NON-REGULAR PSEUDO-DIFFERENTIAL OPERATORS ON THE WEIGHTED TRIEBEL-LIZORKIN SPACES

Shuichi Sato

(Received March 28, 2005, revised May 14, 2007)

Abstract

We consider certain non-regular pseudo-differential operators and study the question of their boundedness on the weighted Triebel-Lizorkin and Besov spaces.

1. Introduction. Let $\Psi \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ satisfy $\operatorname{supp}(\Psi) \subset\{1 / 2 \leq|\xi| \leq 2\},|\Psi(\xi)| \geq$ $c>0$ for $3 / 5 \leq|\xi| \leq 5 / 3$ and

$$
\sum_{j \in \mathbf{Z}} \Psi\left(2^{-j} \xi\right)=1 \quad \text { for } \quad \xi \neq 0
$$

where \mathbf{Z} denotes the set of all integers and $|\xi|=\left(\sum_{j=1}^{n} \xi_{j}^{2}\right)^{1 / 2}, \xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$. Define $\Phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ by $\Phi(\xi)=1-\sum_{j \geq 1} \Psi\left(2^{-j} \xi\right)$. We note that Φ is supported in $\{|\xi| \leq 2\}$. In what follows, we also assume that Ψ is radial. We write $g_{t}(x)=t^{-n} g(x / t)$ for $t>0$. Define $D_{j}(f)=f *(\hat{\Psi})_{2^{-j}}$ for $j \geq 1$ and $D_{0}(f)=f * \hat{\Phi}$, where \hat{g} denotes the Fourier transform:

$$
\hat{g}(\xi)=\int_{\boldsymbol{R}^{n}} g(x) e^{-2 \pi i\langle x, \xi\rangle} d x, \quad\langle x, \xi\rangle=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots+x_{n} \xi_{n}
$$

we also write $\hat{g}=\mathcal{F}(g)$.
Let $A_{r}, 1 \leq r<\infty$, be the weight class of Muckenhoupt on \boldsymbol{R}^{n}. We recall that A_{r}, $1<r<\infty$, is defined to be the class of all weight functions w on \boldsymbol{R}^{n} satisfying

$$
\sup _{Q}\left(|Q|^{-1} \int_{Q} w(x) d x\right)\left(|Q|^{-1} \int_{Q} w(x)^{-1 /(r-1)} d x\right)^{r-1}<\infty,
$$

where the supremum is taken over all cubes $Q \subset \boldsymbol{R}^{n}$ and $|Q|$ denotes the Lebesgue measure of Q. Also, for a weight function w, we say that $w \in A_{1}$ if there exists a constant C such that $\mathcal{M}(w)(x) \leq C w(x)$ for almost every x, where \mathcal{M} denotes the Hardy-Littlewood maximal operator.

Let $w \in A_{\infty}$, where $A_{\infty}=\bigcup_{1 \leq r<\infty} A_{r}$. The weighted (inhomogeneous) TriebelLizorkin space $F_{p}^{s, q}(w)$, with $0<p<\infty, 0<q \leq \infty$ and $s \in \boldsymbol{R}$, is defined to be the space of all tempered distributions f on \boldsymbol{R}^{n} satisfying

$$
\|f\|_{F_{p}^{s, q}(w)}=\left\|\left(\sum_{j=0}^{\infty}\left|2^{s j} D_{j}(f)\right|^{q}\right)^{1 / q}\right\|_{L^{p}(w)}<\infty
$$

[^0]where $\|\cdot\|_{L^{p}(w)}$ denotes the weighted L^{p} norm: $\|g\|_{L^{p}(w)}=\left(\int|g(x)|^{p} w(x) d x\right)^{1 / p}$. Also, the weighted (inhomogeneous) Besov space $B_{p}^{s, q}(w)$, with $0<p \leq \infty, 0<q \leq \infty$ and $s \in \boldsymbol{R}$, is defined to be the space of all tempered distributions f on \boldsymbol{R}^{n} satisfying
$$
\|f\|_{B_{p}^{s, q}(w)}=\left(\sum_{j=0}^{\infty}\left\|2^{s j} D_{j}(f)\right\|_{L^{p}(w)}^{q}\right)^{1 / q}<\infty
$$

See [2], [4] and [13] for more details on these spaces.
For a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, let $(\partial \xi)^{\alpha}$ denote a differential operator

$$
\left(\partial / \partial \xi_{1}\right)^{\alpha_{1}} \ldots\left(\partial / \partial \xi_{n}\right)^{\alpha_{n}}
$$

of order $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. For a function F on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ and $x, \xi, h, \eta \in \boldsymbol{R}^{n}$, we write

$$
\begin{aligned}
\left(d_{h} F\right)(x, \xi) & =F(x+h, \xi)-F(x, \xi), \\
\left(\delta_{\eta} F\right)(x, \xi) & =F(x, \xi+\eta)-F(x, \xi)
\end{aligned}
$$

We also define $\left(\delta_{\eta} d_{h} F\right)(x, \xi)=\left(d_{h} \delta_{\eta} F\right)(x, \xi)=\left(\delta_{\eta}\left(d_{h} F\right)\right)(x, \xi)$.
Let $r>0$ and $0 \leq \delta \leq 1$. Suppose that r is not an integer and that

$$
\begin{gathered}
\left|(\partial \xi)^{\alpha}(\partial x)^{\beta} \sigma(x, \xi)\right| \leq C(1+|\xi|)^{-|\alpha|+\delta|\beta|} \quad \text { for }|\alpha| \leq N,|\beta|<r \\
\left|\left(d_{y}(\partial \xi)^{\alpha}(\partial x)^{\beta} \sigma\right)(x, \xi)\right| \leq C|y|^{r-[r]}(1+|\xi|)^{-|\alpha|+\delta r} \quad \text { for }|\alpha| \leq N,|\beta|=[r]
\end{gathered}
$$

where N is an even integer greater than $3 n / 2+1$ ($[a]$ denotes the integer such that $a-1<$ $[a] \leq a)$. Let T_{σ} be a pseudo-differential operator defined by

$$
T_{\sigma}(f)(x)=\int_{\boldsymbol{R}^{n}} \sigma(x, \xi) \hat{f}(\xi) e^{2 \pi i\langle x, \xi\rangle} d \xi, \quad f \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)
$$

where $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$ denotes the Schwartz space. Then, Bourdaud [1] proved that T_{σ} is bounded on the Sobolev spaces $H_{p}^{s}\left(=F_{p}^{s, 2}\right)$ for $1<p<\infty, s \in((\delta-1) r, r)$ and that the range of s is optimal (see [5] for further developments). Also, the boundedness of T_{σ} on the Besov spaces was studied. Related results can be found in [3], [6], [7], [8], [10], [11], [12], [14] and [15]. In particular, in [10] a weighted $L^{p}, p \geq 2$, norm inequality for T_{σ} was proved under a minimal regularity condition for the symbol σ.

In [1], the case where r is an integer was also considered. In this note we confine ourselves to the case where r is not an integer and generalize results of [1] to the weighted (inhomogeneous) Triebel-Lizorkin spaces by using the idea of [10]. Moreover, by applying the results for the Triebel-Lizorkin spaces, we study the boundedness of T_{σ} on the weighted (inhomogeneous) Besov spaces. We refer to Sugimoto [12] for relevant results.

Let ω be a non-negative function on $[0, \infty) \times[0, \infty)$ satisfying the following:
($\omega .1$) there exist constants $C, M>0$ such that

$$
\omega(s, a t) \leq C(1+a)^{M} \omega(s, t) \quad \text { for all } a>0
$$

(ω.2) there exists a constant $C>0$ such that

$$
\omega\left(s^{\prime}, t\right) \leq C \omega(s, t) \quad \text { for } s / 2 \leq s^{\prime} \leq 2 s
$$

($\omega .3$) $0<\omega(1,1)$.
Let $0 \leq \delta \leq 1$. We assume that $r(>0)$ is not an integer and the function ω satisfies

$$
\begin{equation*}
C(\omega):=\sup _{0 \leq j \leq h, 0 \leq h} \omega\left(2^{j}, 2^{-h}\right) 2^{-j \delta(r-[r])} 2^{h(r-[r])}<\infty, \tag{1.1}
\end{equation*}
$$

where $j, h \in \boldsymbol{Z}$. A prime example of ω satisfying (1.1), ($\omega .1$)-($\omega .3$) is $\omega(s, t)=$ $s^{\delta(r-[r])} t^{r-[r]}$ (see also Remark 3 below).

