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1. Introduction

In a non-homogeneous controllable Markov model with a total reward
criterion, discrete time, infinite horizon and Borel spaces of states and controls,
let a certain strategy 7r and an initial measure /x be given. In the paper the
following two statements are proved:

(a) (Theorem 3) for any K < +oo, there exists a non-randomized Markov
strategy q such that

> w(, 7r) if w(/x, rr)<+,
1) w (/.,

K if w(tx, 7r)=

(b) (Theorem 4) for any measurable function K(x)< +oo given on a set of
initial states X0, there exists a non-randomized semi-Markov strategy q’ such
that, for any x X0,

> J w(x, r) if w(x, 7r) < +o,
(2) w(x, q ) [ K (x), if w (x, r) +c.

The quantities w(/, r) and w(x, 7r) are the expectations of total reward in the
case of the strategy 7r and initial measure/x, and initial state x, respectively.

Controllable Markov models with Borel state spaces, as well as problems of
existence of Markov and semi-Markov strategies in such models which majorize
arbitrary strategies, were studied for the first time by Blackwall [1], [2].
These investigations were continued by Strauch [3], where three cases were
considered: positive (P) and negative (N) dynamic programming, as well as
dynamic programming with discounting (D). For the cases D and N it was
proved, as one of the fundamental results of the investigation [3], Theorem 4.3],
that non-randomized Markov strategies q and semi-Markov strategies q’ such
that w (ix, q) -> w (/x, r) and w (x, o’) => w (x, r) for all initial states x exist. In all
three cases, D, N and P, it was assumed in [3] that w (, r)< +o for all/x and
zr, and in view of this the constantK and the functionK (x) were not considered.
For the case P (cf. [3], Theorem 4.4), existence of non-randomized Markov
strategies q and semi-Markov strategies q’, such that w (, 0)-> w (/x, zr)-e and
w(x, o’)>=w(x, zr)-e for all initial states x, was proved for any e >0. In [3] it

116



NON-RANDOMIZED MARKOV AND SEMI-MARKOV STRATEGIES 117

was pointed out that it is not known whether the last result is true for e 0.
(We note that in the formulation of the problem it was assumed in [3] that the
initial measure is concentrated at a single point. The case of an arbitrary initial
measure/x, for the first time considered by Hinderer [4], does not introduce
additional difficulties.)

Homogeneous models were considered in [1]-[3]. The concept of non-
homogeneous controllable models arose as a result of the investigations [5]-[7].
In [4], [8] and [9] a considerable part of the investigations [1]-[3] was extended
to the case of non-homogeneous models, with a broader class of income functions
being investigated in [4] and [9] than in [1]-[3]. For weak conditions the results
on existence of a non-randomized Markov strategy in the non-homogeneous case,
which majorizes an arbitrary strategy, is presented in [9] Chapt. 5, 1, Statement
II. Also there, for the case w(/x, 7r) <+, the question is raised again concerning
the existence of a non-randomized Markov strategy p for which w(tx, p)>_-
w(/z, zr). A positive answer to this question follows from Theorem 3 of the
present paper.

In [4], 9 and [9], Chapt. 2, 13, examples are given which show that a
situation is possible in which w(/z, r)= +oo, but w(, p)< +oo for any non-ran-
domized strategy . Therefore the conditions K < +oo and K(x)< +oo are
essential in Theorems 3 and 4. The example 3 in [1] shows that in Theorem 4
we cannot assert the existence of a non-randomized Markov strategy that satisfies
the inequality (2).

Thus the results of the present paper provide answers to questions in [3],
4 and [9], Chapt. 5.

The proofs rest on representing a measure in a trajectory space correspond-
ing to an arbitrary (also Markov and semi-Markov) strategy, in terms of measures
corresponding to non-randomized (respectively, non-randomized Markov and
non-randomized semi-Markov) strategies (Theorem 1). For arbitrary strategies
an analogous result was obtained by Krylov [10], Theorem 1, in the case of a
finite or denumerable set of states, and by Gikhman and Skorokhod [11],
Theorem 1.2, in the case of Borel states and control spaces. This assertion was
not considered earlier in connection with Markov and semi-Markov strategies,
but it is precisely the assertion of Theorem 1 relating to such strategies which
is used in the proof of Theorems 3 and 4. The proof of Theorem 1 presented
here is based on Lemma 1.2 in [11] and is carried out according to the same
scheme as the proof of Theorem 1 in [10].

