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Non-random walk diffusion enhances the sink
strength of semicoherent interfaces
A. Vattré1, T. Jourdan2, H. Ding3, M.-C. Marinica2 & M.J. Demkowicz3,4

Clean, safe and economical nuclear energy requires new materials capable of withstanding

severe radiation damage. One strategy of imparting radiation resistance to solids is to

incorporate into them a high density of solid-phase interfaces capable of absorbing and

annihilating radiation-induced defects. Here we show that elastic interactions between point

defects and semicoherent interfaces lead to a marked enhancement in interface sink strength.

Our conclusions stem from simulations that integrate first principles, object kinetic Monte

Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is

not due primarily to increased thermodynamic driving forces, but rather to reduced

defect migration barriers, which induce a preferential drift of defects towards interfaces.

The sink strength enhancement is highly sensitive to the detailed character of interfacial

stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface

stress fields. Such interfaces may be used to create materials with unprecedented resistance

to radiation-induced damage.
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D
amage caused by high-energy particles, such as neutrons
or ions, severely limits the performance of materials
used in nuclear energy applications1,2. It arises from the

exceedingly high concentrations—many orders of magnitude
greater than under thermodynamic equilibrium—of crystal
defects created by impinging radiation3,4. Preventing radiation-
induced damage in engineering solids requires rapid removal of
these defects. Materials resistant to radiation damage would
markedly improve the safety, efficiency and sustainability of
nuclear energy.

One way of removing radiation-induced defects is to provide a
high density of sinks, such as grain boundaries or heterophase
interfaces5–7 that continually absorb defects as they are created.
This motivation underlies ongoing exploration of the radiation
response of nanocrystalline and nanocomposite materials8–11,
because of the large total interface area per unit volume they
contain. These investigations have demonstrated wide variations
in sink behaviour of different interfaces. Some easily absorb
defects, preventing damage in neighbouring material, but become
damaged themselves12. Others are poor sinks for isolated defects,
but excellent sinks for defect clusters13,14. The sink behaviour of
yet others changes with radiation dose15–17. This wide variety
of radiation responses prompts us to ask: are some specific
interfaces best suited to mitigate radiation damage? Is it possible
to identify them without resorting to resource-intensive
irradiation experiments?

To answer these questions, we propose an improved
computational method for rapidly assessing the vacancy and
interstitial sink strength of semicoherent interfaces. This method
builds on a reduced order model for elastic fields of heterophase
bicrystals18. Such interfaces are of particular interest because
many of them contain a high density of defect trapping sites19–21.
Moreover, semicoherent interfaces generate elastic fields that
interact directly with radiation-induced defects18,22,23. We show
that these elastic fields have an unexpectedly large influence on
interface sink strength. Unlike previous studies, which
highlighted the importance of thermodynamic driving forces for
interface sink behaviour24–26, we find that the principal effect of
the elastic fields is to modify defect diffusivities, causing defects to
drift preferentially towards the interface through a non-random
walk process. Our work also demonstrates that interface sink
strength is highly sensitive to the exact distribution of interface
elastic fields. These findings motivate a computational search for
‘super-sink’ interfaces: ones that optimally attract, absorb and
annihilate radiation-induced defects.

Results
Kinetic Monte Carlo simulations with elastic interactions.
Modelling the removal of radiation-induced point defects at sinks
is a challenging task: on one hand, the variety and complexity of
defect behaviours call for the flexibility of atomistic modelling.
On the other, the relatively slow, thermally activated mechanisms
of defect motion require longer simulation times than may
be reached using conventional atomistic techniques, such as
molecular dynamics. We employ the object kinetic Monte
Carlo (OKMC) method27–30, which is well suited to modelling
long-time, thermally activated processes yet is also able to account
for nuances of defect behaviour uncovered through atomistic
modelling.

Figure 1 illustrates the set up of our simulations. Our models
contain two crystalline layers—A and B—separated by
semicoherent interfaces. Periodic boundary conditions are
applied in all directions, so each model contains two A–B
interfaces. Owing to their inherent internal structure, the
interfaces create characteristic stress fields in the neighbouring

crystalline layers. These stress fields interact with radiation-
induced point defects, modifying their diffusion.

