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Abstract

A new discrete non-reflecting boundary condition for the time-dependent Maxwell equations
describing the propagation of an electromagnetic wave in an infinite homogenous lossless rectangular
waveguide with perfectly conducting walls is presented. It is derived from a virtual spatial finite
difference discretization of the problem on the unbounded domain. Fourier transforms are used to
decouple transversal modes. A judicious combination of edge based nodal values permits us to recover
a simple structure in the Laplace domain. Using this, it is possible to approximate the convolution in
time by a similar fast convolution algorithm as for the standard wave equation.

AMS Subject Classification: 78A50, 65N06, 65R99, 44A10, 44A35.

Keywords: Finite difference time domain methods, transparent boundary conditions, absorbing
boundary conditions, fast convolution, waveguide.

1. Introduction

To compute the propagation of electromagnetic (micro-) waves in waveguides is a
standard task in computational electromagnetism. Often the waveguides have a
simple rectangular cross-section and are filled with non-conducting material of
constant index of refraction. This is true, except for a small zone of inhomoge-
neity, corresponding, for instance, to a waveguide junction, a taper structure. As a
model setting we consider two rectangular, homogeneous, lossless waveguides Q,
and Q, with perfectly conducting walls that are linked by an inhomogeneous
region Q of potentially complicated geometry, see Figure 1.

The region Q requires discretization by means of spatial finite element or finite
volume schemes. Of course, this is not an option for the infinite waveguides. Their
impact on the propagation of electromagnetic waves should be modeled by
imposing non-reflecting boundary conditions that link the tangential components
of electric and magnetic fields at the two ports QN Q; and QN Q.

Non-reflecting boundary conditions are a crucial numerical tool whenever the
propagation of waves in unbounded domains has to be computed. There are
basically three different approaches. First, one may use time-domain integral
equations as in [1]. However, this is only an option when one wants to tackle the
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Waveguide | Waveguide Il

Fig. 1. Two connected rectangular waveguides

exterior of a bounded object. Second, absorbing layers have become very popular,
starting with the pioneering work of Bérenger [2]. They are widely used in
waveguide simulation. Third, one can opt for radiation boundary conditions
based on Laplace transforms and temporal convolution, see the articles by
Hagstrom [3, 4] for a survey.

The current paper describes an approach of the third category. It heavily relies on
techniques introduced in [7, 10] for the wave equation. First the non-reflecting
boundary condition is formulated using sine and cosine transforms on the
boundary and the Laplace transform in time. The new challenge in the case of
Maxwell’s equations arises from the staggered location of the discrete unknowns,
which makes it difficult to get a simple form of the Dirichlet-to-Neumann map for
individual modes. We present a judicious recombination of discrete variables that
renders the problem tractable. The boundary condition obtained is discrete non-
reflecting, which means that no spurious reflections due to space discretization at
the boundary enter the computational domain. Transforming back to time-do-
main gives a convolution in time that is evaluated using the fast convolution
algorithm introduced in [7, 10] and described in Section 4.

2. Spatial Discretization

The time-domain electric wave equation in both waveguides, after suitable scal-
ing, reads

2

_7;]: curl curl u. (1)

It has to be supplemented by vanishing tangential components u X n at the outer
walls of the waveguides.

We take a closer look at the waveguide occupying the region
Q) :=]0; 00[x]0; a[x]0; B[, a,b > 0. It will be equipped with an infinite regular
tensor-product virtual grid Gj of mesh-width # > 0. We assume a =Jh and
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b= Kh for J,K € N. On this grid the electric wave equation is discretized by
means of simple finite differences, known as the Yee scheme [11, 14], which can
also be obtained from the finite integration technique [13]. The discrete field
components can be viewed as being located on midpoints of edges. The resulting
difference stencil for the double-curl operator and an edge in x-direction is de-
picted in Figure 2. The stencils for the double-curl operator and edges in y- and
z-direction are obtained by rotation of the stencil shown in Figure 2. Basically,
these stencils describe a discrete counterpart of the curl curl-operator.

To begin with we have to distinguish between edges pointing into different
coordinate directions. Therefore we introduce the sub-grids

1
G = (<i+§>h,jh,kh)7 ieNg, je{l,....J—1}, ke{l,.... K—1},
1
G, = (ih,<j+§>h,kh>, i€Npy, je{0,....J -1} ke{l,..., K —1},

1
G = (ih,jh, (k+§)h), ieNgy, je{l,....0—1}, ke{0,...,K—1},

where G‘,f, d € {x,y,z}, contains the midpoints of edges in direction d. Let th
denote the space of real valued grid functions on grid G¢. Then the discrete
electric fields in Q, can be described by grid functions in the space
F,:=F xF} x Ff.

The discrete curl curl-operator in Q, subject to homogeneous Dirichlet boundary
conditions represents a linear mapping %, : F,—F,. For a grid function
w, = (uf,u),,u;) € F; the components v}, v) and v} of v, := %ju, are given by

m
P q |
y m
&
z L7 C p
- @
X |
p |
: m
p Pm
|
o

Fig. 2. Difference stencil for double-curl operator and edge in x-direction (scaled by /4?)
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i) =z (A7) (0) + (R () + (R ) @), D€ G
) = o (E)0) + A0 + RER)®). G (@)

