Tohoku Math. J. 59 (2007), 323–339

NON-REGULAR PSEUDO-DIFFERENTIAL OPERATORS ON THE WEIGHTED TRIEBEL-LIZORKIN SPACES

Shuichi Sato

(Received March 28, 2005, revised May 14, 2007)

Abstract. We consider certain non-regular pseudo-differential operators and study the question of their boundedness on the weighted Triebel-Lizorkin and Besov spaces.

1. Introduction. Let $\Psi \in C^{\infty}(\mathbb{R}^n)$ satisfy $\operatorname{supp}(\Psi) \subset \{1/2 \le |\xi| \le 2\}, |\Psi(\xi)| \ge c > 0$ for $3/5 \le |\xi| \le 5/3$ and

$$\sum_{j\in \mathbb{Z}} \Psi(2^{-j}\xi) = 1 \quad \text{for} \ \xi \neq 0,$$

where **Z** denotes the set of all integers and $|\xi| = (\sum_{j=1}^{n} \xi_j^2)^{1/2}$, $\xi = (\xi_1, \xi_2, \dots, \xi_n)$. Define $\Phi \in C_0^{\infty}(\mathbb{R}^n)$ by $\Phi(\xi) = 1 - \sum_{j \ge 1} \Psi(2^{-j}\xi)$. We note that Φ is supported in $\{|\xi| \le 2\}$. In what follows, we also assume that Ψ is radial. We write $g_t(x) = t^{-n}g(x/t)$ for t > 0. Define $D_j(f) = f * (\hat{\Psi})_{2^{-j}}$ for $j \ge 1$ and $D_0(f) = f * \hat{\Phi}$, where \hat{g} denotes the Fourier transform:

$$\hat{g}(\xi) = \int_{\mathbf{R}^n} g(x) e^{-2\pi i \langle x, \xi \rangle} dx , \quad \langle x, \xi \rangle = x_1 \xi_1 + x_2 \xi_2 + \dots + x_n \xi_n ;$$

we also write $\hat{g} = \mathcal{F}(g)$.

Let A_r , $1 \le r < \infty$, be the weight class of Muckenhoupt on \mathbb{R}^n . We recall that A_r , $1 < r < \infty$, is defined to be the class of all weight functions w on \mathbb{R}^n satisfying

$$\sup_{Q} \left(|Q|^{-1} \int_{Q} w(x) dx \right) \left(|Q|^{-1} \int_{Q} w(x)^{-1/(r-1)} dx \right)^{r-1} < \infty,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ and |Q| denotes the Lebesgue measure of Q. Also, for a weight function w, we say that $w \in A_1$ if there exists a constant C such that $\mathcal{M}(w)(x) \leq Cw(x)$ for almost every x, where \mathcal{M} denotes the Hardy-Littlewood maximal operator.

Let $w \in A_{\infty}$, where $A_{\infty} = \bigcup_{1 \le r < \infty} A_r$. The weighted (inhomogeneous) Triebel-Lizorkin space $F_p^{s,q}(w)$, with $0 , <math>0 < q \le \infty$ and $s \in \mathbf{R}$, is defined to be the space of all tempered distributions f on \mathbf{R}^n satisfying

$$\|f\|_{F_p^{s,q}(w)} = \left\| \left(\sum_{j=0}^{\infty} \left| 2^{sj} D_j(f) \right|^q \right)^{1/q} \right\|_{L^p(w)} < \infty,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47G30; Secondary 35S05, 42B20, 42B25.

Key words and phrases. Pseudo-differential operator, Triebel-Lizorkin space, Besov space.

where $\|\cdot\|_{L^p(w)}$ denotes the weighted L^p norm: $\|g\|_{L^p(w)} = (\int |g(x)|^p w(x) dx)^{1/p}$. Also, the weighted (inhomogeneous) Besov space $B_p^{s,q}(w)$, with $0 , <math>0 < q \le \infty$ and $s \in \mathbf{R}$, is defined to be the space of all tempered distributions f on \mathbf{R}^n satisfying

$$\|f\|_{B^{s,q}_{p}(w)} = \left(\sum_{j=0}^{\infty} \|2^{sj} D_{j}(f)\|_{L^{p}(w)}^{q}\right)^{1/q} < \infty.$$

See [2], [4] and [13] for more details on these spaces.

For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$, let $(\partial \xi)^{\alpha}$ denote a differential operator

$$(\partial/\partial\xi_1)^{\alpha_1}\ldots(\partial/\partial\xi_n)^{\alpha_n}$$

of order $|\alpha| = \alpha_1 + \cdots + \alpha_n$. For a function *F* on $\mathbb{R}^n \times \mathbb{R}^n$ and $x, \xi, h, \eta \in \mathbb{R}^n$, we write

$$\begin{aligned} (d_h F)(x,\xi) &= F(x+h,\xi) - F(x,\xi) \,, \\ (\delta_\eta F)(x,\xi) &= F(x,\xi+\eta) - F(x,\xi) \,. \end{aligned}$$

We also define $(\delta_{\eta}d_hF)(x,\xi) = (d_h\delta_{\eta}F)(x,\xi) = (\delta_{\eta}(d_hF))(x,\xi).$

Let r > 0 and $0 \le \delta \le 1$. Suppose that r is not an integer and that

$$\begin{aligned} |(\partial\xi)^{\alpha}(\partial x)^{\beta}\sigma(x,\xi)| &\leq C(1+|\xi|)^{-|\alpha|+\delta|\beta|} \quad \text{for } |\alpha| \leq N, \ |\beta| < r; \\ |(d_{y}(\partial\xi)^{\alpha}(\partial x)^{\beta}\sigma)(x,\xi)| &\leq C|y|^{r-[r]}(1+|\xi|)^{-|\alpha|+\delta r} \quad \text{for } |\alpha| \leq N, \ |\beta| = [r], \end{aligned}$$

where N is an even integer greater than 3n/2 + 1 ([a] denotes the integer such that $a - 1 < [a] \le a$). Let T_{σ} be a pseudo-differential operator defined by

$$T_{\sigma}(f)(x) = \int_{\mathbf{R}^n} \sigma(x,\xi) \hat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} d\xi , \quad f \in \mathcal{S}(\mathbf{R}^n) ,$$

where $\mathcal{S}(\mathbf{R}^n)$ denotes the Schwartz space. Then, Bourdaud [1] proved that T_{σ} is bounded on the Sobolev spaces $H_p^s (= F_p^{s,2})$ for $1 , <math>s \in ((\delta - 1)r, r)$ and that the range of s is optimal (see [5] for further developments). Also, the boundedness of T_{σ} on the Besov spaces was studied. Related results can be found in [3], [6], [7], [8], [10], [11], [12], [14] and [15]. In particular, in [10] a weighted L^p , $p \ge 2$, norm inequality for T_{σ} was proved under a minimal regularity condition for the symbol σ .

In [1], the case where r is an integer was also considered. In this note we confine ourselves to the case where r is not an integer and generalize results of [1] to the weighted (inhomogeneous) Triebel-Lizorkin spaces by using the idea of [10]. Moreover, by applying the results for the Triebel-Lizorkin spaces, we study the boundedness of T_{σ} on the weighted (inhomogeneous) Besov spaces. We refer to Sugimoto [12] for relevant results.