We calculate interface stress fields using an efficient,
semi-analytical method developed previously22,31,32. This
method accounts for the elastic anisotropy of solids A and B as
well as for differences in elastic constants between them. It
generates elastic field solutions consistent with a pre-specified
interface crystallographic character (that is, misorientation and
interface plane orientation33) and with vanishing far-field
stresses. The method has been successfully applied to a variety
of homo- and hetero-phase interfaces22,31,32 and has been
validated through comparisons with atomistic simulations18.

Our modelling approach may be used on a wide range of
semicoherent interfaces. However, for illustration, we will focus
on two specific interfaces in the present work: a low-angle twist
grain boundary (GB) on a (001) plane in Ag and a pure misfit
(zero misorientation) heterophase interface between (001) planes
of Ag and Cu. In our calculations, we use the lattice parameters
and elastic constants for Ag and Cu listed in Table 1 (refs 34,35).

Figure 2a shows a plan view of the Ag twist GB, where the
adjacent GB planes have been rotated by ±y/2 (y: twist angle).
The boundary plane contains two sets of parallel, pure screw
dislocations: one aligned with the x¼ [110] direction and the
other with the y ¼ ½�110� direction. For a relative twist angle of
y¼ 7.5�, the spacing between dislocations within each set is
B2.2 nm. Figure 2b shows the interface plane of the Ag–Cu pure
misfit interface. Similar to the twist boundary in Fig. 2a, this
interface also contains two sets of parallel dislocations aligned
with the x¼ [110] and y ¼ ½�110� directions. Furthermore, the
spacing between dislocations in the Ag–Cu interface is the same
as in the twist boundary of Fig. 2a: B2.2 nm. However, unlike in
the twist boundary, both sets of dislocations in the misfit interface
are of pure edge type.

The two interfaces in Fig. 2 have identical dislocation
arrangements, but different dislocation characters. Thus, they
contain identical dislocation densities, but have differing stress
fields. For instance, all normal stress components for the twist GB
are zero throughout the entire bicrystal. This stress field is
therefore purely deviatoric. By contrast, owing to symmetry, the
shear stress s12 is everywhere zero for the Ag–Cu interface, but all
of its other stress components are in general non-zero. In
particular, this interface generates significant hydrostatic stresses.
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Figure 1 | Schematic illustration of our model. We simulate the diffusion

of radiation-induced point defects (illustrated by ovals) to interfaces under

the influence of interface elastic fields. In general, materials A and B may be

any two crystalline solids. In the present work, they are chosen to be either

Cu or Ag (see Table 1 for details).
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These differences have important implications for interface-defect
interactions and defect migration pathways.

We use the force dipole moment approximation to compute
elastic interaction energies between point defects and interfaces,
EPD/int (refs 36–38):

EPD=int ¼ �Pij e
int
ij x; y; zð Þ: ð1Þ

Here, eintij ðx; y; zÞ are the components of the previously
calculated interface strain field. Pij are the components of the
elastic dipole tensor (the ‘P-tensor’), which describes the elastic
fields generated by a point defect. EPD/int values are used to
compute stress-dependent energy barriers for defect migration at
each location in the simulation cell (see Methods for details). A
similar approach has been adopted in previous OKMC studies to
describe point defect interactions with dislocations39,40.

We use density functional theory (DFT) to calculate P-tensors
for two types of point defects in Ag and Cu (see Methods for
details): vacancies and self-interstitials of lowest formation
energy, namely h100i-split dumbbells41. We obtain P-tensor
values for these defects in their ground states as well as at their
saddle point configurations during migration (found using the
climbing image nudged elastic band method42). Starting from a
simulation cell containing a perfect, stress-free crystal, we insert
the point defect of interest in the desired location and relax the
atom positions while keeping the simulation cell shape fixed. The
point defect induces stresses, sij, in the simulation cell. They are
related to the defect P-tensor through

Pij ¼ Vsij ¼ Pd
ij þ phdij; ð2Þ

where V is the simulation cell volume. Pd
ij and ph are the

deviatoric and hydrostatic (isotropic) P-tensor components,
respectively. The former is associated with a pure shear
(no volume change), whereas the latter is related to isotropic
tension (interstitials) or compression (vacancies), which leads to a
volume change.