Let $\sigma(x, \xi)$ be a bounded function on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$. For the rest of this note, we assume that $\sigma \in C^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}\right)$ for the sake of simplicity. We write $\sigma^{(\alpha)}(x, \xi)=(\partial \xi)^{\alpha} \sigma(x, \xi), \sigma_{(\beta)}(x, \xi)=$ $(\partial x)^{\beta} \sigma(x, \xi)$ and $\sigma_{(\beta)}^{(\alpha)}(x, \xi)=(\partial \xi)^{\alpha}(\partial x)^{\beta} \sigma(x, \xi)$. Let L be a non-negative integer. We consider the following conditions:

$$
\begin{equation*}
\left|\sigma^{(\alpha)}(x, \xi)\right| \leq C_{\alpha}(1+|\xi|)^{-|\alpha|} \quad \text { for }|\alpha| \leq L ; \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|\left(d_{y} \sigma_{(\beta)}^{(\alpha)}\right)(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{-|\alpha|+\delta|\beta|} \omega(1+|\xi|,|y|) \quad \text { for }|\alpha| \leq L,|\beta|=[r] . \tag{1.3}
\end{equation*}
$$

Then we have the following
Theorem 1. Let $1<q \leq 2$. Suppose that $\sigma(x, \xi)$ satisfies (1.2) and (1.3) with $L=[n / q]+1$. Let $s \in((\delta-1) r, r), q \leq p<\infty$ and $w \in A_{p / q}$. Then the operator T_{σ} is bounded on $F_{p}^{s, q}(w)$. The operator norm is bounded by a constant which is independent of σ if the constants $C_{\alpha}, C_{\alpha, \beta}$ in (1.2) and (1.3) are fixed for $|\alpha| \leq[n / q]+1,|\beta|=[r]$.

Let L be a non-negative integer and $0<a, b \leq 1$. We consider the following conditions:

$$
\begin{align*}
& \left|\sigma^{(\alpha)}(x, \xi)\right| \leq C_{\alpha}(1+|\xi|)^{-|\alpha|} \quad \text { for }|\alpha| \leq L ; \tag{1.4}\\
& \left|\left(\delta_{\eta} \sigma^{(\alpha)}\right)(x, \xi)\right| \leq C_{\alpha}(1+|\xi|)^{-|\alpha|-a}|\eta|^{a} \quad \text { for }|\eta|<|\xi| / 2, \quad|\alpha|=L \tag{1.5}\\
& \left|\left(d_{y} \sigma_{(\beta)}^{(\alpha)}\right)(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{-|\alpha|+\delta|\beta|} \omega(1+|\xi|,|y|) \tag{1.6}\\
& \quad \text { for }|\alpha| \leq L, \quad|\beta|=[r] ; \\
& \left|\left(\delta_{\eta} d_{y} \sigma_{(\beta)}^{(\alpha)}\right)(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{-|\alpha|-b+\delta|\beta|}|\eta|^{b} \omega(1+|\xi|,|y|) \tag{1.7}\\
& \text { for }|\eta|<|\xi| / 2,|\alpha|=L, \quad|\beta|=[r] .
\end{align*}
$$

Then, Theorem 1 follows from the following
Theorem 2. Let $1<q \leq 2,0<a \leq 1$ and $[n / q]+a>n / q$. Suppose that $\sigma(x, \xi)$ satisfies (1.4)-(1.7) with $L=[n / q], a=b$. Let $s \in((\delta-1) r, r), q \leq p<\infty$ and $w \in A_{p / q}$. Then T_{σ} is bounded on $F_{p}^{s, q}(w)$. Moreover, the operator norm is bounded by a constant which is independent of σ if we fix the constants $C_{\alpha}, C_{\alpha, \beta}$ in (1.4)-(1.7) for $|\alpha| \leq[n / q],|\beta|=[r]$.

This is a consequence of a more general result (Theorem 3). Let ρ be a non-negative function such that $\rho^{-1} \in L^{1}\left(\boldsymbol{R}^{n}\right)$. Let $1<q \leq 2$. For an appropriate f, define

$$
\|f\|_{A_{\rho}^{q}}=\left(\int_{R^{n}}|\hat{f}(x)|^{q^{\prime}} \rho(x)^{q^{\prime} / q} d x\right)^{1 / q^{\prime}}
$$

where q^{\prime} is the exponent conjugate to $q: q^{\prime}=q /(q-1)$. We consider the following conditions:

$$
\begin{gather*}
C_{1}:=\sup _{j \geq 1} \sup _{x \in \boldsymbol{R}^{n}}\left\|\sigma\left(x, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}}<\infty ; \tag{1.8}\\
\sup _{x \in \boldsymbol{R}^{n}}\left\|\left(d_{y} \sigma_{(\beta)}\right)\left(x, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}} \leq C_{\beta} 2^{j \delta[r]} \omega\left(2^{j},|y|\right) \quad \text { for }|\beta|=[r], j \geq 1 ; \tag{1.9}\\
C_{2}:=\sup _{x \in \boldsymbol{R}^{n}}\|\sigma(x, \cdot) \Phi(\cdot)\|_{A_{\rho}^{q}}<\infty ; \tag{1.10}\\
\sup _{x \in \boldsymbol{R}^{n}}\left\|\left(d_{y} \sigma_{(\beta)}\right)(x, \cdot) \Phi(\cdot)\right\|_{A_{\rho}^{q}} \leq C_{\beta} \omega(1,|y|) \quad \text { for }|\beta|=[r] . \tag{1.11}
\end{gather*}
$$

Then we have the following:
THEOREM 3. Suppose that the conditions (1.8)-(1.11) hold. Let $s \in((\delta-1) r, r)$, $q \leq p<\infty$ and $w \in A_{p / q}$. We further assume that

$$
\begin{equation*}
\sup _{t>0} \theta_{t} * f(x) \leq C \mathcal{M}(f)(x) \quad \text { a.e. } \tag{1.12}
\end{equation*}
$$

for all non-negative bounded functions f, where $\theta(x)=\rho(x)^{-1}$. Then T_{σ} is bounded on $F_{p}^{s, q}(w)$. The operator norm is bounded by a constant which is independent of σ if the constants $C_{1}, C_{2}, C_{\beta}(|\beta|=[r])$ in (1.8)-(1.11) are fixed.

REMARK 1. Let $\omega(s, t)=s^{\delta(r-[r])} t^{r-[r]}, r>0,0 \leq \delta \leq 1$. By examples similar to those in [1], we can see the optimality of the range of s in Theorem $2((\delta-1) r<s<r)$.

