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ABSTRACT In this paper, we propose a non-recursive homogeneity-based robust control for a kind of

nonlinear systems with backlash-like hysteresis and external disturbance, as an alternative approach to

the well known recursive backstepping design which needs to compute a number of partial derivatives.

The backlash-like hysteresis and external disturbance are also considered in our design which makes our

method more practical in the application of control engineering. Global asymptotical tracking performance

is guaranteed with proposed control scheme. Some simulation results are provided for illustrating our

theoretical results.

INDEX TERMS Non-recursive, nonlinear systems, global asymptotical tracking, backlash-like hysteresis.

I. INTRODUCTION

As an important area of control theory, nonlinear system

control has been studied for decades, and some excellent con-

trol strategies have been proposed, such as input/output lin-

earization [1], backstepping mechanism [2], finite/fixed-time

control [3]–[5] and model predictive control [6]. Backstep-

ping method is a promising approach based on recursive

design procedure for nonlinear system with strictly feedback

forms, see [2], [7], [8] for examples. Due to its recursive

design procedure, backstepping method involves a number

of partial derivative terms in virtual control and final control

at each step. This may lead to a complex control algo-

rithm and make it difficult for implementation, especially

for high-order or high relative degree systems. On the other

hand, homogeneous systems, which cover a broad cate-

gory of inherently nonlinear systems [9], have been studied

[10]–[12] and applied in nonlinear system control program-

ming, such as [12]–[15]. In [15], the authors propoesd a

innovation for the output feedback stabilization of a kind

of nonlinear system, using the concept of homogeneous

domination. The practical tracking problem has also been

investigated for the nonlinear system with homogeneous

technique in [16]. Unfortunately, most homogeneous control
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design approaches still need recursive design process except

for [14], in which a non-recursive authentication is given for

a chain of integrators. Note that practical systems are not just

modeled by a chain of integrators. Thus it is important to

find a suitable control design methodology to design stable

control for general systems. Recently in [17], a non-recursive

innovation is presented for a kind of nonlinear systems,thus

abundant partial derivative terms have been avoided. Note

that practical factors such as hysteresis and disturbances are

unavoidable and should be taken into account. In [7], an adap-

tive control is designed for systems with hysteresis based on

recursive-backstepping process. An alternative non-recursive

approach for nonlinear systems with the unknown hysteresis

and disturbance is needed, which motivates us to propose a

new design strategy in this paper.

Inspired by the property of the weighted homogeneity

and superiority of homogeneous domination, we proposed

a non-recursive tracking arithmetic for a kind of nonlinear

system. Firstly, a series of coordinates transforms with the

desired steady-states are proposed to covert the tacking

problem to stabilization problem with the consideration

of back-lash hysteresis and external disturbance. Secondly,

a novel homogeneous control law is designed with a scaling

gain. Furthermore, the combined effect caused by approxi-

mating hysteresis and disturbances is handled in a similar way

to [7]. The unknown bound of the effect is estimated online
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with an adaptive law. The obtained estimate is incorporated

in the control law. Thirdly, a guideline of choosing the

alterable gain value is derived by analyzing stability of the

closed-loop system, and the other control parameters can be

easily designed as the coefficients of a Hurwitz polynomial.

Moreover, both asymptotic and finite-time tracking conse-

quences can be built under our method through changing the

value of the homogeneous degree. It is also shown that the

accurate tracking can be achieved in the absence of hysteresis

and disturbance.

Paper organization: The problem statement and some use-

ful lemmas are listed in Section 2. The controller design

and stability analysis are presented in Section 3, followed by

some illustrative simulation examples in Section 4. Finally,

the conclusion is given in Section 5.

Notations:

R
+
odd — the ratios of a set of two positive integers.

Nj:i — Nj:i = {j, j+1, · · · , i} with integers j and

i satisfying 0 ≤ j ≤ i.

C
i — the set of all differentiable functions

whose first ith time derivatives are contin-

uous.

⌊·⌉a — a C0 function, where ⌊·⌉a = sgn(·)| · |a.

(Weighted Homogeneity):

1r — is a map:R+ × Rn → Rn named a

one-parameter family of dilation.

