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Abstract. We show that, unlike in the 2-dimensional case [LL],
the Hausdorff dimension of a measure invariant under the geodesic
flow is not necessarily preserved under the projection from the
unit tangent bundle onto the base manifold if the base manifold is
at least 3-dimensional. In the 2-dimensional case we reprove the
preservation theorem due to Ledrappier and Lindenstrauss [LL]
using the general projection formalism of Peres and Schlag [PS].
The novelty of our proof is that it illustrates the reason behind
the failure of the preservation in higher dimensional case. Finally,
we show that the projected measure has fractional derivatives of
order γ for all γ < (α − 2)/2 provided that the invariant measure
has finite α-energy for some α > 2 and the base manifold has
dimension 2.

1. Introduction

The study of the behaviour of Hausdorff dimension under projection-
type mappings dates back to the 1950’s when Marstrand [Mar] proved
a well-known theorem according to which the Hausdorff dimension of
a planar set is preserved under typical orthogonal projections. In [K]
Kaufman verified the same result using potential theoretical methods,
and in [Mat1] Mattila generalized it to higher dimensions. For measures
the analogous principle, discovered by Kaufman [K], Mattila [Mat2],
Hu and Taylor [HT], and Falconer and Mattila [FM], can be stated in
the following form: Let m and n be integers such that 0 < m < n and
let µV be the image of a compactly supported Radon measure µ on R

n

under the orthogonal projection onto an m-plane V . Then for almost
all m-planes V we have

(1.1) dimH µV = dimH µ provided that dimH µ ≤ m.

On the other hand, for almost all m-planes V

(1.2) µV � Lm provided that dimH µ > m.
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(Above dimH is Hausdorff dimension, Lm is Lebesgue measure, and
the symbol � denotes the absolute continuity.) In the case that µ has
finite m-energy a substantially stronger form of (1.2) holds: we have
for all typical m-planes that

(1.3) µV � Lm with Radon-Nikodym derivative in L2.

Analogies of these results have been investigated for typical smooth
mappings in the sense of prevalence and for infinite dimensional spaces
in [SY], [HK1], and [HK2]. In [PS] Peres and Schlag extended (1.1),
(1.2), and (1.3) to Sobolev dimensions of measures on compact metric
spaces and parametrized families of transversal mappings in an elegant
way. For the purposes of the present paper, a significant difference
between the earlier results and those of [PS] is that Peres and Schlag
generalized (1.3) in terms of fractional derivatives by showing that if
the original measure has finite (m+ ε)-energy, then densities of typical
projections onto m-dimensional spaces have fractional derivatives of
order ε/2 in L2. For more detailed information about a variety of
related contributions, see [Mat4] and [PS].

In this paper we address the question of studying measures on Rie-
mannian manifolds which are invariant under the geodesic flow. Al-
though they are measures on the unit tangent bundle of the manifold,
it is natural to try to describe their dimensional properties on the base
manifold. This can be done using the natural projection from the unit
tangent bundle onto the manifold. (For a discussion of connections
to the Besicovitch-Kakeya problem, see [LL].) Even though the above
mentioned results (1.1), (1.2), and (1.3) are genuinely “almost all”-
results, meaning that they do not provide information about any spec-
ified projection, similar methods work for the natural projection from
the unit tangent bundle onto the Riemannian surface. This interesting
feature was discovered quite recently by Ledrappier and Lindenstrauss
in [LL].

Theorem 1.1 (Ledrappier, Lindenstrauss). Let M be a compact Rie-
mannian surface, let µ be a Radon probability measure on the unit
tangent bundle SM , and let Π : SM → M be the natural projection.
Assuming that µ is invariant under the geodesic flow, the following
properties hold for the image Π∗µ of µ under Π:

(1) If dimH µ ≤ 2, then dimH Π∗µ = dimH µ.
(2) If dimH µ > 2, then Π∗µ� L2.

Analogously to (1.3), Ledrappier and Lindenstrauss proved that if µ
has finite α-energy for α > 2, then the Radon-Nikodym derivative is
a L2-function. They also addressed the question of whether this could
be further generalized in terms of fractional derivatives. In addition to
giving a positive answer to this question by employing the techniques
from [PS], we consider another issue brought up in [LL] which is the
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validity of Theorem 1.1 for higher dimensional base manifolds. Quite
surprisingly, it appears that the Hausdorff dimension is not necessarily
preserved. Recalling the case of (1.1), (1.2), and (1.3), one might first
think that the generalization from dimension 2 to higher dimensions is
a question of finding correct methods. However, in section 4 we give
a new proof for Theorem 1.1 which explains why the preservation fails
in higher dimensions.

This paper is organized as follows: In section 2 we discuss the general
projection formalism of Peres and Schlag [PS] which plays an important
rôle in this work, whereas in section 3 we recall the basic assumptions
from [LL] and introduce our setting. The main part of section 4 is
devoted to proving that the parametrized family of mappings we are
working with is transversal (Proposition 4.1). Then we apply the ma-
chinery of [PS] and a result from [JJL] to reprove Theorem 1.1, and
explain why this does not work for higher dimensional base manifolds
(Remark 4.5). The question concerning the fractional derivatives of the
density of the projected measure will be dealt with in section 5. We
prove that if the α-energy of µ is finite for some α > 2, then Π∗µ has
fractional derivatives of order γ in L2 for all γ < (α − 2)/2 (Theorem
5.1). Finally, in the last section we give examples of higher dimen-
sional manifolds and invariant measures on the unit tangent bundles
whose Hausdorff dimensions decrease when projecting onto the base
manifolds. Remark 4.5 gives a base for constructing such examples.