Table 2 lists the P-tensors used in the present study. All of
them are expressed in the Nye frame, where the X, Y and Z axes
are aligned with the [100], [010] and [001] Miller index
directions, respectively. The form of the P-tensor reflects the

symmetry of the corresponding defect. Thus, the P-tensor for a
vacancy in its ground state is isotropic, whereas that of an
interstitial is tetragonal. P-tensors for defect orientations other
than those given in Table 2 may be calculated using
coordinate system rotations. Our P-tensors for h100i-split
dumbbell self-interstitials and vacancies in Cu agree with
experimental data41–44. Furthermore, the present calculations of
relaxation volumes of a vacancy in Ag and Cu are in very good
agreement with recent DFT predictions45.

Figure 3 shows the distribution of ground-state interstitial and
vacancy interaction energies with the Ag twist GB and the Ag–Cu
misfit interface. A h100i-split dumbbell interstitial may take on
three different orientations. Figure 3 uses the orientation with
lowest EPD/int. For the Ag twist GB, interstitial interaction
energies are negative at all locations, as shown in Fig. 3a. Thus, all
interstitials in the vicinity of this GB experience a thermodynamic
driving force to migrate towards the boundary. The interstitials,
however, have nearly isotropic P-tensors (see Table 2), so their
interaction energies with the Ag twist GB are very small. The
interaction energy of vacancies with the Ag twist GB is
everywhere zero because of the absence of hydrostatic stresses
near this interface. However, the anisotropy of the vacancy saddle

Table 1 | Materials properties for Silver (Ag) and Copper (Cu).

Element Cubic lattice parameter (Å) Elastic constants (GPa)

c11 c12 c44

Ag 4.086 124.0 93.4 46.1

Cu 3.615 168.4 121.4 75.5

The lattice parameters and elastic constants of Ag and Cu are used to compute anisotropic elastic fields generated by the semicoherent interfaces with misfit dislocations.
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Figure 2 | Planar semicoherent interfaces with identical misfit

dislocation arrangements. (a) Ag twist GB with pure screw dislocations

and (b) a Ag–Cu misfit interface with pure edge dislocations.

Table 2 | Elastic dipole tensors of point defects from first principles.

Element Interstitial Vacancy

Ground state Saddle point Ground state Saddle point

Ag 26:80 0 0

0 26:86 0

0 0 26:86

2

4

3

5

26:69 2:59 0

2:59 26:69 0

0 0 27:74

2

4

3

5

� 3:04 0 0

0 � 3:04 0

0 0 � 3:04

2

4

3

5

� 2:64 �0:39 0

�0:39 � 2:64 0

0 0 2:15

2

4

3

5

Cu 17:46 0 0

0 17:66 0

0 0 17:66

2

4

3

5

18:01 1:78 0

1:78 18:01 0

0 0 18:46

2

4

3

5

� 3:19 0 0

0 � 3:19 0

0 0 � 3:19

2

4

3

5

� 3:61 �0:37 0

�0:37 � 3:61 0

0 0 2:12

2

4

3

5

P-tensors (in eV) for a h100i-split dumbbell self-interstitial and a vacancy in Ag and Cu at both the ground-state and saddle point configurations. The ground-state interstitial is oriented in the [100]

direction. Its saddle point configuration is for a [100]-to-[010] migration path (see Methods for details). The vacancy saddle point is for migration along the [110] direction.
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point configuration leads to non-zero interaction energies of
migrating vacancies with the GB.

Interstitial interaction energies near the Ag–Cu misfit interface,
shown in Fig. 3b, may be attractive or repulsive, depending on the
location of the defect. Thus, interstitials in Ag are expected to
migrate towards the centre of the dislocation pattern, whereas
those in Cu are expected to migrate to dislocation cores. Figure 3c
shows the interaction energy between vacancies and the Ag–Cu
misfit interface. The spatial variation of this interaction energy is
similar to that of the interstitials, but with opposite sign.

Our OKMC simulations assume a constant, uniform defect
creation rate, G. Defects diffuse until they are absorbed by an
interface (see Methods for details). Only individual interstitials or
vacancies are tracked in our simulations: defect reactions,
such as clustering or recombination, are not considered.
After a certain simulation time, defect distributions reach a
steady state, whereupon the defect concentration is computed
as a function of position along the z-direction (normal to the

interface plane) based on the time spent by each defect on a given
atomic site.

