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Abstract 

   In this paper, we obtained the analytical eigensolutions of the radial Schrodinger equation 
using the Nikiforov Uvarov method. Special cases of the modeled potential were discussed. We 
obtained the energy eigenvalues expressions for both quarkonia and diatomic molecular 
interacting systems. In particular, we computed the masses of charmonium and bottomonium 
mesons. The pure vibrational energy levels, inertia rotational constant and the first two 
centrifugal distortion constants of the Kratzer-Fues oscillator were obtained in closed form. The 
results obtained are in excellent agreement with the results in the literature.

Keywords. Schrodinger equation, Quarkonia spectrum, Nikiforov Uvarov method, Inertia 
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1. Introduction 

   Quantum mechanical interacting potentials play vital role in the description of physical 
systems in applied physics and chemistry. In the non-relativistic limit, the potentials are solved 
with the Schrodinger equation so as to obtain the eigensolutions of the quantum system of 
interest.  In particle and high energy physics, interacting potential such as the Cornell and its 
generalized forms [1-15] is used as a model to study the interaction of quarks. While in 
molecular physics and chemistry, several molecular potentials [16-26] have been used as a model 
to study the molecular structures and interactions by using analytical and computional 
techniques. Some of these potentials are exactly solvable for  (s-wave), while some are 𝑙 = 0
insoluble for  (that is for any arbitrary angular momentum quantum number). In such a case, 𝑙 ≠ 0
the Schrodinger equation (SE) can be approximated by using analytical and numerical methods 
[27, 28]. Several analytical methods have been used to solve the SE with the potential of choice. 
In particular, quarkonia potential model such as the Cornell potential has been solved with 
different methods due to its non-trivial mathematical properties [29]. Ciftci and Hassan [1] used 
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the perturbation method within the framework of the asymptotic iterative method (AIM) to 
estimate the energy spectrum of quarkonia generated by the Cornell potential. Hall and Saad [2] 
applied the envelop method and AIM technique to compute the eigenvalues of the SE with the 
Cornell potential. Chung and co-workers [3] solved the SE numerically and obtained the energy 
eigenvalues for the s-wave heavy quarkonia. Vega and Flores [4], using the variation and 
supersymmetric quantum mechanics (SUSYQM) approach studied the properties of heavy 
quarkonia. Khoka et al. [5] applied the analytical exact iterative method (AEIM) to solve the N- 
dimensional SE with an extended Cornell potential. They obtained the energy and mass spectrum 
of heavy quarkonia. The Nikiforov Uvarov method has been used to obtained energy eigenvalues 
and mass spectrum of quarkonia systems [6-11].  Furthermore, the Laplace transformation 
approach [12], artificial neural network [13], algebraic [14], crank-Nicholson [15] methods have 
been applied to determine the properties of the quark interacting systems. On the other hand, 
molecular interacting potentials play a significant role in the description of the structure of 
diatomic molecules and are use to study the ro-vibrational states and energy spectra cum nuclear 
rotations and vibrations [30, 31]. 

    In this paper, we will apply the Nikiforov Uvarov method to obtain the eigensolutions of the 
radial SE with an inversely quadratic plus Cornell potential shifted by a constant parameter. The 
proposed potential model can be applied to the description of both quarkonia and molecular 
interacting systems. We considered the potential of the form 

                                                       (1)𝑉(𝑟) =
𝐴

𝑟2 + 𝐵𝑟 -
𝐶
𝑟 + 𝐷,

with   as arbitrary potential parameters. The potential in Eq. (1) reduces to the Cornell 𝐴,𝐵,𝐶,𝐷
potential if we set the constants (𝐴 = 𝐷 = 0)

                      (2)    𝑉(𝑟) =  𝐵𝑟 -
𝐶
𝑟 ,   𝐵, 𝐶 > 0,

where C is a coupling constant and B is a linear confinement parameter. The potential for the 
non-relativistic regime can be use in the investigation of the masses and decay widths of 
charmonium states [2, 13]. The coulombic term arises from one gluon exchange between the 
quark and its anti-quark and dominates at short distances [32]. The linear term dominates at large 
distances and is supported by lattice Quantum Chromo-dynamics measurements [13, 33].        
With  in Eq. (2), we will obtain the linear gravitational potential used as a model to 𝐶 = 0
investigate the dynamics of a quantum mechanical bouncing ball [27, 34-41]. 
               (3)𝑉(𝑟) =  𝐵𝑟  (𝐵 = 𝑚𝑔, 𝑟 > 0).
The linear potential has practical implications in the study of quarkonia energy spectrum [34] 
and has also been used to investigate the condensation behaviour of a Bose-Einstein ideal gas 
[35]. Nesvizshevsky et al. [36], have shown experimentally that quantum effect can be observed 
macroscopically by using a very small mass such a neutron bouncing on a perfectly reflecting 
mirror. Also, Jenke and co-workers [37], using the Gravity Resonance Spectroscopy (GRS) 
technique calculated the energy levels of ultra-cold neutrons bouncing on a smooth surface.
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If we set  in Eq. (2) we will obtain the Coulomb potential function used in the description 𝐵 = 0 
of the hydrogenic atom in quantum mechanics.

                        (4)                                 𝑉(𝑟) = ―
𝐶
𝑟.

Furthermore, when and   in Eq. (1), the potential reduces 𝐴 = 𝐷𝑒𝑟2
𝑒,  𝐶 = 2𝐷𝑒𝑟𝑒,   𝐵 = 0,   𝐷 =  𝐷𝑒

to the Kratzer-Fues molecular potential.