1r
ǫx — 1r

ǫx = (ǫr1x1, . . . ,ǫ
rnxn), where x =

(x1,. . ., xn) ∈ Rn is a fixed choice of coor-

dinates and r , (r1, r2, · · · , rn) are positive

real numbers.

V ∈ Hτ
1r — a continuous function: Rn → R with a

given dilation1r and a real number τ called

1r−homogeneous of degree τ if V ◦ 1r
ǫ =

ǫτV .

fj ∈ H
τ+rj
1r — a continuous vector field f (x) =

∑

fj(x)(
∂

∂xj
) named 1r− homogeneous of

degree τ with j ∈ N1:n.

x̄τ
i1r — a vector x̄τ

i1r = (x
τ/r1
1 , · · · , x

τ/ri
i )T ,

where xτ
1r = x̄τ

n1r and ⌊x⌉τ
1r =

(⌊x1⌉
τ/r1 , · · · , ⌊xn⌉

τ/rn )T .

‖x‖1r —a homogeneous p−norm, where ‖x‖1r =

(
∑n

i=1 |xi|
p/ri )1/p.

‖x‖ — a conventional L − p norm, where ‖x‖

= (
∑n

i=1 |xi|
p)1/p.

In this paper, r is given by r1 = 1, ri = ri−1 + τ, i ∈ N2:n

with a degree τ . We denote κ ≥ max{ri+τ }i∈N1:n
and choose

p = 2 for the sake of simplicity.

II. SYSTEM DESCRIPTION AND PROBLEM

FORMULATION

In this section, we present the system model, the design

problem and some useful Lemmas.

A. PROBLEM FORMULATION

Consider a kind of SISO nonlinear system model described

by






























ẋ1 = G1x2 + F1(x1)

ẋ2 = G2x3 + F2(x̄2)

. . .

ẋn = GnW (u(t)) + d(t) + Fn(x̄n)

y(t) = x1,

(1)

where x̄i = (x1, x2, · · · , xi)
T and xi ∈ R, i ∈ {1, 2, . . . , n}

denote the states of the plant. Fi, i ∈ {1, 2, . . . , n} are known

system functions and Gi, i ∈ {1, 2, . . . , r} are known param-

eters. u(t) is the designed controller and W (u(t)) denotes the

plant input with backlash-like hysteresis of u(t). The desired

trajectory is yd .

Assumption 1: The desired trajectory yd and its nth deriva-

tives are piecewise continuous, known and bounded.

Assumption 2: There exist a known constant σ > 0 and a

constant τ , such that

|Fi(xi) − Fi(x̂i)| ≤ σ

i
∑

j=1

|xj − x̂j|
ri+τ

rj , i ∈ N1:n.

Remark 1: Assumption 2 can be seen as a generalized

continuous condition satisfied by many nonlinear functions.

When τ = 0, Assumption 2 is the widely known global

Lipschitz continuous condition. And Assumption 2 becomes

a Hölder continuous condition when τ < 0. This model can

be considered as a special fractional order system, which has

a wide range of applications, especially in electronics [18]

and electromagnetism [19].

The purpose of this paper is to design a controller which

can ensure global stability of the closed-loop system in the

presence of backlash-like hysteresis and external disturbance.

In addition, the system state x1 will converge to the desired

trajectory yd asymptotically in the case of τ ≥ 0, or in finite

time with τ < 0.

B. BACKLASH-LIKE HYSTERESIS AND LEMMA

INTRODUCTION

The property of backlash-like hysteresis and some useful lem-

mas are introduced in this part for the convenience of readers.

Based on the analysis in [7], [20], the input backlash-like

hysteresis of the system is described by

dW (t)

dt
= α

∣

∣

∣

∣

du(t)

dt

∣

∣

∣

∣

(cu(t) −W (t)) + B1
du(t)

dt
(2)

where α, c and B1 are constants, c is the slope coefficient of

the line satisfying c > B1. The above equation can be solved

as

W (u(t)) = cu(t) + d1(u) (3)

d1(u) = [W (0) − cu(0)]e−α(u(t)−u(0))sgn(u̇)

+e−α(u(t))sgn((̇u))

∫ u(t)

u(0)

(B1 − c)eαssgn(u̇)ds (4)
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where d1 can be seen as the bounded approximation error of

backlash-like hysteresis by the linear approximator cu(t). The

backlash-like hysteresis with parameters B1 = 0.345 α = 1

and c = 3.1635 is shown in Fig.1.

