challenged (broadly along partisan lines), leading
to a 2012 Supreme Court decision that left expansion to the discretion of individual state
governors (NFIB v. Sebelius, 567 U.S. 519). In January 2014, when the ACA generally took
effect, the federal Medicaid expansion was implemented by only 19 among the 43 states that
had not expanded under the ACA or had a universal 138% FPL cutoff in prior years. The
divide was partially along the party line: a minority (8 out of 30) of states with Republi-
can governors but a majority (11 out of 13) of states with Democratic governors expanded
eligibility. We refer to the former 19 states as having expanded Medicaid under the ACA,
with the remaining 24 labeled as non-expansion states. Exact Medicaid eligibility criteria
continued to have some variation across states in 2014, with some expansion states raising
eligibility beyond the ACA’s 138% FPL threshold and some non-expansion states partially
raising eligibility though not fully to the ACA threshold.41

41We follow Frean et al. (2017) in using the Kaiser Family Foundation State Ac-
tion database to determine which states adopted Medicaid expansions in each year; see
https://web.archive.org/web/20150110162937/https://www.kff.org/health-reform/state-indicator/
state-activity-around-expanding-medicaid-under-the-affordable-care-act/. States which expanded coverage
under the ACA or which had a universal 138% FPL cutoff prior to 2014 (and which are excluded from our
analysis) are California, Connecticut, Massachusetts, Minnesota, New Jersey, Washington, and Vermont,

31

https://web.archive.org/web/20150110162937/https://www.kff.org/health-reform/state-indicator/state-activity-around-expanding-medicaid-under-the-affordable-care-act/
https://web.archive.org/web/20150110162937/https://www.kff.org/health-reform/state-indicator/state-activity-around-expanding-medicaid-under-the-affordable-care-act/


Applying our framework to this setting requires explicitly specifying counterfactual 2014
Medicaid expansions. Our baseline assumption is that a state’s decision to expand is ex-
changeable within the sets of Republican and Democratic-governed states, while allowing
states with different-party governors to have different propensities to expand. Thus, all
scenarios in which some 8 Republican and some 11 Democratic states expanded are viewed
as valid counterfactuals. This view of the 2014 expansions, as arising from a natural exper-
iment, conforms with some earlier analyses (e.g. Ghosh et al. (2019), Black et al. (2019)).42

We consider alternative assumptions on the expansion assignment process in robustness
checks below.

We apply the framework using data from the 2013 and 2014 American Community Sur-
veys on a representative 1% sample of non-disabled U.S. adults (ages 21-64) residing in the
43 states eligible for expansion in 2014. This repeated cross-section includes information
on insurance coverage (by Medicaid, ACA marketplaces, and employer-sponsored plans),
household income and other demographics determining Medicaid eligibility, such as employ-
ment status and family structure. We combine this main estimation sample with data from
2012 for falsification exercises; Appendix A.2 describes the sample construction in detail.

We estimate take-up and crowd-out effects from second-stage specifications of the form

y`t = βx`t + αState`t + τt + c′`tγ + ε`t, (11)

where ` indexes individuals and t indexes years (either 2013 or 2014). The outcome y`t is
an indicator for a particular type of health insurance coverage (e.g. Medicaid or private
insurance), and the treatment x`t is an indicator for Medicaid eligibility under the year-t
eligibility rules of `’s state of residence State`t. We include state and year fixed effects
αState`t and τt and time-varying controls c`t, discussed below. Recognizing that eligibility
is likely endogenous, we instrument it with two alternative IVs.

We construct the simulated eligibility instrument zCG`t consistently with our stance that
only a state’s decision to expand Medicaid in 2014 is exogenous (and not, for example, its
prior level of generosity). As a function of policy variation only, the CG instrument is in this
case equivalent (in the sense of producing the same estimates) to gState`t · 1 [t = 2014], the
simple interaction of residing in an expansion state (gState`t = 1) with the 2014 indicator.
We nevertheless construct zCG`t by a simulation that follows the original logic of Currie
and Gruber (1996a); see Appendix A.2 for details. We include in the control vector c`t an
indicator for residing in a Republican-governed state, interacted with year, to match our

plus the District of Columbia.
42Other analyses that do not reference natural experiments explicitly describe the expansions as “exoge-

nous” and leverage difference-in-differences specifications comparing the outcome trends of individuals in
expansion and non-expansion states before and after 2014 (e.g. Hu et al. (2018), Averett et al. (2019)).
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Table 3: Medicaid Eligibility Effects: First-Stage Estimates