                           (5)     𝑉(𝑟) =
𝐷𝑟2

𝑒

𝑟2 -
2𝐷𝑟𝑒

𝑟 + 𝐷𝑒,

where  is the dissociation energy between two atoms in a solid [17] and it corresponds to the 𝐷𝑒

vertical distance between the dissociation limit and the minimum point of the potential curve at 
the equilibrium internuclear distance  [42]𝑟 =  𝑟𝑒

The rotational-vibrational energy eigenvalue of diatomic molecules generated by the Kratzer-
type potential has been intensively investigated in the literature [16 -18, 21, 31,   42-50]

Finally if we let   in Eq. (1), we will obtain the molecular Mie 𝐴 =
𝑉0𝑎2

2 ,  𝐶 = 𝑉0𝑎 ,  and 𝐵 = 𝐷 = 0
potential given as 

         (6)𝑉(𝑟) =  𝑉0( 𝑎2

2𝑟2 -
𝑎
𝑟).

    It is worth mentioning that the modeled potential in this present work for the description of 
quarks and diatomic molecular interactions given in Eq. (1) differs slightly from the ones in the 
literature [1-15]. In the study of heavy quarkonia, some authors cited herein presented a 
generalized or extended Cornell potential containing the harmonic and also arharmonic term. 
While others solved the SE with the Cornell potential given in Eq. (2). The authors in [12] 
presented the special cases of the generalized Cornell potential which also differ from the ones 
obtained in this present work. Also we note that the potentials in Eqs. (2-6) have been solved 
individually in the literature. Therefore the objective of this present work is to obtain a 
generalized eigensolutions of the radial SE in such a way that the energy eigenvalues and wave 
functions of both quarkonia and molecular interacting systems can be elegantly retrieved. The 
shapes of the potentials in Eqs. (2-6) are given in Figures (1-2).
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Fig 1. The variation of the potential energy as a function of radial distance. The solid, dashed-dot and dot lines 
represent the respective linear, Cornell and Coulomb potential functions.

Fig 2. The variation of the molecular potential energy as a function of radial distance. The solid and doted curves 
represent the respective Kratzer-Fues and Mie potential functions

   The paper is organized as follows. In section two, we will present an overview of the Nikiforov 
Uvarov method. Section three contains the solution of the radial SE with the potential given in 
Eq. (1). We will find the energy eigenvalue and wave function solutions. While in section four, 
the applications of the obtained solutions to quarkonia and diatomic molecular interactions will 
be presented. The numerical results of the mass spectrum of charmonium ( ) and bottomonium(𝑐𝑐

) mesons including the pure vibrational energy levels, Inertia rotation constant and the first 𝑏𝑏
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two centrifugal distortion constants of CO and N2 diatomic molecules will be obtained. Finally in 
section five, the paper is concluded.
2. Overview of the Nikiforov Uvarov method

    The second order differential equations (ODE) whose solutions are the special orthogonal 
functions of hyper-geometric type can be solved by using the Nikiforov-Uvarov (NU) method 
[51].  The SE can be solved with this method, if it is transformed into a second order differential 
equation of the hyper geometric type with an appropriate coordinate transformation  [42]. 𝑟→𝑠
The hyper geometric type equation is given [51] as 

          (7)𝜓′′(𝑠) +
𝜏(𝑠)
𝜎(𝑠)𝜓′(𝑠) +

𝜎(𝑠)

𝜎2(𝑠)𝜓(𝑠) = 0,

where  and  are polynomial of at most second degree and  is a first degree 𝜎(𝑠) 𝜎(𝑠) 𝜏(𝑠)
polynomial. The primed function  in Eq. (7) denotes derivative with respect to  .𝜓(𝑠) 𝑠
Let the solution of Eq. (7) be
                                                                                                          (8) 𝜓(𝑠) =  𝜑(𝑠)𝑦(𝑠).
If we substitute Eq. (8) into (7) we will obtain

          (9)𝑦′′(𝑠) + (2
𝜑′(𝑠)
𝜑(𝑠) +

𝜏(𝑠)
𝜎(𝑠))𝑦′(𝑠) + (𝜑′′(𝑠)

𝜑(𝑠) +
𝜑′(𝑠)
𝜑(𝑠)  

𝜏(𝑠)
𝜎(𝑠) +  

𝜎(𝑠)

𝜎2(𝑠))𝑦(𝑠) = 0.

To write Eq. (9) in the most regular form [42] we will let  

             (10)2
𝜑′(𝑠)
𝜑(𝑠) +

𝜏(𝑠)
𝜎(𝑠) =

𝜏(𝑠)
𝜎(𝑠) 

and 

       (11)
𝜑′′(𝑠)
𝜑(𝑠) +

𝜑′(𝑠)
𝜑(𝑠)  

𝜏(𝑠)
𝜎(𝑠) + 

𝜎(𝑠)

𝜎2(𝑠) =
𝜎(𝑠)

𝜎2(𝑠) ,

 So that, 

           (12)𝑦′′(𝑠) + (𝜏(𝑠)
𝜎(𝑠))𝑦′(𝑠) + ( 𝜎(𝑠)

𝜎2(𝑠))𝑦(𝑠) = 0,

where  

  .      (13)
𝜑′(𝑠)
𝜑(𝑠) =  

𝜋(𝑠)
𝜎(𝑠)