G (0) = 73 (R) () + (R i) () + (=A7"16)(1). p € G,

Here, writing e, d € {x,,z}, for the unit vector in direction d, the grid operators
Aﬁj’ﬂ cF)—F, {d, f,g} = {x,y,z}, are defined by
(=85""ui) () = dusf (p) — 1 (p — heq) — u(p + hey)
— uy(p — hey) — uj(p + hey), (3)

for p € GY. Similarly the grid operators R;d’f ) F »—>F,{ are given by

)0 = (p+§ea+e) ) it (p+ 5 e =)
—uj <p+g(—ed +ef)> + uj <p+g(—ed —ef)) (4)

forp e G; ,{d,f,9} = {x,y,z}. Thus we have converted the stencils into formulas.
Eventually the semi-discrete electric wave equation becomes

dzllh

—W = (ghllh. (5)

It has to be supplied with initial values at time ¢ = 0. For the sake of simplicity we
will always assume that in the beginning there are no fields in Q;, i = 1, 2, that is
u;(0) = (£u,)(0) = 0. Then the Laplace transform with respect to ¢ gives

Ly = ((gh +S2)ﬁh =0. (6)

3. Derivation of Non-Reflecting Boundary Conditions

Next we carry out a modal decomposition of the tangential components of u, in
the plane of the port I' := QN Q,, which lies in the y-z coordinate plane. Let I,
denote the grid restricted to I'. Hence only nodes for y- and z-components are
located on Iy, see Figure 3. More precisely they form the sub-grids

1
I = (0, <j+§>h,kh), je{0,....J—1}, ke{l,....K—1},

1
I = (O,jh, <k+§)h>, je{l,... -1}, ke{0,....K—1}.
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jl

0 1 k1

Fig. 3. Grid I,

The associated spaces of grid functions are denoted by P, and P;. They are
restrictions of Fj and Ff to I';, respectively. Write

YUR (y, z) == cos(npy) - sin({z),
n:=jn/a, j€{0,...,J—1}, (i=kn/b, ke{0,....K—1},
ZUR (p,z) == sin(ny) - cos((z),
n:=jnja, je{0,...,J—1}, (:=kn/b, ke{0,...,K—1},
and observe that
P) = Span {p+— YU (p),j € {0,...,J—1}, ke {0,....K—1},pe T}},
P = Span {p— zU%(p),j € {0,...,J—1},k e {0,... ., K—1},p € I}
For ease of notation we consider a zeroth sine coefficient, which is redundant. For

a grid function u) € P, the cosine-sine transform coefficients ), are given by the
relation

k..

“1K-
uy (0,,z @, (j,k)YU® (y,z)  for (y,2) € T, (7)
=0

._.

T
o

This bijective cosine-sine transformation (0, -,-)— i, will be denoted by %.
Similarly, for uj, € P;, we define the sine-cosine transform coefficients i by the
relation
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<
>

1 (0,3,2) = i6,(j.K) 209 (1,2) for (v,2) € T, (8)
j 0

T
(=}
g
I

The corresponding bijective mapping will be abbreviated by Z.

Beside the grids I’ and I'; we need two layers of edges in x-direction adjacent to
the port. They bear the grids

U,% = (=h/2, jhkh), je{l,....J—1}, ke{l,....K—1},
TS = (h/2,jhkh), je{l,....J—1}, ke{l,... K—1}.

We denote the restriction of Ff to I';* by P and set

XUR)(y, z) == sin(ny) - sin({z),
n=jnfa, j€{0,...,J—1}, (=kn/b, ke{0,...,K—1}.

For uj, € P; we define the sine-sine transform coefficients #; by the relation

J-1 1

wy(h/2,y,2) =Y Y a(j, k)X (y,z) for (v,2) € T, ©)
Jj=0 0

N

=~
Il

We adopt the notation Z for this bijective transformation.
Now we study the action of the discrete differential operator %, on a function
w, = (u},u,,u;) € Fj, that is of the special form

w0 (x,,2) = XU (,2) - wj(x), (x.3,2) € G,

u) (x,9,2) = Y90 (y,2) - w)(x), (x,,2) € G, (10)
i (6y,2) = ZU0 (,2) - wi(x), (n0,2) € Gy,

u

where wy, wi: {ih},cn, — R and wi: {(i +$)h};y, — R are grid functions on a
one-dimensional equidistant grid, see Figure 4. In the sequel the spatial fre-
quencies # and { are fixed, since we focus on individual modes.

Fig. 4. Location of nodes for wj, w;, and wj, on the x-axis
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Using elementary manipulations we calculate for a single mode
R (p) =R (Y4 (3,2)w) (x))
=cos(n(y+h/2))sin({z)w) (x+h/2) —cos(n(y+h/2))sin({z)w) (x—h/2)
—cos(n(y—h/2))sin({z)w) (x+h/2)+cos(n(y—h/2))sin({z)w; (x—h/2)
=(cos(ny)cos(nh/2) —sin(ny)sin(nh/2))sin({z)w, (x+1/2)
— (cos(ny)cos(h/2) +sin(ny) sin(nh/2))sin () w] (v /2)
+ (cos(ny)cos(nh/2)+sin(ny)sin(nh/2))sin(Lz)w),(x—h/2)
— (cos(ny)cos(nh/2) —sin(ny)sin(nh/2) wy(x—h/2)
—— 2sin(nh/2)X0% (7.2) (4] (v /2) —

)sin(¢z
wy(x—h/2))
for p € Gj and

—AP g (p) = —AY? (XK (v, 2)wj ()
= (4sin(ny) sin({2)wj(x)) — (sin(n(y — b)) sin({z)w} (x))
— (sin(ny) sin({(z + h))wi(x)) — (sin(n(y + b)) sin({2)wj (x))
— (sin(p) sin({(z — h)wj(x))