(1) (2) (3)
Simulated IV 0.851 0.032

(0.113) (0.140)
[0.586,1.108] [-0.252,0.483]

Recentered IV 0.817 0.972
(0.171) (0.015)

[0.393,1.159] [0.940,1.014]
Partial R2 0.022 0.113 0.894
Exposed Sample N N Y
States 43 43 43
Individuals 2,397,313 2,397,313 421,042

Notes: This table reports coefficients from first-stage regressions of Medicaid eligibility on
the two instruments described in the text: a simulated eligibility instrument and a recentered
prediction of Medicaid eligibility. Columns 1 and 2 estimate regressions in the full sample
of individuals in 2013–14, while Column 3 restricts to the sample of individuals in both
years whose individual characteristics make them exposed to the partial ACA Medicaid
expansion in 2014. All regressions control for state and year fixed effects and an indicator
for Republican-governed states interacted with year. State-clustered standard errors are
reported in parentheses; 95% confidence intervals, obtained by a wild score bootstrap, are
reported in brackets. R2 statistics partial out the fixed effects and controls.

assumption of conditional exogeneity of expansion decisions within each governor’s party.
The alternative recentered IV also leverages conditionally exogenous variation in state

Medicaid expansion decisions while further incorporating individual heterogeneity to better
predict Medicaid eligibility. We construct eligibility predictions z`t = f(gState`t ; v`t) by in-
cluding in v`t all individual demographics that affect eligibility (household income, parental
and employment status) as well as the precise eligibility rules of the individual’s state in
2013, as they are also viewed as non-random. This construction allows for a perfect predic-
tion of z`t = x`t in 2013; in 2014 we predict eligibility from state expansion decisions and
prior eligibility policy (again see Appendix A.2 for details).

The expected instrument which corresponds to this z`t is obtained by permuting expan-
sion decisions within Republican- and Democratic-governed states. It defines a sample of
“non-exposed” individuals whose demographics and state of residence make them always
or never eligible for Medicaid in 2014 regardless of the expansion decision, and a set of
“exposed” individuals for whom the expansion shock is relevant. Per the discussion above,
we drop non-exposed individuals from the 2014 sample and, in keeping with the difference-
in-difference structure, also drop individuals in 2013 whose individual characteristics would
make them non-exposed in 2014. The remaining variation in µ`t is absorbed by the year-
interacted state party indicator in c`t, making recentering unnecessary.
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Table 3 shows that the recentered IV is much more predictive of actual Medicaid eligibil-
ity x`t than the simulated instrument. Column 1 regresses x`t on the simulated instrument
zCG`t , controlling for state and year fixed effects and the year-interacted state party control.
The partial R2 in this first-stage regression instrument is quite small, at 2.2 percent. Adding
the recentered IV in Column 2 increases the partial R2 dramatically, to 11.3 percent. More-
over, the coefficient on the simulated instrument falls from 0.85 to an insignificant 0.03.43 In
Column 3 we restrict estimation to the “exposed” sample of individuals whose demographics
and state of residence make them marginal for the potential expansion of Medicaid eligibil-
ity in 2014. Here we find that a one percentage point increase in the recentered IV predicts
a 0.97 percentage point increase in actual Medicaid eligibility. This first-stage coefficient
would equal one if changes in eligibility were only driven by state expansion decisions; the
fact that it is close to one reflects the relatively small role of other policy changes. We also
find a high partial R2 in this specification, of 89.4 percent, reflecting the fact that we have
removed individuals whose eligibility is unaffected by state expansion decisions.

Panel A of Table 4 shows that estimates of Medicaid take-up and private insurance
crowd-out effects are correspondingly much more precise when obtained with the recentered
IV. Associated standard errors and confidence interval lengths fall by around 60-70 percent
when we replace zCG`t with z`t and restrict estimation to the exposed sample. In Columns 1
and 2 of Panel A we obtain a recentered IV confidence interval of [0.05,0.09] for the take-up
effect, relative to a much wider simulated instrument confidence interval of [0.08,0.22]. For
private insurance crowd-out, the respective confidence intervals in Columns 3 and 4 are
[-0.04,-0.01] and [-0.10,0.01]. Thus we can only reject the null hypothesis of no crowd-out
with 95% confidence when using the recentered IV. These two columns include both the
conventional crowd-out margin of employer-sponsored insurance as well as the novel form
of private marketplace insurance introduced by the ACA. In Columns 5 and 6 we focus
on crowd-out of employer-sponsored plans. Neither the simulated nor recentered IV yields
statistically significant estimates at the 95% level, though the latter is again much more
precise.