The formulation and the proof of Theorem I look identical both for control-
lable Markov models and for models with transition probabilities and income
functions depending on the prehistory. Therefore results of the form (1), (2) are
first proved for such models and are then transferred to the more particular
case of controllable Markov models. Everywhere in the paper we keep to the
notation used in [9].

2. Basic Definitions

For an arbitrary Borel space E we shall denote byB (E) the Borel tr-algebra
on E, and by 1-I(E) the collection of all probability measures on (E, B (E)). For
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two measurable spaces (El, 0-1) and (E2,0-2) we denote by 1-I(E2, 0-21E1, o’1) the
set of all transition functions from E1 into E2, i.e., the set of all functions P(Flu 1),
where F 0"2, u El, such that P(. [u a) is a probability measure on E2 for any
u l, and for any F 0"2 the function P(F[.) is measurable on Ea. If it is clear
about which 0"-algebras era and 0"2 we are talking, then we shall write
II(EIE).

A controllable model (CM) is specified by a set {X, A, j(.), p(. .), q(.)).
The setsX andA are, respectively, spaces of states and controls,X = X_,
A A, where X_ and A are sets of states and controls at the time
instants 1, 2,. .. It is assumed thatX_X,_ =AA,,= for all t’.
Further, j(a) is the mapping of the set A onto X, withX_ =j(A) and for each
x X the set of controls in the state x is A (x) j-(x). The functions p (. J. and
q (.) are, respectively, the transition functions and reward functions.

The spaces X and A are assumed to be Borel spaces, with Xt_ B (X),
A, B (A) for all 1, 2,.... The mapping j is measurable and may be made
uniform, i.e., there exists a measurable mapping (x) of the space X into A
such that 0 (x) A (x) for all x X.

We consider the sets L=X0AxXx...xAxXx..., H_=
XoXA1 XXl X’’’ At-1 xXt_, t=Ht_l NAt, where t= 1, 2,..., H=
O t=, Ht-,, H O t, t. Since Ht-, DHt,-1 , for t’, all spaces
L, Ht-1, Ht, H and H are Borel spaces, with the -algebras B(L), B(Ht-1),
Ht), B(H) and B() generated by the -algebras B(X) and B(A).

The transition function p(. 1.) is an element of the set H(A [); if
for some 1, 2, , then the measure p (.J) is concentrated at Xt. The income
function q(. is a measurable function on H which takes values in [-m, +m].

An element (. 1.) e H(A ]H) such that if h e H_, and h
xoa,x,’"at-,xt-, for some 1, 2,..., then the measure (.]h) is concen-
trated at A (xt-,), is called a strategy . A necessary and sucient condition of
existence of at least one strategy is the assumption that the mapping j can be
made uniform (cf. [9], Chapt. 3, 1).

A strategy is said to be non-randomized, if for any prehistory h eH the
measure (. ]h) is concentrated at a single point. A strategy is said to be
semi-Markov, if for any z e Xo and x eXXo there exists a measure (. ]z, x)
on A such that (.]h)=(.lxo, x_,) for any h=xoal" "at-xt-eHHo,

2, 3, ... A semi-Markov strategy is said to be Markov, if for any x XXo
there exists a measure (. Ix) on A such that (’[x0, X-l) (’]xt-1) for all
Xo Xo, xt- Xt-, 2, 3,. . Also non-randomized semi-Markov and non-
randomized Markov strategies are considered.

We denote by A, 3, 2, 2, and ,, respectively, the sets of non-ran-
domized Markov, Markov, non-randomized semi-Markov, semi-Markov, non-
randomized and all strategies.