— (4sin(ry) sin(2)w} (+))
— ((sin(i1y) cos(h) — cos(ny) sin (k) sin((z)w(x)
— ((sin(ny) cos(nh) + cos(ny) sin(nh)) sin({z)wj, (x)

— ((sin({z) cos({h) — cos({z) sin((h)) sin(ny)wy (x)
— ((sin({z) cos(Ch) + cos({z) sm(Ch)) sin(ny)w; (x)
(

(X
= ((2sin(nh/2))* + (2sin(Ch/2))) X7 (v, 2)w) (x)

in(n

for p € Gj. For all the other terms in Equation (2), due to the symmetry of the
stencil, we get, using the abbreviations

ry = %sin Ghn> , = %sin th) ,

15,(p) = X (v, 2)hre (Wi (x — h/2) = Wi (x +h/2)), P € G,
R (p) = YH (v, 2)hry (W (x + h/2) — wi(x — h/2)), pEG),
(p) = Y (,2)Prerpwiy(x), peEG),

(p) = Z4(p. 2 hre (Wi (x + h/2) = wi(x — h/2)), pE G,
RV uy(p) = —Z* (v, 2)Prerwy(x), P € G,

(p) =

»)

AS) () = Y (3, 2) (2 + (hre))w)(x) — wl(x + h) — wi(x — h)), pE G,
A () = 240, 2) (2 + () Wi () = W (e B) = wix = ), D € G,
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TAV

Fig. 5. Talbot contour

This yields

X(f*k)w; XW‘)qi
(ot )= (et )
20K 700,

where the grid functions ¢}, ¢, and ¢; are given by

@y, = (ry + )Wy, = 1403 oWy — 128 12w,
@, = 102wy, + (=14 +r§)WZ — Iyl Wy
@ = 1e8y W), — rergwy + (=A% + i)W

The difference operators are defined as

F et i) — Fx—1
(85 2/ () Il +2h>hfh( 2t (H—;)h, ieNg, (1)

(=& F)(x) o= )~ Salx ;j”‘fh(”h), x=ih, i€N. (12)

The crucial insight is that each pair of spatial frequencies (1,{) defines
an invariant subspace for %, containing functions of the form (10).
Hence modal decomposition reduces the action of % to coupled one-dimensional
difference equations. Equation (6), when considered in the invariant subspaces,
reads
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(”5 + V? + 5w, — 740y 2Wy, — 170y W5, = 0,
r0paWi + (=4, 417+ 57wy — ryrewi, = 0, (13)

}"C(S}:/ZM/;I — reegwy, + (—A; + r,% + sz)wfl =0.
What bars us from a straightforward application of the ideas that have been
successful in the case of the wave equation, cf. [7, 10], is the staggered location of
the wj, nodal values. A remedy is to introduce the difference of these nodal values

as auxiliary grid function

th(x)Z‘Vh(x—%h) —wf‘h(x+%h>, (14)

which results in
(rg + 17 4 $2)py + hry Nywy + hrcAjw), = 0,
7y %pz + (=4, + 12 4 5h)wy = ryrew, =0, (15)
s p" rerywy + (=85, + 1y +57)wj, = 0.

Now we apply the zeta-transform to (15). Defining the formal series

X(&) = pynh)e", Zw} nh)& and  Z(&) =Y wj(nh)E",

n=0 n=0

we can rewrite Equation (15):

(42 +2X(E) - E 2491 - FE -2+ 92(9)

(Wi (0) — wi(—h)
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Solving for X (&), Y (&) and Z(&) we get

X(E):hrn(Wyh(—h)f—WZ(O))Jrrg( i (=h)& —w;(0))
i —1+((r,27+r§+s2)h2+2)é—§

—wi(0) + wj (=h)¢

)

Y(é):—1+((r$]+r§+s2)h2+2)§—52’ (16)
A=) ((Zgﬁ(fgig;?i)é - &

To begin with, since p}(0) does not occur we obtain the relationship
Pi(0) = wy(=h/2) = w,(h/2) = —h(ryw;,(0) + row; (0)). (17)

The second and third equation of (16) are of the form
= 1

nz:; e = 1= ((r2 + rf +s2)h2 +2)¢ + fzq(f)7

where ¢(&) = go + ¢1 £ is a polynomial of degree 1 in &, with coefficients depending
on boundary values w7 (0) and w),(0) and on auxiliary values w? (—h) and wy, (—#).
A fractional decomposition gives

1 1
Zocn "—C< 5-m)(%+%§)
n=0
(z ——a) .

0

(Sn(a-g)Sa(a-g))

c<§°°j((qo+ql) (qo+qlfo>§ig)f"—m(éo—éol)),

n=0

where ¢ := (&, — &) and & is the root of 1 — (72 + 12 + s2)h* + 2)& + &, such
that || < 1 for R(s) > 0. Hence the sequence o, will only be bounded for n — oo,
if

q0 +¢q1& = 0.

Since the sequences w),(nh) and wj(nh) have to be uniformly bounded, this con-
dition gives

wy(0) = wy(=h)&o =0, w,(0) — wj (=)o =0,
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and equivalently

iy ~HCH 0, 0
0

wi(0) = HE =0, (19)
0

These vyield non-reflecting boundary conditions for the time-dependent
Maxwell equation in a waveguide. Equation (17) is redundant, as we will see in
Section 5.

Equations (18), (19) and (17) are spatially discrete non-reflecting boundary con-
ditions in the Laplace domain expressed with respect to the transversal modes,
because they provide equations for the values wj(0), w5 (0), and wj(h/2) as
functions of nodal values inside Q. It is important to note that one more layer of
the regular grid is required on the Q-side of the port, cf. Section 5.