Substituting Eq. (13) into (10) implies that 

         (14)𝜏(𝑠) = 𝜏(𝑠) +2𝜋(𝑠).
The respective notations  and  in Eqs. (10) and (14) are polynomials of at most degree 𝜏(𝑠) 𝜋(𝑠)
one. The first term of the coefficient of  in Eq. (9) can be written as 𝑦(𝑠)

         (15)
𝜑′′(𝑠)
𝜑(𝑠) = ( 

𝜑′(𝑠)
𝜑(𝑠))′

+ (𝜑′(𝑠)
𝜑(𝑠))2

= (𝜋(𝑠)
𝜎(𝑠))′

+ (𝜋(𝑠)
𝜎(𝑠))

2
=

(𝜎(𝑠)𝜋′(𝑠) ― 𝜋(𝑠)𝜎′(𝑠)) + 𝜋2(𝑠)

𝜎2(𝑠) .
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If we substitute Eqs. (13) and (15) into (11) we will have

                     (16)
𝜎(𝑠)𝜋′(𝑠) ― 𝜋(𝑠)𝜎′(𝑠) + 𝜋2(𝑠) + 𝜏(𝑠)𝜋(𝑠) + 𝜎(𝑠)

𝜎2(𝑠) =
𝜎(𝑠)

𝜎2(𝑠). 

This implies that 

         (17)𝜎(𝑠) = 𝜎(𝑠)𝜋′(𝑠) + 𝜋2(𝑠) + [𝜏(𝑠) ― 𝜎′(𝑠)]𝜋(𝑠) + 𝜎(𝑠).
Suppose  is divisible by  in Eq. (12) such that 𝜎(𝑠) 𝜎(𝑠)

        (18) 𝜎(𝑠) = 𝛼𝜎(𝑠),
then we can write Eq. (12) as

                            (19)𝜎(𝑠)𝑦′′(𝑠) +𝜏(𝑠)𝑦′(𝑠) +𝛼𝑦(𝑠) = 0,
where  is a constant.𝛼
By comparing Eq. (17) with (18), we found that 

                        (20)𝜋2(𝑠) + [𝜏(𝑠) ― 𝜎′(𝑠)]𝜋(𝑠) ―𝜎(𝑠)[𝛼 ― 𝜋′(𝑠)] + 𝜎(𝑠) = 0.

Equation (20) is a quadratic equation in the variable  . 𝜋(𝑠)

If we set

         (21)𝑘 = 𝛼 ― 𝜋′(𝑠),

we will obtain the roots of the equation as 

  .      (22)𝜋(𝑠) =
(𝜎′(𝑠) ― 𝜏(𝑠))

2  ± (𝜎′(𝑠) ― 𝜏(𝑠)
2 )2

+ 𝑘𝜎(𝑠) ― 𝜎(𝑠)

Since the polynomial  is of degree one, the expression under the square root has to be the 𝜋(𝑠)
square of a polynomial. We demand that the discriminant under the squared root of Eq. (22) be 
zero. This condition enables us to find the value of k.

To obtain the energy eigenvalues, we perform the differentiation of Eq. (19) with the substitution 
[42]  𝑉1(𝑠) = 𝑦′(𝑠)

 𝜎(𝑠)𝑦′′′(𝑠) + 𝜎′(𝑠)𝑦′′(𝑠) + 𝜏(𝑠)𝑦′′(𝑠) + 𝜏′(𝑠)𝑦′(𝑠) + 𝛼𝑦′(𝑠)

           (23)                                             = 𝜎(𝑠)𝑉′′1(𝑠) + [𝜏(𝑠) + 𝜎′(𝑠)]𝑉′1(𝑠) + [𝛼 + 𝜏′(𝑠)] 𝑉1(𝑠) = 0.

 Again we perform the second derivative of Eq. (19) with the substitution  𝑉2(𝑠) = 𝑦′′(𝑠)

 𝜎′(𝑠)𝑉′2(𝑠) + 𝜎(𝑠) 𝑉′′2(𝑠) + 𝜎′(𝑠)𝑉′2(𝑠) + 𝜎′′(𝑠)𝑉2(𝑠) +𝜏(𝑠)𝑉′2(𝑠) + 𝜏′(𝑠)𝑉2(𝑠) + 𝜏′(𝑠)𝑉2(𝑠)
+ 𝜏′′(𝑠)𝑉1(𝑠) +𝛼𝑉2(𝑠)

 .                      (24)         = 𝜎(𝑠)𝑉′′2(𝑠) + [𝜏(𝑠) + 2𝜎′(𝑠)]𝑉′2(𝑠) + [𝛼 + 2𝜏′(𝑠) + 𝜎′′(𝑠)] 𝑉2(𝑠) = 0
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It is worth mentioning that higher derivative of the polynomial would vanish for𝜏𝑛(𝑠) ,   𝑛 > 1

It can be seen that the derivatives of the hyper-geometric-type equation in (19) also reproduces 
other hyper-geometric equations. The respective Eqs. (23 and 24) can be further simplified as

                  (25)𝜎(𝑠)𝑉′′1(𝑠) + 𝜏1(𝑠)𝑉′1(𝑠) + 𝛽1 𝑉1(𝑠) = 0,

where 

            (26) 𝜏1(𝑠) = 𝜏(𝑠) + 𝜎′(𝑠),

           (27)𝛽1 =  𝛼 + 𝜏′(𝑠),

and 

                                (28)𝜎(𝑠)𝑉′′2(𝑠) + 𝜏2(𝑠)𝑉′2(𝑠) + 𝛽2 𝑉2(𝑠) = 0,

 where   

          (29)𝜏2 =  𝜏(𝑠) + 2𝜎′(𝑠),

                   (30)𝛽2 =  𝛼 + 2𝜏′(𝑠) + 𝜎′′(𝑠).