2. General projection formalism of Peres and Schlag

In this section we recall the notation and results we need from [PS].
Given γ ≥ 0, let ‖ν‖2,γ be the Sobolev norm of a finite Borel measure
ν on R

n, that is,

‖ν‖2,γ =
( ∫

|ν̂(ξ)|2|ξ|2γ dLn(ξ)
)1/2

where

ν̂(ξ) =

∫
e−iξ·xdν(x)

is the Fourier transform of ν. The Sobolev dimension of ν is

dimS ν = sup
{
α ∈ R |

∫
|ν̂(ξ)|2(1 + |ξ|)α−1 dLd(ξ) <∞

}
.

Given α ≥ 0, the α-energy of a finite Borel measure ν on a compact
metric space (Y, d) is denoted by Iα(ν), that is,

Iα(ν) =

∫

Y

∫

Y

d(x, y)−αdν(x)dν(y).

For the rest of this section, we restrict our consideration to the 1-
dimensional parameter space.
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Basic assumptions. Let (Y, d) be a compact metric space, let J ⊂ R

be an open interval, and let P : J × Y → R be a continuous function.

Assume that for any l = 0, 1, . . . there is a constant C̃l ≥ 1 such that

(2.1) |∂l
tP (t, y)| ≤ C̃l

for all t ∈ J and y ∈ Y .
For all t ∈ J and x, y ∈ Y with x 6= y, define

(2.2) Tt(x, y) =
P (t, x) − P (t, y)

d(x, y)
.

We assume that the following form of transversality holds: there is a
constant CT such that for all t ∈ J and for all x, y ∈ Y with x 6= y the
condition |Tt(x, y)| ≤ CT implies that

(2.3) |∂tTt(x, y)| ≥ CT .

In addition, the function Tt is assumed to be regular in the following
sense: For all l = 0, 1, . . . there exists a constant Cl such that

(2.4) |∂l
tTt(x, y)| ≤ Cl

for all t ∈ J and x, y ∈ Y with x 6= y.
In the following theorem from [PS], which serves as a significant tool

in Proposition 4.2, we use the notation Pt(·) = P (t, ·). Moreover, we
denote by f∗µ the image of a measure on µ on X under a mapping
f : X → Z defined as f∗µ(A) = µ(f−1(A)) for all A ⊂ Z.

Theorem 2.1. Suppose that the assumptions (2.1), (2.3), and (2.4)
are satisfied. Let α > 0 and let ν be a finite Borel measure on Y such
that Iα(ν) <∞. Then there is a constant Cγ such that

(2.5)

∫

J

‖(Pt)∗ν‖
2
2,γdt ≤ CγIα(ν)

provided that 0 < 1 + 2γ ≤ α. Moreover, for any σ ∈ (0,min{α, 1}] we
have

(2.6) dimH{t ∈ J | dimS((Pt)∗ν) ≤ σ} ≤ 1 + σ − α.

Proof. See [PS, Theorem 2.8]. �

We complete this section by stating a technical lemma which plays
an important rôle in relating our setting to that of [PS].

Lemma 2.2. For all t ∈ (0, 1), let νt be a compactly supported Radon
measure on R. Suppose that µ is a Radon measure on R × (0, 1) such
that for all Borel functions g : R × (0, 1) → R

(2.7)

∫
g(x, t) dµ(x, t) =

∫∫
g(x, t) dνt(x) dL

1(t).

Assume that there is α > 0 such that dimH νt ≥ α for L1-almost all
t ∈ (0, 1). Then dimH µ ≥ 1 + α.
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Proof. The proof of [JJL, Lemma 3.4] goes through in our setting. One
simply needs to replace in the proof of [JJL, Lemma 3.4] the assumption
according to which Iα(νt) < ∞ for all t by the weaker one of Lemma
2.2. �

3. Notation

In this section, we define a transversal mapping appropriate to the
setting of section 2. Our notation is similar to that in [LL]. Assume
that M is a smooth compact 2-dimensional Riemannian manifold. De-
noting by SM the unit tangent bundle, let µ be a Radon probability
measure on SM which is invariant under the geodesic flow, and let
Π : SM →M be the natural projection.

Taking p1, p2 ∈ M sufficiently close to each other, we denote by
γp1,p2

the unique shortest geodesic, parametrized by the Riemannian
arc length, which connects p1 and p2, that is,

(3.1) γp1,p2
(0) = p1 and γp1,p2

(dM(p1, p2)) = p2.

Here dM is the distance induced by the Riemannian metric.

Basic assumptions. Let I = [0, 1]. We choose an open set U ⊂ M
and a chart Φ : U → R

2 with the following properties:

(1) I2 ⊂ Φ(U).
(2) Defining

C1 = Φ−1(I × {0}) and C2 := Φ−1(I × {1})

and picking any c1 ∈ C1 and c2 ∈ C2, there exists a unique geo-
desic γc1,c2 connecting c1 and c2 such that its image Φ(γc1,c2(t)) =
(x1(t), x2(t)) satisfies

|x′1(t)| ≤ C|x′2(t)|

for some C > 0 for all t ∈ [0, dM(c1, c2)]. Thus the tangents
of the (images of) geodesics are uniformly bounded away from
being horizontal. Further, U is assumed to be so small that
geodesics are close to straight lines. (We use scaled normal co-
ordinates around a fixed point m ∈ U with Φ(m) = (1/2, 1/2).)

(3) Denoting by Γ1 : [0, t1] → M and Γ2 : [0, t2] → M the unique
geodesics connecting the left-hand side end points of C1 and C2,
and their right-hand side end points, respectively, we assume
that Φ(Γ1) ⊂ Φ(U) and Φ(Γ1) ⊂ Φ(U).

As in [LL], we define a diffeomorphism Ψ : I3 → Ψ(I3) ⊂ SM as
follows:

(3.2) Ψ(y1, y2, t) = (γp1,p2
(dM(p1, p2)t), γ

′
p1,p2

(dM(p1, p2)t))

where p1 = Φ−1(y1, 0) and p2 = Φ−1(y2, 1).
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Denote by E the subset of R
2 restricted by the curves I×{0}, I×{1},

Φ(Γ1), and Φ(Γ2). Given any (x1, x2) ∈ E, let

(3.3) Mx1,x2
= {y1 ∈ I | there is y2 ∈ I such that the geodesic

γΦ−1(y1,0),Φ−1(y2,1) goes through Φ−1(x1, x2)}.