Transforming back to time and grid domain we get the following relation between
boundary values and differences of boundary and auxiliary values for w,

uz<h/21y’27 t) = u)}i(_h/zhyvz’t)
+ 27 (B @ (0, -, 0) (. k) + reZ (6,0, 1) (G, K)) 0, 2),

uy(o y’Zt (/ fj t—‘L' @(uh( h7 ) ’T)_MZ(Ofv"T))(jak) dr)(y,z),

020 = 27 ([ 140 920 = 0,400 d ) 0:2),
(20)

where 2, % and Z denote sine-sine, cosine-sine, and sine-cosine transforms,
respectively.

The Laplace transform Fj(s) of f;(¢) is given by

1
Fi,k(s) = ﬁ
0

2 (1)

- 12 12\
h2<(r%+r§+sz)+<r%+rg+sz) (r%—i—rf—i—sz-i-,%) )

Recall that

Py = %sin(%hjg), re = %sin<%hk%)

were defined previously.
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Thus, we are left with evaluating the temporal convolution for each transform
coefficient. Its efficient evaluation will be the focus of the next section.

4. Convolution Algorithm

In this section we describe the algorithm for computing temporal convolutions.
This algorithm was first presented in [7], where it was applied to non-reflecting
boundary conditions for Schrédinger and wave equations. Here we give a brief
description of the algorithm and provide the outline of an implementation in
MATLAB [8].

From (21) it is clear that the function s+ F, ¢(s) has singularities in

+ao, ot::i,/r,%—i—rg andin 47, y::i,/r,21+r42+4/h2.

For convenience we drop the subscripts of Fj; and fj for the remainder of this
section.

Consider the convolution

/ - D)g() di

which is to be computed on the grid r = 0, At, 2A¢, ..., T = N,At with step size At.
Here f and g play different roles. As shown above we are interested in situations
where the evaluation of g(t) at t = nA¢ requires knowledge of the values of the
convolution up to (n — 1)At, so that the required values of g(t) cannot be com-
puted in advance. It is the Laplace transform F(s) of the convolution kernel f'(¢),
rather than the kernel itself, which is known a priori and can be evaluated easily.
Therefore the algorithm should use evaluations only of F(s).

The algorithm presented below will only require ((N,logN;) operations and
O(log N;) memory. It approximates the kernel f(¢) by sums of exponentials locally
on a sequence of fast-growing intervals I, covering [At, T):

I = [B"'At, (2B — 1)A), (22)

where B> 1 is an integer and ¢=1,...,K such that (2BX —1) > N,. The
approximation of f(¢) on I, results from applying the trapezoidal rule to a
parameterization of the contour integral for the inverse Laplace transform,

1 N ©
f(t) = 3 F(l)e*di~ Z wj(-Z)F(/IJ@) &, rel, (23)
mJr, j=-N

with a suitably chosen complex contour I'; to be described in detail below. The
number of quadrature points on I'y is chosen independent of ¢, but may depend
on the kernel. It is much smaller than what would be required for a uniform
approximation of the contour integral on [0, 7.
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The numerical integration in (23) is done by applying the trapezoidal rule with
equidistant steps to a parameterization of a Talbot contour [9, 12], which is given
by

(—n,m) = T 00+ pu(0cot(0) + ivh) (24)

where the parameters u, v and ¢ are such that the singularities of F(s), +o and £y,
lie to the left of the contour. We will use up to four shifted Talbot contours to
enclose all the singularities of F, see Figures 6 to 9.

We set 69 = 0, 1ty = 8, = 15/ ((2B" — 1)At), vo = 0.6 and ff = muvy/2, i.e. B is the
imaginary part of the intersection of the Talbot contour given by vy and p with
o = 0. The parameter u depends only on ¢, whereas the parameters v and ¢
depend on the singularities of the kernel, £o and +y. The parameters y, and v
were obtained by minimizing the error in approximation (23). For a more detailed
discussion on the error for general F' see the references [9, 12] and for a discussion
on the error for the Laplace transform F of the convolution kernel under con-
sideration here, which is the same as for the wave equation, we refer to [7, 10].

We choose I' to be one contour I'y enclosing all four singularities if o < f# and
B < (y—0a)/2, setting v=vo(l +o/f) and o = a.

1000 T T T

800 [

600 [

400

200 -

0

—200 |

—400

—600

-800

-1000 . . I . . .
—3500 -3000 -2500 -2000 —1500 -1000  -500 0 500

Fig. 6. One contour enclosing all singularities

We choose two contours Ty and Ty if o > B and B> (y —a)/2 where T is given
by v=vw(l+(—a)/(28) and o= (y+a)/2 and T, is given by
v=nvo(l+(y—2)/(2f)) and 0 = —(y + 2)/2.
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500 . . .
400 \\\ .
300} _
200 .
100 | .

0 ///\

—100} g

—200 | q
—300 | B

—400 | // |

-500 1 1 I I I . 1 1
-1800 -1600 -1400 -1200 -1000 -800 -600 —400 -200 0 200

Fig. 7. Two contours enclosing all singularities

This choice of I'y can be written as the pseudo code given in Figure 10. There we
use the abbreviation A(u,v, o, N) for a vector of length 2N — 1 whose entries are
points on a Talbot contour I given by the parameters y, v and o and w(y, v, N) for
a vector consisting of the quadrature weights w; corresponding to I', given in
Equation (23). exp denotes the exponential function and .x the element by ele-
ment product of two vectors.