In economic terms, the recentered IV estimates suggest a total private insurance crowd-
out rate of 32.1%, with a 7.2 percentage point increase in Medicaid coverage offset by a 2.3
percentage point decrease in private insurance coverage. This relative effect, reported in
Panel B as the coefficient from an IV regression of private insurance coverage on Medicaid
coverage, is similar to the 42% crowd-out that Leung and Mas (2018) find in applying a

43We use state-clustered standard errors but, to address finite-sample concerns with a relatively small
number of state clusters, also report confidence intervals by a wild score bootstrap as suggested by Kline
and Santos (2012). This computationally efficient approach requires inverting bootstrapped test statistics,
which generally makes confidence intervals asymmetric around the IV point estimate.
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Table 4: Medicaid Eligibility Effects: Simulated and Recentered IV Estimates

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Simulated IV Recentered IV Simulated IV Recentered IV Simulated IV Recentered IV
(1) (2) (3) (4) (5) (6)

Panel A. Eligibility Effects
Eligibility 0.132 0.072 −0.048 −0.023 0.009 −0.009

(0.028) (0.010) (0.023) (0.007) (0.014) (0.005)
[0.080,0.216] [0.051,0.093] [-0.110,0.009] [-0.040,-0.007] [-0.034,0.052] [-0.021,0.004]

Panel B. Enrollment Effects
Has Medicaid −0.361 −0.321 0.068 −0.125

(0.165) (0.092) (0.111) (0.061)
[-0.813,0.082] [-0.566,-0.108] [-0.232,0.421] [-0.263,0.070]

P-value: SIV=RIV 0.719 0.104
Exposed Sample N Y N Y N Y
States 43 43 43 43 43 43
Individuals 2,397,313 421,042 2,397,313 421,042 2,397,313 421,042

Notes: This table reports coefficients from IV regressions of different measures of health insurance coverage on either Medicaid
eligibility or Medicaid enrollment, instrumented by one of the two IVs described in the text: a simulated eligibility instrument
and a recentered prediction of Medicaid eligibility. Columns 1, 3, and 5 estimate regressions in the full sample of individuals in
2013–2014, while Columns 2, 4, and 6 restrict to the sample of individuals whose individual characteristics make them exposed
to the partial ACA Medicaid expansion in 2014. All regressions control for state and year fixed effects and an indicator for
Republican-governed states interacted with year. Conventional state-clustered standard errors are reported in parentheses; 95%
confidence intervals, obtained by a wild score bootstrap, are reported in brackets. Reported p-values are for the test of equality
of simulated and recentered IV estimates using Medicaid enrollment as the endogenous variable.
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difference-in-differences specification to the 2014 Medicaid expansion.44 However, we find
no evidence for crowd-out from employer-sponsored insurance plans even with our more
powerful recentered IV. Instead, our estimates suggest the crowd-out arises entirely from
direct-purchase private insurance via new ACA marketplaces. This aligns with the finding
of Frean et al. (2017), who exploit multiple sources of ACA-induced policy variation in
a simulated instrument design (see also Kaestner et al. (2017) and Maclean and Saloner
(2019)), and contrasts with earlier settings (e.g. Cutler and Gruber 1996).45

Appendix Table A5 shows that these substantive findings and power gains are not
driven by the relatively simple regression specification. Adding flexible controls for the
individual characteristics which drive exposure to different policies (deciles of household
income, interacted with indicators for parental and work status and year) in c`t leaves both
the point estimates and the difference between simulated IV and recentered IV standard
errors and confidence interval lengths unchanged.

We further analyze the robustness of this analysis in Appendix A.4. First, we validate
our assumption of expansion exogeneity with a placebo test that replaces 2014 outcomes
with a comparable cross-section from 2012. Although with the increased precision from the
recentered IV we are able to reject the null hypothesis of no pre-trends, Appendix Table A6
shows that the magnitude of the placebo coefficient is small (around 0.01–0.02) regardless
of the outcome and the instrument we use. Second, we relax the key exogeneity assumption
by allowing a state’s decision to expand to depend not only on the political party of their
governor, but also on the state’s median household income and previous rate of Medicaid
coverage. Appendix Table A7 shows that the estimated effects of eligibility remain very
similar across specifications. Third, we explore robustness to another implementation of
our approach: namely, using the recentered z`t as the instrument without restricting to the
exposed sample. Appendix Table A8 shows that this approach only yields power gains when
the additional demographic controls (those from Appendix Table A5) or an indicator for
being in the exposed sample interacted with year are included in c`t. We discuss the reason
for this in Appendix A.4 by relating it to our general efficiency theory of Section 3.5.