FIGURE 1. Backlash-like hysteresis with B1 = 0.345 α = 1, c = 3.1635
and u(t) = 2 sin(2.3t).

Then we have the system model as






























ẋ1 = G1x2 + F1(x1)

ẋ2 = G2x3 + F2(x1, x2)

. . .

ẋn = Gncu(t) + D(t) + Fn(x1, . . . , xn)

y(t) = x1,

(5)

where D(t) = d(t) + Gnd1(u) and D(t) ≤ D∗ with D∗ being

an unknown positive constant. Then we give some lemmas

which are used in next section:

Lemma 1 [14]: Let V1(x) ∈ H
τ1
1r and V2(x) ∈ H

τ2
1r ,

respectively, then one has

i) V1(x)V2(x) ∈ H
τ1+τ2
1r .

ii) ∂V1(x)
∂xi

∈ H
τ1−ri
1r , i ∈ N1:n.

iii) If V1(x) ≥ 0, then

(

min
{x:V1(x)=1}

V2(x)

)

V

τ2
τ1

1 (x) ≤ V2(x) ≤

(

max
{x:V1(x)=1}

V2(x)

)

V

τ2
τ1

1

Lemma 2 [10]: For a system ẋ = f (x), x ∈ Rn,

where f (x) is a continuous function with homogeneous of

degree τ .The whole system is globally stable when the origin

is locally asymptotically stable. The whole system is globally

finite-time stable when τ ≤ 0.

Lemma 3 [21]: For a nonlinear system ẋ = f (x, t),

f (0, t) = 0. If there exists a positive-definite V and ̟ > 0,

̟ ∈ R and ι ∈ (0, 1), ̟ ∈ R, and V̇ +̟V ι is semi-negative

definite, then x = 0 can be defined as a globally finite-time

stable equilibrium and the whole system can reach stable with

T ≤ V 1−ι(x0,t0)
̟ (1−ι)

for any x0 = x(t0).

Lemma 4 [22]: Let X and Y be topological space, where

Y is a compact set. LetO be an open set of X ×Y and a slice

{x0}×Y of X ×Y belongs toO, thenO also containW ×Y

whereW is a neighborhood of x0 in X .

Lemma 5 [23]: With constants m > 0, n > 0. Given

any positive smooth functionℜ(x, y), the following inequality

holds

|x|m|y|d ≤
m

m+ d
ℜ(x, y)|x|m+d+

m

d + m
ℜ−m/d (x, y)|y|m+d .

III. DESIGN OF NON-RECURSIVE CONTROLLER AND

STABILITY ANALYSIS

It is noticed that many existing results of homogeneous con-

trol design focus on the stabilization problems which are

easier to design and analyze.We firstly use a coordinate trans-

formation to reduce the tracking problem to the stabilization

problem, then a homogeneous control is given, followed by

the stability analysis in remaining part of this section.

A. SYSTEM ANALYSIS AND CONTROLLER DESIGN

To begin our design, we first define the auxiliary variables x∗
i

as






























x∗
1 = G−1

0 yd

x∗
2 = G−1

1 (ẋ∗
1 − F1(x̄

∗
1 ))

. . .

x∗
n = G−1

n−1(ẋ
∗
n−1 − Fn−1(x̄

∗
n−1))

x∗
n+1 = G−1

n (ẋ∗
n − Fn(x̄

∗
n ))

(6)

where x̄∗
i = (x∗

1 , · · · , x∗
i )
T and x∗

i∈N1:n
can be seen as the

system desired steady states. Then we define the coordinates

with zi as



















z1 =
∏1

m=1Gm−1(x1 − x∗
1 )

z2 =
∏2

m=1Gm−1(x2 − x∗
2 )

. . .

zn =
∏n

m=1Gm−1(xn − x∗
n )

(7)

where
∏j

m=1Gm−1 = G0G1 . . .Gj−1, and G0 = 1. The

system model (1) can be transferred to







































ż1 = z2 +
∏1

m=1
Gm−1F̃1

ż2 = z3 +
∏2

m=1
Gm−1F̃2

. . .