We choose I' to be three contours I'y enclosing +a, I'; enclosing y and lA“l
enclosing —y if < fand f# > (y — «)/2 where I'g is given by v = v(1 +7/p) and

o =0y and I'; is given by v=vy and ¢ =y and I'; is given by v=vy and ¢ = —y
300 T T
200 [ ) 7
VV”H‘
100 4

—100 | 1

77777777777777777777

—200 ) B

—300 L . L L L L
—350 —300 —250 —200 -150 —100 -50 0 50

Fig. 8. Three contours enclosing all singularities
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We choose four contours I'y, IA“Q, I'; and lA“l ifa > fand f > (y —«)/2 where Iy is

given by v = vy and ¢ = o and T’y is given by v = vy and ¢ = —« and I' is given by
v=vg and ¢ =y and T’y is given by v =v and ¢ = —9.
300
B i *****——»_;;*’**N
200 >
e Al
100 - \‘W>
— /"M
0
\*\*—w
-100 - ’_.M>
el T e,
-200 F >
—_— ""*’Ha
—300 1 L I 1 1 L
-350 —-300 -250 -200 -150 -100 -50 0 50

Fig. 9. Four contours enclosing all singularities

For general boundary points a < b in the integral we have

/abf(t —1)g(t)dr = /abzlm/rF(i)egf)z dig(t)dx
1

b
F(/l)e(’fbﬂ/ e g(1)dr dJ

—_—
()

_27Tl r

where the inner integral (x), henceforth denoted by y(b, a, ), is recognized as the
solution at time b of the scalar linear initial value problem

V=+g, yla)=0. (25)

If [t — b,t — a] C I, then the contour integral over the Talbot contour I' = I is
replaced with its trapezoidal rule approximation (23), which gives (omitting the
superscripts ¢ for notational simplicity)

b b N 4
/ f(t—1)g(r)dt ~ / Z wiF ()" g(t)dr
a j=—N

a

N
= Z wiF (4)e" "%y (b, a, 1;). (26)
J=—N
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(A, EAFAW) = talbotcontour(c, at,dz, K, o, 7, B, N, o, 1)

for /=1,... K
p=po/(atx (2% BE — 1) ; k= 7% p ¥ /2
if a<k
if k<(y—a)/2
Ag = Ap, v+ (1+ a/k),0,N)
W =vw(p,vp* (1 +a/k),N)
EAFAW, = exp(Ag * dt * B1) * F(Ay, ¢, a,7,dzx) ...
FWx1/(2xixN)
else
Ag = [Mp,vo* (1 +7/%),0,N), A, 0,7 N) 5 A, vo, =7, N) |
W = [w(p,vo * (L +7/K), N), w(p, vo, N) , w(p, vo, N) |
EAFAW, = exp(Ag * dt x BY) * F(Ay, d, o, 7y, dx) * ...
Wx1/(2%ixN)
end
else
if K>((y—a)/2
Ag=[AMp,vo* 1+ (v —a)/2), (v +)/2,N), ...
AMp,vo* (1 + (v = @)/2), =(v + a) /2, N) |
W = [w(p,vo* (14 (v —a)/2), N), AMp, nug = (1+ (v —@)/2),N)]
EAFAW, = exp(Ag * dt x B * F(Ay, ¢, a,7,dx) * ..
Wx1/(2xixN)
else
Ao = [Mp,v0, 0, N) , M, vo, —a, N) , A, vo,79, N) ...
Mg, v, =7, N) |
W = [w(p,vo,N), w(p,v9,N), w(u,vo,N), w(p, vy, N)]
EAFAW, = exp(/ *dt*BZ_l) K F(Ag,c,a,7,dz) ...
FWx1/(2xixN)
end
end

end

Fig. 10. Algorithm for the choice of Talbot contours

The 2N + 1 differential equations (25) with 4 = Z; are solved approximately by
replacing the function g with its piecewise linear approximation and then solving
exactly. Setting g, = g(a + nAt), we get approximations y, =~ y(a + nAt) recur-

sively via



Non-Reflecting Boundary Conditions for Maxwell’s Equations 281

1
Var1 = %y, + At / =DA% gg, 1+ (1 — 0)g,)d0

0
A — Gnt1 = Gn gnt1 — 4 (27)
— - - A A A < < _A n n
wt S (At Mgy M) A
In+1 — 9n In+1 — Yn
=y, + D(AA) [ Atdy, + Atg, + At — ,
i+ ®(AL2) (At + Ay + AL ) )

where ®(s) = (e* — 1)/s. The values of the vector ¢, ® evaluated in A, used by the
function expint, Figure 11, are calculated once in the beginning, see the
initialize function given in Figure 14. There phis denotes the function
s— ®@(s) implemented in the package EXP4 described in [5].

To estimate the error, note that in total we approximate

b b
/ £t = Dg(x)de ~ / £t —)g()d,

where f is the quadrature approximation to f constructed using the Laplace
inversion due to Talbot, whose error is well under control, and ¢ is the piecewise
linear interpolant of g.

The approximations of the inverse Laplace transform and the solution of the
initial value problems (25) can be combined into a fast convolution algorithm that
requires O(N,logz N,) arithmetical operations and O(logz N,) memory. For a
detailed step by step explanation of the algorithm we strongly advise the reader
to have a look at one of the references [7, 10].