Generally, if we set   , then we will obtain the equation𝑉𝑛(𝑠) = 𝑦𝑛(𝑠)

          (31)𝜎(𝑠)𝑉′′𝑛(𝑠) + 𝜏𝑛(𝑠)𝑉′𝑛(𝑠) + 𝛽𝑛 𝑉𝑛(𝑠) = 0,

where 

          (32)𝜏𝑛 =  𝜏(𝑠) + 𝑛𝜎′(𝑠),

 .        (33)𝛽𝑛 =  𝛼 + 𝑛𝜏′(𝑠) +
𝑛(𝑛 ― 1)

2 𝜎′′(𝑠)

When  then𝛽𝑛 = 0,

                  (34)  𝛼𝑛 =  ― 𝑛𝜏′(𝑠) ―
𝑛(𝑛 ― 1)

2 𝜎′′(𝑠)         (𝑛 = 0, 1, 2 ).         

To obtain the energy eigenvalues equation, we must establish the relation   using Eqs.  𝛼𝑛 =   𝛼
(21 and 34). The solution of Eq. (31) is a polynomial of the form   . The polynomial 𝑦(𝑠) = 𝑦𝑛(𝑠)
solutions  are given by the Rodrigues relation 𝑦𝑛(𝑠)

                                                                                                     (35)𝑦𝑛(𝑠) =
𝐵𝑛

𝜌(𝑠)
𝑑𝑛

𝑑𝑠𝑛[𝜎𝑛(𝑠)𝜌(𝑠)],

where  is a normalization constant and  is a weight function which  must satisfy the 𝐵𝑛 𝜌(𝑠)
condition

          (36)[𝜎(𝑠)𝜌(𝑠)]′ = 𝜏(𝑠)𝜌(𝑠).
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3.  Solution of the radial Schrodinger equation 

    The three-dimensional time-independent SE with a reduced mass   and wave-function 𝜇 𝜓(𝑟,𝜃, 
is given as 𝜙)

 ―
ℏ2

2𝜇[ 1
𝑟2

∂
∂𝑟(𝑟2 ∂

∂𝑟) +
1

𝑟2𝑠𝑖𝑛𝜃
∂

∂𝜃(𝑠𝑖𝑛𝜃
∂

∂𝜃) +
1

𝑟2sin2 𝜃  
∂2

∂𝜙2]𝜓(𝑟,𝜃, 𝜙) + 𝑉(𝑟)𝜓(𝑟,𝜃, 𝜙)    = 𝐸𝜓(𝑟,𝜃, 𝜙)

                                                            (37).                                                        

Using the method of separation of variables in Eq. (37) we can separate the equation into the 

radial part and the angular part by using the transformation   . With the 𝜓(𝑟,𝜃, 𝜙) =  
𝑅(𝑟)𝑌(𝜃, 𝜙)

𝑟

appropriate separation constant, we will obtain the radial SE as

                           (38)                                                          
𝑑2𝑅(𝑟)

𝑑𝑟2 +
2𝜇

ℏ2[𝐸 ― 𝑉(𝑟) ―
𝑙(𝑙 + 1)ℏ2

2𝜇𝑟2 ]𝑅(𝑟) = 0,

where the effective potential is given as 
  .       (39) 𝑉𝑒𝑓𝑓(𝑟) = 𝑉(𝑟) +

𝑙(𝑙 + 1)ℏ2

2𝜇𝑟2

If we substitute the potential in Eq. (1) into (38) we will obtain

                              (40)     
𝑑2𝑅(𝑟)

𝑑𝑟2 +
2𝜇

ℏ2[𝐸 ― (𝐴

𝑟2 + 𝐵𝑟 ―
𝐶
𝑟 + 𝐷) ―

𝑙(𝑙 + 1)ℏ2

2𝜇𝑟2 ]𝑅(𝑟) = 0.

To transform the SE into a hyper-geometric type, we let   and use the following calculus 𝑟 =
1
𝑠

derivatives
            (41) 𝑅′(𝑟) =  𝑅′(𝑠) × 𝑠′(𝑟) =  ― 𝑠2𝑅′(𝑠).

           (42)  𝑅′′(𝑟) =  (𝑠′(𝑟))2𝑅′′(𝑠) + 𝑅′(𝑠) × 𝑠′′(𝑟) = 𝑠4𝑅′′(𝑠) +2𝑠3𝑅′(𝑠).
Substituting Eq. (42) into (40) yields 

          (43)𝑅′′(𝑠) +
2𝑠

𝑠2 𝑅′(𝑠) +
2𝜇

𝑠4ℏ2[𝐸 ― (𝐴𝑠2 +
𝐵
𝑠 ― 𝐶𝑠 + 𝐷) ―

𝑙(𝑙 + 1)ℏ2

2𝜇 𝑠2]𝑅(𝑠) = 0.