Note that for all y1 ∈ Mx1,x2
the point y2 ∈ I in (3.3) is unique (pro-

vided x2 > 0). Moreover, Mx1,x2
6= ∅ for all (x1, x2) ∈ E. For all

(x1, x2) ∈ E, we define a function Fx1,x2
: Mx1,x2

→ I by Fx1,x2
(y1) = y2

where y2 is as in (3.3). (If x2 = 0 we obtain the vertical line segment
I above y1.)

Lemma 3.1. The mapping Fx1,x2
has the following properties:

(1) If (x1, x2), (x̃1, x2) ∈ E such that x̃1 > x1, we have Fx̃1,x2
(y1) >

Fx1,x2
(y1) for all y1 ∈Mx1,x2

∩Mx̃1,x2
.

(2) Given (x1, x2), (x̃1, x2) ∈ E with x̃1 → x1, we have Fx̃1,x2
(y1) →

Fx1,x2
(y1) for all y1 ∈Mx1,x2

∩Mx̃1,x2
.

(3) For all y1, y2 ∈ I and x2 ∈ I there exists x1 such that (x1, x2) ∈
E and Fx1,x2

(y1) = y2.

Proof. The claims follow directly from the definitions. �

Given t ∈ I, let Lt be the line in R
2 which goes through (1/2, 1/2) and

is orthogonal to the line segment going through the points in ∂(I2) ∩
G(F1/2,t). (Here the boundary of a set A is denoted by ∂A and the
graph of a function f by G(f).) Note that our assumptions guarantee
that {(1/2, t) | t ∈ I} ⊂ E, and furthermore, the set ∂(I2) ∩ G(F1/2,t)
contains exactly two points.

We may choose Ĩ2 ⊂ I2 such that for all t ∈ I and (y1, y2) ∈ Ĩ2 the
intersection Lt ∩ G(Fx,t) is a singleton for x ∈ I with Fx,t(y1) = y2 (see

Lemma 3.1 (3)). This enables us to define a function P : I × Ĩ2 → R

by

(3.4) P (t, y) = pt,y,

where y = (y1, y2) ∈ Ĩ2, pt,y is the unique point in Lt ∩ G(Fx,t), and
the point x is determined by Fx,t(y1) = y2. Here Lt is identified with
R such that the origin is at (1/2, 1/2).

Invariant measure under geodesic flow. Similarly as in [LL], we
restrict our consideration to the normalized restriction measure µ̃ =

µ(Ũ)−1µ| �

U , where Ũ = Ψ(Ĩ2 × I). (Here µ| �

U(A) = µ(Ũ ∩ A) for all
A ⊂ SM .) Since µ is invariant under the geodesic flow, there is a

measure ν on Ĩ2 such that Ψ∗(ν × L1) = µ̃.
Next we will present the measure Π∗µ̃ in a form which allows us to

apply the general projection formalism of section 2. For this purpose,
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let V = Φ ◦ Π(Ũ). We define, for given t ∈ I and ω ∈ (Φ ◦ Π ◦
Ψ)−1{(x, t) | (x, t) ∈ V },

(3.5) B1(ω1, ω2, ω3) = (ω1, ω2, t).

Clearly, B1 : Ĩ2 × I → Ĩ2 × I is a diffeomorphism. Setting P̃ (·, t) =
(Pt(·), t), we find for all (x, t) ∈ V a unique point x̃ ∈ R such that

P̃ ◦B1((Φ ◦ Π ◦ Ψ)−1{(x, t)}) = (x̃, t). Defining

(3.6) B2(x, t) = (x̃, t)

and using the fact that

B1((Φ ◦ Π ◦ Ψ)−1{(x, t)}) = {(y1, y2, t) | y2 = Fx,t(y1)},

we get a diffeomorphism B2 : V → B2(V ).

Lemma 3.2. The following properties hold:

(1) (Φ ◦ Π)∗µ̃ = (B−1
2 ◦ P̃ ◦B1)∗(ν × L1).

(2) For all non-negative Borel functions f : R
2 → R

∫
f(x, t)d(P̃∗(ν × L1))(x, t) =

∫∫
f(x, t)d((Pt)∗ν)(x) dL

1(t).

(3) For all non-negative Borel functions g : R
3 → R

∫
g d((B1)∗(ν × L1)) =

∫
g| detDB−1

1 | d(ν × L1)

where detDB−1
1 is the determinant of the derivative of B−1

1 .
Furthermore, there is a constant C > 0 such that

C−1 ≤ | detDB−1
1 | ≤ C.

(4) There exists a constant C > 0 such that for all Borel sets A ⊂
R

2

1

C
P̃∗(ν × L1)(A) ≤ (P̃ ◦B1)∗(ν × L1)(A) ≤ CP̃∗(ν × L1)(A).

(5) There is a constant C > 0 such that

C−1 ≤ | detDB−1
2 | ≤ C.

Proof. Clearly, (1) follows from the definitions, and (2) is a straightfor-
ward consequence of Fubini’s theorem. Noting that B1 can be written
in the form B1(x1, x2, t) = (x1, x2, b(x1, x2, t)), Fubini’s theorem gives
the equality in (3). Our basic assumption (2) guarantees the existence
of a constant C such that C−1 ≤ | detD(B−1

1 )| ≤ C concluding the
proof of (3). Finally, applying (3) gives (4), and (5) follows similarly
as (3). �
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b

a

(x,t)

y
1

y
2

Figure 1. The notation for determining the slope of the
graph Fx,t at a point (y1, y2)

4. Transversality and preservation of Hausdorff

dimension in 2-dimensional manifolds

In this section we discuss connections between [LL] and [PS]. In
particular, we give a new proof of Theorem 1.1 which explains why
the corresponding result fails if the dimension of the base manifold is
more than 2 (see Remark 4.5). The machinery developed in this section
leads us to prove in section 5 that the Radon-Nikodym derivative dΠ∗µ

dL2

has fractional derivatives in the Sobolev sense. An essential step is to
prove that the function Tt, defined as in (2.2) in terms of the function
P given in (3.4), has the crucial property of being transversal.