Indeed, for $k \geq 10$, let

$$
\sigma_{k}(x, \xi)=\sum_{j=10}^{k} 2^{-j r} \exp \left(2 \pi i 2^{j} x_{1}\right) \quad\left(x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

Then, $\sigma_{k}(x, \xi)$ uniformly satisfies (1.4)-(1.7) for all L and $a=b=1$. We take Ψ in the definition of $F_{p}^{s, q}(w)$ such that $\Psi(\xi)=1$ for $9 / 10 \leq|\xi| \leq 10 / 9, \Psi\left(2^{-m} \xi\right)=0$ if $9 / 10 \leq 2^{-j}|\xi| \leq 10 / 9$ and $m \neq j$. Let $g \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ satisfy $\operatorname{supp}(\hat{g}) \subset\left\{|\xi| \leq 10^{-9}\right\}$, $0<\|g\|_{L^{p}(w)}<\infty$. Then we can see $D_{h} T_{\sigma_{k}}(g)(x)=2^{-h r} \exp \left(2 \pi i 2^{h} x_{1}\right) g(x), h=$ $10,11, \ldots, k$, and $D_{h} T_{\sigma_{k}}(g)=0$ otherwise. Thus, if $s \geq r$,

$$
\sup _{k \geq 10}\left\|T_{\sigma_{k}}(g)\right\|_{F_{p}^{s, q}(w)}=\sup _{k \geq 10}\left(\sum_{h=10}^{k} 2^{h(s-r) q}\right)^{1 / q}\|g\|_{L^{p}(w)}=\infty .
$$

Next, let

$$
\sigma(x, \xi)=\sum_{j \geq 10} 2^{(\delta-1) r j} \exp \left(-2 \pi i 2^{j} x_{1}\right) \psi\left(2^{-j} \xi\right)
$$

where $\psi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ is supported in $\{7 / 8 \leq|\xi| \leq 8 / 7\}$ and $\psi(\xi)=1$ for $9 / 10 \leq|\xi| \leq 10 / 9$. Then $\sigma(x, \xi)$ satisfies (1.4)-(1.7) for all L and $a=b=1$. Put, for $m \geq 10$,

$$
f_{m}(x)=\sum_{j=10}^{m} j^{-1} 2^{j(1-\delta) r} \exp \left(2 \pi i 2^{j} x_{1}\right) g(x),
$$

where g is as above. Then $T_{\sigma}\left(f_{m}\right)(x)=g(x) \sum_{j=10}^{m} j^{-1}$. On the other hand, $D_{h}\left(f_{m}\right)(x)=$ $h^{-1} 2^{h(1-\delta) r} \exp \left(2 \pi i 2^{h} x_{1}\right) g(x)$ for $h=10,11, \ldots, m, D_{h}\left(f_{m}\right)(x)=0$ otherwise, where D_{h} is defined by Ψ specified above. Thus

$$
\left\|f_{m}\right\|_{F_{p}^{s, q}(w)}=\left(\sum_{h=10}^{m} h^{-q} 2^{h(s+(1-\delta) r) q}\right)^{1 / q}\|g\|_{L^{p}(w)}
$$

and hence the sequence $\left\{f_{m}\right\}$ is bounded in $F_{p}^{s, q}(w)$ if $s<(\delta-1) r$ or $s=(\delta-1) r$ and $1<q \leq \infty$, while $\left\{T_{\sigma}\left(f_{m}\right)\right\}$ is unbounded there.

REMARK 2. Let

$$
\sigma_{a}(x, \xi)=\exp \left(-2 \pi i\langle x, \xi\rangle-|x|^{2}\right)\left(1+|\xi|^{2}\right)^{-n / a}, \quad a>0
$$

Suppose that $n / 2$ is not an integer and put $\varepsilon_{0}=n / 2-[n / 2]=1 / 2$. If M is a non-negative integer and if $0 \leq M \leq[n / 2]-1$, then we can see that $\sigma_{4}(x, \xi)$ satisfies (1.4)-(1.7) with $L=M, a=b=1, \varepsilon_{0} \leq r<1, \omega(s, t)=s^{\delta r} t^{r}, \delta=\left(r-\varepsilon_{0}\right) / r$. Although $0 \in((\delta-1) r, r)$, we can easily see that $T_{\sigma_{4}}$ is not bounded on $L^{2}=F_{2}^{0,2}$ (the unweighted Lebesgue space).

Also, we can see that $\sigma_{4}(x, \xi)$ satisfies (1.4)-(1.7) with $L=[n / 2], a=b, \omega(s, t)=$ $s^{\delta r} t^{r}, 0<r<1, \delta=\left(r-\varepsilon_{0}+a\right) / r$, where $\varepsilon_{0}-r \leq a \leq \varepsilon_{0}$ if $0<r<\varepsilon_{0}$ and $0<a \leq \varepsilon_{0}$ if $\varepsilon_{0} \leq r<1$. If $L+a<n / 2$, then $0 \in((\delta-1) r, r)$; but as we mentioned above, $T_{\sigma_{4}}$ is not bounded on L^{2} (see Coifman-Meyer [3, p. 12] and Yabuta [14, Section 6]).

REMARK 3. Let $\varepsilon=r-[r], \beta \geq \varepsilon, \gamma \geq 0,0 \leq \delta \leq 1$. For $s \geq 1, t \geq 0$, let

$$
\omega_{0}(s, t)= \begin{cases}s^{\delta \varepsilon} t^{\varepsilon} & \text { if } s t<1 \\ s^{\delta \varepsilon} t^{\varepsilon}(s t)^{\beta-\varepsilon} & \text { if } s t \geq 1\end{cases}
$$

and for $0 \leq s<1, t \geq 0$, let $\omega_{0}(s, t)=s^{\gamma} t^{\varepsilon}(t<1), \omega_{0}(s, t)=s^{\gamma} t^{\beta}(t \geq 1)$. Then, ω_{0} satisfies (1.1), ($\omega .1)-(\omega .3)$.

In Section 2, we recall results relevant to the proof of Theorem 3. In Section 3, we prove Theorem 3 by applying these results. Theorem 2 is proved in Section 4 by using Theorem 3. In Section 5, we state results on the boundedness of T_{σ} on $B_{p}^{s, q}(w)$ as applications of the results for $F_{p}^{s, q}(w)$.
2. Results for the proof of Theorem 3. Take radial functions $\psi, \varphi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ such that $\operatorname{supp}(\psi) \subset\{1 / 4<|\xi|<4\}, \psi(\xi)=1$ if $1 / 2 \leq|\xi| \leq 2$ and $\operatorname{supp}(\varphi) \subset\{|\xi|<4\}$, $\varphi(\xi)=1$ if $|\xi| \leq 2$. Decompose

$$
\begin{aligned}
\sigma(x, \xi) & =\sigma(x, \xi) \Phi(\xi)+\sum_{j \geq 1} \sigma(x, \xi) \Psi\left(2^{-j} \xi\right) \\
& =\sigma(x, \xi) \Phi(\xi) \varphi(\xi)^{2}+\sum_{j \geq 1} \sigma(x, \xi) \Psi\left(2^{-j} \xi\right) \psi\left(2^{-j} \xi\right)^{2} \\
& =\left(\int_{\boldsymbol{R}^{n}} A_{0}(x, k) \exp (2 \pi i\langle k, \xi\rangle) d k\right) \varphi(\xi)^{2}
\end{aligned}
$$

$$
+\sum_{j \geq 1}\left(\int_{\boldsymbol{R}^{n}} A_{j}(x, k) \exp \left(2 \pi i\left\langle 2^{-j} k, \xi\right\rangle\right) d k\right) \psi\left(2^{-j} \xi\right)^{2}
$$

where

$$
\begin{aligned}
& A_{j}(x, k)=\int_{\boldsymbol{R}^{n}} \sigma\left(x, 2^{j} \xi\right) \Psi(\xi) \exp (-2 \pi i\langle k, \xi\rangle) d \xi, \quad j \geq 1, \\
& A_{0}(x, k)=\int_{\boldsymbol{R}^{n}} \sigma(x, \xi) \Phi(\xi) \exp (-2 \pi i\langle k, \xi\rangle) d \xi
\end{aligned}
$$

For $j \geq 1$, put

$$
A_{j}^{(2)}(x, k)=\int_{\boldsymbol{R}^{n}}\left((\hat{\varphi})_{2^{-j+12}} * \sigma\left(\cdot, 2^{j} \xi\right)\right)(x) \Psi(\xi) \exp (-2 \pi i\langle k, \xi\rangle) d \xi
$$

where $\left((\hat{\varphi})_{2^{-j+12}} * \sigma\left(\cdot, 2^{j} \xi\right)\right)(x)=\int(\hat{\varphi})_{2^{-j+12}}(y) \sigma\left(x-y, 2^{j} \xi\right) d y$.
Lemma 1. Suppose that the conditions (1.8) and (1.9) hold. Put $A_{j}^{(1)}(x, k)=$ $A_{j}(x, k)-A_{j}^{(2)}(x, k), j \geq 1$. Then

$$
\begin{gather*}
\sup _{x \in \boldsymbol{R}^{n}} \int_{\boldsymbol{R}^{n}}\left|A_{j}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k \leq C 2^{-q^{\prime} j[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-j}\right)^{q^{\prime}}, \tag{2.1}\\
 \tag{2.2}\\
\sup _{j \geq 1} \sup _{x \in \boldsymbol{R}^{n}} \int_{\boldsymbol{R}^{n}}\left|A_{j}^{(2)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k<\infty .
\end{gather*}
$$

Furthermore, the Fourier transform of $A_{j}^{(2)}(x, k)$ with respect to the x-variable is supported in $\left\{|\xi| \leq 2^{j-10}\right\}$ for all k.