Finally, we confirm large and uniform power gains from using the recentered IV in a
Monte Carlo study based on our baseline estimates. In this controlled environment the
true causal effect and the shock assignment process are known, allowing us to verify that

44The corresponding simulated IV specification in Panel A yields a private insurance crowd-out rate of
36.1%, which is not statistically distinguishable from the recentered IV estimate. In contrast, the recentered
and simulated IV estimates which use Medicaid eligibility as the endogenous variable (of 0.072 and 0.132,
respectively) are statistically distinguishable. Appendix A.3 discusses how this pattern can be explained
by measurement error in self-reported income and demographics entering the eligibility calculation. The
specifications which use Medicaid enrollment as the endogenous variable are free from bias in this case.

45See Guth et al. (2020) for a review of the literature on ACA expansion effects, which suggests that more
widespread eligibility increased access to and utilization of care, led to local economic gains, and improved
health outcomes.
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recentered IV estimator is both close to unbiased and significantly more efficient than the
traditional simulated instrument approach. We find, for example, that the minimum de-
tectable effects of simulated IV (the smallest null hypotheses which are rejected by a 0.05-size
test with probability 0.8) are roughly three times larger than those of the recentered IV
(see Appendix Figures A7 and A8).

4.3 Other Settings

Our framework bears practical lessons for a range of other common z`: network spillover
treatments, linear and nonlinear shift-share instruments, model-implied instruments, instru-
ments from centralized school assignment mechanisms, “free-space” instruments for mass
media access, and weather instruments. Here we map these settings to the general frame-
work. In Appendices D.3–D.8 we detail how expected instrument recentering and RI can
be used to relax various assumptions often imposed with such z`.

In spillover regressions, the units ` represent nodes in a network (of people, firms, regions,
etc.) and g captures exogenous shocks assigned to the same or other nodes in an RCT
or a natural experiment. Spillover treatments can then count the number of `’s shocked
neighbors (perhaps with importance weights), check whether this number exceeds a certain
threshold, or measure the network distance to the nearest treated node (e.g. Miguel and
Kremer (2004), Jaravel et al. (2018), and Carvalho et al. (2021)). All such treatments are
co-determined by g and the network adjacency matrix w (often nonlinearly in g), and thus
may require recentering to leverage the exogenous variation.46

Shift-share instruments (SSIVs), often constructed for regions `, combine lagged local
shares w` = {w`n}Nn=1 of, for instance, employment across a set of industries n = 1, . . . , N
with a set of national shocks g = {gn}Nn=1. In many applications the shocks are consid-
ered exogenous, perhaps conditionally on a vector of industry-level controls qn, while the
shares may be endogenous. Borusyak et al. (2021) show how for linear SSIVs, of the form
z` =

∑
nw`ngn, OVB from non-random exposure is removed by controlling for

∑
nw`nqn

provided E [gn | qn] is linear. In the language of the present paper, such controls absorb
the expected instrument. Relative to their paper, our framework nests nonlinear SSIVs
z` = f (g, w`)—a recent and growing class of instruments which has not previously been
formalized, and for which the OVB problem is more challenging.47 Examples of nonlinear
SSIVs include predicted local Gini indices based on national shocks to the income distribu-
tion (Boustan et al. 2013), predicted labor reallocation indices based on national industry

46In a related class of applications, the treatment of interest is node centrality, affected by the shocks g
that change network edges (e.g. Campante and Yanagizawa-Drott (2018)). The market access regressions
of Section 4.1 can also be understood this way.

47In Appendix D.4 we show that this problem can also be solved without fully specifying counterfactual
shocks by using a first-order approximation to z` (which is a linear SSIV), at a likely efficiency cost.
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shocks (Chodorow-Reich and Wieland 2020), and “SSIV in logs” such as predicted firm-level
log-exports (Berman et al. 2015).

Adão et al. (2020) propose “model-implied optimal instruments” as a way to estimate pa-
rameters of general equilibrium models with spatial spillovers. They leverage the responses
of endogenous variables y` to a set of exogenous shifters gn in a log-linear approximation
around some initial equilibrium w. Since such responses are functions of the non-random
w (e.g. they depend on the initial local industry composition and migration shares), re-
centering is generally required to just leverage the exogenous variation in gn. Linearity of
the model in g makes recentering straightforward, even when the responses are nonlinear
in parameters. In Appendix D.5 we discuss how our efficiency result extends that of Adão
et al. (2020) to account for recentering and the non-iidness of data in spatial equilibrium.