żn =
∏n+1

m=1
Gm−1c(u(t) − x∗

n+1)

+
∏n

m=1
Gm−1F̃n +

∏n

m=1
Gm−1D(t)

(8)

where F̃i = Fi((x1, . . . , xi)) − Fi((x
∗
1 , . . . , x∗

i )) satisfies

Assumption 2. Denote z = (z1, · · · , zn)
T and introduce a new

coordinate ζ as

ζ = Lz (9)

L = diag{1/L0, 1/L, . . . , 1/Ln−1} (10)
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where ζ = (ζ1, · · · , ζn)
T . Then we have the following new

system model























































ζ̇1 = Lζ2 +

∏1
m=1Gm−1

L0
F̃1

ζ̇2 = Lζ3 +

∏2
m=1Gm−1

L1
F̃2

. . .

ζ̇n =

∏n+1
m=1Gm−1c

Ln−1
(u(t) − x∗

n+1)

+

∏n
m=1 Gm−1

Ln−1
F̃r +

∏n
m=1Gm−1

Ln−1
D(t)

(11)

From Assumption 2, one has

F̃i ≤
σ
∏i

m=1Gm−1

L i−1

i
∑

j=1





j
∏

m=1

Gm−1





−
ri+τ

rj

|zj|
ri+τ

rj

≤ σ

i
∏

m=1

Gm−12





‖L0‖
ri+τ

r1

L i−1
‖ζ1‖

ri+τ

r1

+ . . . +
‖Lr−1‖

rr+τ
r1

L i−1
‖ζi‖

ri+τ

ri





= σ ∗
i
∏

m=1

Gm−1

(

L∗
0‖ζ1‖

ri+τ

r1 + . . . + L∗
i−1‖ζi‖

ri+τ

ri

)

(12)

where 2 = min{
(

∏j
m=1 Gj−1

)−
ri+τ

rj }j∈N1:n
, σ ∗ =

σ
∏i

m=1 Gm−12 and L∗
j = L

(j−1)
ri+τ

rj
−(i−1)

. Now we have

L∗
j = L

(j−1)
ri+τ

rj
−(i−1)

≤ L
1− 1

maxj∈N1:i
{rj} (13)

So

F̃i ≤ σ ∗L
1− 1

maxj∈N1:i
{rj} F̄i (14)

where F̄i =

(

‖ζ1‖
ri+τ

r1 + . . . + ‖ζi‖
ri+τ

ri

)

. The controller can

be designed as

u(t) = −LnK

(

n+1
∏

m=1

Gm−1c

)−1

⌊ζ⌉
rn+τ
1r

+G−1
n (ẋ∗

n − Fn(x
∗
1 , . . . , x∗

n )) − (Gnc)
−1sgn(zn)D̂

(15)

whereK = (k1, . . . , kn) is the coefficient vector of a Hurwitz

polynomial sn + kns
n−1 + · · · + k2s + k1, τ ≥ 0 is a

homogeneous degree. D̂ is the estimate of D∗. The update

law of D̂ is given as

˙̂
D = η

n
∑

i=1

|ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n | (16)

B. STABILITY ANALYSIS

Nowwe are going to give the main achievement of this paper.

Theorem 1: Based on the closed system (1) satisfying

Assumptions 1 and 2. With the application of controller (15)

and the parameter update law (16), the closed-loop system

obtain global stability. For any initial value x(0) and given

tolerance ε > 0, there exists a finite time T ∗ > 0, such that

‖ζ‖ε, ∀t > T ∗.

Proof: With the controller (15), the system closed-loop

system is obtained as



















































ζ̇1 = Lζ2 +

∏1
m=1 Gm−1

L0
F̃1

ζ̇2 = Lζ3 +

∏2
m=1 Gm−1

L1
F̃2

. . .