Let ω be a non-negative function on $[0, \infty) \times [0, \infty)$ satisfying the following:

(ω .1) there exist constants *C*, *M* > 0 such that

$$\omega(s, at) \le C(1+a)^M \omega(s, t) \quad \text{for all } a > 0;$$

(ω .2) there exists a constant C > 0 such that

$$\omega(s', t) \le C\omega(s, t)$$
 for $s/2 \le s' \le 2s$;

(ω .3) $0 < \omega(1, 1)$. Let $0 \le \delta \le 1$. We assume that r(> 0) is not an integer and the function ω satisfies

(1.1)
$$C(\omega) := \sup_{0 \le j \le h, 0 \le h} \omega(2^j, 2^{-h}) 2^{-j\delta(r-[r])} 2^{h(r-[r])} < \infty,$$

where $j, h \in \mathbb{Z}$. A prime example of ω satisfying (1.1), (ω .1)–(ω .3) is $\omega(s, t) = s^{\delta(r-[r])}t^{r-[r]}$ (see also Remark 3 below).

Let $\sigma(x,\xi)$ be a bounded function on $\mathbb{R}^n \times \mathbb{R}^n$. For the rest of this note, we assume that $\sigma \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ for the sake of simplicity. We write $\sigma^{(\alpha)}(x,\xi) = (\partial \xi)^{\alpha} \sigma(x,\xi)$, $\sigma_{(\beta)}(x,\xi) = (\partial x)^{\beta} \sigma(x,\xi)$ and $\sigma_{(\beta)}^{(\alpha)}(x,\xi) = (\partial \xi)^{\alpha} (\partial x)^{\beta} \sigma(x,\xi)$. Let *L* be a non-negative integer. We consider the following conditions:

(1.2)
$$|\sigma^{(\alpha)}(x,\xi)| \le C_{\alpha}(1+|\xi|)^{-|\alpha|} \quad \text{for } |\alpha| \le L$$

(1.3)
$$|(d_y \sigma_{(\beta)}^{(\alpha)})(x,\xi)| \le C_{\alpha,\beta} (1+|\xi|)^{-|\alpha|+\delta|\beta|} \omega (1+|\xi|,|y|) \text{ for } |\alpha| \le L, |\beta| = [r]$$

Then we have the following

THEOREM 1. Let $1 < q \leq 2$. Suppose that $\sigma(x, \xi)$ satisfies (1.2) and (1.3) with L = [n/q] + 1. Let $s \in ((\delta - 1)r, r)$, $q \leq p < \infty$ and $w \in A_{p/q}$. Then the operator T_{σ} is bounded on $F_p^{s,q}(w)$. The operator norm is bounded by a constant which is independent of σ if the constants C_{α} , $C_{\alpha,\beta}$ in (1.2) and (1.3) are fixed for $|\alpha| \leq [n/q] + 1$, $|\beta| = [r]$.

Let *L* be a non-negative integer and $0 < a, b \le 1$. We consider the following conditions:

(1.4)
$$|\sigma^{(\alpha)}(x,\xi)| \le C_{\alpha}(1+|\xi|)^{-|\alpha|} \text{ for } |\alpha| \le L;$$

(1.5)
$$|(\delta_{\eta}\sigma^{(\alpha)})(x,\xi)| \le C_{\alpha}(1+|\xi|)^{-|\alpha|-a|}\eta|^{a} \text{ for } |\eta| < |\xi|/2, \quad |\alpha| = L;$$

(1.6)
$$|(d_y \sigma_{(\beta)}^{(\alpha)})(x,\xi)| \le C_{\alpha,\beta} (1+|\xi|)^{-|\alpha|+\delta|\beta|} \omega (1+|\xi|,|y|)$$
 for $|\alpha| \le I - |\beta| - |r|$:

(1.7)
$$\begin{aligned} & \text{for } |\alpha| \le L, \quad |\rho| = [r]; \\ & (1.7) \qquad |(\delta_{\eta} d_{y} \sigma_{(\beta)}^{(\alpha)})(x,\xi)| \le C_{\alpha,\beta} (1+|\xi|)^{-|\alpha|-b+\delta|\beta|} |\eta|^{b} \,\omega(1+|\xi|,|y|) \\ & \text{for } |\eta| < |\xi|/2, |\alpha| = L, \quad |\beta| = [r]. \end{aligned}$$

Then, Theorem 1 follows from the following

THEOREM 2. Let $1 < q \le 2, 0 < a \le 1$ and $\lfloor n/q \rfloor + a > n/q$. Suppose that $\sigma(x, \xi)$ satisfies (1.4)–(1.7) with $L = \lfloor n/q \rfloor$, a = b. Let $s \in ((\delta - 1)r, r)$, $q \le p < \infty$ and $w \in A_{p/q}$. Then T_{σ} is bounded on $F_p^{s,q}(w)$. Moreover, the operator norm is bounded by a constant which is independent of σ if we fix the constants C_{α} , $C_{\alpha,\beta}$ in (1.4)–(1.7) for $|\alpha| \le \lfloor n/q \rfloor$, $|\beta| = \lfloor r \rfloor$.

This is a consequence of a more general result (Theorem 3). Let ρ be a non-negative function such that $\rho^{-1} \in L^1(\mathbb{R}^n)$. Let $1 < q \leq 2$. For an appropriate f, define

$$\|f\|_{A^{q}_{\rho}} = \left(\int_{\mathbf{R}^{n}} |\hat{f}(x)|^{q'} \rho(x)^{q'/q} dx\right)^{1/q'},$$

where q' is the exponent conjugate to q: q' = q/(q - 1). We consider the following conditions:

(1.8)
$$C_1 := \sup_{j \ge 1} \sup_{x \in \mathbf{R}^n} \|\sigma(x, 2^j \cdot) \Psi(\cdot)\|_{A^q_\rho} < \infty;$$

(1.9) $\sup_{x \in \mathbf{R}^n} \| (d_y \sigma_{(\beta)})(x, 2^j \cdot) \Psi(\cdot) \|_{A^q_{\rho}} \le C_{\beta} 2^{j\delta[r]} \omega(2^j, |y|) \quad \text{for } |\beta| = [r], \ j \ge 1;$

(1.10)
$$C_2 := \sup_{x \in \mathbf{R}^n} \|\sigma(x, \cdot) \Phi(\cdot)\|_{A^q_\rho} < \infty;$$

(1.11)
$$\sup_{x \in \mathbf{R}^n} \| (d_y \sigma_{(\beta)})(x, \cdot) \Phi(\cdot) \|_{A^q_{\rho}} \le C_{\beta} \omega(1, |y|) \quad \text{for } |\beta| = [r].$$

Then we have the following:

THEOREM 3. Suppose that the conditions (1.8)–(1.11) hold. Let $s \in ((\delta - 1)r, r)$, $q \leq p < \infty$ and $w \in A_{p/q}$. We further assume that

(1.12)
$$\sup_{t>0} \theta_t * f(x) \le C\mathcal{M}(f)(x) \quad a.e.$$

for all non-negative bounded functions f, where $\theta(x) = \rho(x)^{-1}$. Then T_{σ} is bounded on $F_p^{s,q}(w)$. The operator norm is bounded by a constant which is independent of σ if the constants C_1, C_2, C_β ($|\beta| = [r]$) in (1.8)–(1.11) are fixed.

REMARK 1. Let $\omega(s, t) = s^{\delta(r-[r])}t^{r-[r]}$, $r > 0, 0 \le \delta \le 1$. By examples similar to those in [1], we can see the optimality of the range of s in Theorem 2 ($(\delta - 1)r < s < r$).