Effect of elastic interactions on interface sink strength. Figure 4
shows steady-state vacancy and interstitial concentrations for
the two types of interfaces described above for models with
10-nm-thick Ag and Cu layers. In the absence of elastic
interactions between defects and interfaces, steady-state defect
concentrations may be computed analytically (see Methods for
details). We compare our simulation results with these analytical
solutions.

Elastic interactions have a dramatic effect on defect concentra-
tion profiles. In all cases shown in Fig. 4 except vacancies near
Ag–Cu interfaces, there are nearly no defects withinB2-nm-wide
zones adjacent to the interfaces. By contrast, without
elastic interactions, defect concentrations are zero only at the
interfaces themselves. Moreover, even though defect-interface
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Figure 3 | Elastic energy distributions around modelled interfaces. Elastic interaction energy between (a) an interstitial with the Ag twist GB

(EPD/into�0.002 eV in the blue isovolume), and between the Ag–Cu misfit interface with (b) an interstitial and (c) a vacancy (EPD/into�0.06 eV in the

blue isovolume; EPD/int40.06 eV in the red; grey contours are locations with zero interaction energy).
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Figure 4 | Steady-state point defect concentrations as a function of location normal to interface planes. The black vertical lines represent the interface
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results for both isotropic (orange) and anisotropic (blue) saddle point configurations are shown. (a) Vacancy and (b) interstitial profiles near Ag–Cu pure
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elastic interaction energies are negligible beyond B2 nm, the
zones depleted of defects near the interfaces have a pronounced
effect on defect concentrations throughout the entire layer,
markedly reducing the average defect concentration. For the
simulations in Fig. 4, elastic interactions reduce defect concen-
trations by about a factor of two even in the middle of the layers.
This effect is even more pronounced for thinner layers. For
vacancies in Ag–Cu, local traps are responsible for the sharp
increase in concentration near the interface.

Our simulations account for numerous aspects of defect-
interface elastic interactions, such as defect anisotropy or
differences in defect ground-state and saddle point properties.
To discover which ones are primarily responsible for the defect
concentrations shown in Fig. 4, we artificially ‘switch off’ some of
these characteristics and repeat our OKMC simulations to see
whether doing so changes the steady-state defect concentrations.
These calculations lead us to conclude that the anisotropy of the

P-tensor in the saddle point configurations is primarily
responsible for the reduced defect concentrations in Fig. 4a,b.

We ‘switch off’ saddle point anisotropy by replacing the saddle
point P-tensor with Psad

ij ¼ phsaddij, where d is the Kronecker delta
and phsad is one-third of the trace of the true saddle point P-tensor.
This assumption is tantamount to modelling defects at saddle
points as misfitting spherical inclusions in isotropic media.
Concentration profiles obtained with this approximation are
markedly different from the anisotropic case, as shown in Fig. 4.
In the case of the Ag twist GB (Fig. 4c,d), isotropic saddle points
yield the same defect concentrations as when there are no
defect-interface interactions at all. Indeed, as the twist interface
generates no hydrostatic strain field, only the deviatoric
components of defect P-tensors may interact with these
interfaces. Ground-state vacancies have zero deviatoric P-tensor
components, so the interaction energy with the Ag twist GB
vanishes, similar to ground-state interstitials with nearly isotropic
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P-tensors (Table 2). The same conclusions hold at saddle
positions if saddle point anisotropy is ‘switched off’, as described
above. Elastic interactions then do not affect migration energies,
explaining why defect concentrations are identical to the case
without elastic interactions.

For the Ag–Cu interface, concentration profiles computed
without saddle point anisotropy lie between the non-interacting
and fully anisotropic cases, as shown in Fig. 4a,b. Vacancy
concentrations are only marginally lower than the non-interact-
ing case (Fig. 4a), demonstrating the overriding importance
of saddle point anisotropy in their behaviour. Interstitial
concentrations obtained without saddle anisotropy lie
approximately mid-way between the fully anisotropic and
non-interacting cases (Fig. 4b), demonstrating that saddle point
anisotropy is at least as important to their behaviour as are pDV
interactions, which are more commonly investigated.