Proof. First we see that

$$
\begin{aligned}
\int\left|A_{j}^{(2)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k & \leq C \int\left|(\hat{\varphi})_{2^{-j+12}}(y)\right|\left\|\sigma\left(x+y, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}}^{q^{\prime}} d y \\
& \leq C \sup _{x \in \boldsymbol{R}^{n}}\left\|\sigma\left(x, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}}^{q^{\prime}}
\end{aligned}
$$

Therefore by (1.8) we get (2.2). The support condition for the Fourier transform of $A_{j}^{(2)}$ is easily seen.

Next, we prove (2.1). Put

$$
H\left(x, y, 2^{j} \xi\right)=\sigma\left(x+y, 2^{j} \xi\right)-\sum_{|\beta| \leq[r]} \frac{1}{\beta!} y^{\beta} \sigma_{(\beta)}\left(x, 2^{j} \xi\right)
$$

where $\beta!=\beta_{1}!\cdots \beta_{n}!, \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), y^{\beta}=y_{1}^{\beta_{1}} \cdots y_{n}^{\beta_{n}}$. Since

$$
\int \hat{\varphi}(y) d y=1, \quad \int \hat{\varphi}(y) y^{\alpha} d y=0 \quad \text { if }|\alpha|>0
$$

then we have

$$
\int(\hat{\varphi})_{2^{-j+12}}(y) \sigma\left(x+y, 2^{j} \xi\right) d y-\sigma\left(x, 2^{j} \xi\right)=\int(\hat{\varphi})_{2^{-j+12}}(y) H\left(x, y, 2^{j} \xi\right) d y
$$

and hence

$$
\int\left|A_{j}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k \leq C \int\left|(\hat{\varphi})_{2^{-j+12}}(y)\right|\left\|H\left(x, y, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}}^{q^{\prime}} d y .
$$

By Taylor's formula we see that
$\left\|H\left(x, y, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}} \leq C \sum_{|\beta|=[r]}|y|^{[r]} \sup _{0 \leq t \leq 1}\left\|\sigma_{(\beta)}\left(x+t y, 2^{j} \cdot\right) \Psi(\cdot)-\sigma_{(\beta)}\left(x, 2^{j} \cdot\right) \Psi(\cdot)\right\|_{A_{\rho}^{q}}$.
Thus by (1.9)

$$
\begin{aligned}
& \int\left|A_{j}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k \leq C \int\left|(\hat{\varphi})_{2^{-j+12}}(y)\right||y|^{q^{\prime}[r]} 2^{q^{\prime} j \delta[r]} \sup _{0 \leq t \leq 1} \omega\left(2^{j}, t|y|\right)^{q^{\prime}} d y \\
& \quad \leq C \int|\hat{\varphi}(y)||y|^{q^{\prime}[r]} 2^{-q^{\prime} j[r]} 2^{q^{\prime} j \delta[r]} \sup _{0 \leq t \leq 1} \omega\left(2^{j}, 2^{-j+12} t|y|\right)^{q^{\prime}} d y \\
& \quad \leq C 2^{-q^{\prime} j[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-j}\right)^{q^{\prime}} \int|\hat{\varphi}(y)||y|^{q^{\prime}[r]}(1+|y|)^{q^{\prime} M} d y \\
& \quad \leq C 2^{-q^{\prime} j[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-j}\right)^{q^{\prime}},
\end{aligned}
$$

where we have used ($\omega .1$). This proves (2.1), which completes the proof of Lemma 1.
Lemma 2. Suppose that the conditions (1.8) through (1.11) hold. Let $A_{0}^{(1)}=A_{0}$, and for $j \geq 1$ let $A_{j}^{(1)}$ be as in Lemma 1. Define $A_{j, h}^{(1)}(x, k)=D_{h}\left(A_{j}^{(1)}(\cdot, k)\right)(x)$ for $j, h \geq 0$. Then

$$
\begin{aligned}
& \sup _{x \in \boldsymbol{R}^{n}}\left(\int\left|A_{j, h}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k\right)^{1 / q^{\prime}} \\
& \leq C \min \left(2^{-j[r]} 2^{j \delta[r]} \omega\left(2^{j}, 2^{-j}\right), 2^{-h[r]} 2^{j \delta[r]} \omega\left(2^{j}, 2^{-h}\right)\right) .
\end{aligned}
$$

Proof. Let $j \geq 1$ and $h \geq 1$. We note that

$$
A_{j, h}^{(1)}(x, k)=(\hat{\Psi})_{2^{-h}} * A_{j}(\cdot, k)(x)-(\hat{\varphi})_{2^{-j+12}} *(\hat{\Psi})_{2^{-h}} * A_{j}(\cdot, k)(x) .
$$

Since $\int \hat{\Psi}(y) y^{\alpha} d y=0$ for all α, we have

$$
(\hat{\Psi})_{2^{-h}} * \sigma\left(\cdot, 2^{j} \xi\right)(x)=\int(\hat{\Psi})_{2^{-h}}(y) H\left(x, y, 2^{j} \xi\right) d y
$$

where H is as in the proof of Lemma 1. Thus, as in the proof of Lemma 1, we have

$$
\begin{equation*}
\int\left|D_{h}\left(A_{j}(\cdot, k)\right)(x)\right|^{q^{\prime}} \rho(k)^{q^{\prime} \mid q} d k \leq C 2^{-q^{\prime} h[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-h}\right)^{q^{\prime}} \tag{2.3}
\end{equation*}
$$

and hence

$$
\begin{align*}
& \int\left|(\hat{\varphi})_{2^{-j+12}} *(\hat{\Psi})_{2^{-h}} * A_{j}(\cdot, k)(x)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k \\
& \quad \leq C \int\left|(\hat{\varphi})_{2^{-j+12}}(y)\right|\left[\int\left|(\hat{\Psi})_{2^{-h}} * A_{j}(\cdot, k)(x-y)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k\right] d y \tag{2.4}\\
& \quad \leq C 2^{-q^{\prime} h[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-h}\right)^{q^{\prime}} .
\end{align*}
$$

Also, by using Lemma 1, we get
(2.5) $\int\left|A_{j, h}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k \leq C 2^{-q^{\prime} j[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-j}\right)^{q^{\prime}} \quad$ for $h \geq 0, j \geq 1$.

Combining (2.3)-(2.5), we obtain the conclusion of Lemma 2 for $j \geq 1$. The proof for the case $j=0$ can be done similarly by using (1.10) and (1.11).