Indeed, for $k \ge 10$, let

$$\sigma_k(x,\xi) = \sum_{j=10}^k 2^{-jr} \exp(2\pi i 2^j x_1) \quad (x = (x_1, x_2, \dots, x_n))$$

Then, $\sigma_k(x,\xi)$ uniformly satisfies (1.4)–(1.7) for all L and a = b = 1. We take Ψ in the definition of $F_p^{s,q}(w)$ such that $\Psi(\xi) = 1$ for $9/10 \le |\xi| \le 10/9$, $\Psi(2^{-m}\xi) = 0$ if $9/10 \le 2^{-j}|\xi| \le 10/9$ and $m \ne j$. Let $g \in \mathcal{S}(\mathbb{R}^n)$ satisfy $\operatorname{supp}(\hat{g}) \subset \{|\xi| \le 10^{-9}\}$, $0 < \|g\|_{L^p(w)} < \infty$. Then we can see $D_h T_{\sigma_k}(g)(x) = 2^{-hr} \exp(2\pi i 2^h x_1)g(x)$, $h = 10, 11, \ldots, k$, and $D_h T_{\sigma_k}(g) = 0$ otherwise. Thus, if $s \ge r$,

$$\sup_{k\geq 10} \|T_{\sigma_k}(g)\|_{F_p^{s,q}(w)} = \sup_{k\geq 10} \left(\sum_{h=10}^k 2^{h(s-r)q}\right)^{1/q} \|g\|_{L^p(w)} = \infty.$$

Next, let

$$\sigma(x,\xi) = \sum_{j \ge 10} 2^{(\delta-1)rj} \exp(-2\pi i 2^j x_1) \psi(2^{-j}\xi),$$

where $\psi \in S(\mathbb{R}^n)$ is supported in $\{7/8 \le |\xi| \le 8/7\}$ and $\psi(\xi) = 1$ for $9/10 \le |\xi| \le 10/9$. Then $\sigma(x, \xi)$ satisfies (1.4)–(1.7) for all *L* and a = b = 1. Put, for $m \ge 10$,

$$f_m(x) = \sum_{j=10}^m j^{-1} 2^{j(1-\delta)r} \exp(2\pi i 2^j x_1) g(x) \,,$$

where g is as above. Then $T_{\sigma}(f_m)(x) = g(x) \sum_{j=10}^m j^{-1}$. On the other hand, $D_h(f_m)(x) = h^{-1} 2^{h(1-\delta)r} \exp(2\pi i 2^h x_1) g(x)$ for $h = 10, 11, \ldots, m$, $D_h(f_m)(x) = 0$ otherwise, where D_h is defined by Ψ specified above. Thus

$$\|f_m\|_{F_p^{s,q}(w)} = \left(\sum_{h=10}^m h^{-q} 2^{h(s+(1-\delta)r)q}\right)^{1/q} \|g\|_{L^p(w)},$$

and hence the sequence $\{f_m\}$ is bounded in $F_p^{s,q}(w)$ if $s < (\delta - 1)r$ or $s = (\delta - 1)r$ and $1 < q \le \infty$, while $\{T_{\sigma}(f_m)\}$ is unbounded there.

REMARK 2. Let

$$\sigma_a(x,\xi) = \exp(-2\pi i \langle x,\xi \rangle - |x|^2)(1+|\xi|^2)^{-n/a}, \quad a > 0.$$

Suppose that n/2 is not an integer and put $\varepsilon_0 = n/2 - [n/2] = 1/2$. If M is a non-negative integer and if $0 \le M \le [n/2] - 1$, then we can see that $\sigma_4(x, \xi)$ satisfies (1.4)–(1.7) with L = M, a = b = 1, $\varepsilon_0 \le r < 1$, $\omega(s, t) = s^{\delta r} t^r$, $\delta = (r - \varepsilon_0)/r$. Although $0 \in ((\delta - 1)r, r)$, we can easily see that T_{σ_4} is not bounded on $L^2 = F_2^{0,2}$ (the unweighted Lebesgue space).

Also, we can see that $\sigma_4(x,\xi)$ satisfies (1.4)–(1.7) with L = [n/2], a = b, $\omega(s,t) = s^{\delta r}t^r$, 0 < r < 1, $\delta = (r - \varepsilon_0 + a)/r$, where $\varepsilon_0 - r \le a \le \varepsilon_0$ if $0 < r < \varepsilon_0$ and $0 < a \le \varepsilon_0$ if $\varepsilon_0 \le r < 1$. If L + a < n/2, then $0 \in ((\delta - 1)r, r)$; but as we mentioned above, T_{σ_4} is not bounded on L^2 (see Coifman-Meyer [3, p. 12] and Yabuta [14, Section 6]).

REMARK 3. Let
$$\varepsilon = r - [r], \beta \ge \varepsilon, \gamma \ge 0, 0 \le \delta \le 1$$
. For $s \ge 1, t \ge 0$, let

$$\omega_0(s, t) = \begin{cases} s^{\delta \varepsilon} t^{\varepsilon} & \text{if } st < 1, \\ s^{\delta \varepsilon} t^{\varepsilon} (st)^{\beta - \varepsilon} & \text{if } st \ge 1, \end{cases}$$

and for $0 \le s < 1, t \ge 0$, let $\omega_0(s, t) = s^{\gamma} t^{\varepsilon}$ $(t < 1), \omega_0(s, t) = s^{\gamma} t^{\beta}$ $(t \ge 1)$. Then, ω_0 satisfies (1.1), $(\omega.1)-(\omega.3)$.

In Section 2, we recall results relevant to the proof of Theorem 3. In Section 3, we prove Theorem 3 by applying these results. Theorem 2 is proved in Section 4 by using Theorem 3. In Section 5, we state results on the boundedness of T_{σ} on $B_p^{s,q}(w)$ as applications of the results for $F_p^{s,q}(w)$.

2. Results for the proof of Theorem 3. Take radial functions $\psi, \varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\operatorname{supp}(\psi) \subset \{1/4 < |\xi| < 4\}, \ \psi(\xi) = 1 \text{ if } 1/2 \leq |\xi| \leq 2 \text{ and } \operatorname{supp}(\varphi) \subset \{|\xi| < 4\}, \ \varphi(\xi) = 1 \text{ if } |\xi| \leq 2.$ Decompose

$$\sigma(x,\xi) = \sigma(x,\xi)\Phi(\xi) + \sum_{j\geq 1}\sigma(x,\xi)\Psi(2^{-j}\xi)$$
$$= \sigma(x,\xi)\Phi(\xi)\varphi(\xi)^2 + \sum_{j\geq 1}\sigma(x,\xi)\Psi(2^{-j}\xi)\psi(2^{-j}\xi)^2$$
$$= \left(\int_{\mathbb{R}^n} A_0(x,k)\exp(2\pi i\langle k,\xi\rangle)dk\right)\varphi(\xi)^2$$

+
$$\sum_{j\geq 1} \left(\int_{\mathbf{R}^n} A_j(x,k) \exp(2\pi i \langle 2^{-j}k,\xi \rangle) dk \right) \psi(2^{-j}\xi)^2,$$

where

$$A_j(x,k) = \int_{\mathbb{R}^n} \sigma(x, 2^j \xi) \Psi(\xi) \exp(-2\pi i \langle k, \xi \rangle) d\xi , \quad j \ge 1,$$

$$A_0(x,k) = \int_{\mathbb{R}^n} \sigma(x,\xi) \Phi(\xi) \exp(-2\pi i \langle k, \xi \rangle) d\xi .$$