The general base-B algorithm approximates the convolution as follows: in the nth
step (n =1,...,N,), let t = nAt approximate g on [t — At; ¢] linearly. So we get

Y = expint(Y, A, ¢, gn,gnl, At, K)

% input

% Y, A, ¢ vectors of length K of complex vectors
% (i.e. Ay is a complex vector and 1 < /¢ < K)
% At real ; gn,gnl complex ; K integer

% output

% Y vector of length K of complex vectors

dg = gnl —gn ; dgDdt = dg/at
for/=1,...,K
Yo = Yo+ (Ag * Y, + gn + dgDdt. /Ag) — dgDdt./A,

end

Fig. 11. Pseudocode for the integration of differential equation (25)
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/ltmf(rr) dm/ f(t—1)deg(t — A?)

/f year ) =91 =AY A(t’_M (28)

The integrals are approximated as the inverse Laplace transforms of F(s)/s and
F(s)/s?, respectively:

At N
b= [ SA—)dr xS wiF()/h
0 j=—N

¢y = f(At—‘c Jrdt ~ Z wiF(2;) /)2 Aty

Jj=—N

where the weights w; and nodes 4; correspond to a Talbot contour with the
parameters chosen for 1 = At. ¢, and ¢, are calculated once and are reused in
every step, so it is favorable to calculate them with high accuracy, i.e using more
points on I' than usual.

To approximate

t—At
/ £t - Dg(x)dr
0

let L be the smallest integer for which ¢ < 2BAt. For ¢ = 1,2,...,L — | determine
integers B > g, > 1 such that

1, = qB'At satisfies 1 — 1, € [B"'Ar, (2B — 1)Ad).

Note that g, is increased by 1 every B’ steps, and t — At > 7y > --- > 1,1 > 0. Set
19 =t — At and t; = 0. Then we split and approximate

t—At L T
/0 Fl—ng@dr=3" / £t - )g()dn (30)

L
~ Z wy)F(ﬂvy))e(’ i) y(w I,T/,ij([))v (31)
¢

l
~.
\ |
2

where wj(-@ and iy) are the weights and quadrature points for the Talbot contour

I'; that corresponds to the base-B approximation interval I, = [B“"'At, (2B — 1)
Af] of (22). Note that [t — 14—y, — 1¢] C I; for all £. The differential equations
determining y(¢, 7, 1) are advanced by one step of (27) for all values 4 on all Talbot
contours for every time step ¢ — ¢+ At. The operation counts and memory
requirements are proportional to N,K,N and K,N, respectively, where the number
of integration contours is bounded by K, < logg N,.
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bmax

Fig. 12. Tessellation of the ¢ — t plane for B = 5. For ¢ = 2 the maximal and minimal value of t — 7,
are indicated by arrows

The approximation (31) is calculated by the algorithm convolutionint given
in Figure 13. Note that EAFAW and EA are vectors calculated once in the
beginning by the initialize function given in Figure 14.

The algorithm that stores and organizes the solutions of all the differential
Equations (25) according to the splitting (30) is given in Figure 15. There

e Y is the solution of the differential equation, which is updated in every step by
expint and has to be restarted with starting values 0 if n is a multiple of B,

e YM stores the solution of the differential equation if it is completed, i.e it
corresponds to the stair-shaped regions in Figure 12,

e YT contains the solution of (25) that are required by convolutionint and

e YA corresponds to the rectangular intermediate light gray regions in Figure 12,
where the tessellation of the ¢ — t plane is given for B = 5.

Further explanations are given in [7], Sections 2.4 and 2.5.

5. Complete Discretization

Many options are available for the spatial discretization of the electric wave
equation inside Q (taking into account the transition layer adjacent to the port,
where Yee’s scheme still has to be used). We assume that the mass matrix related
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(b,YT) = convolutionint(FAFAW,YT, EA, L)
b= sun(EAFAW; * YT})
fork=2...L

b=">b+ sum(EAFAW;, * YT})

YT, =FEA, *YT,

end

Fig. 13. Pseudocode for the evaluation of the convolution integral

(A, EAFAW) Y, YT, YM,YMt, YA YAt o, EA, EAJ, q, K, L)
= initialize(c,dx, At,nt, B, N, ug, Vo, @, )

% input

% c,dx, At, pog, v real ; nt, B, N integer ; «,7y complex

% output

% S, EAFAW) Y, YT YM,YMt, YA Y At,p, EA, EAJ
% vectors of complex vectors

% q real vector of variable size ; K, L integer

K = ceil(log((nt +1)/2)/log(B))
[A, EAFAW] = talbotcontour(c,at,dx, K,a,v, B, N, ug,vy);
for j=1: K
YA =YM;=YT;=Y; =0xA; ; YMt;=[0,0]; YAt; = [0, 0]
; = At x phis(at x Aj)
EA; = exp(Aj x At)
EAJ; = exp(Aj x at x BI71)
end
q=[0];L=0

Fig. 14. Overview of required values necessary for the convolution algorithm, which are calculated

in advance

to the dielectric coefficient € will still be constant. Then the semi-discrete equation

inside Q reads

dzllh
W—i_ T puy =0,

where 7, is a discrete version of curl u~'curl subject to Dirichlet boundary
condition on the ports and scaled with the inverse ¢ mass matrix. Next, we use the

explicit leap-frog scheme for time-stepping
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(Y, YA, YM,YT,YAt, YMt, L, q) —
yupdate(Y, YA, YM,YT,YAt,YMt,L,q, EAJ,n,at, K, B)

T=1]
nl=n+1
f=1;m=1

if 2BL =nl+1;L=L+1;end
while mod(nl +1,B) =0& ¢ < L
if [ >length(q) ;9=[¢q, 0] end
G=q+1;0=0+1
end
T=dt*[nl, q¢.x(B.[1 : length(q)]), 0]
while mod(nl, B V) == 0 & m < K
if mod(nl, B™) == 0
YA, =Yy ; YAt,, = [ nl*xat, YMt,,(2) ]
YMy, =Y s YMt,, = [ nlxat, YAt,(2) ]
Y, =0xY,
else
YM,, =Yy ; YMt,, = [ nlxat, YAt (1) ]
end
m=m-+1
end
for k=1... length(r) — 1
if 7, = YMt(1)
YT, = YMy
if 741 # YMty(2)
YA, = EAJ .« YAy ; YT, = YT, + YA,
end
end

end

Fig. 15. Organization of the solution of differential equations

wi(p, (n+ 1)A) = (2 + APT ) wy (p, nAt) — wy(p, (n — 1)As).