To investigate the effect of saddle point anisotropy on saddle
point energy, Fig. 5 shows mean stable and saddle energy
landscapes for point defects as a function of distance to the
interfaces. Although the scatter in saddle point energies
can be high at a given distance to interfaces (specially for
interstitials near the Ag–Cu misfit interface), the mean saddle
point energies (blue lines) are always lower than the mean saddle
energies computed with the isotropic approximation
(orange lines). For the Ag twist GB, the mean of the energies of
saddle positions explored by vacancies and interstitials using
the full elastic model decreases dramatically with decreasing
distance to the GB. The case of vacancies near the Ag–Cu
misfit interface illustrates the same trend, showing that the
decrease in migration energy is due entirely to the saddle point
configuration. In the case of interstitials near the Ag–Cu misfit
interface, both migration energies and thermodynamic driving
forces contribute to the enhancement of sink strength. In
particular, a reduction of barriers is obtained when zo1.5 nm,
thus giving rise to a non-random walk drift towards the Ag–Cu
interface. The migration energy effect is especially pronounced in
the case of vacancies and for interfaces without hydrostatic
stresses.

This analysis therefore shows that, in addition to the classical
thermodynamic driving force, reduced migration barriers
contribute significantly to sink efficiency and that these reduced
barriers are unequivocally due to saddle point anisotropy. The
effect of interface elastic fields on defect migration energies is
similar to that found in the vicinity of isolated dislocations46–49.
However, elastodiffusion near interfaces—including semicoherent
ones—is not reducible to elastodiffusion near dislocations because
the stress fields of the former are in general composed of two
contributions: one arising from infinite arrays of discrete
dislocations and the other from coherency stresses. These
contributions cancel perfectly in the far field, whereas in the
near field the cancellation is imperfect22,31,32. It is only this
imperfect cancellation in the near field that affects defect diffusion
near interfaces.

Figure 6 gives a more detailed view of defect concentrations at
different locations in the Ag layer of the Ag–Cu interface and in
the Ag twist GB. Close to these interfaces, concentrations vary as
a function of location parallel to the interface plane, following the
strain field pattern created by the interfaces. Indeed, the strain
field creates preferential paths for defect migration, as shown by
the grey trajectories in Fig. 6. These paths are in general different
for interstitials and vacancies. For both the Ag–Cu interface and
Ag twist GB, vacancies preferentially migrate to the dislocation
lines, whereas interstitials are mostly absorbed between
dislocations. This preferential, non-random walk drift of point
defects to specific locations is responsible for the enhanced
interface sink strengths.

Knowing the steady-state defect concentrations obtained by
OKMC, we derive sink strengths for the two interfaces considered
above. In the mean field rate theory formalism50, ‘sink strengths’
quantify the ability of sinks, such as interfaces, to absorb defects.
Within this formalism, the evolution equation for the average
defect concentration, C, follows

dC
dt

¼ G� k2DC; ð3Þ

where G is the defect creation rate and D is bulk defect diffusivity.
The second term on the right hand side is related to the loss of
defects at sinks with associated sink strength, k2. At steady state,
the sink strength may be computed from the average
concentration:

k2 ¼ G

DC
: ð4Þ

Using the average of the concentration profile computed for
defect removal at interfaces in the absence of elastic interactions
(see Methods for details), the interface sink strength is
analytically found to be k2¼ 12/d2 (ref. 51). When interactions
between interfaces and defects are present, we numerically
determine the sink strength through equation (4), by using the
average steady-state concentration obtained by OKMC
simulations and the diffusion coefficient without elastic
interactions. The resulting vacancy and interstitial sink strengths
for both interfaces are shown in Fig. 7a–f as a function of layer
thickness.

In all cases, the sink strength increases significantly when
elastic interactions are taken into account. This effect is especially
pronounced for thinner layers, as defects undergo elastic
interactions with interfaces over a larger fraction of the layer.
It is particularly strong for interstitials, whatever the interface
type, and for vacancies for the twist interface. These results also
confirm the importance of saddle point anisotropy: by comparing
with OKMC simulations that use isotropic saddle-point
P-tensors, we see that it yields order-of-magnitude increases in
sink strength, in some cases.