For $j \ge 1$, put

$$A_j^{(2)}(x,k) = \int_{\mathbb{R}^n} ((\hat{\varphi})_{2^{-j+12}} * \sigma(\cdot, 2^j \xi))(x) \Psi(\xi) \exp(-2\pi i \langle k, \xi \rangle) d\xi ,$$

where $((\hat{\varphi})_{2^{-j+12}} * \sigma(\cdot, 2^j \xi))(x) = \int (\hat{\varphi})_{2^{-j+12}}(y)\sigma(x-y, 2^j \xi)dy.$

LEMMA 1. Suppose that the conditions (1.8) and (1.9) hold. Put $A_j^{(1)}(x,k) = A_j(x,k) - A_j^{(2)}(x,k), j \ge 1$. Then

(2.1)
$$\sup_{x \in \mathbf{R}^n} \int_{\mathbf{R}^n} |A_j^{(1)}(x,k)|^{q'} \rho(k)^{q'/q} dk \le C 2^{-q'j[r]} 2^{q'j\delta[r]} \omega(2^j, 2^{-j})^{q'},$$

(2.2)
$$\sup_{j\geq 1}\sup_{x\in \mathbf{R}^n}\int_{\mathbf{R}^n}|A_j^{(2)}(x,k)|^{q'}\rho(k)^{q'/q}dk<\infty.$$

Furthermore, the Fourier transform of $A_j^{(2)}(x,k)$ with respect to the x-variable is supported in $\{|\xi| \le 2^{j-10}\}$ for all k.

PROOF. First we see that

$$\begin{split} \int |A_{j}^{(2)}(x,k)|^{q'} \rho(k)^{q'/q} dk &\leq C \int |(\hat{\varphi})_{2^{-j+12}}(y)| \|\sigma(x+y,2^{j}\cdot)\Psi(\cdot)\|_{A_{\rho}^{q}}^{q'} dy \\ &\leq C \sup_{x \in \mathbf{R}^{n}} \|\sigma(x,2^{j}\cdot)\Psi(\cdot)\|_{A_{\rho}^{q}}^{q'}. \end{split}$$

Therefore by (1.8) we get (2.2). The support condition for the Fourier transform of $A_j^{(2)}$ is easily seen.

Next, we prove (2.1). Put

$$H(x, y, 2^{j}\xi) = \sigma(x + y, 2^{j}\xi) - \sum_{|\beta| \le [r]} \frac{1}{\beta!} y^{\beta} \sigma_{(\beta)}(x, 2^{j}\xi),$$

where $\beta! = \beta_1! \cdots \beta_n!$, $\beta = (\beta_1, \dots, \beta_n)$, $y^{\beta} = y_1^{\beta_1} \cdots y_n^{\beta_n}$. Since $\int \hat{\varphi}(y) dy = 1$, $\int \hat{\varphi}(y) y^{\alpha} dy = 0$ if $|\alpha| > 0$,

then we have

$$\int (\hat{\varphi})_{2^{-j+12}}(y)\sigma(x+y,2^{j}\xi)dy - \sigma(x,2^{j}\xi) = \int (\hat{\varphi})_{2^{-j+12}}(y)H(x,y,2^{j}\xi)dy,$$

and hence

$$\int |A_j^{(1)}(x,k)|^{q'} \rho(k)^{q'/q} dk \le C \int |(\hat{\varphi})_{2^{-j+12}}(y)| \|H(x,y,2^j \cdot)\Psi(\cdot)\|_{A_\rho^q}^{q'} dy$$

By Taylor's formula we see that

$$\|H(x, y, 2^{j} \cdot)\Psi(\cdot)\|_{A^{q}_{\rho}} \leq C \sum_{|\beta|=[r]} |y|^{[r]} \sup_{0 \leq t \leq 1} \|\sigma_{(\beta)}(x+ty, 2^{j} \cdot)\Psi(\cdot) - \sigma_{(\beta)}(x, 2^{j} \cdot)\Psi(\cdot)\|_{A^{q}_{\rho}}.$$

Thus by (1.9)

$$\begin{split} &\int |A_{j}^{(1)}(x,k)|^{q'}\rho(k)^{q'/q}dk \leq C \int |(\hat{\varphi})_{2^{-j+12}}(y)||y|^{q'[r]}2^{q'j\delta[r]} \sup_{0 \leq t \leq 1} \omega(2^{j},t|y|)^{q'}dy \\ &\leq C \int |\hat{\varphi}(y)||y|^{q'[r]}2^{-q'j[r]}2^{q'j\delta[r]} \sup_{0 \leq t \leq 1} \omega(2^{j},2^{-j+12}t|y|)^{q'}dy \\ &\leq C2^{-q'j[r]}2^{q'j\delta[r]}\omega(2^{j},2^{-j})^{q'} \int |\hat{\varphi}(y)||y|^{q'[r]}(1+|y|)^{q'M}dy \\ &\leq C2^{-q'j[r]}2^{q'j\delta[r]}\omega(2^{j},2^{-j})^{q'}, \end{split}$$

where we have used $(\omega.1)$. This proves (2.1), which completes the proof of Lemma 1.

LEMMA 2. Suppose that the conditions (1.8) through (1.11) hold. Let $A_0^{(1)} = A_0$, and for $j \ge 1$ let $A_j^{(1)}$ be as in Lemma 1. Define $A_{j,h}^{(1)}(x,k) = D_h(A_j^{(1)}(\cdot,k))(x)$ for $j,h \ge 0$. Then

$$\sup_{x \in \mathbb{R}^n} \left(\int |A_{j,h}^{(1)}(x,k)|^{q'} \rho(k)^{q'/q} dk \right)^{1/q'} \\ \leq C \min(2^{-j[r]} 2^{j\delta[r]} \omega(2^j, 2^{-j}), 2^{-h[r]} 2^{j\delta[r]} \omega(2^j, 2^{-h})) \,.$$

PROOF. Let $j \ge 1$ and $h \ge 1$. We note that

$$A_{j,h}^{(1)}(x,k) = (\hat{\Psi})_{2^{-h}} * A_j(\cdot,k)(x) - (\hat{\varphi})_{2^{-j+12}} * (\hat{\Psi})_{2^{-h}} * A_j(\cdot,k)(x) .$$

Since $\int \hat{\Psi}(y) y^{\alpha} dy = 0$ for all α , we have

$$(\hat{\Psi})_{2^{-h}} * \sigma(\cdot, 2^{j}\xi)(x) = \int (\hat{\Psi})_{2^{-h}}(y) H(x, y, 2^{j}\xi) dy,$$

where H is as in the proof of Lemma 1. Thus, as in the proof of Lemma 1, we have

(2.3)
$$\int |D_h(A_j(\cdot,k))(x)|^{q'} \rho(k)^{q'/q} dk \le C 2^{-q'h[r]} 2^{q'j\delta[r]} \omega(2^j, 2^{-h})^{q'}$$

and hence

(2.4)

$$\int |(\hat{\varphi})_{2^{-j+12}} * (\hat{\Psi})_{2^{-h}} * A_j(\cdot, k)(x)|^{q'} \rho(k)^{q'/q} dk$$

$$\leq C \int |(\hat{\varphi})_{2^{-j+12}}(y)| \left[\int |(\hat{\Psi})_{2^{-h}} * A_j(\cdot, k)(x-y)|^{q'} \rho(k)^{q'/q} dk \right] dy$$

$$\leq C 2^{-q'h[r]} 2^{q'j\delta[r]} \omega(2^j, 2^{-h})^{q'}.$$

Also, by using Lemma 1, we get

(2.5)
$$\int |A_{j,h}^{(1)}(x,k)|^{q'} \rho(k)^{q'/q} dk \le C 2^{-q'j[r]} 2^{q'j\delta[r]} \omega(2^j, 2^{-j})^{q'} \quad \text{for } h \ge 0, \ j \ge 1.$$

Combining (2.3)–(2.5), we obtain the conclusion of Lemma 2 for $j \ge 1$. The proof for the case j = 0 can be done similarly by using (1.10) and (1.11).