To solve Eq. (43) we will use the approximation scheme used in the literature [6-8, 11]. We 

expand the term  in power series form to the second order around   which is assumed 
𝐵
𝑠  𝑟0 (𝛿 =

1
𝑟0

)

to be the characteristic radius of a meson. 
Next we let  so that 𝑦 = 𝑠 ― 𝛿

          (44)  
𝐵
𝑠 =  

𝐵
𝑦 + 𝛿 ≈ 𝐵(3

𝛿 ―
3𝑠

𝛿2 +
𝑠2

𝛿3).

This approximation allows us to solve Eq. (43) with the NU method.  Equation (43) can be 
further simplified as 
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    (45)𝑅′′(𝑠) +
2𝑠

𝑠2 𝑅′(𝑠) +
2𝜇

𝑠4ℏ2[(𝐸 ―
3𝐵
𝛿 ― 𝐷) + (𝐶 +

3𝐵

𝛿2 )𝑠 ― (𝐴 +
𝐵 

𝛿3 +
𝑙(𝑙 + 1)ℏ2

2𝜇 )𝑠2]𝑅(𝑠) = 0.

With  

         (46)
2𝜇

ℏ2(𝐸 ―
3𝐵
𝛿 ― 𝐷) = ―𝑇,

          (47)
2𝜇

ℏ2(𝐶 +
3𝐵

𝛿2 ) = 𝑊,

        (48)
2𝜇

ℏ2(𝐴 +
𝐵 

𝛿3 +
𝑙(𝑙 + 1)ℏ2

2𝜇 ) = 𝑁,

we can write Eq. (45) as 

       (49) 𝑅′′(𝑠) +
2𝑠

𝑠2 𝑅′(𝑠) +
―𝑇 + 𝑊𝑠 ― 𝑁𝑠2

𝑠4 .

If we compare Eq. (49) with (7) we will have
                          𝜏(𝑠) = 2𝑠,  𝜎(𝑠) = 𝑠2,  𝜎(𝑠) = ―𝑇 + 𝑊𝑠 ― 𝑁𝑠2.
Using these polynomials in  Eq. (22) implies that 

 .       (50)𝜋(𝑠) =  ± 𝑘𝑠2 ― ( ― 𝑇 +  𝑊𝑠 ― 𝑁𝑠2)

We will now obtain  by equating the diiscriminant of the quadratic equation under the squared 𝑘
root in Eq. (50) to zero

          (51)𝑘 =
𝑊2

4𝑇 ―𝑁.
Substituting  into Eq. (50) yields𝑘

        (52)𝜋(𝑠) =  ± 𝑊2

4𝑇𝑠2 ― 𝑊𝑠 + 𝑇   =    ±
(𝑊𝑠 ― 2𝑇)

2 𝑇 .

The NU method requires that for the polynomial  we choose the one for which  has a 𝜋(𝑠), 𝜏(𝑠)
negative derivative. From Eq. (14) we have 

 .        (53)𝜏(𝑠) = 𝜏(𝑠) +2𝜋(𝑠) = 2𝑠 ±
(𝑊𝑠 ― 2𝑇)

𝑇

                                                                                                                            (54)       𝜏′(𝑠) =  2 ―
𝑊

𝑇

The choice of  that will make   is    .      𝜋(𝑠) 𝜏′(𝑠) < 0 ― 
(𝑊𝑠 ― 2𝑇)

2 𝑇

To find the energy eigenvalues, we recall Eqs. (21 and 34)

             (55)𝛼 = 𝑘 + 𝜋′(𝑠) =  
𝑊2

4𝑇 ―𝑁 ―
𝑊

2 𝑇

      ( )              (56)𝛼𝑛 =  ― 𝑛𝜏′(𝑠) ―
𝑛(𝑛 ― 1)

2 𝜎′′(𝑠) 𝑛 = 0, 1, 2 
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Substituting the notations  and    into Eq. (56) yields 𝜏′(𝑠) 𝜎′′(𝑠)

         (57)𝛼𝑛 =  ― 𝑛 (2 ―
𝑊

𝑇) ―𝑛(𝑛 ― 1) =
𝑊 𝑛

𝑇 ― 𝑛 ― 𝑛2.

Now equating both sides of Eqs. (55) and (57) gives 

        (58)
𝑊2

4𝑇 ―
𝑊

𝑇(𝑛 +
1
2) + 𝑛 + 𝑛2 ―𝑁 = 0.

Next, we let , so that Eq. (58) becomes𝑥 =
1
𝑇

                                                                                     (59)
𝑊2𝑥2

4 ― (𝑛 +
1
2)𝑊𝑥 + 𝑛 + 𝑛2 ―𝑁 = 0.

Equation (59) is quadratic in the variable   . The roots are obtained as 𝑥

   .      (60)𝑥 =
1
𝑇 =   

2(𝑛 +
1
2)𝑊 ± 2 (𝑛 +

1
2)2

𝑊2 ― 𝑊2(𝑛 + 𝑛2 ― 𝑁)

𝑊2

After some simplifications we obtained 

  .       (61)𝑇 =  [ 𝑊
(2𝑛 + 1) ± 1 + 4𝑁]2

On substituting the notations for  and  given in Eqs. (46-48) we obtained the energy 𝑊, 𝑇 𝑁

eigenvalues generated by the potential in Eq. (1) 