Another quantity of interest for radiation response is the bias
factor, B, which expresses the propensity of a given sink to absorb
more interstitials than vacancies. It is defined as

B ¼ k2i � k2v
k2i

; ð5Þ

where k2v and k2i are the sink strengths for vacancies
and interstitials, respectively. For example, small interstitial
clusters and dislocations exhibit positive bias factors (typically
between 0.01 and 0.3 (refs 52,53)) and thus absorb
more interstitials than vacancies. The preferential absorption
of interstitials by biased sinks leads to an excess of
remaining vacancies, which cluster and eventually aggregate
into voids52,54.

Bias factors for the semicoherent interfaces we studied are
shown in Fig. 7g–i. Values larger than 0.2 are obtained for the
fully anisotropic interaction model in the case of the Ag–Cu
interface. Such interfaces would compete for interstitials with
dislocations. The presence of two sinks of differing bias
magnitude has been given as a possible cause for void swelling
suppression in ferritic steels55. Interestingly, for the Ag twist GB,
the bias factor is negative, meaning that these interfaces tend to
absorb more vacancies than interstitials. Similar observations
have been made in ref. 56, where the bias factor for single screw
dislocations is negative when using anisotropic elasticity theory
and zero in the isotropic approximation. Such GBs may therefore
deplete excess vacancy concentrations sufficiently to inhibit void
nucleation.
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Figure 7 | Enhancement in sink strength of semicoherent interfaces. Sink behaviours of Ag–Cu interfaces and Ag twist GBs for (a–c) vacancies k2v
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corresponds to the analytical solution when no interaction is present (k2¼ 12/d2). Orange and blue lines correspond to OKMC calculations without saddle

point anisotropy and with the fully anisotropic interaction model, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10424 ARTICLE

NATURE COMMUNICATIONS | 7:10424 | DOI: 10.1038/ncomms10424 |www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


Discussion
Our work demonstrates that elastic interactions between
radiation-induced point defects and semicoherent interfaces lead
to significant increases in interface sink strength, compared with
the case with no defect-interface interactions. These conclusions
are consistent with other recent simulations, which show
that elastic interactions also have a significant influence on
defect-dislocation interactions39,40,56 and on mutual interactions
between radiation-induced dislocation loops57–59.

Our simulations identify non-hydrostatic interactions of point
defects in saddle point configurations as the main cause of
enhanced interface sink strengths. How might one incorporate
such interactions into continuum-level diffusion models?
Compared with diffusion in the absence of stress fields, the effect
of local variations in defect ground-state and saddle point
energies is twofold44,60: the diffusivity gains a spatial dependence
and the continuum diffusion equation gains a drift term. These
modifications are sufficient to model defects that undergo purely
hydrostatic, pDV interactions with elastic fields. When non-
hydrostatic interactions are considered, local diffusivities are, in
general, no longer isotropic and the scalar diffusivity must be
replaced by a diffusivity tensor. The effect of saddle point
anisotropy on vacancy diffusion may be modelled this way.

Modelling the effect of saddle point anisotropy on the diffusion
of h100i-split dumbbell self-interstitials furthermore requires
tracking the orientation of the interstitials. Therefore, three
separate interstitials concentrations (corresponding to the
three different dumbbell orientations) must be defined44. As
these interstitials re-orient during each migration step (see
Methods for details), the evolution of their concentrations is
described by three coupled diffusion equations, each with a
different location-dependent diffusivity tensor. It may also be
necessary to account for thermally activated interstitial
re-orientation without migration61. Posing and solving a
continuum model for such a complex process is likely to remain
beyond the scope of most continuum modelling studies in the near
future. Thus, OKMC simulations are likely to remain the
workhorse method for investigating the effect of elastic
interactions on point defect diffusion, especially of self-interstitials.

Our simulations show that the Ag twist GB and the Ag–Cu
interface have markedly different sink strengths, even though
both have identical dislocation densities. These differences arise
from unlike detailed strain distributions, which are due to the
different dislocation characters in these interfaces and the unlike
coherency strains in the reference states of each interface. The
orientations of the adjacent crystals in the twist GB are related
through a pure rotation, so the GB has no coherency strains. By
contrast, in the Ag–Cu pure misfit interface, unequal stresses of
opposite sign are needed to impose coherency22,31,32.

The sensitivity of interface sink strength to interface elastic
fields opens up new opportunities for materials design. For

instance, ‘super-sink’ interfaces with maximal sink strengths may
be created by optimizing interface elastic fields. Interface elastic
fields may also be designed to yield a desired bias factor.
The dependence of interface elastic fields on interface crystal-
lography and the physical properties of the adjoining crystals are
well-established18,22. Strategies for scanning the interface design
space and locating optimal interface crystallographies and
compositions have also been developed18,62.