We can prove the following result by applying Hölder's inequality.

LEMMA 3. Let a > 1, $1 \le r < \infty$, and let $\{x_k\}_{k=0}^{\infty}$ be a sequence of complex numbers such that $\sum_{k=0}^{\infty} |x_k|^r < \infty$. Then

$$\sum_{j=0}^{\infty} \left| a^{-j} \sum_{k=0}^{j} a^k x_k \right|^r \le (a/(a-1))^r \sum_{k=0}^{\infty} |x_k|^r \, .$$

The following lemma generalizes a result stated in [1].

LEMMA 4. For $j = 0, 1, 2, ..., let f_j$ be a tempered distribution whose Fourier transform is supported in $\{|\xi| < c2^j\}$ for some constant c > 0 (note that f_j is a function by the support condition). We assume that $f_j = 0$ for all but a finite number of values of j. Let $s > 0, 1 and <math>w \in A_p$. Then we have

$$\left\|\sum_{j=0}^{\infty} f_{j}\right\|_{F_{p}^{s,q}(w)} \le C \left\|\left(\sum_{j=0}^{\infty} 2^{qjs} |f_{j}|^{q}\right)^{1/q}\right\|_{L^{p}(w)}$$

PROOF. There exists a positive integer N such that

(2.6)
$$\sum_{j=0}^{\infty} f_j = \sum_{j=0}^{\infty} \sum_{l=0}^{j+N} D_l(f_j) = \sum_{l=0}^{\infty} \sum_{j=\max(l-N,0)}^{\infty} D_l(f_j) = \sum_{l=0}^{\infty} D_l\left(\sum_{j=\max(l-N,0)}^{\infty} f_j\right).$$

Now, by Hölder's inequality we have, for appropriate functions g_l ,

(2.7)
$$\left| \sum_{l=0}^{\infty} \int D_l \bigg(\sum_{j=\max(l-N,0)}^{\infty} f_j \bigg) g_l dx \right| = \left| \sum_{j=0}^{\infty} \int f_j \bigg(\sum_{l=0}^{j+N} D_l(g_l) \bigg) dx \right|$$
$$\leq \left(\int \bigg(\sum_{j\geq 0} 2^{qjs} |f_j(x)|^q \bigg)^{p/q} w(x) dx \bigg)^{1/p} I^{1/p'},$$

where

$$I = \int \left(\sum_{j \ge 0} \left| 2^{-js} \left(\sum_{l=0}^{j+N} D_l(g_l) \right) \right|^{q'} \right)^{p'/q'} w(x)^{-p'/p} dx.$$

By Lemma 3 with $a = 2^s$ and r = q', we have

$$\begin{split} \sum_{j\geq 0} \left| 2^{-js} \left(\sum_{l=0}^{j+N} D_l(g_l) \right) \right|^{q'} &= \sum_{j\geq 0} \left| 2^{-js} \left(\sum_{l=0}^{j+N} 2^{sl} D_l(2^{-sl}g_l) \right) \right|^{q'} \\ &\leq C \sum_{l=0}^{\infty} 2^{-q'sl} |D_l(g_l)|^{q'}. \end{split}$$

Therefore

$$I \leq C \int \left(\sum_{l=0}^{\infty} 2^{-q'sl} |D_l(g_l)|^{q'} \right)^{p'/q'} w(x)^{-p'/p} dx$$

$$\leq C \int \left(\sum_{l=0}^{\infty} 2^{-q'sl} |g_l|^{q'} \right)^{p'/q'} w(x)^{-p'/p} dx,$$

where the last inequality follows from a well-known vector valued inequality, since $w^{-p'/p} \in A_{p'}$ (see [9]). By a duality argument using this estimate in (2.7), we have

$$\int \left(\sum_{l=0}^{\infty} 2^{qsl} \left| D_l \left(\sum_{j=\max(l-N,0)}^{\infty} f_j\right) \right|^q \right)^{p/q} w(x) dx$$
$$\leq C \int \left(\sum_{j\geq 0} 2^{qjs} |f_j(x)|^q \right)^{p/q} w(x) dx.$$

From this and (2.6) we can easily get the conclusion.

3. Proof of Theorem 3. Put, for $j \ge 1$,

$$\begin{split} E_j(f)(x,k) &= \int_{\mathbb{R}^n} \exp\left(2\pi i \langle 2^{-j}k,\xi\rangle\right) \psi(2^{-j}\xi)^2 \hat{f}(\xi) \exp(2\pi i \langle x,\xi\rangle) d\xi \\ &= (\tau_{-k} \mathcal{F}^{-1}(\psi))_{2^{-j}} * \Delta_j(f)(x) \,, \end{split}$$

where $\tau_k f(x) = f(x - k)$ and

$$\Delta_j(f)(x) = \int_{\mathbf{R}^n} \psi(2^{-j}\xi) \hat{f}(\xi) \exp(2\pi i \langle x, \xi \rangle) d\xi \,.$$

Also put $E_0(f)(x,k) = (\tau_{-k}\mathcal{F}^{-1}(\varphi)) * \Delta_0(f)(x)$, where

$$\Delta_0(f)(x) = \int_{\mathbf{R}^n} \varphi(\xi) \hat{f}(\xi) \exp(2\pi i \langle x, \xi \rangle) d\xi \,.$$

Then we can see that

$$T_{\sigma}(f)(x) = \sum_{j \ge 0} \int A_j(x,k) E_j(f)(x,k) dk, \quad f \in \mathcal{S}(\mathbb{R}^n).$$

I .	
I .	

Decompose $A_j(x,k) = A_j^{(1)}(x,k) + A_j^{(2)}(x,k)$ for $j \ge 0$, where $A_j^{(1)}$ and $A_j^{(2)}$ are as in Lemmas 1 and 2 ($A_0^{(2)} \equiv 0$). Put

$$B_i(f)(x) = \sum_{j \ge 0} \int A_j^{(i)}(x,k) E_j(f)(x,k) dk, \quad i = 1, 2.$$

Then $T_{\sigma}(f) = B_1(f) + B_2(f)$. We note the following. For a positive integer N, let

$$S_N^{(i)}(f)(x) = \sum_{j=0}^N \int A_j^{(i)}(x,k) E_j(f)(x,k) dk, \quad i = 1, 2$$

Then we can easily see that $|S_N^{(i)}(f)(x)| \le C$ for some C > 0 independent of x and N. Also, we can see that $S_N^{(i)}(f)(x) \to B_i(f)(x)$ as $N \to \infty$ for all x. We estimate $B_i(f)$, i = 1, 2, separately under the hypotheses of Theorem 3. We

We estimate $B_i(f)$, i = 1, 2, separately under the hypotheses of Theorem 3. We begin with the estimation of $B_2(f)$. First, observing that the Fourier transform of $\int A_j^{(2)}(x,k)E_j(f)(x,k)dk$, $j \ge 1$, is supported in an annulus of the form $\{c_12^j < |\xi| < c_22^j\}$ with $c_1, c_2 > 0$, by a vector valued inequality (see [9], [2]) we have, for $s \in \mathbf{R}$,

$$\|B_2(f)\|_{F_p^{s,q}(w)}^p \le C \int \left(\sum_{j=1}^\infty 2^{qjs} \left| \int A_j^{(2)}(x,k) E_j(f)(x,k) dk \right|^q \right)^{p/q} w(x) dx.$$