  .          (62)𝐸𝑛𝑙 = ―
ℏ2

2𝜇[ 2𝜇

ℏ2(𝐶 +
3𝐵

𝛿2)
(2𝑛 + 1) ± 1 +

8𝜇

ℏ2(𝐴 +
𝐵 

𝛿3 +
𝑙(𝑙 + 1)ℏ2

2𝜇 )]
2

+
3𝐵
𝛿 + 𝐷

To obtain the wave function in Eq. (8), (   we use the relation in Eqs. (13 and 𝜓(𝑠) = 𝜑(𝑠)𝑦(𝑠))

35), but we must first determine the weight function from (36). With the help of Eq. (13), we 

obtained

 .                                               (63)
𝜑′(𝑠)
𝜑(𝑠) =  

𝜋(𝑠)
𝜎(𝑠) = ― 

(𝑊𝑠 ― 2𝑇)

𝑠2 2 𝑇  

Solving Eq. (63), yields 

    .                                     (64)𝜑(𝑠) = 𝑠
― 

𝑊
2 𝑇  𝑒 ― 

𝑇
𝑠

Next we find the weight function from Eq. (36)

           [𝑠2𝜌(𝑠)]′ = (2𝑠 ―
(𝑊𝑠 ― 2𝑇)

𝑇 )𝜌(𝑠)
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  .                                                                   (65)⟹2𝑠 𝜌(𝑠) + 𝑠2𝜌′(𝑠) = (2𝑠 ―
𝑊𝑠

𝑇 + 2 𝑇)𝜌(𝑠)

Solving Eq. (65), we obtained the weight function as 

   .         (66)𝜌(𝑠) = 𝑠 ―  
𝑊

𝑇  𝑒 ― 
2 𝑇

𝑠

Substituting Eq. (66) into (35) yields

  .            (67)𝑦𝑛𝑙(𝑠) = (𝑠)
𝑊

𝑇  𝑒
2 𝑇

𝑠 𝐵𝑛𝑙
𝑑𝑛

𝑑𝑠𝑛[(𝑠)2𝑛𝑠 ―
𝑊

𝑇  𝑒 ―
2 𝑇

𝑠 )]
Next, we substitute Eqs. (64 and 67) into (8) to get 

 .       (68)𝑅𝑛𝑙(𝑠) = (𝑠)
𝑊

2 𝑇  𝑒
𝑇

𝑠 𝐵𝑛𝑙
𝑑𝑛

𝑑𝑠𝑛[(𝑠)2𝑛𝑠 ―
𝑊

𝑇  𝑒 ―
2 𝑇

𝑠 )]
If we change the variable from  , we will obtain  𝑠→𝑟

                  (69)𝑅𝑛𝑙(𝑟) =  (𝑟)
―

𝑊
2 𝑇 ― 1

𝑒 𝑇  𝑟 𝐵𝑛𝑙( ― 𝑟2 𝑑
𝑑𝑟)𝑛[(𝑟) ―2𝑛 +

𝑊
𝑇  𝑒 ―2 𝑇 𝑟)].

4. Applications
4.1 Quarkonia interacting systems

    The generalized energy eigenvalues equation obtained in Eq. (62), reduces to the Cornell 

potential if we set  𝐴 = 𝐷 = 0

 .                                    (70)𝐸𝐶𝑜𝑟𝑛𝑒𝑙𝑙
𝑛𝑙 = ―

ℏ2

2𝜇[ 2𝜇

ℏ2(𝐶 +
3𝐵

𝛿2)
(2𝑛 + 1) ± 1 +

8𝜇

ℏ2(𝐵 

𝛿3 +
𝑙(𝑙 + 1)ℏ2

2𝜇 )]
2

+
3𝐵
𝛿

Also if we set  in Eq. (70) we will immediately retrieve the Coulomb’s energy eigenvalue 𝐵 = 0
equation given as

         (71)𝐸𝐶𝑃
𝑛𝑙 = ―  

𝜇 𝑍2𝑒4

2ℏ2 𝑛2
𝑝
, 𝑛𝑝 = 1, 2, 3

where  ,  is the atomic number is the electronic charge and  is a principal 𝐶 = 𝑍𝑒2 𝑍 , 𝑒 ,  𝑛𝑝  
quantum number with notation 1𝑛𝑝 = 𝑛 + 𝑙 +
Next, we present the mass spectrum of charmonium and bottomonium for any arbitrary radial 
and angular momentum quantum numbers in Tables [1-2] using the meson mass relation [6, 9]

                                                                                                        (72)𝑀𝑛𝑙 = 𝑚𝑞 + 𝑚𝑞 + 𝐸𝐶𝑜𝑟𝑛𝑒𝑙𝑙
𝑛𝑙

Where   are the respective quark and anti-quark masses𝑚𝑞, 𝑚𝑞

On substituting Eq.(70) into Eq.(72) we obtained

        (73)𝑀𝑛𝑙 = 𝑚𝑞 + 𝑚𝑞 ―
ℏ2

2𝜇[ 2𝜇

ℏ2(𝐶 +
3𝐵

𝛿2)
(2𝑛 + 1) ± 1 +

8𝜇

ℏ2(𝐵 

𝛿3 +
𝑙(𝑙 + 1)ℏ2

2𝜇 )]
2

+
3𝐵
𝛿

Page 11 of 16

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review Only

12

In order to obtain the free parameters  we fit Eq. (73) with experimental data given in 𝐶, 𝐵 and 𝛿
Tables [1-2]. For the charmonium (  meson, we solved simultaneously three algebraic cc)
equations with the numerical support of MAPLE package by substituting the experimental 
masses for the 1S, 2S, and 3S states into Eq. (73). For the bottomonium meson, we fixed  𝐵
gotten from the charmonium fit into Eq. (73) and solve two algebraic equations for the 
parameters by substituting the experimental masses for the respective IS and 2S states.  𝛿 and 𝐶 