If an initial measure e H(X0) is given, then the strategy uniquely specifies
a probability measure on (L, B (L)) (see [4] or [9]), which we shall denote by
P,. We denote by E the expectation computable from the measure P. The
measureP induces measures on Ht- and Ht, 1, 2, .., which we also denote
by P,.

For an arbitrary number g we denote g+= max(g, 0) and g-=-min (g, 0).
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We define the following quantities"

+w (Ix, "rr) E, q+(xoaxx"
t=l

w-(/z, r)=E Y. q-(xoax’" a,_lX,_a,).
t=l

If we know that a measure/x e II(X0) is concentrated at some point x, then
in all notations connected with this measure we shall write x instead of

A CM is said to be (/x, .rr)-summable if min {w/(/x, 7r), w-(/x, 7r)}< +oo. If
a CM is (/z, 7r)-summable, then the value of the criterion is estimated by the
quantity

+w(, r)= w (, r)-w (, r).

A CM is said to be tx-summable if for any strategy 7r the CM is (/x, 7r)-
summable. A CM is said to be weakly .n--summable if for any x X0 the CM
is (x, 7r)-summable. If a CM is weakly 7r-summable for all 7r Ax, then we shall
say that the CM is weakly summable. If for any/x II(Xo) and 7r A a CM is
(/x, zr)-summable, then such a CM is said to be summable.

A CM is called a controllable Markov model (CMM), if there exist a
measurable function r(a) on A and P(’I’)II(XIA) such that
r(xoa xi_a,)r(a,) and p(’lxoa x,_at)=p(’lat) for all /=
xoa xt-at H, 1, 2, . We note that the definition of a CMM presen-
ted here coincides with the definition of a controllable Markov model given in [9].

3. Controllable Models

3We introduce the notation (t 1, 2, .) Yt- Ht-, Yt- Xt_, Y Xo
and 2 LI --1 Yt-, where 1, 2, 3. SinceYt-1 Xo >(Xt-1, if > 1. We put yi

giYt- for the spaces Y Yt-Yt’- t’, are Borel spaces and B(
for all t- 1, 2,....

For 1, 2, 3 we denote by ki(y) the mapping of Y onto X, which for each
0, 1, 2,. projects the set YI onto Xt, and putA (y) A (k (y)), where y yi

(note that ka(y) y).
According to the definition of Section 2, the strategy 7r Ai, where 1, 2, 3,

is an element 7r(" I" s II(A Y) such that 7r(A (y)l Y) 1 for all y yi. A non-ran-
domized strategy q9 sAv, where 1, 2, 3, is a measurable mapping q (.) of the
space Y into A such that q (y) sA (y) for all y s Y.

Let there be given a strategy 7r s Ai, where 1, 2 or 3. We specify the
value i. By virtue of Lemma 1.2 in [11] there exist B ([0, 1] yit_ )-measurable
functions f’t(s, y) on [0,1] Y,_ with values in A such that, for all 1, 2,. .,
Y r-l, E eB(A),

(3) mr_.({s" fi(s, y) E}) 7r(E y),

wherem is the Lebesgue measure on [0, 1].
We shall show that fi(s, y) can be chosen so that fi(s, y)s A(y). Let 0 be

a measurable transformation of X into A for which 0 (x) A (x) for all x X
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(the existence of J was assumed in Section 2). Then Ji(y)= O(kg(y)) is a measur-
able mapping of Yg into A, with g(y)A (y) for all y yi.

For 1, 2,..., we define on the sets [0, 1] x YI-1 the functions

Ill(s, y) if y)A(y),
(4) o g,(s, y

t g(y if f’t(s, y 1A (y).

We point out that {(s, y)" q,(s, y)=/’t(s, y)} {(s, y)" ](fi(s, y))= ](g(y))} and that
the measurable function ](a) assumes values in the Borel space X. Since any
Borel space is either finite or denumerable, or is isomorphic to a straight line,
we have

g(s, y) y)}B([0, 1] Y,_I ).{(s, y)" o, -fi(s,

’(s, y) is B ([0, 1]Hence it follows that for each 1, 2,..., the function ot
Y_ )-measurable.