We can prove the following result by applying Hölder's inequality.
Lemma 3. Let $a>1,1 \leq r<\infty$, and let $\left\{x_{k}\right\}_{k=0}^{\infty}$ be a sequence of complex numbers such that $\sum_{k=0}^{\infty}\left|x_{k}\right|^{r}<\infty$. Then

$$
\sum_{j=0}^{\infty}\left|a^{-j} \sum_{k=0}^{j} a^{k} x_{k}\right|^{r} \leq(a /(a-1))^{r} \sum_{k=0}^{\infty}\left|x_{k}\right|^{r} .
$$

The following lemma generalizes a result stated in [1].
LEMMA 4. For $j=0,1,2, \ldots$, let f_{j} be a tempered distribution whose Fourier transform is supported in $\left\{|\xi|<c 2^{j}\right\}$ for some constant $c>0$ (note that f_{j} is a function by the support condition). We assume that $f_{j}=0$ for all but a finite number of values of j. Let $s>0,1<p<\infty, 1<q<\infty$ and $w \in A_{p}$. Then we have

$$
\left\|\sum_{j=0}^{\infty} f_{j}\right\|_{F_{p}^{s, q}(w)} \leq C\left\|\left(\sum_{j=0}^{\infty} 2^{q j s}\left|f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}(w)}
$$

Proof. There exists a positive integer N such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} f_{j}=\sum_{j=0}^{\infty} \sum_{l=0}^{j+N} D_{l}\left(f_{j}\right)=\sum_{l=0}^{\infty} \sum_{j=\max (l-N, 0)}^{\infty} D_{l}\left(f_{j}\right)=\sum_{l=0}^{\infty} D_{l}\left(\sum_{j=\max (l-N, 0)}^{\infty} f_{j}\right) \tag{2.6}
\end{equation*}
$$

Now, by Hölder's inequality we have, for appropriate functions g_{l},

$$
\begin{align*}
& \left|\sum_{l=0}^{\infty} \int D_{l}\left(\sum_{j=\max (l-N, 0)}^{\infty} f_{j}\right) g_{l} d x\right|=\left|\sum_{j=0}^{\infty} \int f_{j}\left(\sum_{l=0}^{j+N} D_{l}\left(g_{l}\right)\right) d x\right| \tag{2.7}\\
& \quad \leq\left(\int\left(\sum_{j \geq 0} 2^{q j s}\left|f_{j}(x)\right|^{q}\right)^{p / q} w(x) d x\right)^{1 / p} I^{1 / p^{\prime}}
\end{align*}
$$

where

$$
I=\int\left(\sum_{j \geq 0}\left|2^{-j s}\left(\sum_{l=0}^{j+N} D_{l}\left(g_{l}\right)\right)\right|^{q^{\prime}}\right)^{p^{\prime} / q^{\prime}} w(x)^{-p^{\prime} / p} d x
$$

By Lemma 3 with $a=2^{s}$ and $r=q^{\prime}$, we have

$$
\begin{aligned}
\sum_{j \geq 0}\left|2^{-j s}\left(\sum_{l=0}^{j+N} D_{l}\left(g_{l}\right)\right)\right|^{q^{\prime}} & =\sum_{j \geq 0}\left|2^{-j s}\left(\sum_{l=0}^{j+N} 2^{s l} D_{l}\left(2^{-s l} g_{l}\right)\right)\right|^{q^{\prime}} \\
& \leq C \sum_{l=0}^{\infty} 2^{-q^{\prime} s l}\left|D_{l}\left(g_{l}\right)\right|^{q^{\prime}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I & \leq C \int\left(\sum_{l=0}^{\infty} 2^{-q^{\prime} s l}\left|D_{l}\left(g_{l}\right)\right|^{q^{\prime}}\right)^{p^{\prime} / q^{\prime}} w(x)^{-p^{\prime} / p} d x \\
& \leq C \int\left(\sum_{l=0}^{\infty} 2^{-q^{\prime} s l}\left|g_{l}\right|^{q^{\prime}}\right)^{p^{\prime} / q^{\prime}} w(x)^{-p^{\prime} / p} d x
\end{aligned}
$$

where the last inequality follows from a well-known vector valued inequality, since $w^{-p^{\prime} / p} \in$ $A_{p^{\prime}}$ (see [9]). By a duality argument using this estimate in (2.7), we have

$$
\begin{gathered}
\int\left(\sum_{l=0}^{\infty} 2^{q s l}\left|D_{l}\left(\sum_{j=\max (l-N, 0)}^{\infty} f_{j}\right)\right|^{q}\right)^{p / q} w(x) d x \\
\leq C \int\left(\sum_{j \geq 0} 2^{q j s}\left|f_{j}(x)\right|^{q}\right)^{p / q} w(x) d x
\end{gathered}
$$

From this and (2.6) we can easily get the conclusion.
3. Proof of Theorem 3. Put, for $j \geq 1$,

$$
\begin{aligned}
E_{j}(f)(x, k) & =\int_{\boldsymbol{R}^{n}} \exp \left(2 \pi i\left\langle 2^{-j} k, \xi\right\rangle\right) \psi\left(2^{-j} \xi\right)^{2} \hat{f}(\xi) \exp (2 \pi i\langle x, \xi\rangle) d \xi \\
& =\left(\tau_{-k} \mathcal{F}^{-1}(\psi)\right)_{2^{-j}} * \Delta_{j}(f)(x)
\end{aligned}
$$

where $\tau_{k} f(x)=f(x-k)$ and

$$
\Delta_{j}(f)(x)=\int_{\boldsymbol{R}^{n}} \psi\left(2^{-j} \xi\right) \hat{f}(\xi) \exp (2 \pi i\langle x, \xi\rangle) d \xi .
$$

Also put $E_{0}(f)(x, k)=\left(\tau_{-k} \mathcal{F}^{-1}(\varphi)\right) * \Delta_{0}(f)(x)$, where

$$
\Delta_{0}(f)(x)=\int_{\mathbf{R}^{n}} \varphi(\xi) \hat{f}(\xi) \exp (2 \pi i\langle x, \xi\rangle) d \xi
$$

Then we can see that

$$
T_{\sigma}(f)(x)=\sum_{j \geq 0} \int A_{j}(x, k) E_{j}(f)(x, k) d k, \quad f \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)
$$

Decompose $A_{j}(x, k)=A_{j}^{(1)}(x, k)+A_{j}^{(2)}(x, k)$ for $j \geq 0$, where $A_{j}^{(1)}$ and $A_{j}^{(2)}$ are as in Lemmas 1 and $2\left(A_{0}^{(2)} \equiv 0\right)$. Put

$$
B_{i}(f)(x)=\sum_{j \geq 0} \int A_{j}^{(i)}(x, k) E_{j}(f)(x, k) d k, \quad i=1,2 .
$$

Then $T_{\sigma}(f)=B_{1}(f)+B_{2}(f)$. We note the following. For a positive integer N, let

$$
S_{N}^{(i)}(f)(x)=\sum_{j=0}^{N} \int A_{j}^{(i)}(x, k) E_{j}(f)(x, k) d k, \quad i=1,2
$$

Then we can easily see that $\left|S_{N}^{(i)}(f)(x)\right| \leq C$ for some $C>0$ independent of x and N. Also, we can see that $S_{N}^{(i)}(f)(x) \rightarrow B_{i}(f)(x)$ as $N \rightarrow \infty$ for all x.

We estimate $B_{i}(f), i=1,2$, separately under the hypotheses of Theorem 3. We begin with the estimation of $B_{2}(f)$. First, observing that the Fourier transform of $\int A_{j}^{(2)}(x, k) E_{j}(f)(x, k) d k, j \geq 1$, is supported in an annulus of the form $\left\{c_{1} 2^{j}<|\xi|<\right.$ $\left.c_{2} 2^{j}\right\}$ with $c_{1}, c_{2}>0$, by a vector valued inequality (see [9], [2]) we have, for $s \in \boldsymbol{R}$,

$$
\left\|B_{2}(f)\right\|_{F_{p}^{s, q}(w)}^{p} \leq C \int\left(\sum_{j=1}^{\infty} 2^{q j s}\left|\int A_{j}^{(2)}(x, k) E_{j}(f)(x, k) d k\right|^{q}\right)^{p / q} w(x) d x .
$$

By Hölder's inequality and Lemma 1 (2.2), the right hand side is bounded by, up to a constant factor,

$$
\int\left(\sum_{j \geq 1} \int \rho(k)^{-1} 2^{q j s}\left|E_{j}(f)(x, k)\right|^{q} d k\right)^{p / q} w(x) d x
$$