Table1. Charmonium  mass spectra in GeV(  , ,   (cc) 𝑚𝑐 =  1.209 GeV 𝐵 =  0.2 GeV2  𝐶 =  1.234,
)𝛿 =  0.232 GeV

States This work Ref. [1] Ref. [6] Ref. [9] Ref. [13] Exp.[52]
1s 3.096839898 3.096 3.096 3.0969 3.098 3.097
2s 3.686005578 3.672 3.686 3.68697 3.688 3.686
3s 4.039049024 4.085 4.040 4.04143 4.029 4.039
4s 4.267153785 4.433 4.269 4.27086
1p 3.256571621 3.521 3.255 3.25581 3.516 3.511
2p 3.778773823 3.951 3.779 3.77951 3.925 3.927
3p 4.097620019 4.310 4.09997 4.301

Table 2. Bottomonium  mass spectra in    (  , ,   (bb) GeV 𝑚𝑏 =  4.823 GeV  𝐵 =  0.2 GeV2  𝐶 =  1.553,
) 𝛿 =  0.381 GeV

States This work Ref.[1] Ref. [6] Ref. [9] Ref. [13] Exp.[52]
1s 9.460424446 9.462 9.460 9.45851 9.460 9.460
2s 10.02337702 10.027 10.023 10.0218 10.026 10.023
3s 10.35386764 10.361 10.355 10.3539 10.354 10.355
4s 10.56426936 10.624 10.567 10.5661 10.572 10.579
1p 9.621553580 9.963 9.619 9.61781 9.891 9.899
2p 10.11488755 10.299 10.114 10.1127 10.258 10.260
3p 10.41073350 10.564 10.4106 10.518 10.512

4.2 Molecular interacting systems
    Setting and  , Eq. (1) reduces to the Kratzer-Fues 𝐴 = 𝐷𝑒𝑟2

𝑒,  𝐶 = 2𝐷𝑒𝑟𝑒,  𝐵 = 0,   𝐷 = 𝐷𝑒 
potential and the energy eigenvalue equation in Eq. (62) becomes 

.      (74)𝐸𝐾𝐹𝑃
𝑛𝑙 = 𝐷𝑒 ―

ℏ2

2𝜇[ 2𝜇

ℏ2(2𝐷𝑒𝑟𝑒)

(2𝑛 + 1) ± 1 +
8𝜇

ℏ2(𝐷𝑒𝑟2
𝑒 +

𝑙(𝑙 + 1)ℏ2

2𝜇 )]
2

 

 If we substitute  and   into Eq. (62), we will obtain the molecular 𝐴 =
𝑉0𝑎2

2 ,  𝐶 = 𝑉0𝑎 ,  𝐵 = 𝐷 = 0
Mie potential energy spectrum given as 
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  .     (75)𝐸𝑀𝑃
𝑛𝑙 = ―

ℏ2

2𝜇[ 2𝜇

ℏ2(𝑉0𝑎)

(2𝑛 + 1) ± 1 +
8𝜇

ℏ2(𝑉0𝑎2

2 +
𝑙(𝑙 + 1)ℏ2

2𝜇 )]
2

To obtain the inertia rotational (  and the first two centrifugal distortion constants ( , 𝐵𝑛0) 𝐷𝑛0  𝐻𝑛0

 of the Kratzer-Fues potential, we used the approach introduced in Ref. [47]. We used MAPLE ) 
software to expand Eq. (74) in power series in terms of  to the fourth order, and obtained𝑙(𝑙 + 1)

 ( ,           (76)   𝐸𝐾𝐹𝑃
𝑛𝑙 = 𝐸𝐾𝐹𝑃

𝑛0 + 𝐵𝑛0𝑙(𝑙 + 1) ― 𝐷𝑛0𝑙2(𝑙 + 1)2 + 𝐻𝑛0𝑙3(𝑙 + 1)3⋯𝑂 𝑙4(𝑙 + 1)4

where 

                             (77) 𝐸𝐾𝐹𝑃
𝑛0 = 𝐷𝑒 ―

ℏ2

2𝜇[ 2𝜇

ℏ2(2𝐷𝑒𝑟𝑒)

(2𝑛 + 1) + 1 +
8𝜇

ℏ2(𝐷𝑒𝑟2
𝑒)]

2

,      

   ,       (78)𝐵𝑛0 =
32𝜇𝐷2

𝑒𝑟2
𝑒

((2𝑛 + 1) +
(8𝜇𝐷𝑒𝑟2

𝑒 + ℏ2)
ℏ2 )

3

  ℏ (8𝜇𝐷𝑒𝑟2
𝑒 + ℏ2)

    ,        (79)𝐷𝑛0 =  32𝜇
𝐷2

𝑒𝑟2
𝑒(32𝜇 𝐷𝑒𝑟2

𝑒 + 2 ℏ2𝑛 8𝜇
𝐷𝑒𝑟2

𝑒

ℏ2 + 1 +  ℏ2 8𝜇
𝐷𝑒𝑟2

𝑒

ℏ2 + 1 + 4 ℏ2)
(2𝑛 + 1 + 8𝜇

𝐷𝑒𝑟2
𝑒

ℏ2 + 1)
4

 (8𝜇𝐷𝑒𝑟2
𝑒 + ℏ2)2

    