Since r(A(y)[y) 1, by virtue of (3) and (4),

rr(E ly) m({s: qi(s, y) E}),

where 1, 2,. ., y YI-, E B (A).
We denote by f the space of sequences to ={s,},=, where 0_-<s,_-< 1,

n 1, 2,. . For fixed r Ag each sequence to {s,},_- f uniquely specifies
a strategy q [to] AN: if y Y_ for some t, then

i[o9 ](y) qgt(St, )cA(y).(5) y

Let Bt, 1, 2,..., be minimal o--algebras on fZ generated by the sets
{to f: st eD B([0, 1])}. We denote by B the minimal g-algebra containing
{Bc}tt,=l, where 1, 2,..., or oo, and put B={fL }. Then the functions
[w](y) are (BxB(Yg))-measurable with respect to (to, y)I yi.

We consider on (l, B o) a measure m generated by the sequence of indepen-
dent random quantities {w,},= each having a uniform distribution on [0, 1].

Theorem 1. Let there be given a strategy 7r Ag, where 1, 2, or 3, and an
arbitrary non-negative (or bounded) measurable function f(l) on L. We consider
the strategies pi[to] constructed from zr according to (3)-(5).

A. The function g(w, X) a. f(l)P’t’(dl) is (B B (Xo))-measurable with
respect to the pair of variables (to, x) l) Xo.

B. For any Ix H(X0) the function g*(to) f(l)PS’t’a(dl) is B-measurable
with respect to to f.

C. The equation

(6) ILf(l)P:(dl)= In m(do)fLf(1)P*,’(dl)
is valid.

PROOF. A. Let h xoa ix at-xt-1 Ht-, where 1, 2, ... For _-> 2,
we use the notation qo2[a](h)= o2[a](Xo, xt-) if i= 2, but if i= 3, then we use
o3[w](h)=q3[w](x,_). Let 1. (.) be an indicator function, A’tB(At), Xt
B(X,), t= 1,2,.... Then the functions (Atlw, h)= l,’.,a(hA’,I(h) are (Btx



NON-RANDOMIZED MARKOV AND SEMI-MARKOV STRATEGIES 121

B(Ht_l))-measurable with respect to (o, h) 1 Ht-1 and, consequently, they
are (B B(H_l))-measurable. The functions/(X’t Io,/;)-p(XYi) are (B
B(H))-measurable with respect to (o, h) f/ Hr. We introduce the notation
Eo=fXo, B(Eo)=BxB(Xo), E2,+=A+ and E2(t+l)--St+l, where t=
0, 1, 2,. . Since for any t=0, 1, 2,. ., and E’ B(E/), the function/(E’I’)
defined on I-[k--OEk is B(l-I’k=OEk)-measurable, statement A follows from [12],
Proposition V.I.1. Statement B follows from A.

C. In view of the lemma on multiplicative systems (cf. [9], Supplement 5,
Lemma 1 and [13], Chapt. 1, Theorem 20), it is sufficient to prove (6) for all
functions f(l)= 1(/) in the case

(7) E=D +A, xXt xA,+ x

where

D =X’o xA’ XX’l x... xA,_ xXt-l, Xt, B(Xt,),

A’t,,eB(A,,,), t’ =O, 1,2,... t- l, t"= 1,2,... t- l, t= 1,2,....

In this case, (6) has the following form:

(8) P(E) In P’’a(E)m(dt)"
We shall prove (8) by induction. If 1, then P:(E) =/x (X6) for any strategy

or, and (8) is obvious.
Let, for some t, the functions P,’t’a(E) be B’--measurable for all sets E

of the form (7), and let (8) be valid. Then in view of the theorem on continuation
of a measure, the functions P’tO(E) are Bt--measurable and (8) holds for sets
E of the form (7), when D B (H-I). For arbitraryD B(H_I) andA B(A),
we .have

P,(D XAt Xt At+l" ’)= P,({hD A})
(9)

ID zr(A’tlh)P:(dh)= ID [In/(A’ I’ h)m(do)] InP*’[’](dh)m(do),
and

(10)

P’’a(D xA, xXt xAt+ xXt+ ...)m(dto)

InP:’t’({ftDA’,})m(dto)= In m(dta)Io(A’tlto, h)P:’’a(dh)

We introduce the notation (’1, ’1) (nt-1, B (nt-1)), (2, ;2, P2) (f/, B, m),
;=B t-x, F=B,, yl=h, y2=o, F(y,y2)=(A’tlo, h), P(dyly2)=
p[](dh). Then the right sides of the relations (9) and (10) are equal in view
of the following statement.