How can we incorporate the new non-reflecting boundary conditions in the
context of leap-frog time-stepping? The non-reflecting boundary conditions as
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given in Equations (20) are implicit in time and are used to update boundary
values of u;, at the ports. Yet, the leap-frog time-stepping is explicit and it is highly
desirable to have explicit non-reflecting boundary condition, too. To obtain them
we have to modify the direct step in the convolution algorithm. Instead of
interpolating differences of boundary and auxiliary values linearly as in Equa-
tion (28), we will use linear extrapolation at this stage. More precisely, we
approximate, with ¢, and ¢, from Equation (29),

e (1) — gt = A1)

[ 7= D9 = b0 + 9 T

(33)
The transition layer at a part of the port is shown in Figure 16. The solid
edges are located in the interior of Q and their nodal values (represented by
white arrows on solid lines) are to be updated in the course of leap-frog time-
stepping. To do this, the leap-frog scheme needs auxiliary values from edges
located in the port plane I' and from x-edges in the transition layer (black
arrows on dashed lines in Figure 16). These are computed using the convo-
lution algorithm, i.e

Transition

port

Fig. 16. Interface layer with auxiliary boundary values
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MZ(O,y,zJ—FAt):qy*l q)l(/ak)jy(L[Z( PAERE ) MZ( CAERS] ))(/vk)
+ P8 )0, )
— W (uy(—h,-, 1 = At) =1 (0,-,-, 1 — A1) (j, k)

[ a4 A= )= 0 0) ke | (.2,

calculated using the fast convolution algorithm

HZ(O,y,Z,[+AI):fZ : (I)l(jvk)g(uiz(fhv'fat)7”;(07'5'70)('ak)

P8 (0 ) =10, )
—f(u;(—h,-,-,t—At)—uZ(O, » 5l ))(] k))

+/Otfj,k(t+At_T);JZ(uZ(_ha'v'at)_MZ(OVVJ))(jvk)dT (y,Z).

calculated using the fast convolution algorithm

where ®; and ®, are given by

N N ,

Fi (4 F ,

O (j,k) = jw,%l’)emf and  ©(j.k) = > :wlyeA”“’, cf. (29)
I=—N I=—N /

The components of the field in the boundary layer orthogonal to the boundary
(black sharp arrows on dashed lines pointing in x-direction in Figure 16) are
updated using the leapfrog scheme in the transition layer, which requires
boundary and auxiliary values only. Thus, as stated in Section 3, Equation (17) is
redundant.

Using the definition of ¢} from (11), we can rewrite the boundary condition.

(0, y,2,t + At) = U~ Oy (j, k)W (=3} iy (—h/2, -, 1) (), k)

+‘D2X;k)( (i) (~h/2, -, 1) (. k)
— (RS} iy (~h )2, -t = A1)

/fj t+ At — )Y (—hd}, o, h/2,-,-,t))(j,k)dr]( ,Z)
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u;(oayaz7[+ At) = g*l (D](j7 k)g(_héz/ﬂ’l;(_h/zv B ))(] k)

+%’t,k) (g(_hg;;/zu;(—h/z,-,~,t))(/'7k)

— (=8}t (~h /2yt = A K) )

+/0 fj,k(erAf—T)ff(—h5i/zu2(—h/2m-,f))(i,k)dfl »,2)

Remark: Sine and cosine transform are implemented using fast transform algo-
rithms. The fast sine transform can be implemented straightforward using the
standard fast Fourier transform that comes with MATLAB. The usual cosine
transform as given for example in Section 5.6 by Jain [6], uses a scaling of the first
coefficient different from the one we use in Equations (7) and (8), so it has to be
modified. The reordering given in [6] remains valid, though.

Figure 17 gives an overview of the algorithm for the time integration of Maxwell’s
equations.

6. Numerical Experiments

To validate our non-reflecting boundary conditions we calculate the evolution of
an electric wave in a homogeneous lossless waveguide Q = [—o0; 00] X [0; 7] x [0; 7]
with perfectly conducting walls. The computational domain is given by Q = [0; 7]
x[0; ] x [0; =]. Thus we are using our non-reflecting boundary conditions at x = 0
and x = 7. We compute an approximate solution u for the electric wave equation

(1) in QU Q; U Q, subject to the initial condition

d
u(0) =uy and Eu(O) =0,

where the divergence-free initial value uy at £ = 0 is given by

15 (x,,2,0) = oexp(—((x —1/2)* + (v —1/2)* + (2= 7/2)%) /wo) (2(y = 7/2) /wo)

1y (x,,2,0) = oexp(—((x —7/2)* + (v —1/2)* + (2= 7/2)) /wo) (2(x — /2) /g
+2(z—m/2)/wo)