An advantage of the OKMC-based simulation method
presented here is that it may be systematically improved to
enhance its accuracy. For example, our simulations did not take
into account the interactions of defects with each other. One
extension of the model would therefore be to include defect
reactions, such as vacancy-interstitial recombination or clustering
of like defects63. Another simplifying assumption of the current
simulations is that they consider only the first-order term in the
interaction energy between interfaces and defects44. An improved
model might account for other interactions, such as higher order
moments of the multipole expansion37 or heterogeneity
interactions64. The internal structure of interfaces may change
because of loading of point defects15. Our computational method
may be further improved by modelling this structure evolution,
for example, following the approach of Uberuaga et al.65. Finally,
all of our simulations assumed perfect trapping of defects that
arrive at an interface (see Methods for details), which corresponds
to an interface sink efficiency of unity66. This assumption may be
relaxed to model the sink efficiency of interfaces that are not
perfect defect sinks.

Methods
Interface elastic field calculation. We compute the complete elastic strain fields
e
int of interface dislocation arrays using the method described in ref. 22. The
geometry of the interface dislocation pattern is found by solving the quantized
Frank–Bilby equation33. Interface dislocations are viewed as Volterra dislocations
that have been inserted into a single crystal, coherent reference interface. The
complete interface strain is the superposition of the coherency strain e

coh in the
reference interface and the strain field of the interface dislocations eint:

e
int x; y; zð Þ ¼ e

coh þ e
dis x; y; zð Þ ¼ e

coh þ
X

k

e2ipk�rðx;yÞek zð Þ: ð6Þ

e
dis is represented using a Fourier expansion on the right hand side of the

expression above. The dislocation strain field must satisfy mechanical equilibrium
in both of the adjacent crystals:

r � C : e
int x; y; zð Þ

� �

¼ 0; ð7Þ
where C the fourth-order anisotropic elasticity tensor. Substituting equation (6)
into equation (7), the dislocation strain field is obtained by solving the sextic
eigenvalue problem developed by Stroh67 with specific boundary conditions
dedicated to interface dislocations:

� No net far-field strains.
� Consistency of far-field rotations with the prescribed interface misorientation.
� No net tractions along the interface.
� Interface displacement discontinuity matches the disregistry of the desired

dislocation pattern.
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C

Figure 8 | The migration mechanism of a h100i-split dumbbell interstitial in a face-centred cubic crystal. (a) Initial dumbbell configuration, (b) saddle

point configuration and (c) final dumbbell configuration. Initial atom positions are shown by dashed circles in b.
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Elastic dipole tensor calculation. Defect P-tensors are calculated using VASP (the
Vienna Ab initio Simulation Package68), a plane wave-based, first principles DFT
code. A face-centred cubic supercell containing 256±1 atoms (þ 1 and � 1 for
interstitial and vacancy, respectively) is used. We also performed LAMMPS (Large-
scale Atomic/Molecular Massively Parallel Simulator69) classical potential
simulations using embedded atom method potentials for Ag (ref. 70) and Cu (ref.
71) to study the convergence of the elastic dipole tensors up to supercell sizes of
2,048 atoms. We find that the discrepancy in P-tensor components between the 256-
atom supercell and that of 2,048-atom supercell is lower than 4%. This supercell size
ensures the convergence of defect formation energies to within few meV, as detailed
in the Supplementary Note and Supplementary Figs 1 and 2. We therefore view the
256-atom DFT simulations as well converged with respect to model size.

A 3� 3� 3 shifted Monkhorst–Pack k-point grid mesh, a Hermite–Gaussian
broadening of 0.25 eV (ref. 72) and a plane wave cutoff energy of 400 eV are used.
The change of the elastic dipole tensors is less than 0.5% compared with tighter
settings. We use the Perdew–Burke–Ernzerhof73 exchange-correlation functional
within the projector-augmented-wave approach74. The structures are internally
relaxed with a force convergence criterion of 10� 3 eVÅ� 1. The climbing
image-nudged elastic band method42 is employed to find the saddle points for
defect migration.