By Hölder's inequality and Lemma 1 (2.2), the right hand side is bounded by, up to a constant factor,

$$\int \left(\sum_{j\geq 1} \int \rho(k)^{-1} 2^{qjs} |E_j(f)(x,k)|^q dk\right)^{p/q} w(x) dx \, .$$

Let g be a non-negative function on \mathbf{R}^n . Then, a direct computation yields

$$\begin{split} \int \sum_{j\geq 1} \int \rho(k)^{-1} 2^{qjs} \left| E_j(f)(x,k) \right|^q dkg(x) dx \\ &\leq C \sum_{j\geq 1} \int \left(\int \rho(k)^{-1} \int 2^{jn} |\mathcal{F}^{-1}(\psi)(2^j(x-y)+k)|g(x)dxdk \right) 2^{qjs} |\Delta_j(f)(y)|^q dy \\ &\leq C \sum_{j\geq 1} \int \left(\int \rho(k)^{-1} \mathcal{M}(g)(y-2^{-j}k)dk \right) 2^{qjs} \left| \Delta_j(f)(y) \right|^q dy \\ &\leq C \sum_{j\geq 1} \int \mathcal{M} \mathcal{M}(g)(y) 2^{qjs} \left| \Delta_j(f)(y) \right|^q dy \,, \end{split}$$

where the last inequality follows from (1.12). Put

$$I = \int \left(\sum_{j\geq 1} 2^{qjs} |\Delta_j(f)(y)|^q\right)^{p/q} w(y) dy.$$

Now we assume that p > q. Then by Hölder's inequality

$$\begin{split} \sum_{j\geq 1} \int \mathcal{M}\mathcal{M}(g)(y) 2^{qjs} \left| \Delta_j(f)(y) \right|^q dy \\ &\leq C \left(\int \mathcal{M}\mathcal{M}(g)^{(p/q)'}(y) w(y)^{-q(p/q)'/p} \, dy \right)^{1/(p/q)'} I^{q/p} \\ &\leq C \|g\|_{L^{(p/q)'}(w^{-q(p/q)'/p})} I^{q/p} \,, \end{split}$$

if $g \in L^{(p/q)'}(w^{-q(p/q)'/p})$ and $w \in A_{p/q}$. Therefore by the converse of Hölder's inequality we have

(3.1)
$$\int \left(\sum_{j\geq 1} \int \rho(k)^{-1} 2^{qjs} \left| E_j(f)(x,k) \right|^q dk \right)^{p/q} w(x) dx \le CI.$$

The case $p = q, w \in A_1$ can be treated similarly and we also have this inequality. Thus

(3.2)
$$\|B_2(f)\|_{F_p^{s,q}(w)}^p \le C \int \left(\sum_{j\ge 1} 2^{qjs} \left|\Delta_j(f)(y)\right|^q\right)^{p/q} w(y) dy.$$

Next, we estimate $B_1(f)$. For positive integers N, M, put

$$U_{N,M}(f)(x) = \sum_{j=0}^{N} \sum_{h=0}^{M} \int A_{j,h}^{(1)}(x,k) E_{j}(f)(x,k) dk,$$

where $A_{j,h}^{(1)}$ is as in Lemma 2. We estimate $U_{N,M}(f)$ on $F_p^{s,q}(w)$. The estimate will be uniform in N and M. Put $\tilde{A}_{j,h}^{(1)} = A_{j,h}^{(1)}$ if $0 \le h \le M$ and $\tilde{A}_{j,h}^{(1)} = 0$ if h > M; also $\tilde{E}_j(f) = E_j(f)$ if $0 \le j \le N$ and $\tilde{E}_j(f) = 0$ if j > N. Then

$$U_{N,M}(f)(x) = \sum_{j \ge 0} \sum_{h \ge 0} \int \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk = G_1(x) + G_2(x) + G_3(x) ,$$

where

$$\begin{split} G_1(x) &= \sum_{j=10}^{\infty} \sum_{h=0}^{j-10} \int \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk \,, \\ G_2(x) &= \sum_{j=10}^{\infty} \sum_{h=j-9}^{\infty} \int \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk = \sum_{h=1}^{\infty} \sum_{j=10}^{h+9} \int \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk \,, \\ G_3(x) &= \sum_{h=0}^{\infty} \sum_{j=0}^{9} \int \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk \,. \end{split}$$

We estimate G_1 , G_2 and G_3 separately.

Observing that the Fourier transform of $\int \sum_{0 \le h \le j-10} \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk$, $j \ge 10$, is supported in an annulus of the form $\{c_1 2^j < |\xi| < c_2 2^j\}$, $c_1, c_2 > 0$, via Hölder's inequality

we have

$$\begin{split} \|G_1\|_{F_p^{s,q}(w)}^p &\leq C \int \bigg(\sum_{j=10}^{\infty} 2^{qjs} \bigg| \int \sum_{h=0}^{j-10} \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk \bigg|^q \bigg)^{p/q} w(x) dx \\ &\leq C \int \bigg(\sum_{j=10}^{\infty} \bigg(\int \bigg| \sum_{h=0}^{j-10} \tilde{A}_{j,h}^{(1)}(x,k) \bigg|^{q'} \rho(k)^{q'/q} dk \bigg)^{q/q'} F_j(s,q,x) \bigg)^{p/q} w(x) dx \end{split}$$

where

$$F_{j}(s, q, x) = \int \rho(k)^{-1} 2^{qjs} |\tilde{E}_{j}(f)(x, k)|^{q} dk$$

We note that

$$\sum_{0 \le h \le j-10} \tilde{A}_{j,h}^{(1)}(x,k) = g^{(j,M)} * A_j^{(1)}(\cdot,k)(x) , \quad j \ge 10$$

for some $g^{(j,M)} \in S(\mathbf{R}^n)$ such that $\|g^{(j,M)}\|_{L^1} \leq c$, where c is a constant independent of j and M. Therefore by Lemma 1 (2.1) we have

$$\int \left| \sum_{h=0}^{j-10} \tilde{A}_{j,h}^{(1)}(x,k) \right|^{q'} \rho(k)^{q'/q} dk \le C 2^{-q'j[r]} 2^{q'j\delta[r]} \omega(2^j, 2^{-j})^{q'}.$$

Thus for any $s \in \mathbf{R}$

(3.3)
$$\|G_1\|_{F_p^{s,q}(w)}^p \leq CC(\omega)^p \int \left(\sum_{j\geq 10} 2^{qjr(\delta-1)} F_j(s,q,x)\right)^{p/q} w(x) dx$$
$$\leq CC(\omega)^p \int \left(\sum_{j\geq 10} 2^{qjs} 2^{qjr(\delta-1)} |\Delta_j(f)(y)|^q\right)^{p/q} w(y) dy,$$

where the second inequality can be proved as above (see (3.1)). Next we estimate G_2 . Since the Fourier transform of $\int \sum_{j=10}^{h+9} \tilde{A}_{j,h}^{(1)}(x,k)\tilde{E}_j(f)(x,k)dk$, $h \ge 1$, is supported in $\{|\xi| < c2^h\}$, by Lemma 4 we have, for 0 < s < r,

$$\|G_2\|_{F_p^{s,q}(w)}^p \le C \int \left(\sum_{h=1}^{\infty} 2^{qhs} \left| \int \sum_{j=10}^{h+9} \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk \right|^q \right)^{p/q} w(x) dx \, .$$