Proposition 4.1. Let P be as in (3.4). Then (2.1) is satisfied. Fur-

thermore, defining for all t ∈ I and x 6= y ∈ Ĩ2

Tt(x, y) =
P (t, x) − P (t, y)

|x− y|
,

properties (2.3) and (2.4) hold.

Proof. Observing that (2.1) and (2.4) follow directly from the defi-
nitions, it suffices to prove that the transversality condition (2.3) is
satisfied.

Given (x, t), let α be the slope of the graph of Fx,t at a point (y1, y2).
Using the notation introduced in Figure 1, one may deduce the formula

(4.1) tanα =
(1 − t) sin2 b(x, t)

t sin2 a(x, t)

from elementary geometrical arguments. Note that the basic assump-
tion (2) in section 3 guarantees that both the angles a and b are
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Lt L

x
y

a

b
c

d

e

f

g
K t

t+h

Figure 2. Above the line Kt goes through x and is par-
allel line to Lt, {a} = Kt ∩ G(F·,t), {b} = Kt ∩ G(F·,t+h),
c = P (t, x), d = P (t, y), e = P (t+ h, x), f = P (t+ h, a),
and g = P (t+ h, y).

bounded away from 0 and π and are close to each other. Combin-
ing this with equation (4.1), in turn, implies the existence of a positive
constant C1 such that

(4.2)
∣∣∣dα
dt

∣∣∣ ≥ C1

for all t.
Letting ε > 0, consider x 6= y such that

(4.3) |P (t, x) − P (t, y)| ≤ ε|x− y|.

We will show that, choosing ε small enough, we have for all small h

(4.4) |P (t+ h, x) − P (t+ h, y) − (P (t, x) − P (t, y))| ≥ ε|x− y|h.

This clearly gives transversality condition (2.3).
Note that our assumptions guarantee the existence of a constant CF

(independent of x, y, and t) such that

max
K‖Lt

{|z1 − z2| | z1 ∈ G(Fx,t) ∩K, z2 ∈ G(Fy,t) ∩K}

≤ CF min
K‖Lt

{|z1 − z2| | z1 ∈ G(Fx,t) ∩K, z2 ∈ G(Fy,t) ∩K},
(4.5)

where both the maximum and the minimum are taken over all lines
K that are parallel to Lt (denoted by the symbol K ‖ Lt). Using the
notation shown in Figure 2, we have

|x− a| ≤ εCF |x− y|

|a− b| ≥ C2|x− y| h
∣∣|c− d| − |e− f |

∣∣ ≤ C3ε|x− y| h,

(4.6)
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t

1

2 2x a

ax

e c f d

e c f d

w w

w w

11111

2 2 2 2

3 4

1 2

t+h

Figure 3. The setting for the proof of the last inequal-
ity in (4.6). The notation corresponds to Figure 2 in a
natural way.

where both C2 and C3 are constants that do not depend on x, y, and t.
In fact, the first inequality in (4.6) is a consequence of (4.5) and (4.3).
Choosing ε < 1/(2CF ), the second inequality follows from the first one
and the fact that there is a constant C such that |a − b| ≥ C|a− y| h
(see (4.2)). For the last one, observe first that, since the geodesics are
close to lines in V and depend smoothly on the initial data, there is a
constant C (independent of x, y, and t) such that

(4.7)
∣∣|c− d| − |e− f |

∣∣ ≤ C
∣∣|w1 − w2| − |w3 − w4|

∣∣

where w1, w2, w3, and w4 are as in Figure 3. Using the fact that the
closer to each other the geodesics are, the more they look like parallel
curves in V , we get

∣∣|w1 − w2| − |w3 − w4|
∣∣ ≤ C̃|w1 − w2| h ≤ Ĉ|x− a| h.

(Here C̃ and Ĉ are constants that are independent of x, y, and t.) This,
in turn, combined with (4.7) and the first inequality in (4.6), completes
the proof of the last inequality of (4.6).

Finally, after noting that for small h we have |f−g| ≥ (1/(2CF ))|a−b|
by (4.5), we deduce from (4.6)

∣∣|c− d| − |e− g|
∣∣ = |f − g| −

∣∣|c− d| − |e− f |
∣∣ ≥ C3ε|x− y| h

for ε < min{1/(2CF ), C2/(4CFC3)}. Hence (4.4) follows. �

As a corollary of Proposition 4.1, one obtains quite easily a new
proof for Theorem 1.1. This is achieved by means of Proposition 4.2.
Recall that the Hausdorff dimension of a finite Borel measure µ on a
Riemannian manifold X is defined by means of local lower dimensions,
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dimloc, as follows:

dimH µ = µ- ess inf
x∈X

dimloc µ(x)

where

dimloc µ(x) = lim inf
r→0

logµ(B(x, r))

log r
.

Here B(x, r) is the open ball with centre at x and radius r > 0. The
following equality relates Hausdorff dimension of measures to that of
sets:

dimH µ = inf{dimHA | A is a Borel set with µ(A) > 0}.

Proposition 4.2. With the notation introduced in section 3, we have:

(1) Assuming that dimH ν ≤ 1, we have dimH(Pt)∗ν = dimH ν for
L1-almost all t ∈ (0, 1).

(2) Assuming that dimH ν > 1, we have (Pt)∗ν � L1 for L1-almost
all t ∈ (0, 1).