ζ̇r = −LK⌊ζ⌉
rn+τ
1r +

∏n
m=1Gm−1

Ln−1
F̃r

−

∏n
m=1Gm−1

Ln−1
sgn(zn)D̂+

∏n
m=1Gm−1

Ln−1
D(t)

(17)

Now homogeneous Lyapunov function can be designed as

W (ζ, D̃) = V +
9∗

2η
D̃2 (18)

where V = 1
2
⌊ζ⌉

κ− τ
2

1r

T

P⌊ζ⌉
κ− τ

2
1r , D̃ = D∗ −

D̂ and P =

[ p1,1 ··· p1,n

...
...

. . .
pn,1 ··· pn,n

]

is a positive definite

matrix that satisfies AT0 P + PA0 = −I , where I is

the identity matrix. Aτ =





0 a1 ··· 0

...
...

. . .
...

0 0 ··· an−1

−k1b1 −k2b2 ··· −knbn





with aj =
κ− τ

2
rj

|ζj|

κ−τ−rj
rj |ζj+1|

−κ+rj+1
rj+1 and bj =

κ−τ/2
rn

|ζn|
κ−τ−rn

rn |ζj|
−κ+rn+τ

rj . 9∗ is a positive constant defined

in (22) and η is a designed positive constant. And κ =

max{rn+1}, we have V ∈ C
1 ∩H

2κ−τ
1r . The derivative of the

Lyapunov function V can be obtained as

V̇ =

n−1
∑

i=1

∂V

∂ζi
Lζi+1 −

∂V

∂ζn
LK⌊ζ⌉

rn+τ
1r

+

n
∑

i=1

∂V

∂ζi

∏i
m=1Gm−1

L i−1
F̃i +

∂V

∂ζn

∏i
m=1Gm−1

L i−1
D(t)

−
∂V

∂ζn

∏n
m=1Gm−1

Ln−1
sgn(zn)D̂

= L⌊ζ⌉κ
1r

T (θ−1PθA+ AT θPθ−1)⌊ζ⌉κ
1r

+

n
∑

i=1

∂V

∂ζi

∏i
m=1Gm−1

L i−1
F̃i +

∂V

∂ζn

∏i
m=1Gm−1

L i−1
D(t)

−
∂V

∂ζn

∏n
m=1Gm−1

Ln−1
sgn(zn)D̂ (19)
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where θ =













|ζ1|
τ/2
r1 0 ··· 0

0 |ζ2|
τ/2
r2 ··· 0

...
...

. . .
...

0 0 ··· |ζn|
τ/2
rn













and we define ϕτ =

θ−1PθA + AT θPθ−1. When τ = 0, it is easy to get that

ϕ0 = AT0 P + PA0 = −I with A0 =





0 1 ··· 0
...

...
. . .

...
0 0 ··· 1

−k1 −k2 ··· −kn





and L⌊ζ⌉κ
1r

T (AT0 P + PA0)⌊ζ⌉κ
1r = −L⌊ζ⌉κ

1r
T ⌊ζ⌉κ

1r . With

the Lemma.4, there exist two constants ς1 and ς2, such that

ϕτ (−ς1, ς2) < 0. Now we have

V̇ ≤−LB1⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r +

n
∑

i=1

∂V

∂ζi

∏i
m=1Gm−1

L i−1
F̃i

+
∂V

∂ζn

∏i
m=1 Gm−1

L i−1
D(t) −

∂V

∂ζn

∏n
m=1Gm−1

Ln−1
sgn(zn)D̂

(20)

where B1 is a positive constant. From (14), we have

V̇ ≤ −LB1⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r +

∂V

∂ζn

∏i
m=1 Gm−1

L i−1
D(t)

+

n
∑

i=1

∣

∣

∣

∣

∂V

∂ζi

∣

∣

∣

∣

σ ∗L
1− 1

maxj∈N1:i
{rj} F̄i

−
∂V

∂ζn

∏n
m=1 Gm−1

Ln−1
sgn(zn)D̂

≤ −LB1⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r +

∂V

∂ζn

∏i
m=1 Gm−1

L i−1
D(t)