Let g be a non-negative function on \boldsymbol{R}^{n}. Then, a direct computation yields

$$
\begin{aligned}
& \int \sum_{j \geq 1} \int \rho(k)^{-1} 2^{q j s}\left|E_{j}(f)(x, k)\right|^{q} d k g(x) d x \\
& \quad \leq C \sum_{j \geq 1} \int\left(\int \rho(k)^{-1} \int 2^{j n}\left|\mathcal{F}^{-1}(\psi)\left(2^{j}(x-y)+k\right)\right| g(x) d x d k\right) 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q} d y \\
& \quad \leq C \sum_{j \geq 1} \int\left(\int \rho(k)^{-1} \mathcal{M}(g)\left(y-2^{-j} k\right) d k\right) 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q} d y \\
& \quad \leq C \sum_{j \geq 1} \int \operatorname{N} \mathcal{N}(g)(y) 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q} d y
\end{aligned}
$$

where the last inequality follows from (1.12). Put

$$
I=\int\left(\sum_{j \geq 1} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y .
$$

Now we assume that $p>q$. Then by Hölder's inequality

$$
\begin{aligned}
& \sum_{j \geq 1} \int \operatorname{MNM}(g)(y) 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q} d y \\
& \leq C\left(\int \operatorname{MNM}(g)^{(p / q)^{\prime}}(y) w(y)^{-q(p / q)^{\prime} / p} d y\right)^{1 /(p / q)^{\prime}} I^{q / p} \\
& \leq C\|g\|_{L^{(p / q)^{\prime}}\left(w^{\left.-q(p / q)^{\prime} / p\right)}\right.} I^{q / p},
\end{aligned}
$$

if $g \in L^{(p / q)^{\prime}}\left(w^{-q(p / q)^{\prime} / p}\right)$ and $w \in A_{p / q}$. Therefore by the converse of Hölder's inequality we have

$$
\begin{equation*}
\int\left(\sum_{j \geq 1} \int \rho(k)^{-1} 2^{q j s}\left|E_{j}(f)(x, k)\right|^{q} d k\right)^{p / q} w(x) d x \leq C I \tag{3.1}
\end{equation*}
$$

The case $p=q, w \in A_{1}$ can be treated similarly and we also have this inequality. Thus

$$
\begin{equation*}
\left\|B_{2}(f)\right\|_{F_{p}^{s, q}(w)}^{p} \leq C \int\left(\sum_{j \geq 1} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y \tag{3.2}
\end{equation*}
$$

Next, we estimate $B_{1}(f)$. For positive integers N, M, put

$$
U_{N, M}(f)(x)=\sum_{j=0}^{N} \sum_{h=0}^{M} \int A_{j, h}^{(1)}(x, k) E_{j}(f)(x, k) d k
$$

where $A_{j, h}^{(1)}$ is as in Lemma 2. We estimate $U_{N, M}(f)$ on $F_{p}^{s, q}(w)$. The estimate will be uniform in N and M. Put $\tilde{A}_{j, h}^{(1)}=A_{j, h}^{(1)}$ if $0 \leq h \leq M$ and $\tilde{A}_{j, h}^{(1)}=0$ if $h>M$; also $\tilde{E}_{j}(f)=E_{j}(f)$ if $0 \leq j \leq N$ and $\tilde{E}_{j}(f)=0$ if $j>N$. Then

$$
U_{N, M}(f)(x)=\sum_{j \geq 0} \sum_{h \geq 0} \int \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k=G_{1}(x)+G_{2}(x)+G_{3}(x)
$$

where

$$
\begin{aligned}
& G_{1}(x)=\sum_{j=10}^{\infty} \sum_{h=0}^{j-10} \int \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k \\
& G_{2}(x)=\sum_{j=10}^{\infty} \sum_{h=j-9}^{\infty} \int \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k=\sum_{h=1}^{\infty} \sum_{j=10}^{h+9} \int \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k \\
& G_{3}(x)=\sum_{h=0}^{\infty} \sum_{j=0}^{9} \int \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k
\end{aligned}
$$

We estimate G_{1}, G_{2} and G_{3} separately.
Observing that the Fourier transform of $\int \sum_{0 \leq h \leq j-10} \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k, j \geq 10$, is supported in an annulus of the form $\left\{c_{1} 2^{j}<|\xi|<c_{2} 2^{j}\right\}, c_{1}, c_{2}>0$, via Hölder's inequality
we have

$$
\begin{aligned}
& \left\|G_{1}\right\|_{F_{p}^{s, q}(w)}^{p} \leq C \int\left(\sum_{j=10}^{\infty} 2^{q j s}\left|\int \sum_{h=0}^{j-10} \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k\right|^{q}\right)^{p / q} w(x) d x \\
& \quad \leq C \int\left(\sum_{j=10}^{\infty}\left(\int\left|\sum_{h=0}^{j-10} \tilde{A}_{j, h}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k\right)^{q / q^{\prime}} F_{j}(s, q, x)\right)^{p / q} w(x) d x,
\end{aligned}
$$

where

$$
F_{j}(s, q, x)=\int \rho(k)^{-1} 2^{q j s}\left|\tilde{E}_{j}(f)(x, k)\right|^{q} d k
$$

We note that

$$
\sum_{0 \leq h \leq j-10} \tilde{A}_{j, h}^{(1)}(x, k)=g^{(j, M)} * A_{j}^{(1)}(\cdot, k)(x), \quad j \geq 10
$$

for some $g^{(j, M)} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ such that $\left\|g^{(j, M)}\right\|_{L^{1}} \leq c$, where c is a constant independent of j and M. Therefore by Lemma 1 (2.1) we have

$$
\int\left|\sum_{h=0}^{j-10} \tilde{A}_{j, h}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k \leq C 2^{-q^{\prime} j[r]} 2^{q^{\prime} j \delta[r]} \omega\left(2^{j}, 2^{-j}\right)^{q^{\prime}} .
$$

Thus for any $s \in \boldsymbol{R}$

$$
\begin{align*}
\left\|G_{1}\right\|_{F_{p}^{s, q}(w)}^{p} & \leq C C(\omega)^{p} \int\left(\sum_{j \geq 10} 2^{q j r(\delta-1)} F_{j}(s, q, x)\right)^{p / q} w(x) d x \\
& \leq C C(\omega)^{p} \int\left(\sum_{j \geq 10} 2^{q j s} 2^{q j r(\delta-1)}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y, \tag{3.3}
\end{align*}
$$

where the second inequality can be proved as above (see (3.1)).
Next we estimate G_{2}. Since the Fourier transform of $\int \sum_{j=10}^{h+9} \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k$, $h \geq 1$, is supported in $\left\{|\xi|<c 2^{h}\right\}$, by Lemma 4 we have, for $0<s<r$,

$$
\left\|G_{2}\right\|_{F_{p}^{s, q}(w)}^{p} \leq C \int\left(\sum_{h=1}^{\infty} 2^{q h s}\left|\int \sum_{j=10}^{h+9} \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k\right|^{q}\right)^{p / q} w(x) d x .
$$

By Hölder's inequality, the right hand side is bounded by, up to a constant factor,

$$
\int\left(\sum_{h=1}^{\infty} 2^{h(s-r)} \sum_{j=10}^{h+9} 2^{(r-s) j}\left|\int\left(2^{-r j} 2^{h r} \tilde{A}_{j, h}^{(1)}(x, k)\right)\left(2^{s j} \tilde{E}_{j}(f)(x, k)\right) d k\right|^{q}\right)^{p / q} w(x) d x .
$$

By Hölder's inequality and Lemma 2, the inner integral is bounded by

$$
\begin{gathered}
\left(\int\left|2^{-r j} 2^{h r} \tilde{A}_{j, h}^{(1)}(x, k)\right|^{q^{\prime}} \rho(k)^{q^{\prime} / q} d k\right)^{1 / q^{\prime}}\left(\int\left|2^{s j} \tilde{E}_{j}(f)(x, k)\right|^{q} \rho(k)^{-1} d k\right)^{1 / q} \\
\leq C 2^{-(r-\delta[r]) j} 2^{h(r-[r])} \omega\left(2^{j}, 2^{-h}\right)\left(\int\left|2^{s j} \tilde{E}_{j}(f)(x, k)\right|^{q} \rho(k)^{-1} d k\right)^{1 / q}
\end{gathered}
$$