Proof. To verify (1), let β < dimH ν. Defining νi = ν|Ai
for all i =

1, 2, . . . , where

Ai = {x ∈ R
2 | ν(B(x, r)) ≤ irβ for all r > 0},

on easily checks that Iα(νi) < ∞ for all α < β, and νi(A) → ν(A) for
all A ⊂ R

2. Given σ < α, we get from inequality (2.6) in Theorem 2.1
that for L1-almost all t ∈ (0, 1)

(4.8) dimH((Pt)∗νi) ≥ dimS((Pt)∗νi) > σ

for all i. This, in turn, implies that dimH((Pt)∗ν) ≥ σ for L1-almost
all t ∈ (0, 1). Finally, taking a sequence σj → dimH ν, gives (1), since
Pt does not increase dimension as a Lipschitz function.

For (2), we consider 1 < β < dimH ν and proceed as above to find
a sequence (νi) of measures with Iβ(νi) < ∞ such that νi(A) → ν(A)
for all A ⊂ R

2. Now inequality (2.5) in Theorem 2.1 implies that for
L1-almost all t ∈ (0, 1) one has ((Pt)∗νi)

∧ ∈ L2 for all i, and therefore
(Pt)∗νi � L1 for all i. This gives (2). �

We continue by explaining how Theorem 1.1 follows from Proposition
4.2. For this purpose we need two intermediate steps:

Corollary 4.3. Using the same notation as in section 3, we have:

(1) If dimH µ̃ ≤ 2, then dimH(P̃∗(ν × L1)) = dimH µ̃.

(2) If dimH µ̃ > 2, then P̃∗(ν × L1) � L2.

Proof. Note that dimH µ̃ = dimH ν + 1 (see [H]). To prove (1), Propo-
sition 4.2 (1) gives dimH(Pt)∗ν = dimH ν for L1-almost all t ∈ R. From

Lemma 2.2 and Lemma 3.2 (2), we deduce that dimH(P̃∗(ν × L1)) ≥

dimH ν +1 = dimH µ̃. The fact that P̃ is a Lipschitz mapping yields to
(1).
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For (2), let A ⊂ R
2 be a Borel set with L2(A) = 0. Setting At =

{x ∈ R | (x, t) ∈ A} for all t ∈ R, and using Fubini’s theorem and
Proposition 4.2 (2), we get (Pt)∗ν(At) = 0 for L1-almost all t ∈ R.
Combining this with Lemma 3.2 (2) concludes the proof. �

Corollary 4.4. Using the notation given in section 3, we have:

(1) If dimH µ̃ ≤ 2, then dimH(Φ ◦ Π)∗µ̃ = dimH µ̃.
(2) If dimH µ̃ > 2, then (Φ ◦ Π)∗µ̃� L2.

Proof. Corollary 4.3, Lemma 3.2 (4), and the fact that B−1
2 is a bi-

Lipschitz mapping (see Lemma 3.2 (5)) combine to give that dimH(B−1
2 ◦

P̃ ◦B1)∗(ν×L1) = dimH µ̃ provided that dimH µ̃ ≤ 2, and furthermore,

(B−1
2 ◦ P̃ ◦B1)∗(ν ×L1) � L2 under the assumption dimH µ̃ > 2. This

in turn gives the claim by Lemma 3.2 (1). �

Since Φ is bi-Lipschitz mapping, Theorem 1.1 follows immediately
from Corollary 4.4 by representing the original measure µ as a finite
sum of measures µ̃i having the same properties as the measure µ̃ above.

Remark 4.5. In section 6 we construct examples which show that The-
orem 1.1 fails for higher dimensional base manifolds. The reason for
the failure, which may be deduced from the above methods, is as fol-
lows: The local invariance produces parametrized family of projections
onto (n − 1)-dimensional planes in 2(n − 1)-dimensional space. The
parameter is given by the time coordinate, and therefore the family is
1-dimensional. Since the dimension of the space of (n − 1)-planes in
2(n−1) dimensional space is greater than 1, if n ≥ 3, the transversality
condition cannot hold.

5. Fractional derivatives

In this section we answer to the question concerning the fractional
derivatives of the density of the projected measure Π∗µ addressed in
[LL]. The main theorem of this section is as follows:

Theorem 5.1. Let M be a compact Riemannian surface and let Π :
SM → M be the natural projection from the unit tangent bundle SM
onto the base manifold M . Assume that µ is a Radon probability
measure on SM such that µ is invariant under the geodesic flow and
Iα(µ) < ∞ for some α > 2. Then for all γ < (α − 2)/2 the pro-
jected measure Π∗µ has fractional derivatives of order γ in L2, that is,
‖Π∗µ‖2,γ <∞.

Below the proof of Theorem 5.1 is divided into a sequence of lem-
mas. Observe that Theorem 2.1 combined with Proposition 4.1 implies
the existence of fractional derivatives for almost all horizontal slices of
Π∗µ, which are, in fact, diffeomorphic images of the measures (Pt)∗ν.
However, since this approach does not give the desired result for the
measure Π∗µ, we modify the methods of [PS] in a more effective way.
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Using the same notation as in the previous sections, we begin with a
small technical lemma.

Lemma 5.2. Let α > 1. Assume that µ = F∗(ν × L1|K), where
K ⊂ R is a compact set and F is a diffeomorphism such that C−1 ≤
| detDF | ≤ C for some C > 0. Then

Iα(µ) <∞ ⇐⇒ Iα−1(ν) <∞.

Proof. The claim follows from straightforward calculations. �

Next lemma shows that for fixed q 6= q′ ∈ Ĩ2 the mapping a 7→
Ta(q, q

′) is small only in neighbourhoods of finitely many zeroes.