+σ ∗L
1− 1

maxj∈N1:n
{rj}

n
∑

i=1

∣

∣

∣

∣

∂V

∂ζi

∣

∣

∣

∣

F̄i

−
∂V

∂ζn

∏n
m=1 Gm−1

Ln−1
sgn(zn)D̂ (21)

With ∂V
∂ζi

∈ H
2κ−τ−ri
1γ , F̄i ∈ H

ri+τ
1r and ∂V

∂ζn
=

(
∑n−1

i=1 {(pi,n + pn,i)
k− τ

2
2 rn

ζ

k− τ
2

ri

i } + pn,n
2k−τ
2rn

ζ

k− τ
2

rn
n )ζ

k− τ
2

−rn

rn
n ,

the following result can be obtained with Lemma.1

V̇ ≤ −LB1⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r + B2⌊ζ⌉κ

1r
T ⌊ζ⌉κ

1r

+
∂V

∂ζn

∏i
m=1 Gm−1

L i−1
(−sgn(zn)D̂+ D(t))

≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r

+(

n−1
∑

i=1

{(pi,n + pn,i)
k − τ

2

2rn
ζ

k− τ
2

ri

i } + pn,n
2k − τ

2rn
ζ

k− τ
2

rn
n )

∗ζ

k− τ
2

−rn

rn
n

∏i
m=1Gm−1

L i−1
(−sgn(ζn)D̂+ D(t))

≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r

+9

n
∑

i=1

|ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n |

∏i
m=1 Gm−1

L i−1
(−D̂+ D∗)

≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r + 9∗

n
∑

i=1

|ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n ||D̃| (22)

where 9 = max{|p1,n + pn,1|
k− τ

2
rn

, . . . , |pn−1,n +

pn,n−1|
k− τ

2
rn

, |pn,n|
2k−τ
2rn

}, 9∗ = 9

∏i
m=1 Gm−1

Li−1 and C = LB1 −

B2 is a positive constant. From (18), we have

Ẇ ≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r +

9∗

η
D̃(−

˙̂
D)

+9∗
n
∑

i=1

|ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n ||D̃|

≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r

+
9∗

η
|D̃|(η

n
∑

i=1

|ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n | −

˙̂
D) (23)

With the update law (16),

Ẇ ≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r (24)

When τ ∈ [0, +ς2), from (18) and (24), we know (ζ, D̃) is

global uniformly bounded for t ∈ [0, +∞), e.i. the whole

system is asymptotically stable. When τ ∈ (ς1, 0], then there

exist a positive constant D such that |D̃| ≤ D. From (22),

V̇ ≤ −C⌊ζ⌉κ
1r

T ⌊ζ⌉κ
1r

+9

n
∑

i=1

|ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n |

∏i
m=1Gm−1

L i−1
(−D̂+ D∗)

≤ −
C

2
⌊ζ⌉κ

1r
T ⌊ζ⌉κ

1r −
C

2
|ζn|

2k
rn + 2(−D̂+ D∗) (25)

where 2 = 9
∑n

i=1 |ζ

k− τ
2

ri

i ||ζ

k− τ
2

−rn

rn
n |

∏i
m=1 Gm−1

Li−1 ≥ 0. Now

we define V ∗(ζn, D̂) = −C
2
|ζn|

2k
rn + (−D̂ + D∗)9(t) with

V ∗(0, D̂) = 0. There must exist a constant λ > 0 and

� = {(ζn, D̂) : V (ζn, D̂) ≤ λ}, such that V ∗ < 0. Once

(ζn, D̂) ∈ �, it will be always in � as shown below.

• Case 1: When (ζn, D̂) ∈ �, then we have

V̇ ≤ −
C

2
⌊ζ⌉κ

1r
T ⌊ζ⌉κ

1r ≤ −cV
2k

2k−τ (26)

• Case 2: When (ζn, D̂) /∈ �, we firstly prove that (ζn, D̂)

will converge to � with in a finite time T1. Actually,

when (ζn, D̂) is outside �, we much have V > λ.