When estimating the causal effects of enrollment in certain groups of schools (e.g.,
charter schools), researchers increasingly leverage partially randomized school assignment
mechanisms (Abdulkadiroglu et al. 2017; 2019). For example, they may instrument enroll-
ment with centralized assignment to a charter school, z` ∈ {0, 1}. This z` is a function of the
non-random inputs to the assignment mechanism captured by w (e.g. the submitted prefer-
ences and priorities of all students) and a set of exogenous inputs g, such as random numbers
used to break ties among students with equal priority. Abdulkadiroglu et al. (2017; 2019)
derive analytical propensity scores µ` for some deferred acceptance mechanisms, which are
valid in large samples, and discuss how in some cases re-randomizing the exogenous shocks
can also be used in finite samples. Our framework nests the latter solution while not being
limited to binary z` or to specific assignment mechanisms.

The literature on the effects of access to mass media (e.g. to radio or television) points
out that the local quality of reception z` = f` (g, w) is co-determined by the location of
transmitters w and the country topography g (e.g. mountain ranges) that can inhibit
transmission (e.g. Olken 2009; Yanagizawa-Drott 2014). Viewing w as endogenous, some
papers control for the “free-space” measure of access that assumes away any transmission
barriers. While this control is similar in spirit to µ`, it is not identical: our framework
shows that controlling for the average quality of reception under realistic counterfactual
topographies may be more appropriate.

Our final example is when spatial variation in weather is used as an instrument, e.g.
with rainfall instrumenting for the election turnout (e.g. Gomez et al. 2007; Madestam
et al. 2013). Causal identification may be threatened by the fact that local weather z` is
co-determined by exogenous day-specific factors g and local climate w`, which may be corre-
lated with unobservables. Moreover, statistical inference is difficult because all determinants
of weather are heavily spatially correlated (Lind 2019). Recentering and permutation infer-
ence based on historic weather maps (e.g. from the same day of other years) may therefore
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be attractive solutions, and some versions of it have been applied in the literature (see
Appendix D.8).

5 Conclusion

Many studies in economics construct treatments or instruments that combine multiple
sources of variation, according to a known formula. We develop a general econometric
framework for such settings when some, but not all, of such variation is exogenous. Except
in special cases, endogenous exposure to exogenous shocks generates bias in conventional re-
gression estimators, and the interdependencies inherent in such settings invalidate standard
modes of statistical inference. We show how these identification and inference problems can
be solved by specifying an assignment process for the exogenous shocks: namely, a set of
counterfactual shocks that might as well have been realized.

This general framework has concrete implications for a large number of settings. We
illustrate the usefulness of specifying counterfactuals for new railroad construction when
leveraging this variation to estimate market access effects. Estimates of the effects of high-
speed rail on local employment in China are reduced to a statistical zero when adjusting for a
region’s expected market access growth. We further show how our framework can be used to
construct instruments which may be a more powerful alternative to simulated eligibility IVs.
Estimates of Medicaid take-up and crowd-out effects are more than three times as precise
when obtained by an instrument incorporating both as-good-as-random policy variation and
non-random individual exposure, without a need for stronger identification assumptions.
We discuss practical implications for other settings, including spillover regressions, linear
and nonlinear shift-share IV regressions, structural estimation with model-implied IVs, and
estimation of the effects of centralized school assignment, access to mass media, and weather.

The key challenge of applying our framework, absent true randomization, is in specifying
plausible shock counterfactuals. In the paper we illustrate how this can be accomplished in
a variety of settings by finding exchangeable features of the shocks. For example, permuting
the timing of railroad upgrades within observably similar groups may yield a plausible set
of counterfactuals for gauging the potential for OVB. We also show how such specifications
can be tested. We consider some partly-specified shock assignment processes in Appendix
C.5; future research may yield more flexible approaches.

In our view, specifying shock counterfactuals has inherent value in observational stud-
ies that claim to leverage a natural experiment, understood as a serendipitous randomized
trial (DiNardo 2008). A virtue of randomized trials is that valid causal inference can be
conducted without imposing non-experimental assumptions on the unobservables. In the
settings we consider, this property is only maintained when an expected instrument adjust-
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ment is performed, which generally requires an explicit shock assignment process. Methods
that instead rely on properties of the unobservables, such as by a parallel trends assump-
tion, are instead referred to as quasi-experimental by DiNardo (2008).48 Generalizing our
framework to combine specifications of shock counterfactuals with plausible restrictions on
the residual appears a fruitful area for future work and may yield new “double-robust”
identification results, in a sense similar to that of Arkhangelsky and Imbens (2019).
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