Lemma 5.3. For any q 6= q′ ∈ Ĩ2 there exist a1, . . . , aN ∈ I such that

{a ∈ I | |Ta(q, q
′)| ≤ d} ⊂

N⋃

i=1

B(ai, C
−1
T d)

for all d < CT . Moreover, the mapping a 7→ Ta(q, q
′) is a diffeomor-

phism on B(ai, C
−1
1 CT ) for all i = 1, . . . , N , and N ≤ C1/CT + 2.

(Here CT is as in (2.3) and C1 as in (2.4).)

Proof. Let a1, . . . , aN−2 be the zeroes of the function a 7→ Ta(q, q
′), and

let aN−1 = 0 and aN = 1. Then all the claims follow from (2.3) and
(2.4). �

We continue by defining mappings Fq,q′ and by studying their basic
properties which will be needed in the proof of Lemma 5.6.

Lemma 5.4. Given q 6= q′ ∈ Ĩ2, let r = |q− q′|. Define Fq,q′ : I2 → R
2

by

Fq,q′(a, b) = (Ta(q, q
′) + r−1(Pa(q

′) − Pb(q
′)), r−1(a− b)).

Let a1, . . . , aN ∈ I be as in Lemma 5.3. For any i = 1, . . . , N , set

Oi = {(a, b) ∈
(
B(ai, C

−1
1 CT ) ∩ (0, 1)

)
×(0, 1) | |Ta(q, q

′)| < CT and

|a− b| < (2C̃2)
−1CT r},

where C̃2, CT , and C1 are as in (2.1), (2.3), and (2.4), respectively.
Then the restriction of Fq,q′ to the set Oi is a diffeomorphism onto
Fq,q′(Oi). Furthermore, there are constants c and c(l) for all l ∈ N

which are independent of q and q′ such that

(5.1) ‖DF−1
q,q′‖ < c, |∂ηF−1

q,q′| < c(|η|), and |∂η detDF−1
q,q′| < c(|η|)

for all indices η = (η1, η2) ∈ N
2. Here |η| = η1 + η2 and ∂η = ∂η1

a ∂
η2

b .

Proof. By (2.1) and (2.3) we have for all (a, b) ∈ Oi

| detDFq,q′(a, b)| = r−1|∂aTa(q, q
′) − r−1(∂bPb(q

′) − ∂aPa(q
′))|

≥ (2r)−1CT .
(5.2)
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For the the first claim it is therefore sufficient to show that the restric-
tion of Fq,q′ to Oi is an injection. This, in turn, follows from two easy
observations: If (a, b), (a′, b′) ∈ Oi with a − b 6= a′ − b′, then clearly
Fq,q′(a, b) 6= Fq,q′(a

′, b′). On the other hand, Fq,q′ is strictly monotone
on the line segments {(a, b) ∈ Oi | b− a = d}, where d ∈ R, since

|∂aTa(q, q
′) − r−1(∂aPa+d(q

′) − ∂aPa(q
′))| ≥ 2−1CT .

For (5.1) note that

DF−1
q,q′(y) = (detDFq,q′(F

−1
q,q′(y)))

−1

(
−r−1 r−1∂bPb(q

′)
−r−1 ∂aTa(q, q

′) + r−1∂aPa(q
′)

)

=: (detDFq,q′(F
−1
q,q′(y)))

−1A,

where (a, b) = F−1
q,q′(y). Combining this with inequality (5.2), (2.1), and

(2.4), gives ‖DF−1
q,q′‖ < c. Using similar arguments and the fact that for

all l ∈ N there exists a constant C(l) such that |∂ηAij| < r−1C(|η|) for
all η and i, j, the second claim in (5.1) follows by induction. Finally,
the last estimate is a consequence of the previous one. �

In the following lemma which is from [PS] we denote by S(Rn) the
Schwartz space of smooth functions such that all of their derivatives
decay faster than any power.

Lemma 5.5. There exists ψ ∈ S(Rn) such that ψ̂ > 0, spt ψ̂ ⊂ {ξ ∈

R
n | 1 ≤ |ξ| ≤ 4}, and

∑∞
j=−∞ ψ̂(2−jξ) = 1 for all ξ 6= 0. Furthermore,

for any finite Radon measure ν on R
n and any γ ∈ R there exists a

constant C such that

1

C
‖ν‖2

2,γ ≤
∞∑

j=−∞

22jγ

∫
�

n

(ψ2−j ∗ ν)(x)dν(x) ≤ C‖ν‖2
2,γ,

where ψ2−j (x) = 2jnψ(2jx). (Above ∗ is the convolution.)

Proof. See [PS, Lemma 4.1]. �

Next we prove a lemma which is a modification of [PS, Lemma 7.10]
tailored for our purposes.

Lemma 5.6. Assume that ρ is a smooth non-negative real valued func-
tion which is supported inside the open unit square (0, 1)2. Let ψ be as

in Lemma 5.5. Then for all q, q′ ∈ Ĩ2 with q 6= q′, j ∈ Z, and k ∈ N\{0}
we have

∣∣∣
∫

�

∫
�
ρ(a, b)ψ(2j(Pa(q) − Pb(q

′), a− b)) dL1(a) dL1(b)
∣∣∣

≤ C min{(1 + 2j|q − q′|)−k, (1 + 2j)−1},

where the constant C does not depend on q, q ′, and j.
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Proof. Observing that it is enough to study positive integers j, and
using the fast decay of ψ we have

∣∣∣
∫

�
ρ(a, b)ψ(2j(Pa(q) − Pb(q

′)), 2j(a− b)) dL1(a)
∣∣∣

≤ c2−j + c′
∫

t>2−j

(2jt)−2 dL1(t) ≤ C(1 + 2j)−1.