W (0) ≥ W (0)−W (µ) ≥

∫ µ

0

C⌊ζ (s)⌉κ
1r

T ⌊ζ (s)⌉κ
1r ds

≥

∫ µ

0

2CV
2k

2k−τ ds ≥ 2Cλ
2k

2k−τ µ (27)

then (ζn, D̂) will approach to � within:

T1 =
W (0)

2Cλ
2k

2k−τ

(28)

Once (ζn, D̂) enters �, we have

V̇ ≤ −
C

2
⌊ζ⌉κ

1r
T ⌊ζ⌉κ

1r ≤ −cV
2k

2k−τ (29)

The finite-time stabilization can be shown from Lemma3.

Thus, the proof has completed.
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IV. SIMULATION EXAMPLE

In this section, we consider the following system to illustrate

the presented theory.

ẋ1 = G1x2

ẋ2 = G2x3 − B−1N sin x1

ẋ3 = G3W (t) −M ∗ ln(1 + x22 ) + d(t) (30)

whereG1 = 1,G2 = 0.5 andG3 = 2. The initial states of the

system are chosen to be x(0) = [1, −2, 0]. The parameters

of the system are B = 1, N = 10, M = 0.05 for simulation

purpose. The external disturbance has been added in t = 4

with d(t) = 10 ∗ sin(t) and W (t) is the backlash-like input

with system control u(t). Define F2 = −B−1N sin x1 and

F3 = −Mln(1 + x22 ), then we have

|F2(x̄i) − F2( ˆ̄xi)| ≤ σ |x1 − x̂1|
1+τ
1 (31)

|Fi(x̄i) − Fi( ˆ̄xi)| ≤ σ |x2 − x̂2|
1+3τ
1+τ (32)

with τ < 0. It is concluded that Assumption 2 is satisfiedwith

r1 = 1,r2 = 1 + τ ,r3 = 1 + 2τ . Now we have the following

system with (6).



















x∗
1 = yd

x∗
2 = G−1

1 ẋ∗
1

x∗
3 = G−1

2 (ẋ∗
2 − F2(x

∗
1 , x∗

2 ))

x∗
4 = G−1

3 (ẋ∗
3 − F3(x

∗
1 , x∗

2 , x∗
3 ))

(33)

we assume that yd is a bounded smooth reference signal,

where yd = sin(π t). Based on the coordinate (7), we get


























ż1 = z2

ż2 = z3 + G−1
1 F̃2

ż3 =
∏4

m=1
Gm−1c(u(t) − x∗

4 )

+
∏3

m=1
Gm−1F̃3 +

∏3

m=1
Gm−1D(t)

(34)

Then the system is simplified as follows:














































ζ̇1 = Lζ2 +

∏1
m=1 Gm−1

L0
F̃1

ζ̇2 = Lζ3 +

∏2
m=1Gm−1

L1
F̃2

ζ̇3 =

∏4
m=1Gm−1c

L2
(u(t) − x∗

4 )

+

∏3
m=1 Gm−1

L2
F̃r +

∏3
m=1Gm−1

L2
D(t)

(35)

Now we design the following controller

u(t) = −L3K (⌊z1⌉
r3+τ

r1 , ⌊z2/L⌉
r3+τ

r2 , ⌊z3/L
2⌉

r3+τ

r3 )T

+x∗
4 − (G3c)

−1sgn(z3)D̂ (36)

where K = [6, 11, 6] with Hurwitz property and L = 3,

τ = −2/15. As shown in Fig.2, the tracking problem

is achieved by the proposed control method. Even though

the disturbance exists in the system, the perfect tracking

performance can be promised in our simulation.

FIGURE 2. System tracking error.

FIGURE 3. Time history of control input.

V. CONCLUSION

In this paper, a homogeneous non-recursive controller has

been desingned for the tracking problem of a class of non-

linear system with backlash-like hysteresis and external dis-

turbances. The tracking controller is much simpler in the

non-recursive process than the recursive design. Practical

tracking control can be unified with external disturbances and

backlash-like hysteresis. Both asymptotical and finite-time

convergence have been achieved in the proposed method with

the proper gain value and homogeneous degree. The feasibil-

ity of our schemes has been illustrated via some simulation

results.
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