      (80)𝐻𝑛0 =
64𝐷2

𝑒𝑟2
𝑒𝜇 ℏ2[8 𝑟2

𝑒𝜇(7𝑎 + 10𝑛 + 5) + 4𝑎 ℏ2(𝑛2 + 𝑛 + 2) +  ℏ2(𝑎3 + 10𝑛 + 5)]
(2𝑛 + 1 + 𝑎)5 𝑎6 ℏ6 ,

where    in Eq. (80)𝑎 =  
(8𝜇𝐷𝑒𝑟2

𝑒 + ℏ2)
ℏ2

Using MAPLE package, we obtained the pure vibrational energy eigenvalues, inertia rotational 
constant and the first two centrifugal distortion constants for CO and N2 diatomic molecules as 
shown in Tables (3-4). We used the conversions 1973.29 amu 931.494028  ℏ𝑐 = eVÅ, 1 = Mev/c2

reported in Ref. [53]

Table3. Pure vibrational energy eigenvalues and inertia rotational constant of the Kratzer-Fues potential.
The following spectroscopic parameters for CO ( = 10.845073641 , 1.128 , 𝐷𝑒 𝑒𝑉 𝑟𝑒 = Å 𝜇 =
6.86058600amu) and N2 (    were taken from 𝐷𝑒 = 11.938193820eV, 𝑟𝑒 = 1.0940Å, 𝜇 = 7.00335amu) 
Ref.[53]
States Inertia rotational constant   𝑩𝒏𝟎 (𝐞𝐕) Energy eigenvalues 𝑬𝒏𝟎(𝐞𝐕)

𝒏 CO N2 CO N2 
0 0.0002376293307 0.0002476582831 0.050824940 0.005443680
5 0.0002216780654 0.0002314629222 0.539451730 0.578338160
10 0.0002071231165 0.0002166494376 0.995635920 1.068343360
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15 0.0001938149822 0.0002030735317 1.422187272 1.527314640
20 0.0001816229639 0.0001906086169 1.821617824 1.957818388
25 0.0001704324662 0.0001791433309 2.196178952 2.362161092
30 0.0001601427268 0.0001685794428 2.547893176 2.742420276
35 0.0001506649083 0.0001588300807 2.878581510 3.100471276
40 0.0001419204832 0.0001498182292 3.189887104 3.438010380
45 0.0001338398643 0.0001414754484 3.483295665 3.756574956
50 0.0001263612399 0.0001337407804 3.760153226 4.057560983

 

Table4. Centrifugal distortion constants in  for the Kratzer-Fues potential.The following (eV)
spectroscopic parameters for CO (  = 10.845073641 , 1.1283 ,  6.86058600amu) and N2 (𝐷𝑒  eV 𝑟𝑒 =  Å 𝜇 =

938193820eV  1.0940  7.00335 were taken from Ref.[53] 𝐷𝑒 = 11. 𝑟𝑒 = Å, 𝜇 = amu) 
State Centrifugal distortion constants

𝒏  (CO) 𝐷𝑛0 × 10 -9 (N2) 𝐷𝑛0 × 10 -9  (CO) 𝐻𝑛0 × 10 -13 (N2) 𝐻𝑛0 10 -13

0 5.2343481380000 5.1641635490000 1.15332750800000 1.0771375210000
20 3.7436924990000 3.7255746940000 0.78094998520000 0.7367124907000
40 2.7562209960000 2.7627818520000 0.5479856921000 0.5212465347000
60 2.0795367800000 2.0972876070000 0.3962468623000 0.3795346898000
80 1.6022592280000 1.6244309060000 0.9397202940000 0.2832300932000
100 1.2571608550000 1.2803490590000 0.2297880670000 0.2159099982000
200 0.4588356192000 0.4746830726000 0.0717250604500 0.0706230103900
400 0.1126483480000 0.1182933560000 0.0153622488800 0.0153489334900
800 0.0199507267500 0.0211742100100 0.0024395196750 0.0024593340250
2000 0.0015134282291 0.0001616964229 0.0001717725671 0.0001739404262

5. Conclusion 

    We have obtained the energy eigenvalue and wave function expressions of the radial SE with 
an inversely quadratic potential plus Cornell potential shifted by a constant parameter. The 
Pekeris-type approximation scheme within the framework of the NU approach was applied to 
obtain close form solutions. The eigenvalues and mass spectra of quarkonia interacting systems 
such as charmonium and bottomonium mesons were computed. Also molecular interacting 
systems were studied with the aid of the molecular Kratzer-Fues potential. The obtained energy 
spectra equations of the molecular Kratzer-Fues,  Mie and Coulomb’s potentials are exact but the 
spectrum generated by the Cornell potential is an approximation. Therefore it is worthwhile to 
state that the exact analytical equation of the energy spectra of quarkonia system described by 
the Cornell potential is unknown and has not been found yet [2].  Furthermore, we obtained the 
pure vibrational energy eigenvalues, inertia rotational constant (IRC) and the first two centrifugal 
distortion constants (CDC) using the method introduced in Ref. [47]. As the vibrational quantum 
number increases, both the IRC and CDC reduce monotonically and tend to zero at the 
dissociation limit. The results in this present work simulated with CO and N2 diatomic molecules 
are in consonance with the work reported in [47].
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