For the other upper bound, fix k, j ∈ N such that k ≥ 1. Setting
r = |q − q′|, we may assume that 2jr > 1. Let φ : R

2 → R be a
smooth function such that 0 ≤ φ ≤ 1, φ ≡ 1 on [−1, 1]2, and φ ≡ 0 on
R

2 \ [−2, 2]2. Letting Fq,q′ : I2 → R
2 be as in Lemma 5.4, one obtains

∫
�

∫
�
ρ(a, b)ψ(2j(Pa(q) − Pb(q

′), a− b)) dL1(a) dL1(b)

=

∫
�

∫
�
ρ(a, b)ψ(2jrFq,q′(a, b))φ(C−1

T Fq,q′(a, b)) dL
1(a) dL1(b)

+

∫
�

∫
�
ρ(a, b)ψ(2jrFq,q′(a, b))(1 − φ(C−1

T Fq,q′(a, b))) dL
1(a) dL1(b)

=: A1 + A2.

Since the integrand of A2 is non-zero only if |Fq,q′| > CT , the fact that
the support spt ρ of ρ is inside (0, 1)2 and ψ ∈ S(R2) implies

|A2| ≤

∫
�

∫
�
ρ(a, b)(CT 2jr)−k dL1(a) dL1(b) ≤ C(1 + 2jr)−k.

We continue by estimating A1. Picking a1, . . . , aN as in Lemma 5.3,
we find d2, d3 < min{CT , C

−1
1 CT} such that

(5.3) {a ∈ (0, 1) | |Ta(q, q
′)| ≤ d3} ⊂

N⋃

i=1

B(ai, d2/2)

and

(5.4)
N⋃

i=1

B(ai, d2) ∩ (0, 1) ⊂ {a ∈ (0, 1) | |Ta(q, q
′)| ≤ CT/4}.

Let d1 < min{(2C̃2)
−1CT , (4C̃1)

−1CT}. For all i = 0, . . . , N , there
exists a smooth function χi : R → [0, 1] with the following properties:

(1) sptχ0 ⊂ B(0, d1).
(2) sptχi ⊂ B(ai, d2) for all i = 1, . . . , N .
(3) Letting Oi be as in Lemma 5.4, we have

χ0(r
−1(a− b))χi(a) = 0

for all i = 1, . . . , N and (a, b) ∈ (0, 1)2 \Oi.
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(4) For all (a, b) ∈ spt ρ with |Ta(q, q
′)| ≤ d3 and r−1|a − b| ≤

(8C̃1)
−1d3 we have

N∑

i=1

χ0(r
−1(a− b))χi(a) = 1.

(5) For all l ∈ N there is a constant cl such that

sup
0≤i≤N

‖∂ lχi‖∞ ≤ cl.

(Note that above property (3) follows from (1), (2), and (5.4), and (5.3)
makes the choice of property (4) possible.) Combining (2.1), (5.4), and
properties (2) and (3) leads to

χ0(r
−1(a− b))χi(a) = χ0(r

−1(a− b))χi(a)φ(C−1
T Fq,q′(a, b))

for all (a, b) ∈ R
2 and i = 1, . . . , N . (This follows from the fact that

φ(C−1
T Fq,q′(a, b)) = 1 if the left hand side in the above equality is non

zero.) Therefore

A1 =
N∑

i=1

∫
�

∫
�
ρ(a, b)χ0(r

−1(a− b))χi(a)ψ(2jrFq,q′(a, b)) dL
1(a)dL1(b)

+

∫
�

∫
�
ρ(a, b)

(
1 −

N∑

i=1

χ0(r
−1(a− b))χi(a)

)
ψ(2jrFq,q′(a, b))

× φ(C−1
T Fq,q′(a, b)) dL

1(a) dL1(b) =:
N∑

i=1

Di +D.

From (4) we deduce that on the support of the integrand of D we have

|Fq,q′(a, b)| ≥ (8C̃1)
−1d3, and so, similarly as before, we get

|D| ≤ C(1 + 2jr)−k.

Since N ≤ C1/CT + 2 by Lemma 5.3, it suffices to show that each
Di has an upper bound of the desired form. Fixing 1 ≤ i ≤ N and
applying (3) and Lemma 5.4 gives

Di =

∫

Oi

ρ(a, b)χ0(r
−1(a− b))χi(a)ψ(2jrFq,q′(a, b)) dL

2(a, b)

=

∫

Fq,q′ (Oi)

ρ(F−1
q,q′(u, v))χ0(v)χi((F

−1
q,q′)1(u, v))ψ(2jr(u, v))

× | det(DF−1
q,q′(u, v))| dL

2(u, v),

where (F−1
q,q′)1(u, v) is the first coordinate of F−1

q,q′(u, v). Since the inte-
grand of Di is zero outside Oi by (3), we may modify Fq,q′ in such a
way that it becomes a diffeomorphism on R

2, and all the bounds given
in Lemma 5.4 remain unchanged. Defining for all (u, v) ∈ R

2

G(u, v) := ρ(F−1
q,q′(u, v))χ0(v)χi((F

−1
q,q′)1(u, v))| det(DF−1

q,q′(u, v))|,
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and choosing 0 < ε < 1 such that (k + 2)(1 − ε) > k, we rewrite Di as

Di =

∫

|y|<(2jr)ε−1

G(y)ψ(2jry) dL2(y) +

∫

|y|>(2jr)ε−1

G(y)ψ(2jry) dL2(y)

=: J1 + J2.

From (5.1) we obtain that

|J2| ≤ c

∫

t>(2jr)ε−1

(2jrt)−
k
ε
−1t dL1(t) ≤ C(1 + 2jr)−k−1,

and therefore, it remains to estimate J1.
Note that ψ has vanishing moments of all orders since ∂ηψ̂(0) = 0

for all η. Using Taylor expansion for the function G, we calculate

J1 = −
∑

|η|<k

∫

|y|>(2jr)ε−1

(η!)−1∂ηG(0)yηψ(2jry) dL2(y)

+
∑

|η|=k

∫

|y|<(2jr)ε−1

(η!)−1∂ηG(t(y)y)ψ(2jry)yη dL2(y)

=: −
∑

|η|<k

Kη +K.