Let there be given a -algebra (, ), a probability space (2, 2, P2),
-algebras, 2 and (" I’) (n, In, ). Tn if the -algebras
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’ and -z are independent relative to the measure P2, then for any bounded
(1 -z2 )-measurable function F(yl, yz) on 1 Oz,

Inl [In2F(y,Y:)P2(dY2)] In:PI(dyl[Y:z)P2(dY :z)

(11)

P(dy) F(y,, y)Pl(dyly).

For the functions F(y,ye)=l(y)l(y2), where EI, E,
equation (11) can easily be verified. Therefore, from the lemma on multiplicative
systems (cf. [9] Supplement 5, Lemma 1, and [13] Chapt. 1, Theorem 20) we
have (11).

From the equality of the left sides of the relations (9), (10) and the theorem
on continuation of a measure, it follows that (8) is valid for all ets

(12) E D’x Xt xA,+ xX,+ x ,
where D’ e B(t). Since

p’ f, ({ D xA}) (A 1, h)p*i[(dh),

the function fl(A’r [, h)is (B x B(H_l))-measurable with respect to (, h), and
P’rO(dh) H(Ht_, B (Ht-x) , Bt-), where h Ht-x, D B (Ht-x), A’t eB (At),
by virtue of Lemma 2 in [9], Supplement 5, the function P’o({ eD x A}) is
Bt-measurable with respect to . Consequently, the function P’(E) is B t-
measurable for any set of the form (12).

Hence it follows that for any D’B (Ht) andX B(X) the functions. i(dg

are B’-measurable with respect to w. Using Fubini’s theorem (see [13], Chapt.
II, Theorem 14), we have

.(D’xX xA. xX+l x.. ")= p(X’)e (dh)"

t’

, ({h D xX, })m (&o)

t’

[ P’t3(D’ X’g At+l xXt+l x,..)m(&o)

The theorem is proved.

Corollary 1. Let there be given an arbitrary strategy rr Ai, where 1, 2 or
3. Then thefunctions w/(x, q [o]) and w-(x, q [o]) are (B B(Xo))-measurable

i[(.O ]) and w-(t, ’ [o ])with respect to (oo, x) f Xo, while the functions w + (Ix, q
are B-measurable with respect to w f ]:or all Ix II(Xo).
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The validity of the corollary follows from Theorem 1. A, B and the definition
of the functions w + and w-.

If a CM is (ix, 7r)-summable, then from (6) we have

w(, )= w+(, )-w-(, )
(13) I +w (. [,o])m (at.,)- w (. q, [,o])m (at.,).

We shall consider sets II, ={to e f: w+(/x, q’[w])= w-(/z, qi[to])= +oo}.
From the (/x, 7r)-summability.of CM and (13) it follows that m (D,) 0. Assuming
in Corollary 2 for the sake of definiteness that w(/z, qi[w])=-oo when to

we obtain the following statement.

Corollary 2. Let there be given a measure II(Xo) and a strategy 7r Ai,
where 1, 2 or 3, the CM being (tz, r)-summable. Then

w (tx, 7r) w (lx, q [to ])m (dto ).

If w(/x, r)< +oo, we define the set

n(. ) {,o n\n: w(. ’[,o]) >_- w(, )},

but if w(/x, 7r) +oo, we define for any K < +oo the set

II(tx, 7r, K) {w e f\I), w(tx, qiEto]) _->K}.

From Corollary 2 and the equation m(f,)=0 follows (cf. [9] Lemma 1
1.13) the following statement.