5 (x,,2,0) = oexp(—((x —1/2)* + (v —1/2)* + (2= 7/2)%) /wo) (2y — 7/2) /wo

Here o = 5 and wy = 0.05 are parameters set to fit uy to the computational do-
main. In the discrete scheme, ug is interpolated onto the edges of the grid. Then
another L?-orthogonalization is carried out, in order to ensure that the discrete
initial value u,(0) is approximately orthogonal to the kernel of the discrete curl.
This is essential for obtaining meaningful solutions of Maxwell’s equations.
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B, N, g, v9 parameters for the convolution algorithm
At,nt step size and number of steps for time discretization
dx,dy,dz, sz, sy, sz mesh width and geometry size

a,7 singularities of the convolution kernel for “sin cos” coefficients and
“cos sin” coefficients

(S, EAFAW. Y, YT, YM,Y MLt YA YAt o, EA,EANJ, q, K, L)
= initialize(c,dz,At,nt, B, N, ug, vg, o, y)
®1, Py matrices calculated from Equation (29)
initialize discretization in the interior
go, 91 calculated from Z, Y transforms of differences in transition layer
Y = expint (Y, S, ¢, g0, g1, At)
(VYA YM, YT, YAt, YMt,L,q) =
yupdate(Y, YA, YM,YT,YAt,YMt,L,q, EAJ, 0, at, K, B)
forn=1... N

advance leap-frog scheme in computational domain 2 from nat to (n+
1)At using values in auxiliary boundary points at time nat

(b,YT) = convolutionint EA, EAFAW,YT, L)
update values in auxiliary boundary points to (n + 1)At
calculate g,+1 from Z ) transforms of differences in transition layer
Y = expint (Y, S, ¢, gn, gn+1,dt)
(Y,YA, YM, YT, YAt, YMt, L,q) =
yupdate(Y, YA, YM, YT, YAt,YMt,L,q, EAJ,n,at, K, B)

end

Fig. 17. Complete time-stepping for Maxwell’s equations in Q using convolution based non-reflecting
boundary conditions

The second initial condition is incorporated by formally setting
1
uh(—At) = llh(0> - EAlz(ghuh(O).

We refer to Section 2 for the definition of .

We measure the error introduced by the non-reflecting boundary conditions by
comparing the discrete solution with a reference solution calculated on the larger
domain Q,.; = [—7;27] % [0; %] x [0; n]. Hence, we can be certain that no spurious
reflections pollute the reference solution before # = 2n. Any deviation of both
solutions must be due to the approximation error of the inverse Laplace trans-
form and the error introduced by the different ways of time-stepping used inside
the computational domain and on the boundary.
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Calculating on a uniform grid with 32 and 64 grid points in each direction (i.e.
h=mn/32 and h = /64) and setting the parameters of the convolution algorithm
B =5, N = 15 the evolution of the /; norm of the error is shown in Figure 18 for
different time step sizes, At = h/2, h/4 and h/8.

We see that the error only depends on the time step size A¢. This example further
illustrates that our algorithm is of second order in time as can be expected. For
this choice of parameters the dominating error is that of the time integration. For
a discussion of the error introduced by the approximation of the inverse Laplace
transform we refer to [7, 10]. We point out that the deviation is zero before the
waves reach the ports.

The energy of the electric wave is given as the sum of magnetic energy and electric
energy.

E(nAt) := Emag(nAt) + Eq(nAt),

where

Emag(nAt) := <Z(ux(/'h,kh, Ih,nAt + At) — 1" (jh, kh, Th,nAt — At))? /(AAF)
Jik,l

+ (' (jh, kh, Ih, nAt + At) — ' (jh, kh, Ih,nAt — At))? /(4AF)
+ ( (jh, kh, Ih,nAt + At) — 17 (jh, kh, Lh, nAt — Az))z/(4m2)> ,

(34)

107 ¢ : ‘
F - - Grid points: 32 x 32 At =h/2
[| - - Grid points: 32 x 32 At = h/4 ]
10 § — Grid points: 32 x 32 At =h/8 3

F| -=-- Grid points: 64 x 64 At = h/2 B i
| == Grid points: 64 x 64 At =h/4 =T E
10" § — Grid points: 64 x 64 A t = h/8 - E

107 F

I2 norm of the error on Q
S
T

107 F

10

Fig. 18. Evolution of /; Norm of the error in Q for different # and A¢
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4500 170,
—— Grid points: 32% At=3"2n
4000 - - Grid points: 322 At=h/2 160
-~ Grid points: 32% At=h/4
. . 2 -1/2 50
— Girid points: 64 At=3"“h
3000 ---. Grid points: 642 At=h/2 140
- - Grid points: 642 At=h/4

3500

2500 130
o o
2000 120
1500 110
1000 100
500 2
—
0 : =80
0 20 40 60 56 58 60 62

t t

Fig. 19. Energy versus time for different # and Az. The right plot is a zoom of the left one as indicated

E(nAt) :== h® Z(curl curlu) (jh, kh, lh, nAt)u* (jh, kh, h, nAt)
Gkl

+ (curl curl ), (jh, kh, Ih, nAt)u” (jh, kh, L, nAr) (35)

+ (curl curlu)_(jk, kh, Ih, nAt)o* (jh, kh, Ih, nAt)

Figure 19 displays the evolution of the energy over a long time interval [0, 207] for
h=m/32and h = n/64 and At = h/+/3, At = h/2 and At = h/2. We point out that
we do not see any additional restrictions by the boundary condition on the sta-
bility limit for the time step size Az which is Az = h/+/3 for the leapfrog scheme in
these special cases.
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