Here yη = yη1

1 y
η2

2 , η! = η1!η2!, and t(y) ∈ [0, 1]. Finally,

|K| ≤ c

∫

|y|<(2jr)ε−1

sup
|η|=k

‖∂ηG‖∞|y|k dL2(y)

≤ c sup
|η|=k

‖∂ηG‖∞(2jr)−(1−ε)(k+2) ≤ C sup
|η|=k

‖∂ηG‖∞(1 + 2jr)−k

and

|Kη| ≤ c‖∂ηG‖∞

∫

|y|>(2jr)ε−1

|y||η||2jry|−|η|−1− k
ε dL2(y)

≤ C‖∂ηG‖∞(1 + 2jr)−k−1.

Thus the claim follows from Lemma 5.4. �

As an immediate consequence of Lemma 5.6 we obtain the following
result.

Corollary 5.7. Let ρ and ψ be as in Lemma 5.6, and let q, q ′ ∈ Ĩ2

with q 6= q′. Then for any k, n ∈ N \ {0} we have
∣∣∣
∫

�

∫
�
ρ(a, b)ψ(2j(Pa(q) − Pb(q

′), a− b)) dL1(a) dL1(b)
∣∣∣

≤ C(1 + 2j|q − q′|)−
k
n (1 + 2j)−

n−1

n

where C does not depend on q, q′ or j.
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Proof of Theorem 5.1. Assume that µ is a Radon probability measure
on SM such that µ is invariant under the geodesic flow and Iα(µ) <∞
for α > 2. Let γ < (α− 2)/2.

By Lemma 3.2 we may restrict our consideration to the measures

µδ = P̃∗(ν × ρL1) where δ > 0 and ρ is a smooth function such that
spt ρ ⊂ (0, 1) and ρ(t) = 1 for all δ < t < 1 − δ. Letting n, k ∈ N such
that α > 2 + 2γ + 1/n and k > n(1 + 2γ + 1/n), and using Lemma 5.5
and Corollary 5.7 for positive j, we have

∫
�

2

|µ̂δ(ξ)|
2|ξ|2γdL2(ξ) ≤ C

∞∑

j=−∞

22jγ

∫
�

2

(ψ2−j ∗ µδ)(x) dµδ(x)

≤ C

∞∑

j=−∞

22jγ+2j
∣∣∣
∫

�
2

∫
�

2

ψ(2j(x− y))

× dP̃∗(ν × ρL1)(x)dP̃∗(ν × ρL1)(y)
∣∣∣

= C

∞∑

j=−∞

22jγ+2j
∣∣∣
∫

�

I2×
�

∫
�

I2×
�
ρ(a)ρ(b)ψ(2j(Pa(q) − Pb(q

′), a− b))

× dν(q)dL1(a)dν(q′)dL1(b)
∣∣∣

≤ C

∫
�

I2

∫
�

I2

∞∑

j=−∞

22jγ+2j(1 + 2j)−
n−1

n (1 + 2j|q − q′|)−
k
ndν(q)dν(q′)

≤ C

∫
�

I2

∫
�

I2

|q − q′|−(1+2γ+1/n)dν(q)dν(q′) = CI1+2γ+1/n(ν).

Here the last inequality follows by picking a positive integer j0 such
that 2−j0−1 ≤ r < 2−j0 and by dividing the sum into 3 parts: j < 0,
0 ≤ j ≤ j0, and j > j0. Using the choice of n and applying Lemma 5.2
gives the claim. �

6. Non-preservation of Hausdorff dimension in higher

dimensional manifolds

In this section we construct examples of (locally) invariant measures
whose Hausdorff dimensions decrease under the projection onto the
base manifold. Because of Remark 4.5 the following setting is natural
for such examples.

Example 6.1. For any n ≥ 3 there exist an n-dimensional compact
Riemannian manifold M and a measure µ on the unit tangent bun-
dle SM such that it is locally invariant and its Hausdorff dimension
decreases under the projection Π : SM →M .

In fact, let M be the flat n-dimensional torus [−1, 2]n and let In =
[0, 1]n ⊂M . Using the notation of section 3, we set

C1 := In−1 × {0} and C2 := In−1 × {1},
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and define a diffeomorphism Ψ : In−1×In−1× [0, 1] → Ψ(In−1×In−1×
[0, 1]) by

Ψ(x, y, t) = (γp,q(dM(p, q)t), γ′p,q(dM(p, q)t))

where p = (x1, . . . , xn−1, 0) ∈ C1, q = (y1, . . . , yn−1, 1) ∈ C2, and γp,q

is the unique shortest geodesic parametrized by the Riemannian arc
length which connects p and q. Taking any measure ν such that

spt ν ⊂ {(x, y) ∈ In−1 × In−1 | xn−1 = yn−1 = 0}

and defining µ = Ψ∗(ν × L1), we have dimH Π∗µ ≤ n − 1 since Π∗µ
is supported by the (n − 1)-dimensional plane {(m1, . . . , mn) ∈ In |
mn−1 = 0}. Furthermore, µ is locally invariant, and dimH µ = dimH ν+
1 [H]. Choosing ν such that dimH ν > n− 2 gives dimH Π∗µ < dimH µ.

Remark 6.2. (a) Example 6.1 is easily modified to verify the exis-
tence of a globally invariant measure whose Hausdorff dimension is not
preserved when projecting onto the base manifold. To see this, take
ν = L2(n−2) and replace In by M in Example 6.1. Then it is a straight-
forward calculation to show that dimH(Π ◦ ψ)∗(L

2(n−2) × L1) = n− 1.
Clearly, ψ∗(L

2(n−2) × L1) = L2n−3 is globally invariant under the geo-
desic flow.

(b) In the case n = 3 Example 6.1 may be reduced to the 2-dimen-
sional case. Therefore we may apply the results of section 4 to deduce
that

dimH Π∗µ =

{
dimH µ, if dimH ν ≤ 1

2, if dimH ν > 1.
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