Lemma 1. Let there be given and 7r, satisfying the conditions of Corollary
2. If w(lx, Tr)<+oo, then m(II(/x, Tr))>0, but if w(lx, Tr)=+oo, then
m (Ft(lz, 7r, K)) > 0 for allK < +oo.

Corollary 3. Let there be given a measure tx II(Xo) and a strategy r A,
where 1, 2 or 3, the CM being (tz, 7r)-summable. Then for any K < +oo there
exists a non-randomized strategy q A such that

w(tz,(c)>/w(/x,] 7r) if w(lx, 7r)<+oo,
K ifw(lz, Tr)=+oo.

For the verification of the validity of the corollary it is sufficient to choose
an arbitrary strategy qi[to], where to belongs either to fl(tz, 7r) or to f(, 7r, K),
depending on whether w (/z, r) is or is not finite.

Corollary 4. A. If a CM is tz-summabte, then sup,a,w(tx,r)=
supa7 w(lx, ) for any 1, 2, 3.

B. If a CM is weakly summable, then sup=a, w(x, r) supA? W(X, q) for
any 1, 2, 3 and x e Xo.

C. If a CM is summable, then sup=a, w(/z, 7r)=supa7 w(/z, q) for any
1, 2, 3 and tz II(Xo).
We point out that a theorem on decomposition of a randomized strategy,

similar to Theorem 1, was presented by Girsanov [10]. For the case 1 (Tr is
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an arbitrary strategy, while o [to are arbitrary non-randomized strategies) closely
related results have been obtained in [10], Theorem 1 and [11], Theorem 1.2.

For 1 the statement of Corollary 3 reinforces Theorems 9.4, 15.2 and
15.4 in [4] and gives the answer to question II, page 66 therein (see Remark 1
below).

Theorem 2. Let there be given a strategy r e At, where 1 or 2. Then if
a CM is weakly 7r-summable, for any measurable function K(x)< +c on
Xo there exists a non-randomized strategy o A such that, ]’or any x Xo,

w(x, )=
tK(x

PROOF. Let a value of be fixed. We define the function w*(x,
if w(x, 7r)<+oo, and w*(x, 7r)=K(x) if w(x, 7r)= +oo. We consider the
sets Q’={(to, x)l)XXo: w+(x, qi[to])=w-(x,qi[to])=+oo} and Q=
{(to, x)flXXo\Q’:w(x,qi[to])>-w*(x,r)}. In view o Corollary 1, Q
B x B(Xo). The space (Q, B(Q)) is a Borel space.

We consider the mapping r which projects Q onto Xo. We introduce the
notation Q(x) r-l(x), x X0. For any x Xo we consider the function v(Flx)
m({to: (to, x)e F}), where F B(Q). Then the following statements hold: (i) for
any FeB(Q), the function v(FIx) is measurable with respect to x; (ii) for any
x Xo, the measure v(’lx) is concentrated at Q(x); (iii) v(Q(x)lx)>O for all
xc=Xo.

Property (i) follows from the equation v(FIx)=a lr(to, x)m(dto) and
measurability of the set F. Property (ii) follows directly from the definition of
the measure v(. Ix). We introduce the notation

f(x, zr)
f*(x, 7r)

fl(x, r,K (x))
if w(x, 7r) <+,
if w (x, 7r)-- +.

From property (ii) and Lemma 1 we have: ,(O(x)ix)=m(f*(x, 7r))>0. This
establishes property (iii).

Since Q andXo are Borel spaces, the mapping r is measurable, and properties
(i)-(iii) are valid, then in view of the Blackwell-Ryl’-Nardzhevskii theorem on
a measurable choice (cf. [9], Supplement 3, 2), there exists a measurable
mapping sc :Xo Q such that (x) Q (x) for all x Xo.

For 1, 2 we denote by ci(y) the mapping of Y onto Xo which for each
0, 1, 2,... projects the set YI onto Xo. The projections ci are measurable

mappings of Y onto Xo.
We consider a non-randomized strategy A: q(y) q [:(ci (y ))](y ), where

y Y. The mapping q(y) is measurable in view of (BooB(Y))-measurability
of the function q[to](y) with respect to the pair o variables (to, y)f yi and
in view of B (Yi)-measurability of the function :(ci(y)). For each x Xo we have:
w (x, q) w (x, q i[tox ]) -> w * (x, zr), where tox (x). The theorem is proved.