Therefore, $\left\|G_{2}\right\|_{F_{p}^{s, q}(w)}^{p}$ is bounded by

$$
\begin{aligned}
& C C(\omega)^{p} \int\left(\sum_{h=1}^{\infty} 2^{h(s-r)} \sum_{j=10}^{h+9} 2^{(r-s) j} \int\left|2^{-(1-\delta) r j} 2^{s j} \tilde{E}_{j}(f)(x, k)\right|^{q} \rho(k)^{-1} d k\right)^{p / q} w(x) d x \\
& \quad \leq C C(\omega)^{p} \int\left(\sum_{j=10}^{\infty} \int\left|2^{-(1-\delta) r j} 2^{s j} \tilde{E}_{j}(f)(x, k)\right|^{q} \rho(k)^{-1} d k\right)^{p / q} w(x) d x .
\end{aligned}
$$

Thus, we have (see (3.1))

$$
\begin{equation*}
\left\|G_{2}\right\|_{F_{p}^{s, q}(w)}^{p} \leq C C(\omega)^{p} \int\left(\sum_{j \geq 10} 2^{-q(1-\delta) r j} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y \tag{3.4}
\end{equation*}
$$

Finally, in the same way as in the case of G_{2}, if $0<s<r$, we have

$$
\begin{align*}
\left\|G_{3}\right\|_{F_{p}^{s, q}(w)}^{p} & \leq C \int\left(\sum_{h=0}^{\infty} 2^{q h s}\left|\int \sum_{j=0}^{9} \tilde{A}_{j, h}^{(1)}(x, k) \tilde{E}_{j}(f)(x, k) d k\right|^{q}\right)^{p / q} w(x) d x \\
& \leq C_{\eta} C(\omega)^{p} \int\left(\sum_{j=0}^{9} 2^{-\eta j} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y \tag{3.5}
\end{align*}
$$

for any $\eta \geq 0$.
By (3.3) through (3.5) we have

$$
\begin{equation*}
\left\|U_{N, M}(f)\right\|_{F_{p}^{s, q}(w)}^{p} \leq C \int\left(\sum_{j=0}^{\infty} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y \tag{3.6}
\end{equation*}
$$

where the constant C is independent of N and M. Fix j and put

$$
T_{M}(f)(x)=\sum_{h=0}^{M} \int A_{j, h}^{(1)}(x, k) E_{j}(f)(x, k) d k
$$

Then we can see that $\left|T_{M}(f)(x)\right| \leq C$ for some $C>0$ independent of x and M and that $T_{M}(f)(x) \rightarrow \int A_{j}^{(1)}(x, k) E_{j}(f)(x, k) d k$ as $M \rightarrow \infty$ for all x. Therefore, letting $M \rightarrow \infty$ then $N \rightarrow \infty$ in (3.6), we have

$$
\begin{equation*}
\left\|B_{1}(f)\right\|_{F_{p}^{s, q}(w)}^{p} \leq C \int\left(\sum_{j=0}^{\infty} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y \tag{3.7}
\end{equation*}
$$

By the estimates (3.2) and (3.7), we can get the conclusion of Theorem 3, since

$$
\int\left(\sum_{j=0}^{\infty} 2^{q j s}\left|\Delta_{j}(f)(y)\right|^{q}\right)^{p / q} w(y) d y \leq C\|f\|_{F_{p}^{s, q}(w)}^{p}
$$

for $s \in \boldsymbol{R}, 0<q<\infty, 0<p<\infty$ and $w \in A_{\infty}$ (see, e.g., [2]).
4. Proof of Theorem 2. Under the hypotheses of Theorem 2 we prove the validity of the conditions (1.8) through (1.11) with $\rho(k)=\left(1+|k|^{q}\right)^{s}, s=[n / q]+d$, where d is chosen so that $a>d$ and $[n / q]+d>n / q$.

Let $j \geq 1$. Then, integration by parts gives

$$
A_{j}(x, k)=\left(2 \pi i k_{m}\right)^{-[n / q]} \int_{\boldsymbol{R}^{n}}\left[\left(\partial / \partial \xi_{m}\right)^{[n / q]}\left(\sigma\left(x, 2^{j} \xi\right) \Psi(\xi)\right)\right] \exp (-2 \pi i\langle k, \xi\rangle) d \xi
$$

Let ψ be as in Section 2. Then by applying the Hausdorff-Young inequality we have, for $l \geq 0$,

$$
\begin{align*}
& \int_{|k| \approx\left|k_{m}\right|, 2^{l} \leq|k| \leq 2^{l+1}}\left|A_{j}(x, k)\right|^{q^{\prime}}\left(1+|k|^{q}\right)^{s q^{\prime} / q} d k \\
& \leq C 2^{q^{\prime} s l} \int_{|k| \approx\left|k_{m}\right|}\left|\psi\left(2^{-l} k\right) A_{j}(x, k)\right|^{q^{\prime}} d k \tag{4.1}\\
& \leq C 2^{q^{\prime} d l}\left(\int_{R^{n}}\left|\left((\hat{\psi})_{2-l} * F(x, \cdot)\right)(\xi)\right|^{q} d \xi\right)^{q^{\prime} / q},
\end{align*}
$$

where $F(x, \xi)=\left(\partial / \partial \xi_{m}\right)^{[n / q]}\left(\sigma\left(x, 2^{j} \xi\right) \Psi(\xi)\right)$. Then, by (1.4) and (1.5) with $L=[n / q]$ we have, for all $x, \xi, \eta \in \boldsymbol{R}^{n}$,

$$
\begin{equation*}
|F(x, \xi)| \leq C \quad \text { and } \quad|F(x, \xi+\eta)-F(x, \xi)| \leq C|\eta|^{a} . \tag{4.2}
\end{equation*}
$$

By (4.2) we see that

$$
\begin{aligned}
&\left|\left((\hat{\psi})_{2^{-l}} * F(x, \cdot)\right)(\xi)\right|=\left|\int[F(x, \xi+\eta)-F(x, \xi)](\hat{\psi})_{2^{-l}}(\eta) d \eta\right| \\
& \leq\left|\int_{|\eta|<|\xi| / 2}[F(x, \xi+\eta)-F(x, \xi)](\hat{\psi})_{2^{-l}}(\eta) d \eta\right| \\
& \quad+\left|\int_{|\eta| \geq|\xi| / 2}[F(x, \xi+\eta)-F(x, \xi)](\hat{\psi})_{2^{-l}}(\eta) d \eta\right| \\
& \leq C \chi_{0}(\xi) \int|\eta|^{a} \mid(\hat{\psi})_{2^{-l}(\eta) \mid d \eta+C \min \left(2^{-a l},\left(2^{l}|\xi|\right)^{-2 n}\right)} \leq C 2^{-a l}(1+|\xi|)^{-2 n}
\end{aligned}
$$

where χ_{0} is the characteristic function of the ball $\{|\xi| \leq 5\}$. Using this in (4.1), we have

$$
\begin{equation*}
\int_{|k| \approx\left|k_{m}\right|,|k| \geq 1}\left|A_{j}(x, k)\right|^{q^{\prime}}\left(1+|k|^{q}\right)^{s q^{\prime} / q} d k \leq \sum_{l \geq 0} C 2^{q^{\prime} d l} 2^{-q^{\prime} a l} \leq C . \tag{4.3}
\end{equation*}
$$

It is easier to get the estimate

$$
\int_{|k| \leq 1}\left|A_{j}(x, k)\right|^{q^{\prime}}\left(1+|k|^{q}\right)^{s q^{\prime} / q} d k \leq C .
$$

Using this and (4.3) for $m=1, \ldots, n$, we see that the condition (1.8) holds.