In the migration of a vacancy, one of the atoms directly neighbouring the
vacancy travels to the vacant site, leaving behind a new vacancy. The more complex
migration mechanism of a h100i-split dumbbell interstitial is shown in Fig. 8. Here,
one atom (B) in the initial dumbbell configuration (A�B, Fig. 8a) migrates to a
neighbouring lattice site (C), forming a new h100i dumbbell (B�C, Fig. 8c). Thus,
three atoms (A, B and C) are involved in this migration mechanism. The initial and
final dumbbells, as well as the transition path, are confined to the same lattice
plane. The initial and final dumbbell orientations are orthogonal to each other.

OKMC algorithm. We model defect diffusion using an OKMC code with a
residence time algorithm to advance the simulation clock27,28. At time t, the time
step is chosen according to Dt¼ � (ln r1)/wtot, where r1 is a random number with
r1A]0,1] and wtot is the sum of frequencies of all events wtot ¼

PN
i wi

� �

that may

occur at t. The chosen event j is such that
Pj� 1

i wior2wtot �
Pj

i wi , where r2 is
another random number with r2A]0,1].

Three kinds of events are considered in the simulations: the jump of a point
defect from one stable point to a neighbouring one, the absorption of a defect by an
interface and the creation of a new point defect through irradiation. Jump
frequencies are given by wi¼ nexp(�DEi/(kT)), where n is an attempt frequency
and DEi ¼ Esad

i � Esta
i is the energy difference between the saddle position and the

initial stable position of the jump considered. The stable point energy is

Esta
i ¼ �

X

k;l

Psta
kl;i e

int
kl rstai
� �

; ð8Þ

whereas the saddle point energy is

Esad
i ¼ Em �

X

k;l

Psad
kl;i e

int
kl rsadi

� �

; ð9Þ

with Em the migration energy in the absence of elastic interactions.
Here, Psta and Psad are the defect P-tensors in the ground-state and saddle point

configurations, respectively. For simplicity, the position of the saddle point rsadi is
taken mid-way between the two stable points explored by the jump40.

The defect is considered to have been absorbed by an interface if it reaches the
nearest atomic row to the interface. It is then simply removed from the simulation.
This absorption condition is used to obtain a first estimate of sink strength, without
taking into account the diffusion of point defects along interfaces or their possible
reemission. The irradiation rate is fixed at the beginning of each simulation to keep
the average number of point defects equal to 200 in the material where the
measurements are performed, if no elastic interactions are considered. The actual
number of point defects in the system, averaged over the simulation time when
steady state is reached, constitutes the basis for our sink strength calculation.

The concentration of defects is recorded every 104 iterations, after the
concentration has become stationary. At the end of the simulation, an estimate
of C is computed by averaging over the values Cj (j¼ 1,y,n):

Cn ¼ 1
n

X

n

j¼1

Cj: ð10Þ

The final time is adjusted to obtain sufficient accuracy on C and thus on k2. For
this purpose, the estimation of the error on the concentration is given by the
standard error of the mean value, that is,

dCn ¼ sn
ffiffiffi

n
p ; ð11Þ

where

s
2
n ¼ 1

n� 1

X

n

j¼1

Cj �Cn

� �2
: ð12Þ

The final time for each system is chosen so that the relative error on C and k2 is
less than 0.5%.

Analytical solution in the absence of elastic interactions. When there are no
defect–interface interactions, the steady-state concentration in a flat crystalline
layer may be found analytically. We consider a layer of thickness d with interfaces
at z¼ � d/2 and z¼ d/2, where zero concentration Dirichlet conditions are
imposed. Defects are created by radiation at a constant rate, G (per atomic site and
per second) and diffuse with a diffusion coefficient D. Solving the steady-state
diffusion equation leads to

CðzÞ ¼ � G

2D
z� d

2

� �

zþ d

2

� �

; ð13Þ

from which the average concentration C per atomic site is readily deduced:

C ¼ Gd2

12D
: ð14Þ

Taking into account admissible jumps for a h100i-split dumbbell interstitial in a
face-centred cubic lattice, this interstitial diffusion coefficient is

D ¼ 2
3a

2
nexp � Em

kT

� �

; ð15Þ

whereas in the case of vacancies it is

D ¼ a2nexp � Em

kT

� �

: ð16Þ
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