The examples in [4], 9 and [9], Chapt. 1, 15 show that the condition
K < +c in Corollary 3 and the conditionK (x) < +c in Theorem 2 are essential.
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EXAMPLE 1 (Theorem 2 is not true for i= 3). Let Xo--{b-1, bo}, X,-1
{b,-1} for t=2,3,..., Al={d_l, do}, where d,=A(b,) for n=-l, 0, Az=
{dl, dz},At {dr} for 3, 4, . The reward functions are given bythe equ.ations
q(b_ld_lbldl)=q(bodobldz) 1 and q(/)=0 for all other prehistories h. The
process deterministically proceeds fromX-I to Xt, where 1, 2, .. A positive
gain is possible only in the state b 1.

Any two strategies differ only in the state bl, since in all remaining states
there is only one control. The set A is {ql, 2}, where o (bl)=dl, while
q(bl) d2. We consider a strategy zrEA3 for which r(dllb)=zr(dlb)=0.5.

1) 2)Then w(b-1, zr) w(bo, 7r) 0.5, while w(b_l, q w(bo, q 1, w(bo, q
w(b_l, o =0.

REMARK 1. Hinderer [4] considered controllable models in which sets of
admissible controls depend on the entire prehistory of the process. For these
models the results of Section 3 are valid for 1 (the proofs in essence remaining
the same), but in such models we cannot consider Markov and semi-Markov
strategies. We can consider analogously controllable models in which sets of
admissible controls depend on initial and current states. For such models the
results of Section 3 are valid for 1, 2, but the concept of Markov strategies
in them is meaningless.

4. Controllable Markov Models

In Theorem 4.1 of [3] it is proved that in CMM, for any strategy zr and
measure Ix E II(X0), there exist Markov strategy 7r*A3 and a semi-Markov
strategy r** A2 such that w (ix, zr) w (ix, zr*) and w (x, zr) w (x, zr**) for all
x Xo. In [3] homogeneous CMM were considered; however, the proof of this
fact is not altered in going over to non-homogeneous models (cf. [4], Sect. 18,
or [9], Chapt. 3, Sect. 8).

The statement of Theorem 3 follows from this result and from Corollary 3
with 3.

Theorem 3. Let there be given an arbitrary strategy 7r, a measure Ix H(X0)
and a constant K < +eo. If a CMM is (Ix, zr)-summable, then there exists a
non-randomized Markov strategy q AI such that

w (ix, q) > / w (ix, zr) ifw(ix, zr)<+oo,
K tf w (ix, zr) +oo.

Corollary $. A. If a CMM is Ix-summable, then

sup w (IX, zr) sup w (IX, q).

B. If a CMM is weakly summable, then, for all x E Xo,

(14) sup w (x, 7r) sup w (x, q ).

C. If a CMM is summable, then, for all Ix H(Xo),

sup w (IX, r) sup w (ix, q).
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Corollary 5B generalizes the result of the paper [14], which is devoted to the
proof of equation .(14) for homogeneous CMM with a denumerable set of states,
under the assumption that the right side of equation (14) is finite for all initial
states.

From Theorem 4.1 in [3] and from Theorem 2 for i=2, we have the
following assertion.

Theorem 4. Let there be given an arbitrary strategy 7r and a measurable
function K(x)< +oo, x Xo. If a CMM is weakly 7r-summable, then there exists
a non-randomized semi-Markov strategy Af for which, for all x Xo,

> lw(x,w(x, q)-tK(x
The example of Blackwell [1], Example 3 (or [9], Chapt. 3, 9, Example 1)

shows that, for non-randomized Markov strategies zX, Theorem 4 is not
true. As was mentioned in Section 1, Theorems 3 and 4 give answers to the
questions posed in [3] and [9]; the conditions K < +co and K(x)< +oo are
essential.
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