Next we show that the condition (1.9) holds. Let $|\beta|=[r]$. Put

$$
A(x, y, k, j, \beta)=\int_{R^{n}}\left[\sigma_{(\beta)}\left(x+y, 2^{j} \xi\right)-\sigma_{(\beta)}\left(x, 2^{j} \xi\right)\right] \Psi(\xi) \exp (-2 \pi i\langle k, \xi\rangle) d \xi
$$

Then, by integration by parts

$$
A(x, y, k, j, \beta)=\left(2 \pi i k_{m}\right)^{-[n / q]} \int_{R^{n}} G(x, y, \xi) \exp (-2 \pi i\langle k, \xi\rangle) d \xi
$$

where $G(x, y, \xi)=\left(\partial / \partial \xi_{m}\right)^{[n / q]}\left[\left(\sigma_{(\beta)}\left(x+y, 2^{j} \xi\right)-\sigma_{(\beta)}\left(x, 2^{j} \xi\right)\right) \Psi(\xi)\right]$. By the HausdorffYoung inequality we have, as above, for $l \geq 0$

$$
\begin{gather*}
\int_{|k| \approx\left|k_{m}\right| 2^{l} \leq|k| \leq 2^{l+1}}|A(x, y, k, j, \beta)|^{q^{\prime}}\left(1+|k|^{q}\right)^{s q^{\prime} / q} d k \tag{4.4}\\
\leq C 2^{q^{\prime} d l}\left(\int_{R^{n}}\left|\left((\hat{\psi})_{2^{-l}} * G(x, y, \cdot)\right)(\xi)\right|^{q} d \xi\right)^{q^{\prime} / q} .
\end{gather*}
$$

By (1.6), (1.7) with $L=[n / q]$ and $a=b$, we have, for all $x, y, \xi, \eta \in \boldsymbol{R}^{n}$,

$$
\begin{align*}
& |G(x, y, \xi)| \leq C 2^{j \delta[r]} \omega\left(2^{j},|y|\right) \quad \text { and } \\
& \quad|G(x, y, \xi+\eta)-G(x, y, \xi)| \leq C|\eta|^{a} 2^{j \delta[r]} \omega\left(2^{j},|y|\right) \tag{4.5}
\end{align*}
$$

Using (4.5) and arguing as in the proof for (1.8) above, we can see that

$$
\left|\left(\hat{\psi}_{2^{-l}} * G(x, y, \cdot)\right)(\xi)\right| \leq C 2^{-a l} 2^{j \delta[r]} \omega\left(2^{j},|y|\right)(1+|\xi|)^{-2 n} .
$$

Using this in (4.4) and summing up in $l \geq 0$, we have

$$
\begin{equation*}
\int_{|k| \approx\left|k_{m}\right|,|k| \geq 1}|A(x, y, k, j, \beta)|^{q^{\prime}}\left(1+|k|^{q}\right)^{s q^{\prime} / q} d k \leq C 2^{q^{\prime} j \delta[r]} \omega\left(2^{j},|y|\right)^{q^{\prime}} . \tag{4.6}
\end{equation*}
$$

We also have

$$
\int_{|k| \leq 1}|A(x, y, k, j, \beta)|^{q^{\prime}}\left(1+|k|^{q}\right)^{s q^{\prime} / q} d k \leq C 2^{q^{\prime} j \delta[r]} \omega\left(2^{j},|y|\right)^{q^{\prime}} .
$$

Using this and (4.6) for $m=1, \ldots, n$, we can get (1.9).
The validity of the conditions (1.10) and (1.11) can be proved similarly. Since $\rho(x)=$ $\left(1+|x|^{q}\right)^{s}$ satisfies (1.12), now Theorem 2 follows from Theorem 3.
5. Boundedness on the weighted Besov spaces. As applications of Theorems 1-3, we have the following:

Theorem 4. Let $1<t \leq 2$. Suppose that $\sigma(x, \xi)$ satisfies (1.2) and (1.3) with $L=[n / t]+1$. Then

$$
\left\|T_{\sigma}(f)\right\|_{B_{p}^{s, q}(w)} \leq C\|f\|_{B_{p}^{s, q}(w)}, \quad f \in \mathcal{S}\left(\boldsymbol{R}^{n}\right),
$$

where $t \leq p<\infty, s \in((\delta-1) r, r), 0<q \leq \infty$ and $w \in A_{p / t}$.

THEOREM 5. Let $1<t \leq 2,0<a \leq 1$ and $[n / t]+a>n / t$. Suppose that $\sigma(x, \xi)$ satisfies (1.4)-(1.7) with $L=[n / t], a=b$. Let $t \leq p<\infty, s \in((\delta-1) r, r), 0<q \leq \infty$ and $w \in A_{p / t}$. Then, we have

$$
\left\|T_{\sigma}(f)\right\|_{B_{p}^{s, q}(w)} \leq C\|f\|_{B_{p}^{s, q}(w)}, \quad f \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) .
$$

ThEOREM 6. Let $1<t \leq 2$. Suppose that (1.8)-(1.11) hold with t in place of q. We further assume (1.12). Then

$$
\left\|T_{\sigma}(f)\right\|_{B_{p}^{s, q}(w)} \leq C\|f\|_{B_{p}^{s, q}(w)}, \quad f \in \mathcal{S}\left(\boldsymbol{R}^{n}\right),
$$

where $t \leq p<\infty, s \in((\delta-1) r, r), 0<q \leq \infty$ and $w \in A_{p / t}$.
Also, we have remarks similar to those in Theorems 1-3 for the dependence of the bounds on σ. We can derive Theorems 4-6 from Theorems 1-3, respectively, by applying interpolation arguments (see [2, Theorem 3.5]).

References

[1] G. Bourdaud, L^{p}-estimates for certain non-regular pseudo-differential operators, Comm. Partial Differential Equations 7 (1982), 1023-1033.
[2] H.-Q. BuI, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581-605.
[3] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Soc. Math. France, Paris, 1978.
[4] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and study of function spaces, CBMS Regional Conf. Ser. in Math. 79, Conf. Board Math. Sci., American Mathematical Society, Providence, R.I., 1991.
[5] J. MARSCHALL, Pseudo-differential operators with non-regular symbols of the class $S_{\rho, \delta}^{m}$, Comm. Partial Differential Equations 12 (1987), 921-965.
[6] J. Marschall, Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc. 307 (1988), 335-361.
[7] A. Miyachi and K. Yabuta, L^{p}-boundedness of pseudo-differential operators with non-regular symbols, Bull. Fac. Sci. Ibaraki Univ. Ser. A 17 (1985), 1-20.
[8] M. NAGASE, The L^{p}-boundedness of pseudo-differential operators with non-regular symbols, Comm. Partial Differential Equations 2 (1977), 1045-1061.
[9] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48.
[10] S. Sato, A note on weighted estimates for certain classes of pseudo-differential operators, Rocky Mountain J. Math. 35 (2005), 267-284.
[11] M. Sugimoto, L^{p}-boundedness of pseudo-differential operators satisfying Besov estimate II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 149-162.
[12] M. Sugimoto, Pseudo-differential operators on Besov spaces, Tsukuba J. Math. 12 (1988), 43-63.
[13] H. Triebel, Theory of function spaces II, Monogr. Math. 84, Birkhäuser Verlag, Basel, 1992.
[14] K. Yabuta, Calderón-Zygmund operators and pseudo-differential operators, Comm. Partial Differential Equations 10 (1985), 1005-1022.
[15] K. Yabuta, Weighted norm inequalities for pseudo differential operators, Osaka J. Math. 23 (1986), 703-723.

Department of Mathematics
Faculty of Education
Kanazawa University
Kanazawa 920-1192
Japan
E-mail address: shuichi@kenroku.kanazawa-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 47G30; Secondary 35S05, 42B20, 42B25.
 Key words and phrases. Pseudo-differential operator, Triebel-Lizorkin space, Besov space.