By Hölder's inequality, the right hand side is bounded by, up to a constant factor,

$$\int \left(\sum_{h=1}^{\infty} 2^{h(s-r)} \sum_{j=10}^{h+9} 2^{(r-s)j} \left| \int (2^{-rj} 2^{hr} \tilde{A}_{j,h}^{(1)}(x,k)) (2^{sj} \tilde{E}_j(f)(x,k)) dk \right|^q \right)^{p/q} w(x) dx \, .$$

By Hölder's inequality and Lemma 2, the inner integral is bounded by

$$\left(\int |2^{-rj} 2^{hr} \tilde{A}_{j,h}^{(1)}(x,k)|^{q'} \rho(k)^{q'/q} dk \right)^{1/q'} \left(\int \left| 2^{sj} \tilde{E}_j(f)(x,k) \right|^q \rho(k)^{-1} dk \right)^{1/q}$$

$$\leq C 2^{-(r-\delta[r])j} 2^{h(r-[r])} \omega(2^j, 2^{-h}) \left(\int |2^{sj} \tilde{E}_j(f)(x,k)|^q \rho(k)^{-1} dk \right)^{1/q}.$$

Therefore, $\|G_2\|_{F_p^{s,q}(w)}^p$ is bounded by

$$CC(\omega)^{p} \int \left(\sum_{h=1}^{\infty} 2^{h(s-r)} \sum_{j=10}^{h+9} 2^{(r-s)j} \int |2^{-(1-\delta)rj} 2^{sj} \tilde{E}_{j}(f)(x,k)|^{q} \rho(k)^{-1} dk\right)^{p/q} w(x) dx$$

$$\leq CC(\omega)^{p} \int \left(\sum_{j=10}^{\infty} \int |2^{-(1-\delta)rj} 2^{sj} \tilde{E}_{j}(f)(x,k)|^{q} \rho(k)^{-1} dk\right)^{p/q} w(x) dx.$$

Thus, we have (see (3.1))

(3.4)
$$\|G_2\|_{F_p^{s,q}(w)}^p \le CC(\omega)^p \int \left(\sum_{j\ge 10} 2^{-q(1-\delta)rj} 2^{qjs} |\Delta_j(f)(y)|^q\right)^{p/q} w(y) dy.$$

Finally, in the same way as in the case of G_2 , if 0 < s < r, we have

(3.5)
$$\|G_3\|_{F_p^{s,q}(w)}^p \le C \int \left(\sum_{h=0}^{\infty} 2^{qhs} \left| \int \sum_{j=0}^{9} \tilde{A}_{j,h}^{(1)}(x,k) \tilde{E}_j(f)(x,k) dk \right|^q \right)^{p/q} w(x) dx$$
$$\le C_\eta C(\omega)^p \int \left(\sum_{j=0}^{9} 2^{-\eta j} 2^{qjs} |\Delta_j(f)(y)|^q \right)^{p/q} w(y) dy$$

for any $\eta \ge 0$.

By (3.3) through (3.5) we have

(3.6)
$$\|U_{N,M}(f)\|_{F_p^{s,q}(w)}^p \le C \int \left(\sum_{j=0}^\infty 2^{qjs} |\Delta_j(f)(y)|^q\right)^{p/q} w(y) dy,$$

where the constant C is independent of N and M. Fix j and put

$$T_M(f)(x) = \sum_{h=0}^M \int A_{j,h}^{(1)}(x,k) E_j(f)(x,k) dk$$

Then we can see that $|T_M(f)(x)| \leq C$ for some C > 0 independent of x and M and that $T_M(f)(x) \to \int A_j^{(1)}(x,k)E_j(f)(x,k)dk$ as $M \to \infty$ for all x. Therefore, letting $M \to \infty$ then $N \to \infty$ in (3.6), we have

(3.7)
$$\|B_1(f)\|_{F_p^{s,q}(w)}^p \le C \int \left(\sum_{j=0}^\infty 2^{qjs} |\Delta_j(f)(y)|^q\right)^{p/q} w(y) dy.$$

By the estimates (3.2) and (3.7), we can get the conclusion of Theorem 3, since

$$\int \left(\sum_{j=0}^{\infty} 2^{qjs} |\Delta_j(f)(y)|^q\right)^{p/q} w(y) dy \le C \|f\|_{F_p^{s,q}(w)}^p$$

for $s \in \mathbf{R}$, $0 < q < \infty$, $0 and <math>w \in A_{\infty}$ (see, e.g., [2]).

4. Proof of Theorem 2. Under the hypotheses of Theorem 2 we prove the validity of the conditions (1.8) through (1.11) with $\rho(k) = (1 + |k|^q)^s$, $s = \lfloor n/q \rfloor + d$, where d is chosen so that a > d and $\lfloor n/q \rfloor + d > n/q$.

Let $j \ge 1$. Then, integration by parts gives

$$A_j(x,k) = (2\pi i k_m)^{-[n/q]} \int_{\mathbf{R}^n} [(\partial/\partial \xi_m)^{[n/q]} (\sigma(x,2^j\xi)\Psi(\xi))] \exp(-2\pi i \langle k,\xi \rangle) d\xi \,.$$

Let ψ be as in Section 2. Then by applying the Hausdorff-Young inequality we have, for $l \ge 0$,

(4.1)

$$\int_{|k|\approx|k_{m}|,2^{l}\leq|k|\leq2^{l+1}} |A_{j}(x,k)|^{q'}(1+|k|^{q})^{sq'/q}dk$$

$$\leq C2^{q'sl} \int_{|k|\approx|k_{m}|} |\psi(2^{-l}k)A_{j}(x,k)|^{q'}dk$$

$$\leq C2^{q'dl} \left(\int_{\mathbf{R}^{n}} |((\hat{\psi})_{2^{-l}}*F(x,\cdot))(\xi)|^{q}d\xi\right)^{q'/q},$$

where $F(x,\xi) = (\partial/\partial \xi_m)^{[n/q]}(\sigma(x,2^j\xi)\Psi(\xi))$. Then, by (1.4) and (1.5) with L = [n/q] we have, for all $x, \xi, \eta \in \mathbb{R}^n$,

(4.2)
$$|F(x,\xi)| \le C$$
 and $|F(x,\xi+\eta) - F(x,\xi)| \le C|\eta|^a$.

By (4.2) we see that

$$\begin{split} |((\hat{\psi})_{2^{-l}} * F(x, \cdot))(\xi)| &= \left| \int [F(x, \xi + \eta) - F(x, \xi)](\hat{\psi})_{2^{-l}}(\eta) d\eta \right| \\ &\leq \left| \int_{|\eta| < |\xi|/2} [F(x, \xi + \eta) - F(x, \xi)](\hat{\psi})_{2^{-l}}(\eta) d\eta \right| \\ &+ \left| \int_{|\eta| \ge |\xi|/2} [F(x, \xi + \eta) - F(x, \xi)](\hat{\psi})_{2^{-l}}(\eta) d\eta \right| \\ &\leq C \chi_0(\xi) \int |\eta|^a |(\hat{\psi})_{2^{-l}}(\eta)| d\eta + C \min(2^{-al}, (2^l |\xi|)^{-2n}) \\ &\leq C 2^{-al} (1 + |\xi|)^{-2n} \,, \end{split}$$

where χ_0 is the characteristic function of the ball { $|\xi| \le 5$ }. Using this in (4.1), we have

(4.3)
$$\int_{|k|\approx |k_m|, |k|\geq 1} |A_j(x,k)|^{q'} (1+|k|^q)^{sq'/q} dk \leq \sum_{l\geq 0} C 2^{q'dl} 2^{-q'al} \leq C.$$

It is easier to get the estimate

$$\int_{|k| \le 1} |A_j(x,k)|^{q'} (1+|k|^q)^{sq'/q} dk \le C \,.$$

Using this and (4.3) for m = 1, ..., n, we see that the condition (1.8) holds.

Next we show that the condition (1.9) holds. Let $|\beta| = [r]$. Put

$$A(x, y, k, j, \beta) = \int_{\mathbb{R}^n} [\sigma_{(\beta)}(x + y, 2^j \xi) - \sigma_{(\beta)}(x, 2^j \xi)] \Psi(\xi) \exp(-2\pi i \langle k, \xi \rangle) d\xi$$

Then, by integration by parts

$$A(x, y, k, j, \beta) = (2\pi i k_m)^{-[n/q]} \int_{\mathbf{R}^n} G(x, y, \xi) \exp(-2\pi i \langle k, \xi \rangle) d\xi,$$

where $G(x, y, \xi) = (\partial/\partial \xi_m)^{[n/q]} [(\sigma_{(\beta)}(x+y, 2^j\xi) - \sigma_{(\beta)}(x, 2^j\xi))\Psi(\xi)]$. By the Hausdorff-Young inequality we have, as above, for $l \ge 0$

(4.4)
$$\int_{|k|\approx |k_m|, 2^l \le |k| \le 2^{l+1}} |A(x, y, k, j, \beta)|^{q'} (1+|k|^q)^{sq'/q} dk$$

$$\leq C2^{q'dl} \left(\int_{\mathbf{R}^n} |((\hat{\psi})_{2^{-l}} * G(x, y, \cdot))(\xi)|^q d\xi \right)^{q'/q}$$

By (1.6), (1.7) with L = [n/q] and a = b, we have, for all $x, y, \xi, \eta \in \mathbb{R}^n$,

(4.5)
$$|G(x, y, \xi)| \le C2^{j\delta[r]}\omega(2^{j}, |y|) \text{ and } |G(x, y, \xi + \eta) - G(x, y, \xi)| \le C|\eta|^{a}2^{j\delta[r]}\omega(2^{j}, |y|).$$

Using (4.5) and arguing as in the proof for (1.8) above, we can see that

$$|(\hat{\psi}_{2^{-l}} * G(x, y, \cdot))(\xi)| \le C 2^{-al} 2^{j\delta[r]} \omega(2^j, |y|) (1 + |\xi|)^{-2n}$$

Using this in (4.4) and summing up in $l \ge 0$, we have

(4.6)
$$\int_{|k|\approx |k_m|, |k|\geq 1} |A(x, y, k, j, \beta)|^{q'} (1+|k|^q)^{sq'/q} dk \leq C 2^{q'j\delta[r]} \omega(2^j, |y|)^{q'}.$$

We also have

$$\int_{|k| \le 1} |A(x, y, k, j, \beta)|^{q'} (1 + |k|^q)^{sq'/q} dk \le C 2^{q'j\delta[r]} \omega(2^j, |y|)^{q'}$$

Using this and (4.6) for $m = 1, \ldots, n$, we can get (1.9).

The validity of the conditions (1.10) and (1.11) can be proved similarly. Since $\rho(x) = (1 + |x|^q)^s$ satisfies (1.12), now Theorem 2 follows from Theorem 3.

5. Boundedness on the weighted Besov spaces. As applications of Theorems 1–3, we have the following:

THEOREM 4. Let $1 < t \leq 2$. Suppose that $\sigma(x, \xi)$ satisfies (1.2) and (1.3) with L = [n/t] + 1. Then

$$||T_{\sigma}(f)||_{B_{p}^{s,q}(w)} \le C ||f||_{B_{p}^{s,q}(w)}, \quad f \in S(\mathbf{R}^{n}),$$

where $t \le p < \infty$, $s \in ((\delta - 1)r, r)$, $0 < q \le \infty$ and $w \in A_{p/t}$.

THEOREM 5. Let $1 < t \le 2, 0 < a \le 1$ and [n/t] + a > n/t. Suppose that $\sigma(x, \xi)$ satisfies (1.4)–(1.7) with L = [n/t], a = b. Let $t \le p < \infty$, $s \in ((\delta - 1)r, r)$, $0 < q \le \infty$ and $w \in A_{p/t}$. Then, we have

$$||T_{\sigma}(f)||_{B_{n}^{s,q}(w)} \leq C ||f||_{B_{n}^{s,q}(w)}, \quad f \in S(\mathbf{R}^{n}).$$

THEOREM 6. Let $1 < t \le 2$. Suppose that (1.8)–(1.11) hold with t in place of q. We further assume (1.12). Then

$$\|T_{\sigma}(f)\|_{B_{p}^{s,q}(w)} \leq C \|f\|_{B_{p}^{s,q}(w)}, \quad f \in \mathcal{S}(\mathbf{R}^{n}),$$

where $t \leq p < \infty$, $s \in ((\delta - 1)r, r), 0 < q \leq \infty$ and $w \in A_{p/t}$.

Also, we have remarks similar to those in Theorems 1–3 for the dependence of the bounds on σ . We can derive Theorems 4–6 from Theorems 1–3, respectively, by applying interpolation arguments (see [2, Theorem 3.5]).

REFERENCES

- G. BOURDAUD, L^p-estimates for certain non-regular pseudo-differential operators, Comm. Partial Differential Equations 7 (1982), 1023–1033.
- [2] H.-Q. BUI, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581–605.
- [3] R. R. COIFMAN AND Y. MEYER, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Soc. Math. France, Paris, 1978.
- [4] M. FRAZIER, B. JAWERTH AND G. WEISS, Littlewood-Paley theory and study of function spaces, CBMS Regional Conf. Ser. in Math. 79, Conf. Board Math. Sci., American Mathematical Society, Providence, R.I., 1991.
- [5] J. MARSCHALL, Pseudo-differential operators with non-regular symbols of the class $S^m_{\rho,\delta}$, Comm. Partial Differential Equations 12 (1987), 921–965.
- [6] J. MARSCHALL, Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc. 307 (1988), 335–361.
- [7] A. MIYACHI AND K. YABUTA, L^p-boundedness of pseudo-differential operators with non-regular symbols, Bull. Fac. Sci. Ibaraki Univ. Ser. A 17 (1985), 1–20.
- [8] M. NAGASE, The L^p-boundedness of pseudo-differential operators with non-regular symbols, Comm. Partial Differential Equations 2 (1977), 1045–1061.
- [9] J. L. RUBIO DE FRANCIA, F. J. RUIZ AND J. L. TORREA, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7–48.
- [10] S. SATO, A note on weighted estimates for certain classes of pseudo-differential operators, Rocky Mountain J. Math. 35 (2005), 267–284.
- M. SUGIMOTO, L^p-boundedness of pseudo-differential operators satisfying Besov estimate II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 149–162.
- [12] M. SUGIMOTO, Pseudo-differential operators on Besov spaces, Tsukuba J. Math. 12 (1988), 43-63.
- [13] H. TRIEBEL, Theory of function spaces II, Monogr. Math. 84, Birkhäuser Verlag, Basel, 1992.
- K. YABUTA, Calderón-Zygmund operators and pseudo-differential operators, Comm. Partial Differential Equations 10 (1985), 1005–1022.
- [15] K. YABUTA, Weighted norm inequalities for pseudo differential operators, Osaka J. Math. 23 (1986), 703–723.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION KANAZAWA UNIVERSITY KANAZAWA 920–1192 JAPAN

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp