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1
Introduction

This chapter shall serve as a motivation for the analysis performed in this thesis.
We aim to motivate the problem, put it into context and briefly describe it with
as little technical detail as possible.



6 Introduction

Gravitation is the only unquestionably ubiquitous, fundamental force in Nature.
It is so common to us that we can hardly envision a world without it. Obviously,
it was also the first one subject to investigation by physicists. Newton and Ke-
pler were the first to successfully describe the motion of particles and planets that
undergo gravitational interactions. Nowadays though, we believe that Newton’s
theory is but an effective description of another more fundamental theory, the the-
ory of general relativity that was formally described first by Einstein exactly one
hundred years ago, see e.g. [1].

Einstein’s theory rests only on a few pillars, statements that give restrictions,
certain laws that the theory should obey. Notably, one of them is that the the-
ory must be independent of the coordinate system that is used to describe it. In
contemporary (theoretical, but not exclusively) physics this is an obvious thing
to do, i.e. one requires invariance of the theory and its predictions under general
coordinate transformations. In hindsight though, we might wonder why no one
addressed this question for the Newtonian theory. Even before the discovery of
general relativity, the concept of diffeomorphism invariance could have been ad-
dressed for any theory that has so far only been formulated in such a way that it is
invariant under Galilean coordinate transformations.

At the time, this might have been sufficient. Physical models were mostly con-
sidered in so-called free-falling, or inertial, frames. These are coordinate frames
where an observer is not subject to any gravitational force. Different non-relativ-
istic inertial frames are then related by Galilean coordinate transformations. (In
the relativistic context these would be the Lorentz transformations.) Galilean trans-
formations relate two different coordinate systems via constant rotations, boosts
and shifts. In contrast, arbitrary general coordinate transformations are not sub-
ject to any limitation, such as constancy of the symmetry parameters. As men-
tioned before, in the context of non-relativistic theories, one oftentimes considers
only Galilean transformations. However, in principle there should exist a descrip-
tion of any non-relativistic theory, and thus of Newtonian gravity, that is invariant
under arbitrary transformations of the coordinates.

So, what is the coordinate independent description of Newtonian gravity? Only
a few years after Einstein’s discovery of general relativity this question was even-
tually answered. It was discovered by the French mathematician Cartan and the
theory now goes by the name Newton–Cartan gravity [2, 3]. It is this coordinate
independent description of Newtonian gravity that we are most concerned with in
this thesis. Note that, while the Newton–Cartan theory obeys one of the statements
that Einstein’s theory is based on, it does differ from general relativity in another
crucial aspect. Namely, in the Newton–Cartan theory there exists no maximal ve-
locity. We come back to this issue in chapter 3 when we investigate how Einstein’s
theory gets deformed when we let its limiting speed, the speed of light, go to in-
finity. As we shall see this provides one way to derive the Newton–Cartan theory
from general relativity.
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1.1 Newton–Cartan (like) structures in physics

Most of the recent interest in describing theories that are invariant under non-
relativistic general coordinate transformations has been stirred by developments in
condensed matter theories, see e.g. [4–7] for some earlier works. This engendered
more systematic studies recently, especially on how to couple non-relativistic field
theories to Newton–Cartan backgrounds [8–17] (see also [18–24]). It has been noted
that besides the “usual” fields, the time-like and spatial vielbein, one needs an addi-
tional vector field to consistently couple non-relativistic field theories to arbitrary
curved backgrounds, see in particular [8–11] and [16]. These references together
with [25–29] also point towards another important aspect of the background geom-
etry: that one should not restrict the torsion of the non-relativistic gravity theory.

The necessity to add an extra vector gauge-field to the Newton–Cartan fields
was also realized by Son [30]. The use of Newton–Cartan structures is obligatory
in his effective action for the quantum Hall effect [8, 30–33]. This model naturally
includes a so-called Wen–Zee term [34], which describes the coupling between the
extra gauge-field and the curvature, thus encoding the Hall viscosity and giving
rise to more universal features of the quantum Hall effect than only the quantized
Hall conductivity. Through a similar coupling with a U(1) gauge-field and a Wen–
Zee term, one obtains an effective action for chiral superfluids as well [35, 36]. It
was realized in [36] that Newton–Cartan structures offer a particularly neat way
to write the action in a covariant form, and hence offer a convenient framework to
calculate e.g. the energy current of the superfluid. Newton–Cartan structures are
also essential in describing Newtonian fluids [37, 38]. In particular, those models
were used to describe the effects of superfluidity in Neutron stars [38–40]. A study
of non-relativistic fluids, or “Galilean fluids”, i.e. hydrodynamics on Galilean back-
grounds features in [41, 42]. Indeed, the applications of Newton–Cartan structures
in describing effective actions for phenomena in condensed matter physics seem so
vast that this short introduction can hardly do justice to all works in this fields.

Some works on condensed matter theory are motivated by the emergence of
new “holographic” techniques in condensed matter physics, see [43–46]. These
techniques lend their roots to the holographic principle [47, 48], which is a con-
jectured correspondence of gravitational theories in anti-de Sitter space-times and
conformal field theories, the so-called AdS/CFT correspondence. Some simple, yet
insightful, manifestations of this duality were found in three-dimensional space-
times, see e.g. [49–51], building on the seminal work of Brown and Henneaux [52],
which is indeed one of the precursors for this duality. While, as we mentioned be-
fore, such techniques are already being applied, much still needs to be investigated
when it comes to test the generality of this correspondence. The work on find-
ing non-relativistic realizations of this duality is one effort in this direction. More
concretely, let us draw the attention to the recent works [15,25–27] where Newton–
Cartan structures play a very prominent role.

Newton–Cartan like structures, in fact dual structures that are more related to
ultra-relativistic physics than non-relativistic physics, also feature in warped con-
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formal field theories [53, 54]. They are also conjectured to play a role in the ten-
sionless limit of string theory [55, 56]. The tensionless limit amounts to taking an
ultra-relativistic limit [55, 57], that leads to “Carrollian” physics and space-times,
which are in many ways dual to Newton–Cartan structures, see e.g. [54, 55, 57–61].
Other, in fact opposite, non-relativistic limits of string theory have also been con-
sidered. Non-relativistic string theory [62, 63] was studied as a possible soluble
sector within string or M-theory [64–70]. These works are also important for the
applications of the holographic principle in the context of condensed matter theory
which we mentioned before.

A more systematic approach towards non-relativistic (and ultra-relativistic) ge-
ometry was taken in [71, 72], where Newton–Cartan structures are discussed with
a particular emphasis on the metric structures.

In this thesis we will be mostly interested in supersymmetric extensions of
Newton–Cartan structures. While we will discuss (non-relativistic) supersymme-
try more at a later stage, let us give some motivations for our general interest in
them here. For example, one of the papers on the quantum Hall effect does in
fact make use a (non-relativistic) supersymmetric model [73]. Further motivations,
and indeed one of the main motivations for this thesis in general, is related to the
very successful application of localization techniques in the relativistic context, see
e.g. [74, 75]. The applications of localization techniques have proved useful to ob-
tain exact results for relativistic supersymmetric field theories. Perhaps we can ex-
pect similarly successful results in the non-relativistic case too. The method relies
on the coupling of non-relativistic field theories to arbitrary supersymmetric back-
grounds. To do so, one needs of course non-relativistic supergravity theories to
provide such backgrounds. However, the construction that we have in mind [76],
makes use of so-called off-shell formulations of supergravity, a feature that the only
known theory of non-relativistic supergravity so far, see [77], does not possess.
Suitable extensions of Newton–Cartan supergravity would be necessary to check
whether those techniques can be extended to non-relativistic theories.

We discussed the main motivations for our interest in non-relativistic physics
and that Newton–Cartan structures provide a convenient way of denoting the non-
relativistic gravity background. Moreover, we gave one particular motivation to
consider supersymmetric theories. Let us now return to the point where we started:
symmetries.

1.2 Non-relativistic (super)symmetry

Requiring a theory, Newtonian gravity in this case, to be invariant under general co-
ordinate transformations, means that it should be invariant under a special kind of
symmetry transformation. Symmetries play a major role in contemporary theoret-
ical physics. They impose strong restrictions on a theory, for example they restrict
the kind of interaction terms that one can write down. This is of vital importance as
particular symmetries of a given theory can often be found in experiments and thus
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the underlying “fundamental” theory can be much better described. All (quantum)
theories that are used to describe the standard model of particle physics are gauge-
theories, i.e. they are by construction invariant under a certain symmetry. The sym-
metry groups are U(1) for electrodynamics, SU(2) for the weak interactions and
SU(3) for the strong interactions. In a way, general relativity can be understood
as a gauge-theory too. It is the gauge-theory of diffeomorphisms. As we will see
later, this feature, the gauge-theory aspect of general relativity, is of particular im-
portance to us.

In view of such vast applications, an interesting question is what is the most
general symmetry (group) that we can allow? This has been extensively studied
and one of the most celebrated theorems by Coleman and Mandula [78] states
that a physical theory can at most be invariant under the conformal group. All
other symmetries must be “internal” ones, i.e. physical observables must always
be scalar representations of those symmetries. This theorem holds but for one ex-
ception: it does not account for fermionic symmetries. As was later shown by Haag,
Lopuszanski and Sohnius [79] the addition of supersymmetry, or superconformal
symmetries to be precise, really exhausts all possibilities. This, in a way, funda-
mental nature of supersymmetry serves as one more motivation for us to consider
supersymmetric theories and to study supersymmetric Newton–Cartan structures
in this thesis.

We must now put our focus more towards non-relativistic symmetries. To un-
derstand how a theory can be invariant under non-relativistic diffeomorphisms one
must of course know what non-relativistic diffeomorphisms are. Interestingly, this
is part of current research too. One approach consists of mimicking some ideas that
can be applied to general relativity as well. General relativity can be seen as gauge-
theory of the Poincaré algebra and hence one could try to derive a non-relativistic
version thereof by gauging instead a non-relativistic symmetry algebra. This ap-
proach was pursued in [77, 80]. In particular, in [77] it was shown how the gauge-
theory of the Bargmann algebra can be reduced to Newtonian gravity by gauge-
fixing. The Newton–Cartan theory was thus linked to Newtonian gravity and it
was shown explicitly that the difference between those theories is precisely due to
the amount of symmetry that we allow. We will apply similar ideas, i.e. gauging
techniques, to derive some of the new (supergravity) theories that we put forward
in this thesis.

Let us pause for a moment to fix nomenclature and to quickly define the dif-
ferent theories of non-relativistic gravity. Newton–Cartan gravity is invariant un-
der general coordinate transformations, while in Newtonian gravity we allow only
for Galilei transformations with constant symmetry parameters. There is one in-
between step that we shall also consider in this thesis. We can allow for arbi-
trary time-dependent spatial translations, keeping all other symmetry parameters
constant. These symmetries are sometimes referred to as “acceleration-extended”
Galilean symmetries, or Milne symmetries [4]. The theory is then called Galilean
gravity.

What kind of non-relativistic symmetries will we be interested in? We already



10 Introduction

mentioned Galilean symmetries and also the Bargmann algebra. Just like in the rel-
ativistic case, we can extend those with yet more symmetry generators. In the rela-
tivistic case this leads to conformal symmetry. In the non-relativistic case however,
we have the choice between two different “conformal” extensions of the Galilei
algebra. The Galilean conformal algebra [46, 81] is the non-relativistic analog of
the conformal algebra. Another possibility is the Schrödinger algebra [82, 83]. We
will choose to work with the latter one because it is the only possible extension of
the Bargmann algebra.1 This in particular implies that we can allow for non-zero
mass.2 Indeed, the additional symmetry of the Bargmann algebra (w.r.t. the Galilei
algebra) is often interpreted as being related to the conservation of mass (and being
non-relativistic this implies conservation of particle number).

The Schrödinger algebra comprises symmetry generators which give rise to the
symmetries of the Schrödinger equation (hence the name). The rigid Schrödinger
transformations also leave invariant the simple action of the non-relativistic point-
particle:

S =
m

2

∫

dt ẋi ẋi .

More extensions of this formula will also follow in this thesis.
So, in the spirit of Coleman–Mandula we add “conformal” extensions. But in

this thesis in particular, we will also be interested in another extension of non-relati-
vistic symmetries, namely the addition of supersymmetry.

Above we gave some “physical” reasons to study Newton–Cartan theories and
also for studying supersymmetry in that context. Another motivation comes from
the analysis of [78, 79] in the relativistic context. In the relativistic case, supersym-
metry or superconformal symmetries are the most general symmetries that we can
allow for a theory. In the non-relativistic case, there are no arguments similar to
those of [78, 79], but it is still interesting to see if we are even able to find non-
relativistic theories that are supersymmetric.

Non-relativistic supersymmetry algebras are not per se difficult to construct and
some simple field theories that realize those symmetries have also been found, see
e.g. [84–94]. However, the first local realization of non-relativistic supersymmetry
dates back only to the year 2013 [77]. There are no (known) obstacles that would
prevent anyone from finding such theories in principle. However, it turns out that
this is not an easy task and one faces quite some difficulties. This leads us to first
consent ourselves with constructing examples in a simpler setting. Such simplicity
can result for example from considering theories in lower dimensions. Therefore,
the non-relativistic supergravity theories that we will construct in this thesis, all of
which are generalizations of [77], are theories in three space-time dimensions. We

1 We will discuss the reasons for our particular interest in the Bargmann algebra instead of the Galilei
algebra at a later stage, as they are mostly technical in nature.

2 In the relativistic case, conformal symmetry is too strong to allow for massive representations.
Therefore, since our “conformal” Schrödinger symmetry does allow m 6= 0, we will reserve the name
(non-relativistic) conformal symmetry for the Galilean conformal ones.
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hope that a more thorough understanding of the mechanics of three-dimensional
case will provide useful insight for the construction of four-dimensional theories.

1.3 Outline of the thesis

So, this thesis deals with non-relativistic supergravity theories in three space-time
dimensions. We motivated our interest in such theories, which stems from effective
models in condensed matter theory to possible applications of localization tech-
niques. The fact that we work in three dimensions is due to a more straightforward
motto of ours: simplicity first. In the following we will work out many examples
of non-relativistic supergravity theories and shall compare our findings with the
relativistic case.

At first we must address the question of how we are going to construct those su-
pergravities. Throughout this work we will use two different techniques. The first
one lends its roots to relativistic supergravity and the fact that it can be obtained
by gauging the Poincaré superalgebra [95]. The application of similar techniques
will allow us to obtain non-relativistic supergravities by gauging non-relativistic
superalgebras instead. This approach will feature in chapters 4 and 5. The other
method to derive non-relativistic supergravities is a non-relativistic limiting proce-
dure that we develop in chapter 3. This method is also used in chapter 6 to derive
non-relativistic matter multiplets.

We can depict the two methods that we use to construct non-relativistic super-
gravities in the following diagram, see figure 1.1. (The adjective ‘super’ can be

Ways to obtain Newton–Cartan gravity

Poincaré

Bargmann

general relativity

Newton–Cartan

NR contraction NR contraction

gauging

gauging

Figure 1.1: A diagrammatic way to explain the relations between gauging proce-
dures and non-relativistic (NR) contractions. Symmetry algebras feature on the
right side and the respective gravitational theories on the left side, see main text for
more explanation.

added at each point/corner in figure 1.1 to make the diagram more suitable to our
specific purpose.) On the left side we present the respective symmetry algebras
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that are gauged. The horizontal arrows stand for the gauging procedures, e.g. the
upper line translates to “general relativity can be obtained by gauging the Poincaré
algebra”. The dashed, vertical arrow on the left corresponds to the Inönü–Wigner
contraction [96], which is a way to obtain the Bargmann (super)algebra from the
Poincaré (super)algebra. The dashed arrow on the right stands for the limiting pro-
cedure that we adopt in chapter 3. It is no coincidence that this graph seems to
suggest the limiting procedure is motivated by the Inönü–Wigner contraction of
the respective symmetry algebras.

There are particular reasons why we are using two rather than just one method
to obtain non-relativistic supergravities. Gauging techniques, especially in three
dimensions, lead to representations that contain only gauge-fields. This means that
gauging techniques will not lead to representations with extra (auxiliary) fields that
are typical for so-called off-shell formulations for supergravity. While performing
the application of localization techniques goes beyond the scope of this thesis, we
do aim to construct such off-shell formulations for their putative use. Namely, in a
convenient way to couple supergravity to curved backgrounds, described in [76],
we are forced us to choose particular (non-zero!) values for the auxiliary fields,
hence the need for formulations that contain such fields.

In chapter 6 we will introduce means to obtain off-shell formulations also via
gauging techniques. However, this calculation will rely on the existence of matter
multiplets and we will use the limiting procedure to obtain those. We will use a
non-relativistic version of the superconformal tensor calculus, to derive off-shell
formulations of three-dimensional non-relativistic supergravity. It turns out that
the structures are very similar to the relativistic case.

We have argued at length that we are interested in off-shell formulations of non-
relativistic supergravity. But this is not the only extension that we will consider
in the thesis. For example, one generalization of [77] consists of “cosmological”
extensions, i.e. gauging a non-relativistic symmetry algebra with a “cosmological
constant”, which is done in chapter 4. As mentioned, we will look at theories that
possess a “maximal” amount of symmetry. To this end, we will also construct a
Schrödinger extension of three-dimensional non-relativistic supergravity in chapter
5.

One important aspect in the coupling of non-relativistic field theories to arbi-
trary backgrounds is that those backgrounds should allow for non-zero torsion,
i.e. the curvature of the gauge-field of time-translations should be un-constrained.
We shall therefore be particularly interested in extensions with torsion.

In conclusion, we will extend the theory that was presented in [77] in the direc-
tions depicted in figure 1.2. While this figure gives an idea of what are the contents
of each chapter of the thesis, we shall briefly describe them in a little more detail
now.

The main goal of the thesis is to derive theories of non-relativistic supergravity
in three space-time dimensions. Naturally, we have to introduce all of the back-
ground material needed for such an endeavor. This is done in concise form in
chapter 2. The reader who is familiar with those concepts can skip that chapter and
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Extensions of Newton–Cartan supergravity considered in this thesis

“original” Newton–Cartan supergravity

off-shell formulation:
chapters 3 and 6

“conformal”:
chapter 5

non-zero torsion:
chapter 6

cosmological:
chapter 4

Figure 1.2: Extensions of the “original”, i.e. three-dimensional, N = 2, torsion-less,
on-shell, Newton–Cartan supergravity that we consider in this thesis.

immediately proceed to chapters 3–6 where we present the new materials. A quick
glance at the summary of the conventions used in this work, presented in section
2.1, might be useful.

The chapter on background material, chapter 2, focuses only on the most im-
portant points. We introduce the concept of symmetries, gauge symmetries and
gauge theories and also present an introduction to general relativity from this point
of view. More importantly, especially for this work, we introduce non-relativistic
gravity, supersymmetry and supergravity. The combination of those is the main
theme of our work and makes up the bulk part of the thesis, chapters 3–6. The
chapter is quite technical and we proceed rather quickly to cover all but the neces-
sary concepts that we use later on.

The presentation of new material starts in chapter 3, where we develop a non-
relativistic contraction/limiting procedure that can be used to derive non-relativ-
istic supergravity theories from relativistic ones. After describing the procedure in
quite abstract terms, we apply it to some examples. We re-derive Newton–Cartan
gravity in the formulation in which it appeared earlier in the literature. We will
also comment shortly on why we are mostly concerned with theories with more
than one supersymmetry charge, which are called extended supersymmetries in
the relativistic context. However, we shall argue that those are indeed “minimal” in
the non-relativistic setting. Then we re-derive three-dimensional Newton–Cartan
supergravity and we end with a novel off-shell formulation of the latter. Finally,
we apply the procedure to derive a non-relativistic version of the superparticle in a
curved background. We also comment on the relation of our limiting procedure to
other non-relativistic limits that have been put forward in the literature.

A novel non-relativistic supergravity theory is derived in chapter 4. By gaug-
ing a particular non-relativistic superalgebra we find a cosmological extension of
Newton–Cartan supergravity, i.e. a generalization of the theory put forward in [77].
We will obtain a 1/R-modification of that theory, where R is related to the cosmo-
logical constant ΛCC = −1/R2. We keep the same name for the supergravity theory
that we use for the algebra, Newton–Hooke in this case, hence the title Newton–
Hooke supergravity. We proceed with a particular choice of gauge-fixing, similar
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to the one performed in [77] to derive 1/R-modifications of Galilean supergravity.3

At the end, we use the procedure of the previous chapter 3, and the new off-shell
supergravity found there, to show that we could have obtained the same results by
use of the limiting procedure.

In chapter 5 we expand on our study of three-dimensional non-relativistic su-
pergravities by deriving a “conformal” extension of the non-relativistic supergrav-
ities of chapters 3 and 4. This is done, again, by using gauging techniques. The
non-relativistic algebra that we use in this chapter is a Schrödinger superalgebra.
This theory will serve as a base for the “conformal” tensor calculus of the next
chapter.

A non-relativistic version of the superconformal tensor calculus, a “Schrödinger
tensor calculus”, is introduced in chapter 6. To this end, we first introduce mat-
ter multiplets that are coupled to the non-relativistic supergravity background of
chapter 5. These will serve as so-called compensator multiplets in the Schrödinger
tensor calculus. By gauge-fixing all extra (Schrödinger) symmetries, we derive an
off-shell version of Newton–Cartan supergravity. Because the Schrödinger theory
allows for non-vanishing torsion we are thus able to derive a non-relativistic super-
gravity theory with non-zero torsion. We discuss how truncating to zero torsion
leads to the theory of chapter 3.

We conclude in chapter 7 and give an outlook on open problems that are not ad-
dressed in this thesis and, perhaps more interestingly, those that can be addressed
in the future based on the new findings of our work.

3 Galilean supergravity is the supersymmetric extension of Galilean gravity, which by definition is
the non-relativistic theory that is invariant under ’acceleration-extended’ Galilean symmetries.



2
Background material

This chapter aims to set the basis for the later chapters. Here we review all
physical theories and principles that will be used later on.
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In this chapter we quickly review the very basics of symmetries, gauge-symmetries,
general relativity and supergravity. The purpose is to give a brief introduction to all
concepts that will be needed in later parts of the thesis in an effort to make this work
self-contained. Naturally, since there are many textbooks devoted to teach exactly
those subjects, there is too much to say about them. Here, we will proceed at a pace
that cannot do justice to the details and we shall restrict ourselves to features that
we use in later parts of the thesis.

The expert is likely to know all the material covered in this chapter and might
proceed to the next chapter 3 immediately, possibly after a quick glance over our
conventions in the next section 2.1.

2.1 Conventions

In order to get this technical part out of the way let us devote this first section to a
brief overview of the conventions used in this work.

We work mostly in three space-time dimensions, i.e. one time and two spatial
dimensions. For the flat Minkowski background we choose the “mostly plus” sig-
nature

ηµν = diag(−1, 1, 1) . (2.1)

The first entry is the time-like direction. When we are in more than three dimen-
sions a suitable number of (plus) ones must be added.

Greek indices, as in (2.1) are used for curved space-time indices. They run over
all coordinates, including time. The spatial subset of such indices is denoted by
Latin letters i, j, k, . . . Flat, Lorentz, indices are denoted by Latin indices from the
beginning of the alphabet. In particular, in this thesis we must also differentiate
between relativistic and non-relativistic indices because in the non-relativistic case
we need to split space and time explicitly. Capital letters usually refer to relativis-
tic indices while lowercase letters are again reserved for the spatial part only and
usually appear in the non-relativistic context only. An example is given by writing
µ = (0, i) and A = (0, a). Using zero for both time-like components of curved and
flat indices might cause confusion. However, oftentimes we will simply not write
the zero for flat components, e.g. λa

0 = λa. Then it is important to keep track of
where the zero was because a zero up and a zero down differ by a minus sign due
to the metric (2.1).

Symmetrization and anti-symmetrization of indices are denoted with round
and square brackets respectively and we include a normalization factor in the defi-
nition, e.g. 2 a[µbν] = aµ bν − aνbµ.

We will come back to spinor and gamma-matrix conventions in section 2.6.
Here, let us briefly mention that we will use Majorana spinors and real gamma-
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matrices given by

γA = (iσ2, σ1, σ3) (2.2)

where σi are the usual Pauli matrices. The charge conjugation matrix C is purely
imaginary

C = iγ0 . (2.3)

Note that numerically γµνρ = εµνρ. This identity holds numerically as γµνρ is of
course a matrix while the completely anti-symmetric epsilon symbol is a num-
ber. The two-dimensional, purely spatial epsilon symbol is related to the three-
dimensional by

ε0ij = εij , ε012 = 1 . (2.4)

We reverse the order of spinors when we do a complex conjugation. Spinor indices
are Greek indices from the beginning of the alphabet and lowercase Latin indices
on spinors are used if there are multiple supercharges Qi.

This ends our short excursion on conventions. Now are ready to dive into the realm
of “physics”.

2.2 Gauge symmetries

Symmetries play an immensely important role in this work. Let us introduce them
using a simple example. It is not one that we will need later on in this thesis, it
just serves the purpose of introducing gauge-symmetries. Consider the action of a
complex scalar field Φ(x):

S = −m

2

∫

d3x ηµν ∂µΦ(x)∂νΦ
∗(x) . (2.5)

Never mind the prefactor m/2 or the fact that we chose three-dimensional space-
time. This is not important. One more piece of information is that the (inverse)
Minkowski metric ηµν which appears in (2.5) is given by the diagonal matrix

ηµν = diag(−1, 1, 1) . (2.6)

This just means that we are in flat space here.

For now the only observation we are interested in is that (2.5) is left invariant if
we rotate the complex field Φ(x) by an arbitrary phase exp(i α), i.e. we can replace
the field Φ(x) by exp(i α)Φ(x) and this does not alter the form of the action (2.5).
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The infinitesimal version of this transformation is

δΦ(x) = i α Φ(x) , δΦ
∗(x) = −i α Φ

∗(x) , (2.7)

and those contributions will cancel exactly when we calculate the variation of (2.5).
The action is invariant under global U(1) transformations because exp(i α) span
the group U(1). The transformations are global because the parameter α is constant.
If it was not constant the variation of (2.5) would yield additional terms that arise
when the derivative acts on α.

We can nevertheless modify the action in such a way that the parameter α be-
comes a local function of x while still leaving the action invariant. To do so, we
need to introduce a new field Aµ(x) that compensates for the additional contribu-
tions that we get from the derivatives acting on α(x). We define a new so-called
covariant derivative

DµΦ(x) = ∂µΦ(x)− i Aµ(x) , (2.8)

together with a corresponding DµΦ
∗(x) for the complex conjugate. Then, if we use

δAµ(x) = ∂µα(x) , (2.9)

we note that the quantity (2.8) transforms just like the field Φ(x), i.e. its transfor-
mation is given by δDµΦ(x) = iα DµΦ(x). The gauge-field Aµ(x) is added pre-
cisely for that purpose, to cancel the derivative of the parameter α(x). This way we
gauged our first symmetry. The field Aµ(x) is the gauge-field for the (local U(1)
gauge) symmetry Φ(x) → exp[i α(x)]Φ(x).

Note that there is no covariant derivative of Aµ(x) because it already trans-
forms with the derivative of the parameter. Taking this thought a little bit further
we realize that gauge-fields must always be part of some covariant expression, like
the covariant derivative that we just introduced, or a curvature which we will intro-
duce below. A gauge-field cannot “stand alone” as it would not lead to an invariant
or covariant expression.

The symmetry here is U(1) because α(x) is just a number. If we think of this as
an identity times the parameter α(x) we can also envision generalizing this to other
groups where we have several α(x)s labeled by α(x)a multiplying some matrices
Ta. This is, in very short terms, how other transformations, such as for example
rotations, work.

For any field such as Φ(x) or Aµ(x) and their symmetry transformations we
can define quantities that are invariant or covariant under those symmetry trans-
formations. The first such quantity was the covariant derivative introduced in (2.8).
Another very important quantity is the curvature of the gauge-field. In our present
case, it is given by

Fµν(A) = ∂µ Aν(x)− ∂ν Aµ(x) = 2 ∂[µ Aν](x) . (2.10)
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Curvatures are always invariant under the gauge-transformation of the respective
gauge-fields but they transform covariantly under all other transformations of the
field. (For example Fµν(A) is invariant under transformations with parameter α(x)
but it does transform like a covariant two tensor under diffeomorphisms.)

We can write down a dynamical theory for the gauge-field Aµ(x) by making
use of the curvature (2.10). The action

S = −1

4

∫

d3x ηµνηρσ Fµρ(A) Fνσ(A) (2.11)

can be used for that purpose. Much like (2.5) (using covariant derivatives) it is
second order in derivatives and also invariant under the U(1) symmetry transfor-
mations.

The actions (2.5) and (2.11) are examples of the few actions that we will intro-
duce in this chapter. The main reason is that, while actions exist for “relativistic”
gravity, no such action exists for the non-relativistic gravitational theories that we
will use and hence we mostly work without actions. We will come back to this point
in chapter 3. Indeed, we would like to stress that there is no need for an action to
describe a theory, usually transformation rules and possibly equations of motion
suffice. Having an action however, simply reduces the amount of information that
is needed as transformation rules and equations of motion can always be deduced
from the action.

In the following we will always use the infinitesimal version of the symmetry
transformations, for example (2.7) instead of Φ(x) → exp[i α(x)]Φ(x) and we will
in general not denote the dependence of gauge-fields and parameters on the coor-
dinates. Unless stated otherwise, we will assume that they are all functions of the
space-time coordinates xµ.

In summary, all (gauge) theories that we will deal with later on will be given in
terms of their field content, e.g. Aµ, the transformations of the fields under all sym-
metries, e.g. (2.9), and possibly some additional constraints on the fields, which are
usually constraints on the curvatures. For example, using the definition of Fµν(A)
we see that

∂[µFνρ](A) = 0 . (2.12)

We noted earlier that there is no covariant derivative for Aµ, so we are inclined to
generalize (2.12) to the—indeed correct and very powerful—statement that

D[µFνρ](A) = 0 . (2.13)

This is know as the Bianchi identity. It says that the totally anti-symmetrized co-
variant derivative of any curvature must vanish.

Another constraint on Fµν(A), and thus on Aµ, can be derived from the action
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(2.11). It is the equation of motion for Aµ given by

ηµν∂µFνρ(A) = 0 . (2.14)

As we will not always have the luxury of an action we do not immediately know
which constraints are really equations of motion and which ones follow for exam-
ple from Bianchi identities or are imposed by hand. There might be a way to find
out, however. The constraints transform under symmetry transformations like the
curvatures themselves. Equations of motion always transform to equations of mo-
tion and likewise for other constraints. If we know one equation of motion we can
always derive other ones by symmetry variations.

The main aim of this chapter is to introduce yet another gauge-theory that will
turn out to be nothing else but the theory of general relativity. Having done so, we
will also be able to couple the scalar and vector theories of this section to a curved
background. Before doing so, we shortly digress and talk about the symmetry al-
gebras that underly our gauge-theories.

2.3 Symmetry algebras

We should shortly comment on how algebras link to everything we heard so far.
Remember the theory of the last section was a U(1) theory because α was just a
number. We thought about replacing it with several αs that multiply matrices Ta.
Now, those matrices Ta will (in general) not commute, but their commutation rela-
tions will form an algebra.

A well-known theorem by Emmy Nöther dictates that for every symmetry which
leaves a given theory invariant there exists a conserved current. This current gives
rise to a quantity called the generator of the symmetry. Oftentimes these operators
are “scalar quantities”, e.g. differential operators, sometimes, as we alluded to be-
fore, they can be written as matrices. If the generators of the symmetries of a given
theory do not commute, we say that the non-vanishing commutation relations of
those symmetry generators form the symmetry algebra of the theory.

We will always denote symmetry algebras using commutation relations. How-
ever, this is only for notational purposes, we do not imply any quantization of the
theory. Equivalently, we could use Poisson brackets everywhere.

An example of such an algebra, that we will also use in the next section, is the
Poincaré algebra. Its non-vanishing commutation relations are

[

P̂A, MBC

]

= 2 ηA[B P̂C] ,
[

MAB, MCD

]

= 4 η[A[C MD]B] . (2.15)

Note, that in contrast to the standard literature we prefer representations that do
not have too many i’s. All our generators, P̂A for translations and MAB for rota-
tions, are anti-hermitian operators. In particular, this means that an infinitesimal
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transformation is given by, e.g.

δ• = ζA P̂A • . (2.16)

The bullet shall denote an arbitrary field in our theory. The finite transformation
is given by the exponential of this expression. Compare e.g. to exp(i I α)Φ, where
the “generator” I (the identity) is real and we have an explicit factor of i such that
the hermitian conjugate of exp(i I α) gives the inverse transform. We will not have
those i’s in the algebra, nor in the finite transformation.

2.4 Gauging the Poincaré algebra

In this section we will show how the vielbein formulation of general relativity can
be seen as a gauge-theory of the Poincaré algebra. In the following we will “gauge”
the algebra (2.15). This exercise is done in many textbooks on general relativity
and/or supergravity. It will serve as an important basis for us, first to compare
with results that we will derive later on, and secondly for the gauging of the non-
relativistic Newton–Hooke superalgebra which we will perform in chapter 4, as
well as the Schrödinger algebra in chapter 5.

The first step in the gauging procedure is to assign a gauge-field to every gen-
erator of the algebra. From (2.16) one can derive very general rules that determine
how those gauge-fields must transform in terms of the structure constants of the
symmetry algebra, see e.g. [97]. In particular, we define a connection Aµ that takes
values in the adjoint of the gauge group. For the Poincaré algebra we choose

Aµ = Eµ
A P̂A +

1

2
Ωµ

AB MAB , (2.17)

where Eµ
A and Ωµ

AB will eventually take over the roles of the relativistic vielbein
and spin-connection. We can then realize the algebra on Aµ using the transforma-
tion rule

δ̄Aµ = ∂µζ +
[

Aµ, ζ
]

, (2.18)

where the gauge-parameter ζ is given by

ζ = ζA P̂A +
1

2
λAB MAB . (2.19)

This leads to the following transformations of the relativistic vielbein Eµ
A and the

spin-connection Ωµ
AB:

δEµ
A = ∂µζA − Ωµ

ABζB + λA
B Eµ

B , (2.20)

δΩµ
AB = ∂µλAB + 2 λ[A

C Ωµ
CB] . (2.21)
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In a similar manner we define curvatures

Rµν(A) = 2 ∂[µAν] +
[

Aµ,Aν

]

= Rµν
A(E) P̂A +

1

2
Rµν

AB(Ω) MAB , (2.22)

and find

Rµν
A(E) = 2 ∂[µEν]

A − 2 Ω[µ
A

B Eν]
B , (2.23)

Rµν
AB(Ω) = 2 ∂[µΩν]

AB − 2 Ω[µ
A

C Ων]
CB . (2.24)

The connection Aµ is a vector and also transforms in the usual way under general
coordinate transformations:

δAµ = ξρ∂ρ Aµ +Aρ∂µξρ = LξAµ . (2.25)

From (2.18) and (2.25) we can define a new transformation, using the symmetry
parameter

Σ = Λ − ξµAµ . (2.26)

Unlike Λ though, Σ only takes values in the internal/homogeneous part of the
symmetry group. In the present case, this means

Σ =
1

2
λAB MAB , (2.27)

and it leads to the following general transformation

δAµ = δ̄Aµ − ξν Rµν(A) = Lξ + ∂µΣ +
[

Aµ, Σ
]

. (2.28)

Those are exactly the transformations that we are interested in. All fields will trans-
form as vectors under general coordinate transformations and keep their original
symmetry transformations under the internal symmetries.

This is slightly different for supersymmetry. There, we would like to replace
only local translations by diffeomorphisms, but not the supersymmetry transfor-
mations. Thus Σ will consist of the homogeneous part plus supersymmetry. This is
not straightforward though because the anti-commutator of two supersymmetries
leads to a local translation, hence two “ordinary” symmetries lead to one that we
replaced by (2.28). The result is that the anti-commutators of supercharges will take
very peculiar forms and for most theories that we consider in this thesis we will be
particularly interested in the closure of the algebra of those anti-commutators. For
the time being let us focus on the bosonic problem.

While it is not strictly necessary to do so, one would oftentimes like to identify
the transformations (2.18) and (2.28). For example, we will make this identification
for all bosonic theories. Then it is useful to set the curvature of the independent
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gauge-fields, in this case only Eµ
A, to zero:

Rµν
A(E) = 0 . (2.29)

On the one hand, this removes the curvature contributions to the formula (2.28),
thus enabling us to identify local translations with general coordinate transforma-
tions. On the other hand, it allows us to solve for the spin-connection Ωµ

AB(E) in

terms of Eµ
A:

Ωµ
AB(E) = −2 Eρ[A∂[µEρ]

B] + EµCEρAEνB∂[ρEν]
C . (2.30)

From now on we shall always assume that the spin-connection is a dependent field
that is given in terms of the independent gauge-fields through the solution of a
(curvature) constraint such as (2.29). This also brings us closer to the theory of
general relativity as there is no independent spin-connection in that theory either.
Now, the transformation of the vielbein follows from (2.28) and it is given by

δEµ
A = ξρ∂ρEµ

A + Eρ
A∂µξρ + λA

BEµ
B . (2.31)

The transformation of Ωµ
AB(E) follows from its expression in term of Eµ

A and
using (2.31). In the case at hand, it is still given by (2.21) for local Lorentz rotations.
It also transforms under diffeomorphisms in the usual way, i.e.

δΩµ
AB(E) = ξρ∂ρΩµ

AB + Ωρ
AB∂µξρ + ∂µλAB + 2 λ[A

C Ωµ
CB] . (2.32)

This finishes the gauging procedure. We have obtained the kinematics of general
relativity. In a next step, we will impose equations of motion on the only indepen-
dent field left, the vielbein Eµ

A. Before doing so we digress shortly for a remark
on the nature of the transformations under general coordinate transformations. In-
deed, the first two terms in (2.31) and (2.32) are the transformation of a covariant
tensor under general coordinate transformations. It is the infinitesimal version, us-
ing the transformation δxα = ξα, of the defining law

T̄µ

(

x̄ν
)

=
∂xα

∂x̄µ Tα

(

xβ
)

, (2.33)

for a covariant tensor. Two-tensors such as the metric (2.36) transform with two fac-
tors ∂x/∂x̄ and any contravariant (upper) index transforms with an inverse factor
∂x̄/∂x.

Putting the torsion to zero also implies that the relativistic curvature (2.24) iden-
tically satisfies the Bianchi identity

R[µνρ]
B(Ω) = R[µν

AB(Ω) Eρ]A = 0 , (2.34)

which follows from (2.13) and the transformation of Eµ
A given in (2.20).
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Finally, we can put the theory on-shell by imposing yet another constraint on
the curvature, the Einstein equation. In the current formulation, it reads

Eµ
A Rµν

AB(Ω) = 0 , (2.35)

where Ωµ
AB(E) is expressed in terms of Eµ

A using (2.30).

In chapter 3 we will consider the non-relativistic limit of the formulas (2.20)–
(2.35) that we collected here.

To put field theories such as the scalar or vector of section 2.2 in a curved back-
ground we have to introduce one more connection. In the same way that we intro-
duced Aµ to cancel the derivative of the parameter α we need a new (in this case
dependent) field that deals with derivatives of the parameter of diffeomorphisms,
such that we have a derivative ∇µ that is covariant with respect to general coordi-
nate transformations. This Christoffel connection can be defined by requiring that
the covariant derivative of the vielbein, and by extension of the metric, given by

gµν = ηABEµ
AEν

B , (2.36)

is zero. Eta is again the Minkowski metric (2.1), hence all Latin indices are flat
indices while Greek indices are curved space-time indices. If the vielbein is just a
delta function then the space-time is flat.

The equivalence principle of general relativity states that we are always able to
go to a flat frame locally. The vielbeins are doing exactly this. We will see later
that the introduction of vielbeins is an immense simplification when working with
spinors, as it is much easier to work with spinors and gamma-matrices in flat space.

Coming back to the connection we define it by

∇µEν
A = 0 = DµEν

A − Γ
ρ
µνEρ

A . (2.37)

Here Dµ is the covariant derivative with respect to the transformations given by
the algebra and we solve (2.8) by

Γ
ρ
µν(E) = Eρ

ADµEν
A . (2.38)

Now the curved space analogues of (2.5) and (2.11) are given by writing an
invariant measure for the integral

d3x → d3x det(Eµ
A) , (2.39)

replacing the (inverse) Minkowski metric by the curved (inverse) metric

ηµν → gµν , (2.40)
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and replacing all partial derivatives with covariant ones

∂µ → ∇µ . (2.41)

These substitutions suffice to put any theory in a curved background.

Finally, let us connect our theory of general relativity, as we presented it here, to the
form that one usually finds in textbooks. In fact, we have derived gravity in what
is referred to as the second order formulation of general relativity. Normally, one
introduces the metric (2.36), the covariant derivative ∇µ with the Christoffel con-
nection (2.38), and the Riemann tensor (2.24). Further contractions of the Riemann
tensor are the Ricci tensor given in (2.35), which still has to vanish on-shell, and the
Ricci scalar

R(Ω) = Eµ
AEν

B Rµν
AB(Ω) . (2.42)

The Einstein–Hilbert action of general relativity in D space-time dimensions is then
given by

S = − 1

κ2

∫

dDx det(Eµ
A) R(Ω) . (2.43)

The equation of motion for the only independent field Eµ
A, or the metric (2.36),

is the Einstein equation (2.35). The term “second order formulation” refers to the
fact that the action (2.43) is second order in derivatives and that Eµ

A is the only
independent field.

This finishes our discussion of “relativistic” gravity. In the next section we
briefly describe some notions of non-relativistic gravity with different amount of
symmetries.

2.5 Non-relativistic gravity

As we briefly pointed out in the introduction, there are different theories of non-
relativistic gravity. The difference lies only in the amount of symmetry that we
allow. In this thesis, we refer to Newtonian gravity for a system that is in fact not
subject to any gravitational force, i.e. a free-falling frame. Obviously, the symmetry
transformations that related different such frames are the Galilei transformations.
Galilean gravity, see 2.5.1, is the first generalizations of such a system. There, we
allow for arbitrary time-dependent spatial translations, and the gravitational force
is determined by a Newton potential Φ. The fully gauged version, where we al-
low for arbitrary coordinate transformations is Newton–Cartan gravity, see 2.5.2,
and the gravitational fields are (τµ, eµ

a, mµ). In the subsections 2.5.3 and 2.5.4 we
comment on some issues that are related to the dynamics of non-relativistic grav-
ity theories and the non-relativistic limit of gravity in three space-time dimensions,
respectively.
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2.5.1 Galilean gravity

Here any gravitational attraction is governed by the Newton potential Φ(x) only.
This Newton potential is subject to the Laplace equation,

∂i∂iΦ(x) = 0 . (2.44)

We will see later on, in chapter 4, that we should interpret (2.44) as the equation of
motion for a “flat space” Newton potential, as opposed to the Galilean version of
Newton–Hooke gravity.

A theory is non-relativistic if it is invariant under Galilei transformations, i.e. its
symmetry algebra is the Galilei algebra. Its non-vanishing commutators are given
by

[

Pa, Jbc

]

= 2 δa[b Pc] ,
[

Jab, Jcd

]

= 4 δ[a[c Jd]b] ,
[

Ga, Jbc

]

= 2 δa[b Gc] ,
[

H, Ga

]

= Pa ,
(2.45)

where H, Pa, Ga and Jab are the generators of time- and space-translations, boosts
and rotations, respectively. The Galilei algebra admits a central extension [98],
i.e. we can add one more generator Z that commutes with all other generators.
It would appear in the following commutator

[

Pa, Gb

]

= δab Z . (2.46)

In the following subsection, we will give some more reasons for our use of this
central extension. The centrally extended Galilei algebra is usually called the Barg-
mann algebra. We will also adopt this nomenclature and from now on we are
mostly concerned with this centrally extended version of the Galilei algebra. Note,
the three-dimensional Galilei or Bargmann algebra also admits another central ex-
tension, see e.g. [99]. With generalizations to higher dimensions in mind we will
not consider that extension in this work.

Using the argument that a non-relativistic theory must be in variant under the
Galilei or Bargmann algebra, and with the gauge-theory description of general rel-
ativity in mind, we will come to the conclusion that non-relativistic gravity could
also be a gauge-theory of non-relativistic diffeomorphisms, i.e. a gauged version of
the Galilei or Bargmann algebra. This is exactly the way Newton–Cartan gravity
was derived in [80]. We shall come back to this point later.

Let us now consider un-gauged representations of non-relativistic algebras. We
can write down a representation of the Bargmann algebra using a single scalar φ
(note that this φ is not the Newton potential) in the same way as (2.20) and (2.21)
are a representation of the Poincaré algebra (2.15). We would use

δφ = ζ∂tφ + ξ i∂iφ − λi
jx

j∂iφ + tλi∂iφ + m λixiφ + m σ φ . (2.47)

The constant parameters ζ, ξ i, λi, λi
j and σ are for time- and space-translations,
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boosts, rotations and central charge transformations. The parameter m here is a
mass parameter and for m → 0 (2.47) realizes the Galilei algebra. This is one way
to see that the Bargmann algebra is connected to massive representations.

Note, the transformation rules of the Newton potential are not given by (2.47),
see (2.48) below.

This far we are in what we will later refer to as (non-relativistic) “flat space”. It
is characterized by the fact that the underlying symmetry algebra is given by the
Galilei algebra (2.45). In particular, only constant translations ξ i are allowed. We
could consider a partial gauging of the Galilei or Bargmann algebra—a full gauging
would of course lead to Newton–Cartan gravity [80]—such that we allow for arbi-
trary time-dependent translations ξ i(t). In this case the symmetry algebra is not
the Galilei algebra anymore but we will speak of “acceleration-extended Galilei”,
or Milne [4], symmetries and we are in a “curved” background that is characterized
by the Newton potential Φ [100].

The transformation of this Newton potential is given by [77, 101]

δΦ = ζ∂tΦ + ξ i(t) ∂iΦ − λi
jx

j∂iΦ + ∂t∂tξ
i(t) xi + m σ(t)Φ . (2.48)

Note the difference to the transformation of an arbitrary scalar field, the gauged
version of (2.47),

δφ = ζ∂tφ + ξ i(t) ∂iφ − λi
jx

j∂iφ + m ∂tξ
i(t) xiφ + m σ(t) φ . (2.49)

It is obvious that the Newton potential is not a normal scalar field. The ∂t∂tξ
i(t)xi

term reminds us of its (gravitational) spin-two origin. This term survives the m →
0 limit, which eliminates the central charge transformations σ(t) (which are also
gauged with respect to the Bargmann transformation (2.47) where σ is a constant).

2.5.2 Newton–Cartan gravity
Another, more general formulation of non-relativistic gravity is due to Cartan [2,3].
This so-called Newton–Cartan theory is a reformulation of Newtonian gravity that
is invariant under general coordinate transformations, i.e. local transformations,
not only constant ones like in (2.47). We shall not describe that theory in too much
detail here as we are essentially going to re-derive it in chapter 3 by taking a non-
relativistic limit of general relativity.

Let us mention that one can obtain this Newton–Cartan theory in the same way
as we obtained general relativity in the previous section, by gauging the underlying
symmetry algebra. In the case of Newton–Cartan gravity one needs to gauge the
Bargmann algebra. This was done in [80]. Similar techniques were used to derive a
non-relativistic supergravity theory in [77] and we will also use such techniques to
derive Newton–Hooke supergravity in chapter 4 and Schrödinger supergravity in
chapter 5.

The reasons for using the Bargmann algebra are the following. On a technical
level, the addition of the central charge gauge-field mµ and its related curvature
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Rµν(Z) enable us to derive the dependent spin- and boost-connections ωµ
ab and

ωµ
a in terms of the independent fields τµ, eµ

a and mµ. This would not be possible
without mµ. Secondly, the action of the non-relativistic point-particle, the gauged
version of the action that we presented in the introduction, see (3.93), is not invari-
ant under Galilean boosts. If we would not add the mµ terms its transformation
would be a total derivative instead.

A third reason is that without mµ we would not be able to define an invari-

ant (again, Galilean boosts are the problem) spatial metric h̄µν. In Newton–Cartan
gravity the spatial vielbein eµ

a and the time-like vielbein τµ take over the role of
the metric in general relativity. A degenerate, rank D − 1 metric can be defined as
hµν = eµ

aeν
bδab. This metric has one null eigenvector τµ, which is the inverse of the

temporal vielbein. In turn, the time-like vielbein is a null vector of the spatial in-
verse metric hµν which consists of two inverse spatial vielbeins eµ

a. (We come back
to the definition of the projective inverses τµ and eµ

a, which are used in (2.53), in
chapter 3.) Note that the metric hµν is not invariant under Galilean boosts, see the

transformations (2.50). However, the object h̄µν = hµν − 2 τ(µmν) is indeed invariant
under boost transformations.

Lastly, a fourth reason to add the generator Z is the respective symmetry, conser-
vation of mass, or particle number. For example, if we think about the Schrödinger
equation this generator is related to the symmetry of the equation under constant
phase shifts of the wave function.

Let us return to describing the theory of Newton–Cartan gravity. For the pur-
pose of a brief introduction it should suffice to say that the transformation rules of
the independent fields are given by

δτµ = 0 ,

δeµ
a = λa

b eµ
b + λaτµ ,

δmµ = ∂µσ + λaeµ
a ,

(2.50)

and all fields transform under diffeomorphisms in the usual way. There are two
dependent spin-connections ωµ

ab(e, τ, m) and ωµ
a(e, τ, m) that are solutions to the

constraints

Rµν
a(P) = 2 ∂[µeν]

a − 2 ω[µ
abeν]

b − 2 ω[µ
aτν] = 0 ,

Rµν(Z) = 2 ∂[µmν] − 2 ω[µ
aeν]

a = 0 .
(2.51)

Furthermore we set

Rµν(H) = 2 ∂[µτν] = 0 , (2.52)

by convention, and an equation of motion for those non-relativistic background
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fields is given by the trace of the curvature of Lorentz boosts

τµeν
aRµν

a(G) = R0a
a(G) = 0 . (2.53)

Furthermore, there are more constraints on the curvatures Rµν
ab(J) and Rµν

a(G)
that follow from the Bianchi identities.

Note that the constraint (2.52) implies that the theory has no torsion. General-
izations of Newton–Cartan gravity with torsion are given in [25–29].

As a final remark for this very short summary on Newton–Cartan gravity let
us mention that one can obtain the formulas for the acceleration-extended Galilei
theory through a particular gauge-fixing of the Newton–Cartan theory. This was
shown in [77] and we will use the same gauge-fixing to get a Galilean version of
Newton–Hooke supergravity in chapter 4. This gauge-fixing offers a clear way to
see how the Newton potential is related to the background fields of the Newton–
Cartan theory.

2.5.3 Non-trivial dynamics

Another, not yet fully understood point is related to the dynamics of Newton–
Cartan gravity. On the one side, [77,80] gives equations of motion for the Newton–
Cartan fields for “flat” space-times, i.e. space-times for which the curvature of spa-
tial rotations vanishes R̂µν

ab(J) = 0. It is, at the time of the writing of this thesis,
currently under investigation how this must be generalized for curved space-times,
i.e. space-times were R̂µν

ab(J) 6= 0, see [102]. On the other side there are proposals
for dynamics determined by an action [103], see also [20]. In particular it is argued
that the action for Newton–Cartan gravity is given by (extended) Hořava–Lifshitz
gravity [104, 105]. However, it remains to check if these actions indeed give rise to
the same equations of motion that are given in [102] or [77, 80].

For more details we must refer the reader to [102]. However, let us make some
intriguing remarks about why it is so difficult to describe dynamics for the Newton–
Cartan background fields. It was shown in [77, 80] that Newton–Cartan gravity is
ultimately related to the Bargmann algebra, rather than the Galilei algebra. The
difference is that the Bargmann algebra allows for one more symmetry genera-
tor Z, i.e. one more symmetry that the equations of motion have to obey. Once
R̂µν

ab(J) 6= 0 the equations of motion that were proposed in [77, 80] are not any-
more invariant under Galilean boosts. This problem can be solved by adding ex-
tra terms, proportional to R̂µν

ab(J) times mµ, the gauge-field of the central charge
symmetry Z. The drawback is that these new equations of motion are not invari-
ant under central charge transformations anymore. Moreover, without introducing
new fields one cannot overcome this problem. So, either one adds a Stückelberg
field [102], see also [29], or the equations of motion are not invariant under central
charge symmetry. One is always free to opt for the first option, but we would like
to point out an interesting fact about the second one.

The central charge symmetry is related to the conservation of the particle num-
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ber. Thus, if the equations of motion are not invariant under Z it would mean that
in non-relativistic curved space-times the total number of particles is not conserved.
But this should not come as a big surprise given that we know that this is certainly
the case for some relativistic curved space-times. Indeed, in de Sitter space-times,
which are space-times with a non-vanishing positive cosmological constant, we
cannot define a unique vacuum, see e.g. [106], and particle number is certainly not
conserved when we are able to create particles simply by choosing a new vacuum
state.

2.5.4 Taking a non-relativistic limit in three dimensions
For technical reasons we aim to construct non-relativistic theories of supergravity in
three space-time dimensions only. This approach proved useful in previous works
and instead of generalizing this particular result to higher dimensions, we rather
aim to find more examples of non-relativistic supergravity in three dimensions.
However, this leads to an apparent problem when we want to take, or even define,
limits that are supposed to take us from a relativistic theory to a non-relativistic one.
The problem is the following. It is well known that three-dimensional gravity is
trivial in the sense that there are no local degrees of freedom and hence there are no
dynamics [107–109]. (There are global effects though, but these are not important
for our discussion here.) This implies, in particular, that there are no forces between
test particles in ordinary three-dimensional gravity.

The curious thing now is that we want to describe non-relativistic gravitational
theories that are generalizations of Newtonian gravity. Newtonian gravity is de-
fined in the same manner in any space-time dimension, namely the gravitational
interactions are determined by a scalar field, the Newton potential, and test parti-
cles are subject to a force that is proportional to the (spatial) gradient of this scalar
field. The number of space-time dimensions does not play a role in the Newtonian
theory and test particles always feel a force.

The question is how is it possible, or is it possible at all, to go from general
relativity in three dimensions, a theory with no force between test particles, to the
Newtonian theory with a force?

The answer to this apparent discrepancy that was given given in [107–109] is
that we must acknowledge that there is no Newtonian limit in three dimensions.
Note that this does not imply that there is no Newtonian gravity, rather that it
cannot be obtained from general relativity.

A wide-held believe is that there is no Newton potential in three dimensions.
This is not true. The Newton potential is determined by the Poisson equation. If
there is no source term we only find trivial solutions, in which case we can indeed
say there is no Newton potential. If there is a source term then we can have a non-
trivial Newton potential in four or in three or in any space-time dimension.

The crucial point that sets three dimensions apart is that when we take a non-
relativistic limit all source terms in the Poisson equation will vanish. (They come
with a prefactor D − 3.) So we cannot consider sources that have a relativistic ori-
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gin. But if we forget, or do not require a relativistic origin of the source, we can
simply add it by hand and we can find non-trivial solutions to the Poisson equa-
tion also in three space-time dimensions.

This does not pose any problems to us if we try do construct non-relativistic
supergravity theories from scratch because in this scenario we don’t think about
connections to the relativistic theory. But it is confusing in view of the limiting
procedure that we adopt in chapter 3. This procedure does seem to yield Newton–
Cartan gravity as some sort of limit of general relativity, for any space-time dimen-
sion. Nevertheless, also in this case we obtain the correct equation of motion in
three dimensions (mainly because we derive a source free equation).

This completes our discussion of symmetries and relativistic and non-relativistic
gravitational backgrounds, for the bosonic case. We already saw in the transfor-
mation rule (2.20) that symmetries might link different fields of the theory, albeit
this is not true anymore in the equations that we will use (2.31). In the following,
we will introduce a new symmetry that must, due to its very nature, mix fields of
different spin, hence different fields. But first we shall take a small detour and talk
more about spin and what spinors are.

2.6 Spinors

We encountered fields of different spin, the scalar and the vector in 2.2. Now we
will introduce one more, the spinor. Spin, the defining quantity for those fields,
is determined by how those fields transform under the rotations of the (homoge-
neous) Poincaré group. The scalar is invariant, the vector rotates in the “normal”
way, i.e. a rotation by an angle of 360 degrees leaves it invariant. Spinors, weirdly,
go to minus themselves if you rotate them by 360 degrees. The existence of these
objects is due to the fact that the little groups of massive and massless particles,
SO(3) and SU(2), mathematically speaking have a double cover. Thus, for any
normal representation there is one with half its spin. Therefore, we find objects
with half-integer spin and curious transformation properties.

Scalars and vectors, and other integer spin fields like the spin-two graviton,
transform under the vector representation of the Lorentz group. Spinors trans-
form under the fermionic, spinor representation. Elements of this representation
are Grassmann valued, (oftentimes, but not necessarily) anti-commuting, objects.
A spinor is an array of Grassmann variables λα. The spinor index α labels the
different components. How many components there are depends on the number
of space-time dimensions. All our supergravities are in three dimensions so our
spinors all have two components α = 1, 2.

Spinors are representations of the Lorentz group with half integer spin. That
means by combining two of them we should obtain an object with integer spin. This
is indeed correct, for example a combination of two spinors ψ and χ is a scalar for
ψ̄χ and a vector for ψ̄γAχ. Barred spinors are introduced for exactly that purpose.
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The index A on the gamma-matrix is the vector index of the (Lorentz) vector VA =
ψ̄γAχ.

So how do we define a barred spinor and what are gamma-matrices? The an-
swer to the second part of the question is simple. Gamma-matrices are a represen-
tation of the Clifford algebra

{

γA, γB
}

= γAγB + γBγA = 2 ηAB
I . (2.54)

Eta is again the flat (inverse) Minkowski metric (2.6). We added an identity matrix
on the right-hand-side. This is a matrix in spinor space because the left-hand-side
is a matrix too. As you (do not) see we omitted the spinor indices. Explicit spinor
indices will not be necessary for any calculation that we perform in this thesis.

This is were the vielbeins that connect the space-time dependent metric (2.36)
to a local, constant Minkowski metric are so useful. This way, we only ever have to
use a representation of (2.54) with constant gamma-matrices.

The defining equation (2.54) in fact determines the dimension of spinors too. In
three space-time dimensions we can realize (2.54) using objects γA = (iσ2, σ1, σ3)
with σi the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 i
−i 0

)

, σ3 =

(

1 0
0 −1

)

. (2.55)

So spinors are two-dimensional objects, e.g.

λ =

(

λ1

λ2

)

. (2.56)

In order to obtain a scalar quantity, one that does not have any free spinors indices,
we need to multiply objects like (2.56) with a suitable transpose. Those transposes
are the barred spinors that we define by

λ̄ = λTC =
(

λ̄1, λ̄2

)

, (2.57)

where the matrix C is called the charge conjugation matrix. It is given by C = iγ0.

The reason why we put an i here is that we (choose to) reverse the order of
spinors when we complex conjugate. Since they are anti-commuting variables we
get a minus sign when we put them in the original order. This sign is compensated
by the i in C. We conclude that, due to our conventions, all spinor bilinears are real,
no matter what gamma-matrices are wedged between the spinors.

About complex conjugation. We should mention that we use “real” spinors,
so-called Majorana spinors that are subject to the identity

(

λ
)∗

= λ . (2.58)

Majorana spinors do not exists in every dimension, but they do in three space-time
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dimensions so we make use of that. If we would use for example Dirac spinors,
then bilinears would be complex numbers and our previous statement about them
being real would not hold. It follows that Majorana spinors have half as many
degrees of freedom as Dirac spinors.

Because we use Majorana spinors it makes sense to consider the transpose of a
spinor bilinear. The transpose of the gamma-matrices and of C follows from their
representation through the Pauli matrices. They can be written as

CT = −C ,
(

γA
)T

= −CγAC−1 , (2.59)

which holds for any representation, not just for ours. Using (2.59) we can show for
example that

ψ̄χ = χ̄ψ , ψ̄γAχ = −χ̄γAψ . (2.60)

What if we have two spinors, a barred and a normal one that are not contracted?
Can we write them in terms of bilinears? We certainly can. Two spinors that are
not contracted essentially give rise to a quantity with two free indices in spinor
space, i.e. a matrix in spinor space. Such a matrix consists of four independent
entries, hence we need four independent basis elements to determine it. Those
four independent elements are readily found by the identity plus the three Pauli
matrices or the three gamma-matrices γA. The completeness relation, also called
Fierz identity, in three dimensions is given by

χψ̄ =
1

2
ψ̄χ I − 1

2
ψ̄γAχ γA . (2.61)

This ends the rather technical discussion on properties of spinors and how to ma-
nipulate when doing calculations.

Finally, let us come back to our starting point, the transformation of spinors under
Lorentz rotations. This is given by

δψ =
1

4
λABγABψ . (2.62)

We use γAB = (γAγB − γBγA)/2. Any object that transforms under a rotation in
this manner is a spinor and we can use (2.62) to show that any spinor-bilinear is a
boson, a scalar, a vector or a spin-two field.

This concludes our short excursion on relativistic spinors and some of their
characteristics. As this thesis deals with non-relativistic supergravity, we will of
course encounter non-relativistic spinors. Let us anticipate here what the non-
relativistic analog of (2.62) will be. In (2.62) the indices A and B run over all space-
and time-components. In the non-relativistic case, we will differentiate between
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them. Hence we will find

δψ =
1

4
λabγabψ , (2.63)

if the representation contains only one spinor variable. Since we will mostly deal
with so-called extended supersymmetry, we will in general have at least two spino-
rial objects, which will generically transform as

δψ1 =
1

4
λabγabψ1 ,

δψ2 =
1

4
λabγabψ2 −

1

2
λaγa0ψ1 .

(2.64)

We will come across many representations of this form in chapters 3–6 whenever
there are at least two spinors in the multiplet. Moreover, from the point of view of
the limiting procedure which we present in chapter 3 it will become clear how the
relativistic (2.62) transforms into (2.64).

2.7 Global supersymmetry

So far our symmetry parameters, λA
B, ζ, ξ i, etc. were bosonic parameters. In par-

ticular, this allowed for representations of bosonic symmetry algebras that use only
a single field, e.g. (2.47). Now we will take a look at a symmetry whose parameter
is a spinor, ǫ or η. We will use η as the parameter of relativistic supersymmetry and
ǫ as parameter of non-relativistic supersymmetry.

This new symmetry transforms bosons into fermions and vice versa. Obviously,
the representations of this new symmetry must consist of more that one field. At
least we need one boson and one fermion. For this transformation to be a good
symmetry it should also be bijective. If we can assign a fermion to each boson
we should be able to assign a boson to each fermion. It follows that in any given
representation of a supersymmetry algebra the number of degrees of freedom of
bosonic fields must match the number of degrees of freedom of fermionic fields.

The generators of this new symmetry Q must be fermions too. An algebra with
fermionic generators is referred to as a superalgebra. For example, the (simplest)
supersymmetric extension of the Poincaré algebra (2.15) is given by

[

MAB, Q
]

= −1

2
γABQ ,

{

Q, Q
}

= −γAC−1 PA . (2.65)

We say the simplest, because there might be more than one fermionic supercharge
Q. The number of supersymmetry charges is usually denoted by N . In this work,
we shall deal only with N = 1 and N = 2. If N is more than one we speak of
extended supersymmetry and we will dress the different supercharges, parameters
and gauge-fields with a label i, where i = 1, . . . ,N .
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There are physical reasons why there should not be more than four supersym-
metries in four space-time dimensions. Since we only deal with toy models in three
dimensions we shall not be concerned with this any further.

Of particular interest to us are N = 2 extensions. For example, the N = 2
Poincaré superalgebra is given by (2.15) and

[

MAB, Qi
]

= −1

2
γABQi ,

{

Qi, Qj
}

= −γAC−1 PA δij + C−1 Z ǫij . (2.66)

Note that the addition of more supercharges opens up the possibility to have central
charges, Z in the anti-commutator of two supercharges Qi.

Like in the bosonic case we are looking for representations of such symmetry
algebras. Here, we shall start off with the simpler N = 1 Poincaré superalgebra,
(2.15) and (2.65). The simplest representation is given by the so-called scalar multi-
plet

δφ =
1

4
η̄χ ,

δχ = γµη ∂µφ − 1

4
D η ,

δD = −η̄γµ∂µχ .

(2.67)

This is a representation of constant, or rigid, supersymmetry. We come back to
space-time dependent supersymmetry parameters in the next section. The algebra
(2.65) is realized in the following way. The anti-commutator of two supersymme-
tries, e.g. on φ,

[

δQ(η1), δQ(η2)
]

φ =
1

2
η̄2γµη1 ∂µφ , (2.68)

leads to a translation with parameter

ζµ =
1

2
η̄2γµη1 . (2.69)

Here, we do not need to care whether we label our indices by µ or A as we are in
flat space anyways. The coupling to (super)gravity is also part of the next section.

The multiplet (2.67) realizes the N = 1 Poincaré superalgebra without further
ado, i.e. without any additional constraints. However, there is a somewhat stripped
down version as well, where we consider only the transformation rules

δφ =
1

4
η̄χ , δχ = γµη ∂µφ . (2.70)
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Now the algebra is realized as well, if we impose the constraints

∂µ∂µφ = 0 , γµ∂µχ = 0 . (2.71)

These are, in fact, the equations of motion of the fields φ and χ and we refer to (2.70)
as the “on-shell” multiplet, meaning that the supersymmetry algebra is realized
upon using the field’s equations of motion.

We note two things. First, the off-shell multiplet contains more fields, because
the equations of motion effectively remove degrees of freedom. Hence, if we want
the same number of degrees of freedom for bosonic and fermionic fields then we
must add fields that simply vanish when the equations of motion are enforced.
The other point is that one can easily check that the equations of motion (2.71)
transform into each other under supersymmetry transformations of φ and χ. We
pointed towards this at the end of section 2.2. Constraints always transform to
constraints under symmetry transformations.

Next, we are going to investigate the implications of making the supersymmetry
parameter a local function of the space-time coordinates.

2.8 Local supersymmetry: supergravity

Having gone through the analysis of section 2.2, we know what will happen when
we consider local supersymmetry parameters η(x). We will get derivatives of this
parameter in the algebra and to fore-come this we have to introduce a gauge-field
that cancels those derivatives. In the case of fermionic symmetry parameters, the
gauge-fields will be fermions, more precisely vector-spinors. The gauge-fields for
supersymmetry are called gravitinis and we use the symbol Ψµ for them.

For extended supersymmetry, i.e. if there is more than one supersymmetry pa-
rameter, we will find one gravitini Ψµi for each parameter ηi(x).

The easiest representations with local supersymmetry are the graviton multi-
plets. Otherwise, because of the local nature of η(x) and the necessity for a gauge-
field for this local symmetry, we would need to consider for example the scalar mul-
tiplet coupled to supergravity. We will not consider any such “matter” multiplets
in this chapter. In chapter 6 we will perform such a coupling to the supergravity
background, albeit in the non-relativistic case.

The simplest off-shell representation of the N = 1 Poincaré superalgebra is
given by the multiplet

δEµ
A =

1

2
η̄ γA

Ψµ ,

δΨµ = Dµη +
1

2
S γµη ,

δS =
1

8
η̄γµν

Ψ̂µν ,

(2.72)
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where S is the auxiliary field that we need to add to close the supersymmetry al-
gebra off-shell. Here we defined the Lorentz covariant derivative of a spinor Dµ,
which is given by

Dµη = ∂µη − 1

4
Ωµ

AB(E, Ψ)γABη , (2.73)

and the supercovariant curvature of the gravitino is

Ψ̂µν = 2 ∂[µΨν] −
1

2
Ω[µ

ABγABΨν] + S γ[µΨν] . (2.74)

To verify that (2.72) realizes the N = 1 Poincaré superalgebra one needs to know
the transformation of Ωµ

AB(E, Ψ) under supersymmetry (and the bosonic transfor-

mations). These can be deduced from the expression of Ωµ
AB(E, Ψ) in terms of the

independent fields Eµ
A and Ψµ:

Ωµ
AB(E, Ψ) = −2 Eρ[A

(

∂[µEρ]
B] − 1

4
Ψ[µγB]

Ψν]

)

+ EµCEρAEνB
(

∂[ρEν]
C − 1

4
Ψ[ργC

Ψν]

)

.

(2.75)

Much like its bosonic counterpart (2.30), this formula follows from setting to zero
the supercovariant curvature of Eµ

A, see (2.79), the torsion constraint. We find the
following supersymmetry transformation for the spin-connection:

δΩµ
AB(E, Ψ) =

1

2
Eρ[A η̄ γB]

Ψ̂µρ +
1

4
EµCEρAEνB η̄ γC

Ψ̂ρν +
1

2
S ǭγAB

Ψµ .

(2.76)

The closure of the supersymmetry algebra on the multiplet (2.72) takes a slightly
different form than the algebra of e.g. the multiplet (2.67). The anti-commutator of
two supercharges leads to a so-called soft-algebra,

[

δQ(η1), δQ(η2)
]

= δg.c.t.

(

ξ̃ρ
)

+ δQ

(

− ξ̃ρ
Ψρ

)

+ δM

(

− ξ̃ρ
Ωρ

AB +
1

2
S η̄2γABη1

)

,
(2.77)

and the parameter of diffeomorphisms, and contributor to other symmetries, ξ̃µ is

ξ̃µ =
1

2
η̄2γAη1 Eµ

A . (2.78)

Note that the subscripts 1 and 2 refer to the two independent supersymmetry trans-
formations that are performed in (2.77). They do not indicate the existence of mul-
tiple supercharges. Also, since we use that γµ = Eµ

A γA this coincides with (2.69)
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when we take the rigid limit. The appearance of this soft-algebra stems from the
fact that we introduced diffeomorphisms instead of local translations using (2.28).
This is responsible for all the terms of the form ξ̃µ times a gauge-field.

Of course all the curvatures shown in section 2.4 receive fermionic corrections
to account for the additional supersymmetry transformations of the gauge-fields.
For example, we find

R̂µν
A(E) = 2 ∂[µEν]

A − 2 Ω[µ
A

B Eν]
B − 1

2
Ψ[µγA

Ψν] . (2.79)

Supercovariant quantities such as (2.74) and (2.79) will be denoted with a hat to
distinguish them from their bosonic counterparts.

In chapter 3, in fact in this whole thesis, we will focus mostly on extended su-
pergravities with four supercharges, or N = 2 supersymmetry. A more detailed ar-
gument against N = 1 theories will be given in section 3.3. In short, non-relativistic
superalgebras with only two supercharges do not lead to diffeomorphisms.

For later reference, we need on- and off-shell formulations of N = 2 Poincaré
supergravity. We give the on-shell one here and we shall defer the presentation of
the off-shell multiplet to the next chapter.

In general, superalgebras with more than one supercharge allow for central ex-
tensions in the anti-commutator of two such charges. We will also include such a
central element, denoted by Z . Then, the N = 2 Poincaré superalgebra is given by
(2.15) and (2.66). Here we will focus on the on-shell version, where the gauge-field
that is related to the central charge transformation is not needed to close the alge-
bra. Nevertheless, we will have to add it to take the non-relativistic limit, as we will
show in chapter 3, see section 3.4.

The on-shell N = 2 supergravity multiplet is given by

δEµ
A =

1

2
δij η̄i γA

Ψµj , (2.80)

δΨµi = Dµηi = ∂µηi −
1

4
Ωµ

ABγABηi . (2.81)

The supersymmetry transformation of the dependent spin-connection,

δΩµ
AB(E, Ψi) = −1

2
δij Eρ[A η̄i γB]

Ψ̂µρj +
1

4
δij EµCEρAEνB η̄i γC

Ψ̂ρνj , (2.82)

is zero on-shell, i.e. when we use the fermionic equation of motion

Ψ̂µνi = 0 . (2.83)



2.8 LOCAL SUPERSYMMETRY: SUPERGRAVITY 39

The variation of Ωµ
AB(E, Ψi) follows from

Ωµ
AB(E, Ψ) = −2 Eρ[A

(

∂[µEρ]
B] − 1

2
δij

Ψ[µiγ
B]

Ψν]j

)

+ EµCEρAEνB
(

∂[ρEν]
C − 1

4
δij

Ψ[ρiγ
C

Ψν]j

)

,

(2.84)

which in turn is the solution to the supercovariant torsion constraint

R̂µν
A(E) = 2 ∂[µEν]

A − 2 Ω[µ
A

B Eν]
B − δij

Ψ[µiγ
A

Ψν]j . (2.85)

This finishes our quick review of N = 2 on-shell Poincaré supergravity.
We note that in essence the only difference between the N = 1 and N = 2 theo-

ries is that all of the spinor variables take extra indices. This is somewhat special to
three dimensions though, because all supergravity fields are pure gauge and do not
constitute physical degrees of freedom. Thus, by adding more gravitini we do not
add fermionic degrees of freedom and the counting between bosonic and fermionic
degrees of freedom is not upset. In higher dimensions, adding more supercharges
usually enforces also the addition of extra physical and auxiliary fields.
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3
A non-relativistic limiting procedure

This chapter contains the first main part of the thesis. Its aim is to introduce a
procedure that can be used to derive non-relativistic supergravity theories. We
start by stating the main ideas that underly this limiting procedure. Since this
is quite abstract we go on to discuss several examples. As a test we re-derive
Newton–Cartan gravity in arbitrary dimensions and on-shell Newton–Cartan
supergravity in three space-time dimensions. We end by deriving a novel off-
shell version of Newton–Cartan supergravity and, by extension of those results,
an on-shell version of Newton–Hooke supergravity.
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This chapter begins the main part of this thesis. As laid out in the introduction, we
want to construct non-relativistic theories of supergravity. This chapter serves to
describe one way of doing so, based on our work in [110]. It is mainly organized
along the same lines as that paper including one additional section on “less than
minimal” N = 1 Newton–Cartan supergravity.

In the following we develop a non-relativistic limiting procedure that enables
us to derive non-relativistic geometries and generally covariant (super)gravity the-
ories from relativistic ones. In section 3.1 we explain the procedure itself in a rather
abstract way. To emphasize possible pitfalls, we use the procedure to re-derive
known examples, i.e. theories that featured in the literature already. We begin
by deriving with Newton–Cartan gravity in the formulation of [80] in section 3.2.
Then, before moving on to “normal” N = 2 supergravity theories, we review the
arguments for why we are mostly interested in theories with extended supersym-
metry in section 3.3. We simply apply the limiting procedure on the N = 1 Poincaré
supergravity theory which, for obvious reasons, does not lead to our preferred
choice of a non-relativistic theory of supergravity. In section 3.4 we re-derive the
known on-shell version of three-dimensional Newton–Cartan supergravity of [77]
and in section 3.5 we obtain a new off-shell formulation of that theory. The lim-
iting procedure is then applied to the relativistic point-particle with the aim of re-
deriving the results of [111] in section 3.6. A short conclusion is presented in section
3.7.

3.1 The general procedure

In this section we will describe the limiting procedure that we adopt in this chapter
in general terms. This procedure can be viewed as an extension of the contraction
of a relativistic space-time symmetry algebra to a non-relativistic one. Such con-
tractions are known as so-called Inönü–Wigner contractions [96]. In particular, we
try to implement a similar contraction on an irreducible multiplet of fields, that
forms a representation of the relativistic algebra, to obtain an irreducible multiplet
of fields that represents the contracted non-relativistic algebra.

Recall that when performing a standard Inönü–Wigner contraction of a sym-
metry algebra, one first redefines the generators of the algebra by taking linear
combinations of the original generators with coefficients that involve a contraction
parameter ω. The contracted algebra is then obtained by calculating commutators
of the redefined generators, re-expressing the result in terms of the redefined gen-
erators and taking ω → ∞ in the end. Note that this procedure does not change
the number of generators and that for finite ω the algebra of redefined generators
is equivalent to the original one.

We now wish to extend this contraction to an irreducible multiplet of fields that
forms a representation of a relativistic algebra. Such a multiplet will in general
contain a number of independent fields that can be associated to certain genera-
tors of the algebra. For instance, the vielbein of general relativity can be viewed



3.1 THE GENERAL PROCEDURE 43

as a gauge-field of local translations [95]. The other generators of the algebra are
associated to gauge-fields, that are however not independent, but that in general
depend on all other independent fields in the multiplet. This is the way in which
the spin-connection of general relativity can be viewed as a gauge-field of local
Lorentz transformations. Finally, the multiplet can also contain independent fields
that can not be interpreted as gauge-fields of the underlying space-time symmetry
algebra. This is for instance the case when considering off-shell supergravity mul-
tiplets, where typically auxiliary fields are necessary to ensure that the number of
bosonic and fermionic degrees of freedom match.

In a first step, one can extend the algebra contraction to all fields in the multi-
plet. This can be done first by extending the contraction from the generators to the
parameters of symmetry transformations and to the gauge-fields that are associated
to the generators. Let us denote the original algebra generators collectively by TA,
the original symmetry parameters by ξA and the original fields, that are associated
to the generators by AA

µ . The redefinition of the generators TA to generators T̃A,
that involves ω and defines the contraction, can then be extended to redefinitions
of ξA to ξ̃A and of AA

µ to ÃA
µ such that

ξATA = ξ̃AT̃A , AA
µ TA ≃ ÃA

µ T̃A . (3.1)

Strictly speaking, as we will clarify later in the specific examples, the second equa-
tion only holds up to terms that are subleading in ω. For that reason we do not put
an equality sign there.

The equation (3.1) defines the tilded parameters and fields in terms of the orig-
inal ones and the contraction parameter ω. These definitions also guarantee that,
for finite ω, the redefined multiplet is equivalent to the original one.

The defining equation (3.1) involves independent and dependent fields that are
associated to algebra generators. As far as the independent fields are concerned,
this is the end of the story. Regarding the dependent fields, one should take into
account that the redefinition obtained from (3.1) should be consistent with the one
induced by performing the redefinitions on the independent fields in the expres-
sions that define dependent fields in terms of independent ones. This amounts to
a non-trivial consistency check, as we will explain in the next paragraph. By ex-
amining the transformation rules in terms of redefined parameters and fields, one
can then define redefinitions of the fields that are not associated to gauge trans-
formations, by requiring that no term in the transformation rules diverges when
taking the limit ω → ∞. As we will see later in a specific example, this step usually
amounts to rescaling these fields with the contraction parameter ω.

After having determined the necessary redefinitions of all fields, one can send
ω → ∞, at which point the consistency of the procedure needs to be checked. In
a first step, checking consistency involves ensuring that no divergences appear in
the procedure. This means for instance that one needs to examine whether the
transformation rules in terms of redefined quantities are finite in the limit ω → ∞.
Moreover, one needs to examine the expressions of the dependent fields in terms of
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the independent ones and check whether one obtains a finite result, consistent with
the redefinition implied by (3.1), when writing these expressions in terms of rede-
fined independent fields and taking ω → ∞. As we will see in specific examples,
this step involves imposing additional constraints on the fields.

Typically, these constraints involve putting certain covariant quantities to zero.
These covariant quantities might for instance correspond to gauge covariant curva-
tures of fields that are interpreted as gauge-fields of the algebra. Constraining the
fields in such a covariant way will ensure that the final transformation rules are the
proper ones.

Once a set of constraints is obtained by requiring that transformation rules and
other quantities do not diverge when ω → ∞, one needs to check whether these
constraints form a consistent set. This involves varying all non-trivial constraints
found so far under all symmetry transformations and checking that they form a
closed set. In this way, one ensures that one is performing a consistent truncation.

Finally, we mention that the limiting procedure can lead to the elimination of a
number of auxiliary fields. This is due to the fact that we are interested in obtaining
an irreducible multiplet. The non-relativistic theory can have less equations of mo-
tion than the relativistic one hence the number of auxiliary fields that are needed
to realize the non-relativistic algebra can differ from the number that is needed to
realize the relativistic algebra. This is responsible for the fact that some auxiliary
fields have to be eliminated in the limiting process.

We can summarize the procedure in the following way:

I. We first write the relativistic gauge-fields in terms of new ‘non-relativistic’
ones, using a contraction parameter ω. For finite ω this is a field redefinition
that is dictated by the contraction of the generators of the algebra. At this
point the scaling of the auxiliary fields is still arbitrary.

II. Using the above redefinitions and taking the limit ω → ∞ we can derive a first
set of non-relativistic constraints by taking the limit ω → ∞ of the relativistic
un-conventional constraints.

III. In a next step, we derive the transformation rules of all fields. Requiring
that no terms diverge in the limit ω → ∞ fixes the scalings of the auxiliary
fields. At this point, we can check the limit of dependent gauge-fields, such
as e.g. the spin-connection. Requiring that they have a well-defined limit can
involve the use of un-conventional constraints, written in terms of redefined
fields, to replace divergent terms by terms with a proper limit.

IV. In this step, we check whether the constraints found in step two are a closed
set under the different symmetry transformations or whether we are forced to
introduce additional constraints. An example were many new constraints are
found by continuous variation under supersymmetry is given by the chain of
constraints in eqs. (3.65)–(3.67).

V. The number of auxiliary fields that are needed in the non-relativistic case can
be less then the number that is needed in the relativistic case. In such cases, in
order to obtain an irreducible multiplet, we eliminate the redundant auxiliary
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fields. This occurs, for instance, in the example of section 3.5.

In the next sections, we will illustrate this procedure by using it to re-derive
various results on Newton–Cartan geometry and (super)gravity that have been ob-
tained by other methods.

3.2 Newton–Cartan gravity

In the following, we illustrate the limiting procedure in one of its simplest manifes-
tations, by deriving the Newton–Cartan theory of gravity of [80] from the vielbein
formulation of general relativity. The starting point was conveniently summarized
in the last chapter in section 2.4 where we discussed general relativity from pre-
cisely the point of view that we need here. We will pay attention to how we derive
the transformation rules of the non-relativistic gauge-fields and how we derive con-
straints that those background fields have to obey.

As should be clear from the general discussion in the last section, the limit-
ing procedure is based on the Inönü–Wigner contraction of symmetry algebras. In
particular, now we need to look at the non-relativistic contraction of the Poincaré
algebra that yields the Bargmann algebra [96,98]. To obtain the Galilei algebra with
a central extension we need to add an extra generator to the Poincaré algebra. The
number of generators stays the same in the contraction and the Poincaré and Galilei
algebras already have the same number of generators. Hence, to get an extra gen-
erator we need to add it already to the Poincaré algebra. In the bosonic case, the
only way to do so is to trivially extend the Poincaré algebra with an extra U(1)
symmetry that is generated by the new operator Z . The contraction then consists
of rescaling the generators of the Poincaré algebra and Z in the following way:

P̂0 → 1

2ω
H̃ + ω Z̃ , Z → 1

2ω
H̃ − ω Z̃ , Ma0 → ω G̃a . (3.2)

The spatial translations P̃a and rotations, which we will denote by Mab = J̃ab, are
not rescaled. Calculating the commutators of H̃, P̃a, G̃a, J̃ab and Z̃, re-expressing
everything in terms of the relativistic generators and taking ω → ∞ leads to the
non-vanishing commutators of the Bargmann algebra given in (2.45) and (2.46).

In [80] Newton–Cartan gravity was obtained by gauging the Bargmann alge-
bra. Our aim is to derive the same formulation of Newton–Cartan gravity via a
contraction of the relativistic background fields Eµ

A and Ωµ
AB(E) that follow from

gauging the Poincaré algebra as we explained in chapter 2.

Let us mention at this point that the contraction (3.2) is not unique. Rather, it
corresponds a particular non-relativistic “point-particle limit” where time is singled
out as a special direction. One can define more general p-brane limits where one
time and p spatial directions are singled out, see e.g. [62,63,65,101]. For the purpose
of this thesis we will only concentrate on the “particle limit”.

In this first instance of the limiting procedure we shall be very careful about
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which quantities are non-relativistic ones, i.e. which are obtained in the limit ω →
∞, and which ones are merely redefined relativistic ones, i.e. with finite contraction
parameter ω. We will denote the latter ones with tildes and drop those tildes as we
let ω → ∞.

The main idea of the limiting procedure is to extend the contraction (3.2) to the
gauge-fields. Hence, we will take the first two formulas in (3.2) as a motivation for
the expansion of our relativistic background fields in terms of the Newton–Cartan
ones. The result is the following ansatz for the relativistic vielbein:

Eµ
A = δA

0

(

ω τ̃µ +
1

2ω
m̃µ

)

+ δA
a ẽµ

a . (3.3)

Ultimately, τ̃µ, ẽµ
a and m̃µ will become the background fields of Newton–Cartan

gravity. Then we shall also use projective inverses of τ̃µ and ẽµ
a, which we denote

by τ̃µ and ẽµ
a, that are defined as follows:

ẽµ
a ẽµ

b = δb
a , τ̃µτ̃µ = 1 , τ̃µ ẽµ

a = 0 ,

τ̃µ ẽµ
a = 0 , ẽρ

a ẽµ
a = δ

ρ
µ − τ̃µτ̃ρ .

(3.4)

From here we can immediately deduce the following expansion of the relativistic
inverse vielbein in terms of the non-relativistic components:

Eµ
A = δa

A

[

ẽµ
a +O

( 1

ω2

)]

+
1

ω
δ0

A

[

τ̃µ +O
( 1

ω2

)]

. (3.5)

Note that we have only explicitely given the terms of leading order in ω. There are
in principle an infinite number of corrections which, however, will not be needed
in the following as they do not contribute in the limit ω → ∞.

Extending the contraction (3.2) to the gauge-field Mµ that is related to the U(1)
generator Z , we find the expansion

Mµ = ω τ̃µ − 1

2ω
m̃µ . (3.6)

Since this gauge-field did not take part in the discussion on the kinematics of gen-
eral relativity in chapter 2 we shall collect some more important formulas concern-
ing it here. The transformation rule of Mµ is given by

δMµ = ξρ∂ρ Mµ + Mρ∂µξρ + ∂µΛ , (3.7)

where Λ is the parameter of the spurious U(1) symmetry. The covariant curvature
of Mµ reads

Fµν(M) = 2 ∂[µ Mν] . (3.8)

In the following we will need to impose constraints on this curvature. In the
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bosonic case that we discuss in this section we have two options:

dynamical : Fµν(M) = 0 , (3.9)

kinematical : ẽµ
a ẽν

b Fµν(M) = F̃ab(M) = 0 . (3.10)

If we are interested in the dynamical theory, we set the full curvature Fµν(M) to
zero. Then Mµ is a pure gauge-field and does not propagate, so we do not add
any degrees of freedom to general relativity. However, we will see that, in order
to take the non-relativistic limit in a consistent manner, we need not impose such
a strict constraint. It turns out that if we are only interested in deriving the correct
kinematics, it is sufficient to require that only the spatial projection of the curvature
vanishes, i.e. we can opt for the “kinematical” constraint (3.10).

In principle we can extend the contraction (3.2) to find the rescaling of the de-
pendent gauge-fields. Their dependence on other independent gauge-fields is a
consequence of constraints. We might consider taking the non-relativistic limit of
those un-conventional constraints too. However, this should not lead to any new
information, provided we are able to take the limit in the expression for the depen-
dent gauge-fields in a consistent way. Having used the relativistic torsion constraint
to solve for the relativistic spin-connection, we cannot obtain new information by
taking its limit. It still remains an identity that we use to solve for Ωµ

AB(E).

It turns out that in order to take the limit of the explicit expression (2.30) we need
an extra constraint to replace a term that diverges in the limit ω → ∞ by a finite
one. To this end, we have to make use of the extra gauge-field Mµ and impose one
of the two constraints (3.9) and (3.10) on its curvature (3.8). Now we can define the
non-relativistic spin- and boost-connection by

Ωµ
ab(E) +

ω

2
τ̃µ ẽρa ẽνb Fρν(M) = ω̃µ

ab(ẽ, τ̃, m̃) +O
( 1

ω2

)

, (3.11)

Ωµ
0a(E)− 1

2
ẽµ

b ẽρb ẽνa Fρν(M) =
1

ω
ω̃µ

a(ẽ, τ̃, m̃) +O
( 1

ω3

)

. (3.12)

When inserting the redefinitions (3.3) and (3.6) in (2.30) we find

ω̃µ
ab(ẽ, τ̃, m̃) = −2 ẽν[a∂[µ ẽν]

b] + ẽµ
c ẽρa ẽνb∂[ρ ẽν]

c − τ̃µ ẽρa ẽνb∂[ρm̃ν] , (3.13)

ω̃µ
a(ẽ, τ̃, m̃) = τ̃ν∂[µ ẽν]

a + ẽµ
b ẽρaτ̃ν∂[ρ ẽν]

b + ẽνa∂[µm̃ν] − τ̃µ ẽρaτ̃ν∂[ρm̃ν] . (3.14)

A few comments are in order. First, the subleading contributions in the definitions
(3.11) and (3.12) are due to the subleading terms in the expansion of the relativistic
inverse vielbein (3.5). Secondly, note that while the constraint Fµν(M) is trivial in
the relativistic case, by adding it to the spin-connection we are effectively splitting
it up into different parts. The leading part will cancel the leading (divergent) con-
tribution of Ωµ

AB(E), while the subleading part remains as a finite contribution to
the non-relativistic connections. Hence, we need to be very careful and check if the
definitions (3.11) and (3.12) are indeed consistent when we take the limit ω → ∞.
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Moreover, we have to ensure that the constraints (3.9) and (3.10) remain valid in the
limit, i.e. we shall investigate their limits too.

Note that the scaling of all gauge-fields (3.3), (3.6), (3.11) and (3.12) are such
that the sum of the products of the gauge-fields with their respective symmetry
generator remains invariant, up to subleading terms in ω. One thus has

P̂A Eµ
A +Z Mµ + MAB Ωµ

AB(E) =

P̃a ẽµ
a + H̃ τ̃µ + Z̃ m̃µ + J̃ab ω̃µ

ab(ẽ, τ̃, m̃)− 2 G̃a ω̃µ
a(ẽ, τ̃, m̃) +O

( 1

ω2

)

.

(3.15)

The factor −2 in the last term is due to our definition of ω̃µ
a(ẽ, τ̃, m̃), see (3.12).

Note also the appearance of the subleading terms in ω that we referred to after
(3.1). They are also due to the definitions (3.11) and (3.12).

Now we proceed to take the limit ω → ∞ and drop the tildes on all fields.
We start by calculating the transformation rules of the Newton–Cartan background
fields τµ, eµ

a and mµ, by applying (3.3) and (3.6) to (2.20). To do so, we express the
new fields in terms of the old ones, i.e.

τ̃µ =
1

2ω

(

Eµ
0 + Mµ

)

, m̃µ = ω
(

Eµ
0 − Mµ

)

. (3.16)

Then it is straightforward to get

δτµ = 0 ,

δeµ
a = λa

b eµ
b + λaτµ ,

δmµ = ∂µσ + λa eµ
a ,

(3.17)

where we defined

λa = ω λa
0 , Λ = − σ

ω
. (3.18)

All fields transform also under diffeomorphisms in the usual way. The transforma-
tions of the spin-connections can be found as well:

δωµ
ab(e, τ, m) = ∂µλab + 2 λ[a

c ωµ
cb] , (3.19)

δωµ
a(e, τ, m) = ∂µλa + λa

b ωµ
b − ωµ

a
c λc . (3.20)

The transformation rules (3.17)–(3.20) agree with those found in [80] by gauging
the Bargmann algebra.

Next, we take a look at the constraints of the non-relativistic theory. The expres-
sions (3.13) and (3.14) (without the tildes) agree with those of [80]. In their analysis
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these expressions were obtained by solving the constraints

Rµν
a(P) = 2 ∂[µeν]

a − 2 ω[µ
abeν]

b − 2 ω[µ
aτν] = 0 ,

Rµν(Z) = 2 ∂[µmν] − 2 ω[µ
aeν]

a = 0 .
(3.21)

Hence, these are also satisfied in our case. Next, we look at the implications of (3.9)
and (3.10). Here, we have two possibilities. The “dynamical” constraint (3.9) leads
to

Rµν(H) = 2 ∂[µτν] = 0 , (3.22)

a constraint that was also used in [80]. The other option is to set only the spatial
projection to zero, i.e.

Rab(H) = 2 eµ
aeν

b ∂[µτν] = 0 . (3.23)

Note that this could be solved by

2 ∂[µτν] = b[µτν] , (3.24)

where bµ is arbitrary. This equation resembles the curvature constraint of the twist-
less torsional Newton–Cartan theory [29]. In both cases, (3.22) or (3.23), the vari-
ation of this constraint does not lead to any further restriction as τµ is invariant
under gauge transformations.

Further constraints stem from the relativistic Bianchi identity. Using the inverse
vielbein (3.5) and the expansion

Rµν
AB(Ω) = δA

a δB
b R̃µν

ab( J̃)− 1

ω
δA

a δB
0 R̃µν

a(G̃) +
1

ω
δA

0 δB
b R̃µν

b(G̃) , (3.25)

in (2.34) we obtain the non-relativistic Bianchi identities

R[µν
a(G) eρ]

a = 0 , R[µν
ab(J) eρ]

a + R[µν
b(G) τρ] = 0 , (3.26)

for the following curvatures of spatial rotations and Galilean boosts:

Rµν
ab(J) = 2 ∂[µων]

ab − 2 ω[µ
a

cων]
cb ,

Rµν
a(G) = 2 ∂[µων]

a − 2 ω[µ
abων]

b .
(3.27)

This concludes the search for constraints of the kinematical theory. As we are in-
terested primarily in the kinematics we did not derive equations of motion yet. We
may impose equations of motion on the Newton–Cartan background fields, for ex-
ample by taking the non-relativistic limit of the Einstein equation. This will lead to
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the exact theory presented in [80]. The limit yields the equations

Rµν
ab(J) eµ

a = 0 , Rµν
a(G) eµ

a = 0 . (3.28)

If we choose to solve the first equation by setting Rµν
ab(J) = 0, which will be

needed in the supersymmetric on-shell case, it follows from the Bianchi identities
that the only real equation of motion left is

R0a
a(G) = 0 , (3.29)

all other (components of) curvatures being zero due to conventional constraints
(3.21), one of the foliation constraints (3.22) or (3.23), or the choice Rµν

ab(J) = 0.

The equation (3.29), when considering observers in a Galilean frame with only
time-dependent acceleration, reduces to the Poisson equation for the Newton po-
tential, see [77,80]. In general, the right-hand-side is non-zero, but here it is because
we took the limit of the Einstein equation without a source term. However, as we
mentioned in the introduction, in the special case of three space-time dimensions,
we cannot write down a relativistic source term that would give rise to non-trivial
sources after taking the non-relativistic limit. Therefore, in three dimensions the
limit of the Einstein equation will always be (3.29) unless we add a source by hand.
Hence, there is no non-trivial, normalizable solution for the Newton potential in
three dimensions. In this sense, we do not find any contradiction with the fact
there should be no force between point-particles in “ordinary” three-dimensional
non-relativistic gravity.

Finally, let us try to understand, from the point of this limiting procedure, why
there is no action for Newton–Cartan gravity. What happens if we simply take
the limit of the Einstein–Hilbert action (2.43)? The determinant of the relativistic
vielbein will scale with one power of ω and the Ricci scalar expands to

R(Ω) = Rab
ab(J)− 2

ω2
R0a

a(G) +O
( 1

ω3

)

. (3.30)

Obviously the equations of motion (3.28) set this to zero. On the other hand, it
is not obvious how an action consisting of only the leading term Rab

ab(J) would
lead to both equations of (3.28). Moreover, due to the extra factor of ω from the
determinant this term would diverge.

Previously we dealt with such divergences by imposing curvature constraints.
However, none of those constraints was a limitation on Rµν

ab(J). It seems quite
unnatural to impose yet another, additional, constraint just to be able to get a finite
action. An action that does not even lead to the correct equations of motion. While
this is not tight enough to serve as a no-go argument, it certainly is yet another
indication that there is no action for Newton–Cartan gravity, at least not at the two-
derivative level. Actions which consist of higher-derivative invariants have been
proposed in [20,103]. However, those papers do not derive the equations of motion
that constrain the background fields. Therefore, their connection to the theory of
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Newton–Cartan gravity as we discussed it here is not completely clear to us.

This concludes our first check of the non-relativistic limiting procedure. In the
following, we are going to investigate the limits of several supergravity theories.
Therefore, from now on we shall restrict ourselves to theories in three space-time
dimensions. We give a short exposition of non-relativistic N = 1 “supergravity”
next, before we (re-)derive the on- and off-shell formulations of three-dimensional
Newton–Cartan supergravity theory.

3.3 Non-relativistic N = 1 supergravity

The discussion here and in the following sections parallels the one of the previous
section. We will therefore skip most intermediate steps, where the contraction pa-
rameter ω is finite, and we will only focus on the results obtained in the ω → ∞

limit. Here and in the following, we will therefore no longer resort to the notation
using tildes, to denote quantities at finite ω.

In this section we briefly review the argument of why we consider non-relativi-
stic N = 2 supergravities as the minimal case, in place of the technically simpler
N = 1 versions. To this end, we look at the non-relativistic contraction of the
N = 1 Poincaré superalgebra, (2.15) and (2.65). Again, we add an extra U(1) to
get the central charge of the Bargmann superalgebra. The scaling of the bosonic
generators is given in (3.2) and the fermionic supercharge Q must scale as

Q =
√

ω Q− . (3.31)

In addition to the bosonic commutation relations of the Bargmann algebra we get

[

Jab, Q−
]

= −1

2
γabQ− ,

{

Q−, Q−
}

= γ0C−1 Z . (3.32)

Notice that the anti-commutator of two supercharges leads to a central charge trans-
formation but no time- or space-translation. Normally, the anti-commutator of two
supercharges leads to a diffeomorphism, see e.g. (2.65) or (2.66). So while the N = 1
extended Bargmann algebra is perfectly well-defined, we rather not call it a superal-
gebra in the usual sense, simply because the anti-commutator of two supercharges
does not lead to diffeomorphisms.

We can demonstrate this too by looking at the explicit transformation rules of
the background fields τµ, eµ

a, mµ and ψµ−, which we derive from (2.72) using the
limiting procedure. This shall also serve as a first easy example of the limiting
procedure in the supersymmetric case. It also comprises a new result that has not
been derived in the literature before, unlike the two N = 2 formulations that follow
in section 3.4 and 3.5.

We must now specify the transformation of Mµ under supersymmetry. We use

δMµ = 0 , (3.33)
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and in order not to upset the counting of degrees of freedom we set the curvature
of Mµ to zero

F̂µν(M) = 2 ∂[µ Mν] = 0 . (3.34)

This coincides of course with the bosonic constraint on Mµ that we imposed in the
last section 3.2, see eq. (3.8). Then Mµ is pure gauge and does not propagate any
degrees of freedom. Otherwise we would, due to the addition of the extra field Mµ,
have more bosonic degrees of freedom than fermionic ones in the multiplet (2.72).

Furthermore, the transformation rule (3.33) makes sure that the constraint (3.34)
does not lead to any additional conditions on the gauge-fields as its supersymmetry
transformation does not lead to more constraints. Also, the supersymmetry algebra
(2.77) is realized on Mµ through (3.34):

[

δ1, δ2

]

Mµ = 0 = ξ̃ρ∂ρ Mµ + Mρ∂µ ξ̃ρ − ∂µ

(

ξ̃ρ Mρ

)

= ξ̃ρ F̂ρµ(M) . (3.35)

The last term in the soft-algebra on Mµ is not present in (2.77) because we did
not consider the additional U(1) generator then. It should be clear, by comparing
various soft-algebras in this work, that we naturally expect it to take this form.

This concludes our discussion of the relativistic starting point. Next, we will
take the non-relativistic limit to derive transformation rules and constraints. First,
we need to define how to scale the spinors. Following our general rules on how to
take the limit we use the contraction (3.3) and (3.6), plus the new rule

Ψµ =
1√
ω

ψµ− , (3.36)

which follows promptly from the formula (3.31). Furthermore, we need to use

S → 1

ω
S , (3.37)

when taking the limit of the off-shell multiplet (2.72). Then, we find the transfor-
mation rules of the non-relativistic N = 1 off-shell multiplet

δτµ = 0 ,

δeµ
a = 0 ,

δmµ =
1

2
ǭ−γ0ψµ− ,

δψµ− = Dµǫ− +
1

2
S τµ γ0ǫ− ,

δS =
1

8
ǭ−γabψ̂ab− .

(3.38)

The transformation rules of the dependent spin-connections, which are obtained
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from (3.11) and (3.12) and take the expressions

ωµ
ab(e, τ, m, ψ) = −2 eν[a∂[µeν]

b] + eµ
ceρaeνb∂[ρeν]

c

− τµeρaeνb
(

∂[ρmν] −
1

4
ψ̄[ρ−γ0ψν]−

)

,
(3.39)

ωµ
a(e, τ, m, ψ) = τν∂[µeν]

a + eµbeρaτν∂[ρeν]
b + eνa

(

∂[µmν] −
1

4
ψ̄[µ−γ0ψν]−

)

− τµeρaτν
(

∂[ρmν] −
1

4
ψ̄[ρ−γ0ψν]−

)

, (3.40)

are given by

δQωµ
ab(e, τ, m, ψ) = −1

4
τµ ǭ−γ0ψ̂ab− , (3.41)

δQωµ
a(e, τ, m, ψ) =

1

4
ǭ−γ0ψ̂µ

a− − 1

4
τµ ǭ−γ0ψ̂a

0− . (3.42)

Only the first one is needed when calculating the commutator algebra. The curva-
ture of the gravitino is given by

ψ̂µν− = 2 ∂[µψν]− − 1

2
ω[µ

abγabψν]− − γ0ψ[µ− τν] S . (3.43)

One can check explicitely that in this case the algebra closes using only central
charge transformations,

[

δ(Q1), δ(Q2)
]

= δZ

(

σ̃
)

, (3.44)

with the parameter

σ̃ =
1

2
ǫ2−γ0ǫ1− . (3.45)

In contrast to all other realizations of superalgebras on supergravity multiplets, it
is not given by a algebra with diffeomorphisms on the right-hand-side.

One can go on-shell by setting

S = 0 , ψ̂ab− = 0 . (3.46)

This can also be inferred by taking the limit of the on-shell multiplet. From (3.46)
we can deduce

Rab
cd(J) = 0 . (3.47)

There are no further constraints from varying this one because the spin-connection
ωµ

ab(e, τ, m, ψ) now is invariant under supersymmetry transformations.
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The short analysis of this section served two purposes. It gives a more detailed
argument for why we use only N = 2 algebras in the following. On the other hand,
it hints towards the kind of supergravity theories that we will be dealing with. The
formulas (3.38)–(3.42) will not only receive additional contributions due to the extra
supersymmetry, but their ǫ−/ψµ− terms will also change slightly, mainly because
the transformation rule of Mµ, (3.33) will become non-trivial.

The minus index for the non-relativistic gravitini and the parameter ǫ− was
chosen with the results of the next sections and chapters in mind. There we will use
two spinors ǫ+ and ǫ−. The results of this section can be retrieved by setting the
parameter ǫ+ to zero in the later sections. (One also has to rescale the remaining

spinor by a factor of
√

2.) Thereby, as we will see explicitely, one also eliminates
the diffeomorphism parameter ξ̃µ in the algebra because this parameter always
depends on ǫ+. Note also that ψ̂ab− = 0 becomes an un-conventional constraint
in the later theories. It follows from the foliation constraint R̂(H) = 0 by a Q+

transformation. Since there is no Q+ symmetry in the current case we need not
impose this constraint here though.

3.4 On-shell Newton–Cartan supergravity

In this section we re-derive the Newton–Cartan supergravity theory put forward
in [77]. This is an on-shell theory, hence we shall start from the three-dimensional
relativistic on-shell multiplet. In order to determine how we are going to take the
limit, i.e. impose the scalings on the (independent) gauge-fields of the relativistic
supergravity multiplet, we will review how the N = 2 Bargmann superalgebra
is obtained by contracting the N = 2 Poincaré superalgebra. This will tell us in
particular how to rescale the gravitini ψµ±.

We start from the three-dimensional N = 2 Poincaré superalgebra with central
extension Z , (2.15) and (2.66). Then we define

Q± =
1√
2

(

Q1 ± γ0Q2

)

, (3.48)

and split the three-dimensional flat indices A, B into time-like and space-like in-
dices {0, a}. Furthermore, we set Mab = Jab to describe purely spatial rotations. The
motivation for choosing these combinations of the relativistic spinors, eq. (3.48), can
be seen in the non-relativistic algebra (and later on in the transformation rules of
the gravitini). It leads to particularly simple transformations of the spinors under
boosts. The contraction consists of (3.2) and the following rescaling of the fermionic
generators:

Q− →
√

ω Q− , Q+ → 1√
ω

Q+ . (3.49)

Taking the limit ω → ∞ leads to the supersymmetric extension of the Bargmann
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algebra. We get the following non-vanishing commutation relations:

[

Jab, Pc

]

= −2 δc[aPb] ,
[

Jab, Gc

]

= −2 δc[aGb] ,
[

Ga, H
]

= −Pa ,
[

Ga, Pb

]

= −δab Z ,

[

Jab, Q±
]

= −1

2
γabQ± ,

[

Ga, Q+
]

= −1

2
γa0Q− , (3.50)

{

Q+, Q+
}

= −γ0C−1 H ,
{

Q+, Q−
}

= −γaC−1 Pa ,

{

Q−, Q−
}

= −2 γ0C−1 Z .

The bosonic part of the algebra is the usual Bargmann algebra, see (2.45) and (2.46).
Note also that the spatial rotations are abelian because we have only two space
dimensions.

The difference of a factor two in the anti-commutator of two Q− supercharges
compared to the N = 1 algebra (3.32) is due to the extra central extension Z in the
relativistic algebra (2.66). Moreover, in the N = 1 case there is no Jacobi identity
that would fix this factor, i.e. relate it to the commutator of translations Pa with
boosts Ga. In this sense the extension in the Pa–Gb commutator is somewhat “inde-
pendent” of the Z in the Q−–Q− anti-commutator. This is not true anymore for the
N = 2 algebra (3.50) because of the non-vanishing commutator between boosts Ga

and Q+ supersymmetry.

Lets move on to the contraction of the supergravity theory. We first need to
collect the transformation rules and constraints of our relativistic starting point.
Again, we add the central charge gauge-field Mµ. Here is where this field makes
its first physical appearance: it is the gauge field of the central charge operator of
the N = 2 algebra. Its transformation rule under supersymmetry is now given by

δMµ =
1

2
εij η̄iΨµj , (3.51)

and the anti-commutator of two supersymmetries ([δ1
i , δ2

j ]) on Mµ leads to a central

charge transformation with parameter Λ = 1
2 εij η̄1

i η2
j . In order not to add any

bosonic degrees of freedom to our theory we need to set the curvature of Mµ to
zero:

F̂µν(M) = 2 ∂[µ Mν] − εij
Ψ̄[µiΨν]j = 0 . (3.52)

This agrees with our equation of motion as the supersymmetry variation of (3.52)
leads to Ψ̂µνi = 0. Like in the bosonic case, this constraint, which is the supercovari-
ant version of (3.9), will allow us to obtain finite expressions for the non-relativistic
spin-connections from the relativistic one. Moreover, we can show that the full set
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of equations of motion is given by

F̂µν(M) = 0 → Ψ̂µνi = 0 → R̂µν
AB(Ω) = 0 , (3.53)

using supersymmetry variations.

So much for the relativistic supergravity background. In the following we shall
see what are the non-relativistic limits of the transformations (2.80), (2.81) and the
constraints (3.51) and (3.53).

Now we extend the algebra contraction to the fields of the on-shell multiplet.
For the bosonic fields this entails the redefinitions involving ω that were given
in the previous section. Next, we need to define how we are going to redefine
the spinors. This follows from the way we contract the generators of the three-
dimensional N = 2 Poincaré superalgebra to get the Bargmann superalgebra, see
(3.48). Hence, we define new spinors

Ψ± =
1√
2

(

Ψ1 ± γ0Ψ2

)

, (3.54)

and we will scale the two projections Ψ± differently:

Ψµ+ =
√

ω ψµ+ , η+ =
√

ω ǫ+ , (3.55)

Ψµ− =
1√
ω

ψµ− , η− =
1√
ω

ǫ− . (3.56)

Then the next, usually trivial, step it to get the transformation rules. Since there
are no additional auxiliary fields in this formulation (whose scaling we should take
care of at this point) it is straightforward to get

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

(3.57)

and

δψµ+ = ∂µǫ+ − 1

4
ωµ

abγabǫ+ ,

δψµ− = ∂µǫ− − 1

4
ωµ

abγabǫ− +
1

2
ωµ

aγa0ǫ+ .

(3.58)

It is understood that the spin-connections ωµ
ab and ωµ

a in (3.58) are dependent,

i.e. ωµ
ab = ωµ

ab(e, τ, m, ψ±) and ωµ
a = ωµ

a(e, τ, m, ψ±). The bosonic symmetries
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act on the spinors in the following way:

δψµ+ =
1

4
λabγabψµ+ ,

δψµ− =
1

4
λabγabψµ− − 1

2
λaγa0ψµ+ .

(3.59)

This stems from the relativistic δΨµ = 1
4 λABγABΨµ.

The expressions for the spin-connections follow from (2.84) and (3.52). Like in
the bosonic case discussed in section 3.2, we use (3.52) to replace terms that diverge
in the limit ω → ∞, by terms with the expected ω-order. We get

ωµ
ab = −2eν[a

(

∂[µeν]
b] − 1

2
ψ̄[µ+γb]ψν]−

)

+ eµ
ceρaeνb

(

∂[ρeν]
c − 1

2
ψ̄[ρ+γcψν]−

)

− τµeρaeνb
(

∂[ρmν] −
1

2
ψ̄[ρ−γ0ψν]−

)

, (3.60)

and

ωµ
a = τν

(

∂[µeν]
a − 1

2
ψ̄[µ+γaψν]−

)

+ eµbeρaτν
(

∂[ρeν]
b − 1

2
ψ̄[ρ+γbψν]−

)

+ eνa
(

∂[µmν] −
1

2
ψ̄[µ−γ0ψν]−

)

− τµeρaτν
(

∂[ρmν] −
1

2
ψ̄[ρ−γ0ψν]−

)

.

(3.61)

These expressions for the spin- and boost-connection also solve the supercovariant
curvature constraints

R̂µν
a(P) = Rµν

a(P)− ψ̄[µ+γaψν]− = 0 ,

R̂µν(Z) = Rµν(Z)− ψ̄[µ−γ0ψν]− = 0 ,
(3.62)

identically. To check the consistency of the set of constraints, i.e. to derive the im-
plications of (3.52) we need the transformations of the spin-connections under su-
persymmetry. The explicit expressions (3.60) and (3.61), or the constraints (3.62),
can be used for that purpose. We find

δQωµ
ab =

1

2
ǭ+γ[bψ̂a]

µ− +
1

4
eµc ǭ+γcψ̂ab− − 1

2
τµ ǭ−γ0ψ̂ab−

+
1

2
ǭ−γ[bψ̂a]

µ+ +
1

4
eµc ǭ−γcψ̂ab

+ ,

(3.63)

δQωµ
a =

1

2
ǭ−γ0ψ̂µ

a− +
1

2
τµ ǭ−γ0ψ̂0

a− +
1

4
eµb ǭ+γbψ̂a

0− +
1

4
ǭ+γaψ̂µ0−

+
1

4
eµb ǭ−γbψ̂a

0+ +
1

4
ǭ−γaψ̂µ0+ . (3.64)

Now we readily derive that the following set of constraints is generated under su-
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persymmetry transformations:

Q−−→ ψ̂ab− = 0 (3.65)

R̂µν(H) = 0
Q+−→ ψ̂µν+ = 0

Q+−→ Rµν
ab(J) = 0 (3.66)

Q+−→ γaψ̂a0− = 0
Q+−→ R̂0a

a(G) = 0 .
(3.67)

Using the last equation of (3.66), the non-relativistic Bianchi identities reduce to

R̂ab
c(G) = 0 , R̂0[a

b](G) = 0 , (3.68)

which ensures e.g. that (3.65) does not lead to further constraints. The superco-
variant curvature of Galilean boosts, which is used in the formulas above, is given
by

R̂µν
a(G) = Rµν

a(G)− 2 ψ̄[µ−γ0ψ̂ν]
a−

− 1

2
e[ν

b ψ̄µ]+γbψ̂a
0− − 1

2
ψ̄[µ+γaψ̂ν]0− .

(3.69)

The variation of the last constraint in (3.67) is quite involved and has also not
been carried out in [77]. We will, however, show in section 3.5 that the full set of
constraints (3.65)–(3.67) can be derived from an off-shell version of this multiplet.
There it is easier to check the consistency of the whole set of constraints.

At this point we have finished the derivation of the three-dimensional on-shell
Newton–Cartan supergravity constructed in [77], i.e. we obtained all constraints
and transformation rules. The terminology “on-shell” stems from the fact that
the constraints given in eq. (3.67) both can be interpreted as equations of motion
for Newton–Cartan supergravity: the first constraint is necessary to obtain clo-
sure of the supersymmetry algebra, while the bosonic part of the second constraint
is precisely the equation of motion of the bosonic Newton–Cartan gravity theory.
Note, however, that to call some constraints “equation of motion” and others not is
slightly ambiguous when talking about Newton–Cartan (super)gravity, due to the
absence of an action principle that can be used to derive these equations of motion.
In section 3.5, we will construct a different, “off-shell” version of three-dimensional
Newton–Cartan supergravity, that includes an auxiliary scalar field in the super-
multiplet. The terminology “off-shell” will be justified in the sense that the first
constraint given in eq. (3.67) will no longer be needed for closure of the supersym-
metry algebra. Both constraints given in eq. (3.67) will in fact not appear at all.
Equations of motion can thus be identified in a pragmatic way as those constraints
that can be removed by adding auxiliary degrees of freedom to a non-relativistic
supermultiplet.

Let us stress/repeat some important aspects. In the case at hand, we can draw
the following diagram, see figure 3.1. It shows that we can always derive a non-
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Qi

Qi

F̂µν(M) = 0

Ψ̂µνi = 0

Rµν
AB(Ω) = 0

Q+

Q+

R̂µν(H) = 0

ψ̂µν+ = 0

Rµν
ab(J) = 0

ω → ∞

ω → ∞

ω → ∞

Figure 3.1: The chains of constraints in the relativistic and non-relativistic case. In
the non-relativistic case we do not denote the complete chain, see (3.65)–(3.67).

relativistic constraint from a relativistic one. However, we cannot obtain the full set
of constraints this way. This is due to the fact that in the relativistic case we always
vary under two supersymmetries, while the chain on the right hand side only con-
sists of Q+ transformations. Further constraints follow from variation under Q−
transformations, but those are not limits of relativistic constraints.

We note that in the limit ω → ∞ the two relativistic constraints given in the
second row of the left column, namely those containing the two gravitino curva-
tures, lead to just the single non-relativistic constraint given in the second row of
the right column. This is in line with the fact that the constraint R̂µν(H) = 0 only
varies under one of the two non-relativistic supersymmetries and hence eliminates
only one of the non-relativistic gravitino curvatures. This observation is of vital im-
portance to understand the off-shell case treated in the next section. There we are
also going to impose the constraint F̂µν(M) = 0, but since its non-relativistic limit
does not necessarily lead to the non-relativistic equations of motion, imposing this
constraint does not force us to immediately go to the non-relativistic on-shell mul-
tiplet of the current section. Of course, in that case figure 3.1 changes. For example,
the constraint in the bottom right corner gets extra contributions from the auxiliary
field.

3.5 3D non-relativistic off-shell supergravity

In this section we derive an off-shell version of the three-dimensional Newton–
Cartan supergravity theory that we revisited in the last section. Such an off-shell
formulation will necessarily contain auxiliary fields, that cannot be interpreted as
gauge-fields of an underlying symmetry algebra. Therefore, one cannot use gaug-
ing techniques to find off-shell multiplets. The limiting procedure that we adopt
in this chapter provides an efficient tool to derive such off-shell formulation, as we
will show in this section.

There is another approach that also allows one to systematically derive off-shell
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formulations, the superconformal tensor calculus. This though is the theme of
chapter 6, were will derive two off-shell formulations, one of them being the new
minimal Newton–Cartan supergravity theory that we also derive in this section.
We proceed now with taking the limit.

We shall take the non-relativistic limit of a three-dimensional N = 2 off-shell
theory of supergravity. There exist two different off-shell formulations of N = 2
supergravity in three dimensions [112–114]. To determine which one we should
focus on, we take a look at the fields and transformation rules that we used to
derive the on-shell theory. We will use the so-called new minimal N = 2 Poincaré
multiplet because this multiplet contains the abelian central charge gauge-field Mµ

that was already part of the on-shell analysis. It is not obvious to us how to take the
non-relativistic limit of the old minimal N = 2 Poincaré multiplet due to the lack
of this abelian gauge-field with the transformation rule given in (3.51). Therefore,
we shall not try to do so here but we focus only on the new minimal formulation.

The new minimal N = 2 Poincaré multiplet consists of the dreibein Eµ
A, two

gravitini Ψµi (i = 1, 2), two vector gauge-fields Mµ and Vµ and an auxiliary scalar
D, see e.g. [114]. The supersymmetries, central charge transformations and R-
symmetry transformations, with parameters ηi, Λ and ρ respectively, are given by

δEµ
A =

1

2
δij η̄i γA

Ψµj ,

δΨµi = Dµηi − γµηi D + εij ηj Vµ +
1

4
γµ γ · F̂(M) εij ηj − εij

Ψµj ρ ,

δMµ =
1

2
εij η̄i Ψµj + ∂µΛ ,

δVµ =
1

2
εij η̄i γν

Ψ̂µνj −
1

8
εij η̄i γµγ · Ψ̂j −

1

4
δij η̄i γ · F̂(M)Ψµj

− εij η̄i Ψµj D + ∂µρ ,

δD = − 1

16
δij η̄i γ · Ψ̂j .

(3.70)

The field strengths are given by (3.52) and

Ψ̂µνi = 2 D[µΨν]i − 2 γ[µΨν]i D − 2 εij
Ψ[µj Vν] +

1

2
εij γ[µγ · F̂(M)Ψν]j , (3.71)

and dots refer to gamma traces as in γ · F̂(M) = γµν F̂µν(M). The spin-connection is

determined by requiring the torsion R̂µν
A(E) be zero. Its supersymmetry variation

follows from the expression in terms of the independent fields Eµ
A and Ψµi.

In order to take the non-relativistic limit of (3.70) we use the same rescalings as
in the previous sections, supplemented with the rule

D =
1

ω
S . (3.72)
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In the action of the N = 2 new minimal supergravity the D2 term plays the role of
the cosmological constant ΛCC. It is thus not surprising that in the non-relativistic
limit, D scales like the square root of ΛCC. For the non-relativistic contraction of
the anti-de Sitter algebra see e.g. [111]. We do not rescale the field Vµ. Moreover,

below we will argue that in the non-relativistic limit one must to eliminate Vµ.1

Going through similar arguments as in sections 3.2 and 3.4 we determine the
non-relativistic dependent spin-connections ωµ

ab(e, τ, m, ψ±) and ωµ
a(e, τ, m, ψ±)

to be given by (3.60) and (3.61). They also satisfy (3.62). As in the on-shell case
we need to impose (3.52) as an extra constraint and we also need to eliminate the
curvature ψ̂µν+ in order to take the limit in a consistent manner. Since, in the rela-

tivistic theory the constraint F̂µν(M) = 0 transforms under supersymmetry to the
fermionic equation of motion, see (3.53), we thus effectively put the theory on-shell.
In the following, we will show that, upon elimination of some auxiliary fields, the
limiting procedure leads to an irreducible non-relativistic multiplet on which the
Bargmann superalgebra is realized off-shell, in a sense that we will clarify below.

Let us now present a short argument for why we can eliminate the auxiliary
field Vµ, when taking the limit. In a first approach the procedure leads to the con-
straints

R̂µν(H) = 0 , ψ̂µν+ = 0 , ψ̂ab− = 0 . (3.73)

At this point we also find the following transformation rules for τµ and the auxiliary
fields Vµ and S:

δτµ =
1

2
ǭ+γ0ψµ+ ,

δVµ = −1

4
ǭ+γa0ψ̂µa− − ǭ+γ0ψµ+ S ,

δS = −1

8
ǭ+γa0ψ̂a0− .

(3.74)

The supersymmetry variations of the last two constraints in (3.73) imply

eµ
aeν

bV̂µν = V̂ab = 0 , (3.75)

which is the spatial part of the supercovariant curvature of Vµ:

V̂µν = 2 ∂[µVν] +
1

2
ψ̄[µγa0ψ̂ν]a− + ψ̄[µ+γ0ψν]+ S . (3.76)

Now we observe that the constraint (3.75) is always satisfied if we impose

Vµ = −2 τµ S . (3.77)

1 In chapter 6 we will find another way to understand the elimination of the auxiliary field Vµ.
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Indeed, the inverse vielbeins in (3.75) eliminate any term with a free τµ and thus the
derivative in (3.76) must hit the τµ when inserting (3.77) into (3.75). The remaining
terms can then be canceled using the first constraint of (3.73). The identification
(3.77) is preserved under all symmetry transformations using (3.73). In particular,
the combination Vµ + 2 τµ S does not transform under supersymmetry. It is thus
not needed to close the algebra on any of the other fields. With the aim of deriving
an irreducible multiplet we shall therefore eliminate Vµ, using (3.77). This sets the
R-symmetry parameter ρ = const in (3.70).

Performing the above manipulations, i.e. after taking the limit and eliminating
the auxiliary field Vµ with (3.77), we end up with the following transformation rules
for the complete non-relativistic new minimal off-shell multiplet. The bosonic fields
transform as

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

δS = −1

8
ǭ+γa0ψ̂a0− ,

(3.78)

while the transformations of the gravitini are given by

δψµ+ = Dµǫ+ + γ0ǫ+ S τµ ,

δψµ− = Dµǫ− − 3 γ0ǫ− S τµ +
1

2
ωµ

aγa0ǫ+ − γaǫ+ eµ
a S .

(3.79)

Given that there is only a single (fermionic) equation of motion in the on-shell the-
ory, see eq. (3.67), it is not surprising that the number of auxiliary fields needed to
close the algebra off-shell is reduced with respect to the relativistic multiplet we
started with.

We have explicitely checked that the non-relativistic supersymmetry transfor-
mations given in (3.78) and (3.79) above close off-shell, i.e. upon use of the con-
straints (3.86)–(3.88) given below. Note that in this calculation we do not need to
make use of the equations of motion (3.67). For explicit checks of the closure we
use the transformations of the spin-connections, which are

δQωµ
ab =

1

2
ǭ+ γ[bψ̂a]

µ− − S ǭ+γabψµ+ , (3.80)

δQωµ
a =

1

4
ǭ+γaψ̂µ0− +

1

4
eµb ǭ+γbψ̂a

0− + ǭ−γ0ψ̂µ
a−

+ S ǭ+γa0ψµ− + S ǭ−γa0ψµ+ ,

(3.81)
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and the gravitini curvatures take the form

ψ̂µν+ = 2 ∂[µψν]+ − 1

2
ω[µ

abγabψν]+ − 2 γ0ψ[µ+ τν] S , (3.82)

ψ̂µν− = 2 ∂[µψν]− − 1

2
ω[µ

abγabψν]− + 6 γ0ψ[µ− τν] S

+ ω[µ
aγa0ψν]+ + 2 γaψ[µ+ eν]

a S .
(3.83)

The anti-commutator of two supersymmetry transformations can be summarized
in the following formula

[

δQ(ǫ1), δQ(ǫ2)
]

= δg.c.t.

(

Ξ
ρ
)

+ δJ

(

Λa
b
)

+ δG

(

Λ
a
)

+ δZ

(

Σ
)

+ δ+
(

Υ+
)

+ δ−
(

Υ−
)

,
(3.84)

where the parameters of the transformations on the right-hand-side are given by

Ξ
µ =

1

2
ǭ2+γ0ǫ1+ τµ +

1

2

(

ǭ2+γaǫ1− + ǭ2−γaǫ1+

)

eµ
a ,

Λ
ab = −Ξ

µωµ
ab − S ǭ2+γabǫ1+ ,

Λ
a = −Ξ

µωµ
a + S

(

ǭ2+γa0ǫ1− + ǭ2−γa0ǫ1+

)

,

Υ± = −Ξ
µψµ± ,

Σ = −Ξ
µmµ + ǭ2−γ0ǫ1− .

(3.85)

Using the transformations (3.78) and (3.79) supersymmetry variations lead to the
following chain of constraints:

Q−−→ ψ̂ab− = 0 (3.86)

R̂µν(H) = 0
Q+−→ ψ̂µν+ = 0

Q+−→ R̂µν
ab(J) = −4 εab τ[µD̂ν] S . (3.87)

Again, the starting point here follows from taking the limit of the constraint (3.52).
The Bianchi identities, upon use of the last constraint in (3.87), get the following
contributions from auxiliary fields:

R̂0[a
b](G) = 0 , R̂ab

c(G) = 2 εab eµc D̂µ S . (3.88)

The supercovariant curvatures of spatial rotations and Galilean boosts are given by

R̂µν
ab(J) = 2 ∂[µων]

ab + ψ̄[µ+γ[aψ̂b]
ν]− − ψ̄[µ+γabψν]+ S ,

R̂µν
a(G) = 2 ∂[µων]

a − 2 ω[µ
abων]

b − 2 ψ̄[µ−γ0ψ̂ν]
a− − 1

2
e[ν

bψ̄µ]+γbψ̂a
0−

− 1

2
ψ̄[µ+γaψ̂ν]0− + 2 ψ̄[µ+γa0ψν]− S .

(3.89)
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We can use these identities to show that (3.86) does not imply any extra constraints.
The contribution of the auxiliary field in the last equation of (3.87) ensures that
its variation does not lead to additional constraints either. Hence, the set of con-
straints given in (3.86)–(3.88) is complete because we varied all constraints under
supersymmetry. The check here is more rigorous than in the on-shell case where
we did not vary the bosonic equation of motion anymore. Moreover, because the
on-shell case can be derived from the off-shell formulation, see below, we have thus
also proven consistency of the on-shell formulation.

As a final consistency check we can reduce our new result to two on-shell for-
mulations that were presented in the literature earlier, namely on-shell Newton–
Cartan supergravity [77] and Newton–Hooke supergravity [111]. The latter one
will also be the subject of the next chapter where we shall derive Newton–Hooke
supergravity using gauging techniques.

By simply eliminating the auxiliary field S, i.e. setting

S = 0 , (3.90)

we arrive at the result of section 3.4. To obtain Newton–Hooke supergravity we
need to introduce a cosmological constant. This can be done by choosing a constant
value for the auxiliary field

S =
1

2R
, (3.91)

with R constant and related to the cosmological constant by ΛCC = −1/R2. This
reproduces the on-shell Newton–Hooke supergravity theory of [111]. The order
1/R corrections with respect to the flat case are hidden in the curvatures, e.g. the
bosonic equation of motion for Newton–Hooke gravity is still given by (3.67), but
R̂µν

a(G) now contains additional order 1/R terms.

This concludes our derivation of an off-shell formulation of three-dimensional
Newton–Cartan supergravity. In the next section we will apply the limiting pro-
cedure to derive a different result, the non-relativistic superparticle in a curved
background.

3.6 The point-particle limit

In this last example we apply the limiting procedure to a superparticle moving in a
curved background. To be concrete, we use it to derive the action and transforma-
tion rules of the non-relativistic superparticle in a curved background, put forward
in [111]. The non-relativistic superparticle in a flat background was already dis-
cussed in [115–117]. We note that the limit that was taken in [65] to derive the
non-relativistic superparticle in a flat background can be understood as a special
case of the analysis in this section.

It is illustrative to first discuss the bosonic particle. To derive the action of a



3.6 THE POINT-PARTICLE LIMIT 65

non-relativistic bosonic point-particle in an arbitrary Newton–Cartan background
we start from the relativistic action

Srel = −M
∫

dλ
[
√

−ηAB(ẋµEµ
A)(ẋνEν

B)− ẋµ Mµ

]

. (3.92)

All dots refer to derivatives with respect to the worldline parameter λ, i.e. ẋµ =
dxµ/dλ. We use mostly plus signature and we also added a “charge” term ẋµ Mµ.
Here, we impose that the curvature of the abelian gauge-field Mµ vanishes, im-
plying that it can locally be written as Mµ = ∂µΓ and the second term in (3.92)
corresponds to a total derivative. Using the expressions (3.3) and (3.6) in the rel-
ativistic action (3.92) and taking M = ω m, we obtain, in the limit ω → ∞, the
following non-relativistic action:

Snr = m
∫

dλ

[

δab(ẋµeµ
a)(ẋνeν

b)

2τρ ẋρ − mµ ẋµ

]

. (3.93)

This action agrees with the action, calculated by other means, in e.g. [101, 118, 119].
Note that one of the reasons to add the term ẋµ Mµ is to cancel a divergent (total
derivative) term that otherwise would arise in the limit ω → ∞, see also [62]. In
contrast, the combination ẋµmµ in the non-relativistic action is not a total derivative
term. This non-relativistic term does not only follow from the relativistic ẋµ Mµ

term alone, but it also receives contributions from the kinematic term
√
−ẋ2.

We now generalize the discussion of the non-relativistic bosonic particle to the
non-relativistic superparticle. The relativistic superparticle in a curved background
is most conveniently written using superspace techniques, see [120]. Since so far a
non-relativistic superspace description is lacking, we will refrain from using super-
space notation and simplify the discussion and notation by considering only the
terms in the action that are at most quadratic in the fermions. Thus, the supersym-
metric analog of (3.92) takes the form

Srel = −M
∫

dλ
[

√

−ηAB ΠAΠB − 1

4
εij θ̄iDλθj − ẋµ

(

Mµ − 1

2
εij θ̄i Ψµj

)]

.

(3.94)

The background fields Eµ
A, Mµ and Ψµi are those of the relativistic on-shell theory

discussed in section 3.4 and 2.8. The embedding coordinates are xµ and θi. The
supersymmetric line-element Π

A is defined as

Π
A = ẋµ

(

Eµ
A − 1

2
δij θ̄i γA

Ψµj

)

+
1

4
δij θ̄i γADλθj , (3.95)

where the derivative Dλ is covariantized with respect to Lorentz transformations,



66 CHAPTER 3 A NON-RELATIVISTIC LIMITING PROCEDURE

i.e.

Dλθ = θ̇ − 1

4
ẋµ

Ωµ
AB(E, Ψi) γABθ . (3.96)

As we are only interested in terms up to second order in fermions, expressions
like ηABΠ

A
Π

B are understood to contain only such terms and all terms quartic in
fermions are discarded.

The action (3.94) is invariant under the following supersymmetry transforma-
tions of the embedding coordinates

δxµ = −1

4
δij η̄i γAθj Eµ

A , δθi = ηi . (3.97)

These transformations should be accompanied by the following σ-model transfor-
mations [121, 122] of the background fields, as explained e.g. in [101, 111]:

δEµ
A =

1

2
δij η̄i γA

Ψµj −
1

4
δij η̄i γBθj Eρ

B∂ρEµ
A , δΨµi = Dµηi ,

δMµ =
1

2
εij η̄i Ψµj −

1

4
δij η̄i γBθj Eρ

B∂ρ Mµ .

(3.98)

The action (3.94) is also left invariant by the κ-transformations

δκxµ = −1

4
δij θ̄i γAδκθj Eµ

A , δκθ1 = κ , δκθ2 = − Π
AγA√
−Π2

κ . (3.99)

In this case all background fields transform under κ-symmetry only through their
dependence on the embedding coordinates. To show invariance under supersym-
metry and κ-symmetry, one needs to use the equations of motion of the background
fields.

With all these preliminaries at hand, it is now straightforward to apply the limit-
ing procedure to the relativistic superparticle action (3.94). This yields the following
result:

Snr =
m

2

∫

dλ

[

π̂aπ̂bδab

π̂0
− 2 ẋµ

(

mµ − θ̄−γ0ψµ−
)

− θ̄−γ0D̂θ−

− 1

2
ẋµωµ

a θ̄+γaθ−

]

,

(3.100)
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where we have defined the following supersymmetric line-elements

π̂0 = ẋµ
(

τµ − 1

2
θ̄+γ0ψµ+

)

+
1

4
θ̄+γ0D̂θ+ , (3.101)

π̂a = ẋµ
(

eµ
a − 1

2
θ̄+γaψµ− − 1

2
θ̄−γaψµ+

)

+
1

4
θ̄+γaD̂θ− +

1

4
θ̄−γaD̂θ+

+
1

8
θ̄+γaγb0θ+ ẋµωµ

b .

(3.102)

Note that the supercovariant derivative D̂ is covariant with respect to spatial rota-
tions, not boosts. The boost-connection ωµ

a that appears in eqs. (3.100) and (3.102)
is the dependent boost-connection (3.61). For notational simplicity we do not de-
note below its dependence on the other fields. The transformations of the embed-
ding coordinates under κ-symmetry are given by

δt = −1

4
θ̄+γ0κ , δθ+ = κ ,

δxi = −1

4
θ̄−γiκ − 1

8

π̂ j

π̂0
θ̄+γ0iγjκ , δθ− = − π̂i

2π̂0
γi0κ .

(3.103)

This reproduces precisely, to second order in fermions, the κ-symmetric non-relativ-
istic superparticle in a curved background as presented in [111]. Fixing κ-symmetry
by setting θ+ = 0 leads to the result of [111]. When we gauge-fix the Newton–
Cartan background to a Galilean background with a Newton potential Φ, the one
described in [77], the action (3.100) reduces to

Snr =
m

2

∫

dλ

[

πi
Φ

πi
Φ

π0
− 2 ṫ

(

Φ − θ̄−γ0
Ψ
)

− θ̄−γ0θ̇− +
ṫ

2
∂iΦ θ̄+γiθ−

]

, (3.104)

with the “super-Galilean” line-elements given by

π0 = ṫ +
1

4
θ̄+γ0θ̇+ , (3.105)

πi
Φ
= ẋi − 1

2
ṫ θ̄+γi

Ψ +
1

4
θ̄+γi θ̇− +

1

4
θ̄−γi θ̇+ − 1

8
ṫ ∂jΦ θ̄+γiγj0θ+ . (3.106)

This finishes our discussion of the superparticle in a non-relativistic curved back-
ground. We have shown that the limiting procedure can be applied to also obtain
results different from gravitational backgrounds. In the next section we present a
short recap of this chapter and give an outlook on possible further applications of
the limiting procedure that we have developed.
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3.7 Conclusion

In this chapter we have established a procedure to derive a non-relativistic theory
of supergravity from a relativistic one. Our ansatz is strongly motivated by the con-
traction of relativistic symmetry algebras to non-relativistic ones. This contraction
determines the scaling of all gauge-fields. Usually, the easiest part then is to find
the transformation rules of the independent non-relativistic gauge-fields. These can
be compared to the transformations rules that we would find had we started out
by gauging the non-relativistic symmetry algebra directly.

One non-trivial aspect of the procedure consists of finding the correct set of
constraints. For example, in order to avoid divergences we need to set to zero some
of the curvatures of the gauge-fields like e.g. F̂µν(M) = 0. Here, the difficulty lies in
finding a complete set of constraints, such that we eliminate not only the divergent
terms, but also all their putative, finite contributions in the commutator algebra.
The chains of constraints (3.65)–(3.67) and (3.86)–(3.87) comprise such complete sets
of constraints.

Also, as we established in the explicit exercise in section 3.4, it is not always
straightforward to find all the equations of motion by taking the non-relativistic
limit of the relativistic equation of motion. For example, the equations (3.67) do not
follow from a non-relativistic limit of the relativistic equations of motion. We were
able though to find the non-relativistic equation of motion by varying all constraints
under supersymmetry.

In our last example we took the non-relativistic limit of a point-particle that
moves in an arbitrary dynamical supergravity background. The aim of this analysis
was to perform yet another check of the procedure, by deriving the results of [111],
and also to show that the limit works on theories other than pure (super)gravity.

As hopefully made clear by the examples in this chapter, our procedure does not
just consist of taking a limit. We also have to impose constraints and sometimes
eliminate fields. In this sense it is a truncation as much as a limit. Therefore we
prefer to refer to it as the “non-relativistic limiting procedure” rather than the “non-
relativistic limit”. Simply calling it a non-relativistic limit certainly also causes con-
fusion with previous works in the literature.

Many different such non-relativistic limits have been put forward in the litera-
ture, including supersymmetric theories, see e.g. [13, 16, 90, 91, 118, 123, 124]. How-
ever, none of them quite compares to our limit because they do not make this sys-
tematic use of the contraction of symmetry algebras.

Our hope is that this new way of thinking about the non-relativistic limit enables
us not only to re-derive known results, as we mainly did in this chapter, but also
to use the limit to get novel non-relativistic (supergravity) theories, like in section
3.5. For example, in chapter 6 we make use of this procedure to derive novel non-
relativistic matter multiplets.

In chapter 2, see section 2.5.4, we already mentioned the issue of taking the
limit in three space-time dimensions. Very similar structures appear in the super-
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symmetric case as well, i.e. in the limit a relativistic source cannot yield any (source)
contribution on the right-hand-side of the equation of motion (3.67).

Note that we did not look at the non-relativistic limit of electrodynamics in this
chapter. This is an interesting extension as there exists more than one limit in this
case [125]. This has to do with the fact that we only consider c → ∞ here, where c
is the speed of light. In electrodynamics c is related to two “coupling constants” ε0

and µ0 via ε0µ0 = 1/c2. Sending c → ∞ yields ε0µ0 → 0, but we can still choose
which of the two vanishes. This leads to an “electric” and a “magnetic” limit which
lead to different non-relativistic theories.

A worthwhile exercise might be to apply this procedure to the four-dimensional
supergravity multiplet. Ideally, this leads to a four-dimensional Newton–Cartan
supergravity theory, which has not been found so far. However, our procedure is
not bound to lead to a result, unless one chooses the correct starting point. In partic-
ular, without the correct constraints that allow one to get rid of putative divergent
terms, such as e.g. F̂µν(M) = 0 in our examples, the procedure will not yield a good
result. That is not to say that four-dimensional Newton–Cartan supergravity does
not exist, but a bit of trial and error might be needed to find the correct starting
point.

There also exist other, for example ultra-relativistic contractions of symmetry
algebras. Having a limiting procedure that depends only on the contraction itself,
but not the fact that it is a non-relativistic contraction, means that we should be
able to generalize the procedure and apply it to derive an ultra-relativistic Carroll
gravity [61] as well and to derive Carroll (super)particle actions such as those given
in [59, 60].

We will come back to this in the last chapter of this thesis where we also aim to
give a more detailed outlook on possible applications of our (not necessarily non-
relativistic) limiting procedure.





4
Newton–Hooke supergravity

In this chapter we will derive a cosmological extension of non-relativistic su-
pergravity. To obtain this theory, Newton–Hooke supergravity, we will use
gauging techniques, like we discussed in chapter 2. To do so, we need the
Newton–Hooke superalgebra, which we derive in section 4.1. Then, we derive
non-relativistic supergravity on cosmological space-time manifolds, i.e. with a
non-vanishing cosmological constant, in section 4.2. We proceed to discuss a
particular gauge-fixing to obtain a Galilean version of Newton–Hooke super-
gravity in section 4.3. In section 4.4, we discuss how the results of this chapter
are related to their relativistic counterpart, anti-de Sitter supergravity, through
the non-relativistic limiting procedure introduced in chapter 3.
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This chapter is largely based on the construction of Newton–Cartan supergravity
in [77]. Here, we will perform a similar analysis for a slightly more general case by
including a negative cosmological constant ΛCC = −1/R2. Of course, all formulas
that we obtain in this chapter must reduce to those of Newton–Cartan supergravity
in the limit R → ∞. This always serves as a quick check on the results that we are
about to derive.

Given that there are no actions for non-relativistic (super)gravity theories, gaug-
ing procedures so far were the only way to construct, and understand, such the-
ories. This is why, in this chapter, we start out by constructing this new non-
relativistic supergravity theory in precisely that way. The analysis proceeds along
similar lines as we saw in chapter 2, when we showed how general relativity can be
constructed by gauging the Poincaré algebra. In this chapter, we will gauge a non-
relativistic superalgebra, the Newton–Hooke superalgebra. The bosonic version of
this algebra can be derived from the (anti-)de Sitter algebra by an Inönü–Wigner
contraction [126]. For more works on Newton–Hooke algebras and space-times see
e.g. [127–132] and supersymmetric extensions can be found e.g. in [133–135]. Here,
we will derive the superalgebra ourselves by a non-relativistic contraction of an
anti-de Sitter superalgebra. To show how this contraction works on the algebra is
important when we want to take the limit of the supergravity fields later.

The gauging of the Newton–Hooke superalgebra will lead to a theory with
many, in some sense too many, symmetries. Like in the relativistic case we will im-
pose curvature constraints, see also [77]. It will then be possible to solve for some
of the gauge-fields explicitely. We will also consider a partial gauge-fixing, where
we use some of the curvature constraints to fix particular values of the gauge-fields,
i.e. to eliminate some of their components. We will make maximal use of this to de-
rive a Galilean version of Newton–Hooke supergravity, i.e. a supergravity theory
of a Galilean observer. This Galilean observer is living on a space-time manifold
which is curved due to the presence of a cosmological constant. In this special sce-
nario space-time is curved, but space is flat, i.e. Rµν

ab(J) = 0. In the end, we will
relate the theory that we construct here to a relativistic one via the non-relativistic
limiting procedure introduced in the previous chapter.

We have no prove that the limit must always lead to the same theory that we
would get from gauging. Hence, this chapter also serves as a check on the non-
relativistic contraction itself. In particular, we will derive the same novel super-
gravity theory in two different ways, via gauging and via the limiting procedure.
For that purpose, let us recall the figure 1.1 that we used in the introduction. A
similar diagram may serve as the motivation for the current chapter, see figure 4.1.
The aim of this chapter is thus to show that the gravitational theories obtained by
gauging the Newton–Hooke (super)algebra coincide with the theories that follow
from taking the non-relativistic limit of anti-de Sitter (super)gravity.

This chapter is organized as follows. In section 4.1 we derive the Newton–
Hooke (super)algebra. Then we proceed to gauge it to get Newton–Hooke su-
pergravity in section 4.2. Section 4.3 deals with a particular gauge-fixing of the
Newton–Hooke supergravity background. In section 4.4 we use the contraction of
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AdS

AdS SUGRA

Newton–Hooke

super Newton–Hooke

SUSY SUSY

non-relativistic

non-relativistic

Figure 4.1: Non-relativistic limits and supersymmetric extensions of cosmological
gravity (AdS) and anti-de Sitter supergravity (AdS SUGRA).

the algebra presented in section 4.1 and the non-relativistic limiting procedure of
chapter 3 to re-derive the supergravity theory of section 4.2.

4.1 The Newton–Hooke superalgebra

Newton–Hooke (super)gravity is the cosmological extension of Newton–Cartan
(super)gravity. While the latter one is related to the Bargmann (super)algebra the
former one follows from gauging the cosmological extension of the Bargmann al-
gebra, the Newton–Hooke (super)algebra. There are two versions of the Newton–
Hooke algebra, one for a positive and one for a negative cosmological constant.
They follow from an Inönü–Wigner contraction of the de Sitter and anti-de Sitter
algebra, respectively. In the supersymmetric case, however, we will focus only on
a negative cosmological constant.1

There are two different anti-de Sitter algebras with two supersymmetries, the
so-called N = (1, 1) and the N = (2, 0) algebra. In this chapter, we shall use
a Newton–Hooke superalgebra that stems from the latter one and the reason for
doing so is as follows. In chapter 2 and again in section 3.3, we argued why we are
interested in non-relativistic superalgebras with two supercharges: we want that
the commutator of two supercharges yields time- and space-translations. This is
the case for the non-relativistic analog of the N = (2, 0) algebra but not for the
other one. The N = (1, 1) algebra is a direct product OSp(1|2)⊗OSp(1|2), i.e. it is
essentially the product of two N = 1 algebras. Taking a contraction thereof will
only lead to a product of two non-relativistic N = 1 algebras which, as we argued
before, is not of the desired form. We shall show this in more detail in the following
subsection.

1 Formally, one can also define a Newton–Hooke superalgebra with positive cosmological constant.
However, as in the relativistic case, one has problems defining a strictly positive Hamiltonian, see [136].



74 CHAPTER 4 NEWTON–HOOKE SUPERGRAVITY

4.1.1 The N = (1, 1) anti-de Sitter superalgebra

The N = (1, 1) anti-de Sitter superalgebra is given by

[

MAB, PC

]

= −2 ηC[A PB] ,
[

MAB, Q±] = −1

2
γABQ± ,

[

MAB, MCD

]

= 4 η[A[C MD]B] ,
[

PA, Q±] = ±x γAQ± ,
[

PA, PB

]

= 4 x2MAB ,
{

Q±
α , Q±

β

}

= 4 [γAC−1]αβPA ± 4 x [γABC−1]αβ MAB .

(4.1)

If you compare it to the bosonic Poincaré algebra (2.15) you note that the difference
is that translations do not commute. They lead to a rotation and scale with the
cosmological parameter x. It is sometimes given in terms of the anti-de Sitter radius
R by x = 1/2R. The last formula in (4.1), the anti-commutator of two supercharges,
should be read using either only upper or only lower signs. The anti-commutator
of Q+ with Q− is zero in general. We could opt to add a central charge in this
commutator but since we will not use the algebra we refrain from adding yet more
detail.

It is easy to show that this is the N = (1, 1) algebra by defining new ’rotation’
generators by

MC = ǫCAB MAB , J±A = PA ± x MA . (4.2)

Then we can show that the supercharges rotate in the following way:

[

J±A , Q±] = ±2 x γAQ± ,
{

Q±
α , Q±

β

}

= 4 [γAC−1]αβ J±A . (4.3)

Again, it is understood that any (anti-)commutator of a plus generator with a minus
generator vanishes, hence the N = (1, 1) character is manifest.

The Inönü–Wigner contraction should proceed similar to the contraction of the
Poincaré algebra. The cosmological parameter x scales as

x → 1

2ω R
, (4.4)

but we cannot find suitable combinations of the spinor charges Q+ and Q− such
that we could scale them differently. It turns out that the only way not to run into
problems with divergences is to scale both generators in the same way:

Q± → 1√
ω

Q± . (4.5)

As a result the anti-commutator of two supercharges is identically zero (because
we did not add a central charge).
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4.1.2 The N = (2, 0) anti-de Sitter superalgebra

Now let us proceed to discuss the N = (2, 0) algebra. It is given by

[

MAB, MCD

]

= 2 ηA[C MD]B − 2 ηB[C MD]A ,
[

MAB, Qi
]

= −1

2
γABQi ,

[

MAB, PC

]

= −2 ηC[A PB] ,
[

PA, Qi
]

= x γAQi ,

[

PA, PB

]

= 4 x2 MAB ,
[

R, Qi
]

= 2 x εijQj ,

(4.6)

{

Qi
α, Q

j
β

}

= 2 [γAC−1]αβ PA δij + 2 x [γABC−1]αβ MAB δij + 2 C−1
αβ εij R .

In the flat limit x → 0 the SO(2) R-symmetry generator R becomes the central
element of the Poincaré superalgebra, see (2.66).

From here, the contraction proceeds similar to the one for the Poincaré algebra,
i.e. we use (3.2) and (3.49). The only difference is that we replace the central element
of the Poincaré algebra Z with the R-symmetry generator R,

R → 1

2ω
H − ω Z , (4.7)

and we add the aforementioned scaling of the cosmological parameter (4.4). After
the contraction we find the non-vanishing commutators of the N = (2, 0) Newton–
Hooke superalgebra:

[

Jab, (P/G)c

]

= −2 δc[a(P/G)b] ,
[

H, Ga

]

= Pa ,

[

H, Pa

]

= − 1

R2
Ga ,

[

Jab, Q±] = −1

2
γabQ± ,

[

H, Q+
]

= − 1

2R
γ0Q+ ,

[

H, Q−] =
3

2R
γ0Q− ,

[

Ga, Q+
]

= −1

2
γa0Q− , [Pa, Q+] =

1

2R
γaQ− ,

{

Q+
α , Q+

β

}

= [γ0C−1]αβ H +
1

2R
[γabC−1]αβ Jab ,

{

Q+
α , Q−

β

}

= [γaC−1]αβ Pa +
1

R
[γa0C−1]αβGa .

(4.8)

The above formulas give the Newton–Hooke superalgebra without the central ex-
tension Z. The generator Z appears in the following (anti-)commutation relations:

[

Pa, Gb

]

= δab Z ,
{

Q−
α , Q−

β

}

= 2 [γ0C−1]αβ Z . (4.9)

Of course, as is indeed the case here, we must obtain the Bargmann superalgebra
when we send R → ∞. In the following we try to realize this algebra on a set of
independent gauge-fields.
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4.2 Gauging the Newton–Hooke superalgebra

It is not difficult to gauge the Newton–Hooke superalgebra and to realize it on in-
dependent gauge-fields τµ, eµ

a, mµ, ωµ
ab, ωµ

a, ψµ+ and ψµ−. These are the gauge-
fields for the generators (H, Pa, Z, Jab, Ga, Q+, Q−) of time- and space-translations,
central charge transformations, rotations, boosts and the two supersymmetries, re-
spectively. The non-trivial part, in principle, is to find a set of constraints that sim-
plifies replacing local translations by diffeomorphisms and at the same time enables
us to solve for the spin- and boost-connection such that the only independent fields
left are τµ, eµ

a, mµ, ψµ+ and ψµ−. As we will see, we can use the same constraints
that were imposed in [77], hence leading to a torsionless version of Newton–Hooke
gravity.

4.2.1 Transformation rules

We find that the bosonic symmetries of the independent fields are given by

δτµ = 0 ,

δeµ
a = λa

b eµ
b + λa τµ ,

δmµ = ∂µσ + λa eµ
a ,

(4.10)

and

δψµ+ =
1

4
λabγabψµ+ ,

δψµ− =
1

4
λabγabψµ− − 1

2
λaγa0ψµ+ .

(4.11)

After we solve for the spin-connections in terms of the fields above their new trans-
formation rules will be determined through their dependence on other fields. As
it turns out, the bosonic transformation rules will be un-altered but we need to be
very careful about their transformation under supersymmetry. Therefore, we shall
give those transformations only after solving for the spin-connections in terms of
the independent fields.

The transformation rules of the independent fields under supersymmetry fol-
low from the same principle as the bosonic ones and we find

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

(4.12)
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as well as

δψµ+ = Dµǫ+ +
1

2R
τµ γ0ǫ+ ,

δψµ− = Dµǫ− − 3

2R
τµ γ0ǫ− +

1

2
ωµ

aγa0ǫ+ − 1

2R
eµ

a γaǫ+ .

(4.13)

The supercovariant curvatures associated to those transformation rules are found
in much the same way as the transformation rules themselves, they are dictated by
the structure constants of the algebra:

R̂µν(H) = 2 ∂[µτν] −
1

2
ψ̄+[µγ0ψν]+ ,

R̂µν
a(P) = 2 ∂[µeν]

a − 2 ω[µ
abeν]b − 2 ω[µ

aτν] − ψ̄+[µγaψν]− ,

R̂µν(Z) = 2 ∂[µmν] − 2 ω[µ
aeν]a − ψ̄µ−γ0ψν− ,

ψ̂µν+ = 2 ∂[µψν]+ − 1

2
ω[µ

abγabψν]+ +
1

R
τ[µ γ0ψν]+ ,

ψ̂µν− = 2 ∂[µψν]− − 1

2
ω[µ

abγabψν]− − 3

R
τ[µγ0ψν]−

+ ω[µ
aγa0ψν]+ − 1

R
e[µ

aγaψν]+ .

(4.14)

and

R̃µν
a(G) = 2 ∂[µων]

a − 2 ω[µ
abων]b +

2

R2
e[µ

aτν] −
1

R
ψ̄[µ−γa0ψν]+ ,

R̂µν
ab(J) = 2 ∂[µων]

ab +
1

2R
ψ̄µ+γabψν+ .

(4.15)

We should point out that R̃µν
a(G) as it is defined here, will not be covariant any-

more when the spin- and boost-connections become dependent fields. This is due
to the fact that its supersymmetry transformation changes, hence the curvature that
is given in (4.15) will get additional contributions to accommodate those changes
in the transformation rules. We will denote the covariant curvature R̂µν

a(G) later
in this chapter.

The Bianchi identities, that we will refer to later on, are defined for the curva-
tures (4.15). However, taking into account the full set of constraints we are able to
show that for the on-shell case it does not matter which curvature we write in the
Bianchi identities. This is different in the off-shell formulation that we discussed in
chapter (3). There we saw terms that depend on (derivatives of the) auxiliary field
appear in the Bianchi identities.
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4.2.2 Curvature constraints and solving for the spin-connections

We want to replace the local translations, H and P transformations, by diffeomor-
phisms. In connection to this we are going to impose constraints on the curvatures
(4.14) for two purposes. First, we would like to simplify our system as much as
possible and remove gauge degrees of freedom. Therefore, we set

R̂µν(H) = 0 , ψ̂µν+ = 0 , R̂µν
ab(J) = 0 . (4.16)

We will see in the next section how these constraints can be used to choose a par-
ticular gauge-fixing that will lead to the Galilean version of Newton–Hooke super-
gravity.

The last constraint tells us that space, not space-time (!), is flat. The first two are
related to the choice of a preferred time-frame and its supersymmetric analog. In
the bosonic case, the constraint Rµν(H) = 2 ∂[µτν] = 0 implies that the gauge-field
of time-translations is pure gauge, τµ = ∂µt. Hence, τµ is a Stückelberg field and
so is its fermionic partner ψµ+. All constraints in (4.16) are related to each other via
supersymmetry variation, in particular Q+ transformations.

On a different note, the first constraint R̂µν(H) = 0 implies that there is no
torsion. In the bosonic case, one can consider imposing slightly weaker conditions,
for example requiring that only the spatial projection of R̂µν(H) vanishes. One
would then speak of twistless torsional Newton–Cartan geometry, see [29], and
also chapter 5.

There is a second set of constraints, in addition to (4.16), which is motivated by
the fact that we want the spin-connections ωµ

ab and ωµ
a to be dependent fields.

Thus, we impose the so-called conventional constraints

R̂µν
a(P) = 0 , R̂µν(Z) = 0 . (4.17)

Below we will explicitely show how these constraints can be used to solve for the
non-relativistic spin-connections.

In a next step, we have to check whether or not the set (4.16) and (4.17) is indeed
a consistent truncation of our theory. This means we need to vary the constraints
under all symmetries to see if they imply further restrictions on the gauge-fields. In
fact, we need to do this only for the constraints (4.16). The second set (4.17) is used
to determine the dependent fields in terms of the independent ones and thus they
are fulfilled identically.

Before we can look to the variations of constraints we need to solve for the now
dependent ωµ

ab and ωµ
a, to calculate their transformation rules. Equivalently, we

could also derive the transformation rules by varying the curvatures R̂µν
a(P) and

R̂µν(Z). Requiring that these variations must vanish also leads to the expressions

for δωµ
ab and δωµ

a. Once we have those transformation rules, we can proceed to
investigate the consistency of our constraints.
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We solve for the spin-connections in the following way. First, we use

eρ
a R̂µν

a(P) + eν
a R̂ρµ

a(P)− eµ
a R̂νρ

a(P) = 0 , (4.18)

to obtain

ωµ
ab(e, τ, m, ψ±) = −2 eν[a

(

∂[µeν]
b] − 1

2
ψ̄[µ+γb]ψν]−

)

+ eµc eρaeνb
(

∂[µeν]
c − 1

2
ψ̄[µ+γcψν]−

)

− τµ eρ[aωρ
b](e, τ, m, ψ±) .

(4.19)

To get an expression for ωµ
a(e, τ, m, ψ±) we contract R̂µν

a(P) and R̂µν(Z) with eµ
a

and τµ. We find

eµ(aωµ
b)(e, τ, m, ψ±) = −2 τµeν(a

(

∂[µeν]
b) − 1

2
ψ̄[µ+γb)ψν]−

)

,

eµ[aωµ
b](e, τ, m, ψ±) = eµaeνb

(

∂[µmν] −
1

2
ψ̄[µ−γ0ψν]−

)

,

τµωµ
a(e, τ, m, ψ±) = 2 τµeνa

(

∂[µmν] −
1

2
ψ̄[µ−γ0ψν]−

)

.

(4.20)

Now we can use (4.19) and (4.20) to derive the explicit forms

ωµ
ab(e, τ, m, ψ±) = −2 eν[a

(

∂[µeν]
b] − 1

2
ψ̄[µ+γb]ψν]−

)

+ eµ
c eρaeνb

(

∂[ρeν]
c − 1

2
ψ̄[ρ+γcψν]−

)

− τµ eρaeνb
(

∂[ρmν] −
1

2
ψ̄[ρ−γ0ψν]−

)

,

(4.21)

ωµ
a(e, τ, m, ψ±) = τν

(

∂[µeν]
a − 1

2
ψ̄[µ+γaψν]−

)

+ eµb eρaτν
(

∂[ρeν]
b − 1

2
ψ̄[ρ+γbψν]−

)

+ eνa
(

∂[µmν] −
1

2
ψ̄[µ−γ0ψν]−

)

− τµ eρaτν
(

∂[ρmν] −
1

2
ψ̄[ρ−γ0ψν]−

)

.

(4.22)

We can use these expressions to check that the bosonic transformations are

δωµ
ab = ∂µλab ,

δωµ
a = ∂µλa + λa

b ωµ
b − ωµ

abλb ,
(4.23)
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while the supersymmetry transformations result in

δωµ
ab(e, τ, m, ψ±) = − 1

2R
ǭ+γabψµ+ , (4.24)

δωµ
a(e, τ, m, ψ±) = ǭ−γ0ψ̂µ

a− +
1

2R
ǭ−γa0ψµ+

+
1

4
eµ

b ǭ+γbψ̂a
0− +

1

4
ǭ+γaψ̂µ0− +

1

2R
ǭ+γa0ψµ− .

(4.25)

Now we turn to checking consistency of the constraints (4.16). In fact, in writing
(4.24) and (4.25) we already used the constraint

ψ̂ab− = 0 , (4.26)

which follows from a Q− transformation of (4.16). As we mentioned already the
constraints transform to each other under Q+ transformations. In fact, this is true
only if we also require

γ[aψ̂b]
µ = 0 . (4.27)

This constraint can also be written in a slightly different, simpler form, see (4.31)
below. Additional constraints can be found by looking at Bianchi identities. They
imply that

R̂ab
c(G) = 0 , R̂0[a

b](G) = 0 , (4.28)

where the supercovariant boost curvature is given by

R̂µν
a(G) = R̃µν

a(G)− 2 ψ̄[µ−γ0ψ̂ν]
a− − 1

2
e[ν

b ψ̄µ]+γbψ̂a
0− − 1

2
ψ̄[µ+γaψ̂ν]0− ,

(4.29)

If we add the bosonic equation of motion,

R̂0a
a(G) = 0 , (4.30)

we have collected all constraints in eqs. (4.16) and (4.26)–(4.30). To close the com-
mutator algebra of the transformation rules (4.10)–(4.13), we can in principle opt
for an on-shell or an off-shell version. Here, we choose the on-shell version where
the equations of motion are given by

R̂0a
a(G) = 0 , γaψ̂a0− = 0 . (4.31)

To show that the supersymmetry algebra closes, only the latter constraint is needed.
Under supersymmetry it transforms into the bosonic equation of motion, i.e. the
first one.
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At last, we find that Newton–Hooke supergravity is given by a multiplet of five
independent gauge-fields τµ, eµ

a, mµ, ψµ+ and ψµ− with transformation rules given
in eqs. (4.10)–(4.13). The spin-connections transform according to (4.23)–(4.25). The
full set of constraints is given by (4.16), (4.26)–(4.30). The commutator algebra of all
transformations realizes the N = 2 Newton–Hooke superalgebra (4.8), where the
anti-commutator of two supercharges is given by

[

δQ(ǫ1), δQ(ǫ2)
]

= δg.c.t.

(

Ξ
ρ
)

+ δJ

(

Λa
b
)

+ δG

(

Λ
a
)

+ δZ

(

Σ
)

+ δ+
(

Υ+
)

+ δ−
(

Υ−
)

.
(4.32)

The parameters of the transformations on the right-hand-side are given by

Ξ
µ =

1

2
ǭ2+γ0ǫ1+ τµ +

1

2

(

ǭ2+γaǫ1− + ǭ2−γaǫ1+

)

eµ
a ,

Λ
ab = −Ξ

µωµ
ab − 1

2R
ǭ2+γabǫ1+ ,

Λ
a = −Ξ

µωµ
a +

1

2R

(

ǭ2+γa0ǫ1− + ǭ2−γa0ǫ1+

)

,

Υ± = −Ξ
µψµ± ,

Σ = −Ξ
µmµ + ǭ2−γ0ǫ1− .

(4.33)

This completes the construction of Newton–Hooke supergravity through the gaug-
ing procedure. Note that the equations of motion (4.31) are introduced “by hand”.
There is no action for Newton–Hooke supergravity whose maximization would
give rise to those equations.

In the last part of this chapter, we will re-derive the theory of Newton–Hooke
supergravity that we constructed here, using the non-relativistic limiting procedure
developed in chapter 3. Before doing so, we will proceed with solving some of the
constraints (4.16), by choosing a particular gauge for the background fields.

4.3 Galilean Newton–Hooke supergravity

In this section we will make use of the constraints (4.16) and (4.26) to gauge-fix most
of the fields. Starting out with three independent bosonic vector fields τµ, eµ

a and
mµ, we shall at the end be left with a single scalar field Φ, which we will identify as
Newton’s potential on curved space. Similarly, the two fermionic vectors ψµ+ and
ψµ− will be reduced to a single spinor Ψ.

In the previous section, it was implied that all gauge-parameters are local func-
tions of space and time. In this section some—but, crucially, not all of them—will
become constants, which is why we shall find it useful to write all coordinate de-
pendence explicitly. Wherever this does not lead to formulas that are too long we
shall do the same also for the gauge-fields.

The starting point of the gauge-fixing performed in this section is given by the
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constraints (4.16). Since it essentially amounts to τµ = ∂µt with t being some gauge-
parameter we can choose a foliation of space-time such that

τµ(xα) = δ0
µ . (4.34)

This needs to be supplemented with the supersymmetrically analog restriction

ψµ+(xα) = 0 . (4.35)

Setting R̂µν
ab(J) = 0 also enables us to choose a spatially flat space, such that we

may also use

ωµ
ab(xα) = 0 . (4.36)

It follows from the transformations (4.10), (4.11), (4.23) and (4.24), that the gauge-
fixings (4.34)–(4.36) imply that the following parameters become constant:

ξ0(xα) = ζ , λa
b(xα) = λa

b , ǫ+(xα) = ǫ+,t = e−
t

2R γ0 ǫ+ . (4.37)

The fact that the manifold is flat also implies that the spatial components of the
vielbein must obey

ei
a(xα) = δa

i . (4.38)

Using all the gauge-choices above, and the fact that the spatial components of
R̂ab

c(G) vanish, we observe that

∂[iωj]
a(xα) = 0 . (4.39)

This means that locally we can always write

ωi
a(xα) = ∂i ωa(xα) , (4.40)

with ωa a dependent field, since ωµ
a was dependent. Using (4.34) and (4.38), we

can deduce from the definition of the projective inverses eµ
a and τµ that

τµ(xα) =
(

1, τi(xα)
)

, e0
a(xα) = −τa(xα) , eµ

a(xα) =
(

0, δi
a

)

. (4.41)

Returning to our gauge-fixing conditions, we note that in addition to (4.38) we
should require

ψi−(xα) = 0 . (4.42)

Certainly, this solves for example the constraint (4.26). The compensating transfor-
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mations that we get from imposing (4.38) and (4.42) are

ξ i(xα) = ξ i(t)− λi
jx

j ,

ǫ−(xα) = ǫ−(t)−
1

2
ωa(xα)γa0ǫ+,t +

xi

2R
γiǫ+,t .

(4.43)

So far the motivations for our gauge-choices where of a somewhat physical nature.
Since we want to derive a Galilean theory we required absolute time and that space
is flat. In order to figure out our next step, we may pause for a moment and write
down the transformations of all independent fields that are left still. These are,
from (4.41), τi(xα), the complete mµ(xα) and the time component of one of the
gravitinis, ψ0−(xα). We shall find it useful to consider separately the time- and
space-components of mµ(xα). Also, to make the transformation rules more reader
friendly we do not denote the dependence of the background fields on the space-
time coordinates xα. We have

δτi(xα) = ζ ∂tτ
i + ξ j(t) ∂jτ

i − λj
k xk∂jτ

i + λi
j τ j − λi(xα)

− ∂tξ
i(t)− 1

2
ǭ+,tγ

iψ0− ,
(4.44)

δmi(xα) = ζ ∂tmi + ξ j(t) ∂jmi − λj
k xk∂jmi + λi

j mj + λi(xα) + ∂iσ(xα) ,

(4.45)

δm0(xα) = ζ ∂tm0 + ξ i(t) ∂im0 − λi
j xj∂im0 + miξ

i(t)− λi(xα) τi + ∂tσ(xα)

+ ǭ−(t)γ0ψ0− +
1

2
ωa ǭ+,tγaψ0− − xi

2R
ǭ+,tγ

i0ψ0− , (4.46)

δψ0−(xα) = ζ ∂tψ0− + ξ i(t) ∂iψ0− − λi
j xj∂iψ0− +

1

4
λabγabψ0−

+ ∂tǫ−(t)−
1

2
∂t

(

ωaγa0ǫ+,t
)

− xi

4R2
γi0ǫ+,t −

3

2R
γ0ǫ−(t)

− 3

4R
ωaγaǫ+,t +

3xi

4R2
γi0ǫ+,t +

1

2
ω0

aγa0ǫ+,t +
1

2R
τiγiǫ+,t .

(4.47)

At this point we could already remove either τi(xα) or mi(xα), since they both are
Stückelberg fields of λi. As it turns out, we can better use a constraint coming from
(4.36) to first remove mi(α) completely and only then we shall deal with τi(xα).
This works as follows.

The zero component ω0
ab(xα)—using (4.21) and all other gauge-choices im-

posed in this section—reads

ω0
ab(xα) = −∂[a

(

τb] + mb]

)

= 0 . (4.48)
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It follows that we can define

τi(xα) + mi(xα) = ∂im(xα) , (4.49)

and the transformation rule of the new field m(xα) is

δ(∂im) = ∂i

(

ζ ∂tm + ξ j(t) ∂jm − λj
k xk∂jm − xj ∂tξ

j(t) + σ(xα)
)

− 1

2
ǭ+,tγ

iψ0− .
(4.50)

Note that we can write each but the last term as a partial derivative ∂i. If it was
not for the ǭ+,t term, m(xα) would be a Stückelberg field too and we could easily
eliminate it by gauge-fixing σ(xα).

One way around this issue would be to define a new spinor by

γiψ0− = ∂iχ , ψ0− =
1

2
γi∂iχ . (4.51)

This also leads to the appearance of a new bosonic fields as we shall see later.

For now we will rather choose to keep the explicit partial derivatives and gauge-
fix ∂im(xα) = 0 such that

∂iσ(xα) = ∂tξ
i(t) +

1

2
ǭ+,tγ

iψ0− . (4.52)

Independently of whether we proceed like this, or if we had used (4.51), we can
next eliminate τi(xα) by use of the local Lorentz boosts λi(xα). The compensating
gauge-transformation that we obtain is

λi(xα) = −∂tξ
i(t)− 1

2
ǭ+,tγ

iψ0− . (4.53)

Finally, we are left with only two fields, the bosonic m0(xα) and the fermionic
ψ0−(xα). In the following we shall denote them by Φ(xα) and Ψ(xα). Furthermore,
we will also refrain from further denoting the dependence on the coordinates xα.
This was only useful to determine all compensating gauge-transformations and to
solve for the new gauge-parameters. This task is now completed.

In (4.52) we only determined the partial space derivative of σ, but to write down
the new transformation rule of Φ we need the expression for the full function σ.
Given that (4.52) includes the unknown function Ψ we cannot simply integrate it
as we did earlier. What we will do instead, is to add a partial derivative to (4.46) to
obtain a transformation rule for the partial derivative of the Newton potential ∂iΦ.

We also have to find the expression of ωa and ω0
a in terms of Φ and Ψ. From
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(4.22) we get

ω0
a = −∂aΦ , ωi

a = ∂iω
a = 0 . (4.54)

In summary, the transformation rules for the ’Newton force’ ∂iΦ and its supersym-
metric partner Ψ are given by

δ(∂iΦ) = ζ ∂t(∂iΦ) + ξ j(t) ∂j(∂iΦ)− λj
k xk∂j(∂iΦ) + λi

j (∂jΦ) + ∂t∂tξ
i(t)

+
1

2
∂t

(

ǭ+,tγ
i
Ψ
)

+ ǭ−(t)γ0∂iΨ − xj

2R
ǭ+,tγ

j0∂iΨ − 1

2R
ǭ+,tγ

i0
Ψ ,

(4.55)

δΨ = ζ ∂tΨ + ξ i(t) ∂iΨ − λi
j xj∂iΨ +

1

4
λabγabΨ

+ ∂tǫ−(t)−
3

2R
γ0ǫ−(t) +

xi

2R2
γi0ǫ+,t −

1

2
(∂iΦ) γi0ǫ+,t .

(4.56)

At this point we have successfully obtained a multiplet that realizes the “accelera-
tion-extended” Newton–Hooke superalgebra. The non-vanishing commutators are
given by

[

δζ , δξ i

]

= δξ i

(

− ζξ̇ i(t)
)

,
[

δλi
j
, δξ i

]

= δξ i

(

− λi
jξ

j(t)
)

,

[

δζ , δǫ−
]

= δǫ−
(

− ζǫ̇−(t)
)

,
[

δλi
j
, δǫ−

]

= δǫ−
(

− 1

4
λabγabǫ−

)

,

[

δξ i , δǫ+

]

= δǫ−
(

− 1

2
ξ̇ i(t)γi0ǫ+,t

)

,
[

δλi
j
, δǫ+

]

= δǫ+

(

− 1

4
λabγabǫ+,t

)

,

[

δǫ1+ , δǫ2+

]

= δζ

(1

2
ǭ2+γ0ǫ1+

)

+ δλi
j

( 1

2R
ǭ2+γijǫ1+

)

, (4.57)

[

δǫ+ , δǫ−
]

= δξ i

(1

2
ǭ−(t)γiǫ+,t

)

.

A few comments are in order. First, note that the parameters of the transforma-
tions on the right-hand-side of the anti-commutator of two ǫ+,t supersymmetries
are constant, even though ǫ+,t itself is not, see (4.43). This is so because the two
time-dependent exponential factors cancel each other in any bilinear of two ǫ+,t

with an even number of spatial gamma-matrices. For the same reason we omitted
the subscript t.

Second, the only 1/R correction to the algebra appears in the anti-commutator
of two ǫ+,t supersymmetries, while there are many more in the algebra (4.8). This is
because all Ga and Pa transformations are “combined” in the acceleration-extended
translations ξ i(t). For example, there are 1/R terms in the commutator of ǫ+ with
ǫ−, which leads to a translation ξ i. There are no 1/R terms in the ξ i transformations
in (4.55) and (4.56), but the parameter does depend on R through ǫ+,t.

The multiplet (4.55) and (4.56) closes on-shell. The gauge-fixed versions of the
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equations of motion (4.31) are

∂i∂iΦ =
2

R2
, γi∂iΨ = 0 . (4.58)

One can readily check that they transform into each other under a supersymmetry
transformation.

Let us now come back to the idea put forward in (4.51). Our aim now is to derive
the transformation rule, such as (4.55), for the Newton potential only, not its spatial
derivative. We thus introduce the new fermionic potential χ by

γi
Ψ = ∂iχ , Ψ =

1

2
γi∂iχ . (4.59)

Then we can immediately write down the transformation rule for Φ:

δΦ = ζ ∂tΦ + ξ j(t) ∂jΦ + xi∂t∂tξ
i(t)− λj

k xk∂jΦ + σ(t)

+
1

2
ǭ−(t)γ0i∂iχ +

1

2
∂t

(

ǭ+,tχ
)

+
xi

2R
ǭ+,tγ

0∂iχ .
(4.60)

We have to allow for an arbitrary time-dependent shift because we only know the
transformation of ∂iΦ. Equivalently, we see from (4.52) that such a shift is allowed
in the compensating transformation.

To obtain the same result for χ is more challenging as we have to write (4.56), or
actually γiδΨ, as a partial derivative acting on δχ. The problem here lies with the
ǫ+,t terms. We can write them as

( xj

2R2
− 1

2
∂jΦ

)

γiγj0ǫ+,t =
( xi

2R2
− 1

2
∂iΦ

)

γ0ǫ+,t −
( xj

2R2
− 1

2
∂jΦ

)

εij ǫ+,t ,

(4.61)

where we use εij = γij0. Now we define a “dual Newton potential” Ξ by

∂iΦ − xi

R2
= −εij∂jΞ , ∂iΞ = εij

(

∂jΦ − xj

R2

)

. (4.62)

We thus get

δχ = ζ ∂tχ + ξ i(t) ∂iχ − λi
j xj∂iχ +

1

4
λabγabχ + xiγi ǫ̇−(t)

− 3xi

2R
γi0ǫ−(t)−

1

2

(

Φ − xixi

2R2

)

γ0ǫ+,t +
1

2
Ξ ǫ+,t + η(t) .

(4.63)

It remains to derive the transformation rule for Ξ. From the variation of (4.62) we



4.4 CONNECTION TO THE NON-RELATIVISTIC LIMIT 87

note that

εij∂j(δΦ) = ∂i(δΞ) . (4.64)

This leads to

δΞ = ζ ∂tΞ + ξ j(t) ∂jΞ + εij xi∂t∂tξ
j(t) + εij

xiξ j(t)

R2
− λj

k xk∂jΞ + σ̃(t)

+
1

2
ǭ−(t)γi∂iχ +

1

2
∂t

(

ǭ+,tγ
0χ

)

− xi

2R
ǭ+,t∂iχ .

(4.65)

Using the defining equations (4.62), we can show that the multiplet given by (4.60),
(4.63) and (4.65) also satisfies (4.57). In addition, we find more commutators given
by the time-dependent shift functions σ(t) and η(t) (and σ̃(t)). They lead to the
relations

[

δζ , δσ

]

= δσ

(

− ζσ̇(t)
)

,
[

δξ i
1
, δξ i

2

]

= δσ

(

ξ̇ i
1(t)ξ

i
2(t)− ξ̇ i

2(t)ξ
i
1(t)

)

,

[

δζ , δη

]

= δη

(

− ζη̇(t)
)

,
[

δξ i , δǫ−
]

= δη

(

− ξ i(t)γi ǫ̇−(t)
)

,

[

δσ, δǫ+

]

= δη

(1

2
σ(t)γ0ǫ+,t

)

,
[

δλi
j
, δη

]

= δη

(

− 1

4
λabγabη(t)

)

,

(4.66)

which form an ideal of the acceleration-extended Newton–Hooke superalgebra.

In this section we have derived a gauge-fixed version of Newton–Hooke su-
pergravity that is very much like the Galilean supergravity theory found in [77].
Indeed, in the limit R → ∞ we recover the same results. Slight modifications are
needed in the gauge-fixing due to the additional 1/R contributions, such as the
new fixed time-dependence of ǫ+,t.

Let us remark here that it would be possible to define new spinors Ψ̃ and χ̃ that
differ from to the old ones only by an exponential factor exp(−tγ0/2R). This way
we could also make ǫ+ time-independent.

Note also that the Φ that we use here differs from the one used in [111]. There,
we preferred to define the Newton potential such that its Laplacian is zero, rather
than proportional to the cosmological constant, see (4.58). We will comment further
on this in the conclusion section.

4.4 Connection to the non-relativistic limit

There are different ways to understand the results of section 4.2 as a non-relativistic
limit of anti-de Sitter supergravity. In particular, we can start from an on-shell
anti-de Sitter supergravity multiplet to derive the transformation rules given in
4.2, which is what we are going to do in this section. The other option would
be to use the off-shell Newton–Cartan multiplet of chapter 3. In the latter case,
we would simply get the on-shell multiplet derived here by choosing the correct
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values for the auxiliary field S. While we set S = 0 to obtain on-shell Newton–
Cartan supergravity we get the formulas of on-shell Newton–Hooke supergravity
by using

S =
1

2R
, (4.67)

in the off-shell Newton–Cartan supergravity multiplet (3.78) and (3.79).
In the following we shall briefly go through the first option, i.e. we take the

limit of on-shell N = (2, 0) anti-de Sitter supergravity [112]. The reason why we
use N = (2, 0) instead of N = (1, 1) was mentioned at several points previously.
The corresponding multiplet is given by the cosmological extension of the N = 2
theory of section 2.8, which consists of the transformation rules

δEµ
A =

1

2
δij η̄i γA

Ψµj ,

δΨµi = Dµηi + εij ηj Vµ − 1

2R
γµ ηi ,

δVµ = − 1

2R
εij η̄iΨµj ,

(4.68)

and the equations of motion for the supergravity fields Eµ
A, Ψµi and Vµ are given

by

Ψ̂µνi = 0 , V̂µν = 0 . (4.69)

The spin-connection Ωµ
AB(E, Ψi) is determined by the torsion constraint (2.85) and

it is given by (2.84). The multiplet (4.68) realizes the N = (2, 0) anti-de Sitter su-
peralgebra (4.6).

Recall that in order to take the non-relativistic limit in section 3.4, we had to
add the gauge-field Mµ of the central charge generator Z of the N = 2 Poincaré
superalgebra. Its transformation rule was given in (3.51) and in order not to upset
the counting of degrees of freedom we had to set its curvature to zero, eq. (3.52).
Here, we need not add any such field as the gauge-field of R-symmetry Vµ will
take over that role. This can be inferred from looking at the contractions (3.2), (3.49)
and (4.7) that lead to the N = (2, 0) Newton–Hooke superalgebra. Indeed, this is
not too surprising as in the limit where the cosmological constant goes to zero, the
R-symmetry generator of the anti-de Sitter algebra becomes the central element of
the Poincaré superalgebra.

Before we apply the limiting procedure by using the contractions (3.2), (3.49)
and (4.7), to decompose the relativistic gauge-fields in terms of non-relativistic
ones, we shall find it convenient (and necessary) to make one more redefinition.
When we compare the transformation rule of the gauge-field Vµ, and the Vµ terms
in the transformation rule of the gravitini, to the structure constants of the N =
(2, 0) anti-de Sitter superalgebra (4.6), we note that there are additional factors of
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R. In fact, Vµ is not exactly the gauge-field related to the generator R, but R times
Vµ is. Therefore, we define

M̄µ = −R Vµ . (4.70)

In the limit R → ∞ we go to Poincaré supergravity and M̄µ becomes Mµ. The

equation of motion V̂µν = 0 then becomes equivalent to (3.52).

After the redefinition (4.70) the multiplet (4.68) goes to

δEµ
A =

1

2
δij η̄i γA

Ψµj ,

δΨµi = Dµηi −
1

R
εij ηj M̄µ − 1

2R
γµ ηi ,

δM̄µ =
1

2
εij η̄iΨµj .

(4.71)

We take the non-relativistic limit in these transformation rules by using (3.3), (3.54)
with the rescalings (3.55), along with

M̄µ = ω τµ − 1

2ω
mµ , (4.72)

which follows from (4.7), and R → ω R. Since the transformation rules of the
bosonic fields are identical to those of on-shell Poincaré supergravity, see eqs. (2.80)
and (3.51), we immediately derive the correct transformation rules for τµ, eµ

a and
mµ given in (4.12). The correct transformation rules for the fermions, eq. (4.13), also
follow from directly from (4.71). The expressions for the supercovariant curvatures
(4.14) are derived from the torsion constraint (2.85) and the relativistic gravitino
curvature

Ψ̂µνi = 2 ∂[µΨν]i −
1

2
Ω[µ

ABγABΨν]i −
2

R
εij

Ψ[µ M̄ν] +
1

R
γ[µΨν]i . (4.73)

The curvature of the relativistic spin-connection R̂µν
AB(M) splits into the curvature

of the boost-connection R̂µν
a(G) and the non-relativistic spin-connection R̂µν

ab(J).
The derivation of the constraints also follows the analysis of section 3.4. We find
(3.66), i.e. (4.16), and from consistency of the commutator algebra we deduce (4.26)
and (4.27).

At this point we have derived all transformation rules, constraints and equa-
tions of motion of the on-shell Newton–Hooke supergravity theory of section 4.2.
There, we used gauging techniques to obtain the result, while here we started from
the relativistic one. Therefore, we have shown that the non-relativistic limiting pro-
cedure and gauging techniques indeed lead to the same result.
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4.5 Summary

In this chapter we derived a new non-relativistic three-dimensional supergravity
theory. In particular, we considered a cosmological extension of “flat” Newton–
Cartan supergravity. Our analysis also served as a check for the non-relativistic
limiting procedure that was developed in the last chapter.

Since this cosmological extension must reduce to the “flat” case, in the limit
where the cosmological constant vanishes, i.e. for R → ∞, we expected to find
results that are similar to Newton–Cartan supergravity, that are only modified with
order 1/R corrections.

As it turns out the gauging procedure can indeed be done in much the same
way as Newton–Cartan supergravity was found in [77]. We also find the same
constraint structure. The order 1/R correction with respect to the result of [77] can
be seen in the transformation rules only, but not explicitely in the constraints.

The Newton–Hooke supergravity background of section 4.2, as well as the Ga-
lilean version of section 4.3, were used in [111] to consider a non-relativistic super-
particle in such curved backgrounds. As noted earlier we use a slightly different
definition of the central charge gauge-field mµ and the Newton potential Φ in the
Galilean version. If we denote the central charge gauge-field that was used in [111]
by m̄µ we have

mµ = m̄µ + τµ
(xρeρ

a)2

2 R2
. (4.74)

The reason for this choice was that the equation of motion for the Newton potential
φ̄ is given by ∂i∂iφ̄ = 0 rather than ∂i∂iΦ = 1/R2.

There are several possible extensions to the analysis of this chapter. First, in-
spired by our work in the previous chapter one could try to find an off-shell for-
mulation of three-dimensional Newton–Hooke supergravity. Since, R̂µν

ab(J) = 0
for S = 0, see e.g. the off-shell formulations of chapter 3, this might be equiv-
alent to seeking an extension with R̂µν

ab(J) 6= 0. Using the limiting procedure,
this should be a fairly straightforward exercise. One could also try to extend the
theory by adding more supercharges and consider non-relativistic extended super-
symmetry. Another interesting possibility would be to look for a formulation of
Newton–Hooke (super)gravity where we do not set the curvature R̂µν(H) to zero.
This would be equivalent to asking if there exists a torsion-full version of this the-
ory. For this purpose it might of course be better to first consider only the bosonic
case.



5
Schrödinger supergravity

This chapter discusses a “conformal” extension of Newton–Cartan supergrav-
ity. The Schrödinger supergravity theory is obtained by gauging a Schrödinger
superalgebra. This construction of a Schrödinger supergravity theory is inter-
esting in its own right as a non-relativistic version of “conformal” supergrav-
ity, but it is also very useful as the basic building block for the non-relativistic
version of the conformal tensor calculus of the next chapter.
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In this chapter we take a step towards “completing” the realm of three-dimensional
non-relativistic supergravity theories. So far, we managed to find examples of Poin-
caré, i.e. Newton–Cartan, and anti-de Sitter, i.e. Newton–Hooke, supergravity. One
missing piece is a theory of supergravity with more symmetries such as e.g. di-
latations. To derive such a theory is the main objective of this chapter. Another
motivation is that we are going to need this theory as a basis for the analysis that
will follow in the next chapter 6.

We will derive this non-relativistic “superconformal” theory by gauging a su-
peralgebra that is a “conformal” extension of the supergravity theories that we saw
in chapters 3 and 4 [137]. We refer to this supergravity theory as Schrödinger super-
gravity rather than conformal supergravity because we prefer to reserve the name
non-relativistic “conformal” supergravity multiplet for the multiplet that realizes
the gauging of the Galilean Conformal superalgebra, see [138–140]. The reason for
this is that the Schrödinger superalgebra, with only a single special conformal gen-
erator, allows a mass parameter while the Galilean Conformal superalgebra does
not. A related issue is that the Schrödinger algebra allows for the same central ex-
tension with the symmetry generator Z as the Bargmann algebra. This is important
for gauging too, as it allows to solve for the dependent gauge-fields in the same
way as when gauging the Bargmann algebra.

Note also that the algebra that we will use here, unlike the Galilean Conformal
superalgebra mentioned before, is not obtained by contracting a relativistic one,
hence we cannot employ the limiting procedure. But there is no need for that as
most of what we need was already found in [29]. Indeed, this reference treats the
bosonic case of the analysis that we are about to perform here, i.e. a gauging of the
Schrödinger algebra along the lines of chapters 2 and 4. For us, it only remains to
discuss the differences when we add fermionic generators.

In this section we thus discuss the gauging of a Schrödinger superalgebra. This
is done in several steps. First, in section 5.1 we give the algebra. Then, in section
5.2 we go through the gauging procedure. The transformation rules of all indepen-
dent fields, the constraint structure and the expressions of the dependent fields in
terms of the independent ones is found in subsections 5.2.1–5.2.3. The full set of
curvature constraints is discussed in detail in subsection 5.2.2. After calculating the
expressions of the dependent gauge fields in terms of independent ones in subsec-
tion 5.2.3 we re-evaluate the transformation rules of the dependent fields to check
whether or not they still coincide with those given by the algebra. Finally, having
determined the transformations of all fields we need to check if the set of curvature
constraints that we imposed is a consistent one. In order to shorten our presenta-
tion we moved this last point to subsection 5.2.2 too, even though it is in fact one
of the last steps of the analysis and can be performed only after having determined
the transformations of the fields in 5.2.3. Finally, we conclude in section 5.3.
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5.1 A Schrödinger superalgebra

The non-relativistic algebra that we are interested in is a supersymmetric extension
of the Schrödinger algebra [82, 83]. The Schrödinger algebra is the symmetry alge-
bra of the Schrödinger equation and its rigid version also leaves the point-particle
action invariant. Supersymmetric extensions were first found in [89] as the sym-
metry group of a spinning particle. However, this leads to an algebra with a Grass-
mann valued vector charge, instead of a spinor (Q− in our notation). Because we
are mainly interested in extensions of the Bargmann superalgebra with two spino-
rial supercharges, see (3.50), we prefer if our Schrödinger algebra also contains such
operators. Only then it is guaranteed that omitting the extra conformal symmetries
allows us to retrieve the Newton–Cartan supergravity theories that we dealt with
previously. This is of particular importance for our analysis in the following chap-
ter.

For the purpose of this work we restrict ourselves to using the z = 2 Schrödinger
algebra. This algebra, as well as its supersymmetric extension, is similar to the
Bargmann algebra in that it allows for the same central extension in the commutator
of spatial translations and Galilean boosts. This is important because it enables us
to solve for the non-relativistic spin- and Galilean boost-connections and thus the
gauging works in the same way as e.g. in [29, 77, 80].

As we choose to work in three space-time dimensions our preferred choice shall
be the algebra of [91]. For completeness let us mention that a more systematic
study to find supersymmetric extensions of the Schrödinger algebra was carried
out in [92], where the same Schrödinger superalgebra was found. Furthermore, the
algebra that we are going to use also appeared in [141].

The most prominent difference with respect to the purely bosonic analysis in
[29] is the existence (and necessity) of an extra bosonic symmetry generator that we
denote by R. This leads to the addition of an extra bosonic gauge-field rµ, a U(1)
gauge-field in our case, with respect to their analysis. As we shall show in chapter
6 this vector is related to the relativistic gauge-field of R-symmetry. Indeed, we will
show later an exact relation between the field rµ introduced here and the vector that
results from taking the non-relativistic limit of the gauge-field of R-symmetry, Vµ,
in the new minimal Poincaré multiplet, see section 3.5.

To be concrete, we use the following set of commutators. The bosonic commu-
tation relations of the Bargmann algebra, which we repeat here for convenience,

[

Pa, Jbc

]

= 2 δa[b Pc] ,
[

H, Ga

]

= Pa ,
[

Ga, Jbc

]

= 2 δa[b Gc] ,
[

Pa, Gb

]

= δab Z ,
(5.1)

are supplemented by the action of the dilatation operator D and special conformal
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transformations K as follows:
[

D, H
]

= −2 H ,
[

H, K
]

= D ,
[

D, K
]

= 2 K ,
[

D, Pa

]

= −Pa ,
[

D, Ga

]

= Ga ,
[

K, Pa

]

= −Ga .
(5.2)

The extension to supersymmetry is done by adding two fermionic supersymmetry
generators Q+, Q− and one so-called special conformal supersymmetry generator
S. We also have to add one more bosonic so-called R-symmetry generator R which,
however, does not contribute to the commutation relations (5.1) and (5.2). This
leads to the superalgebra that was found in [91], see also [92, 141]. In this way, the
commutators of the Bargmann superalgebra,

[

Jab, Q±
]

= −1

2
γabQ± ,

[

Ga, Q+
]

= −1

2
γa0Q− ,

{

Q+, Q+
}

= −γ0C−1 H ,
{

Q+, Q−
}

= −γaC−1 Pa ,

{

Q−, Q−
}

= −2 γ0C−1 Z ,

(5.3)

are augmented by commutators with the extra bosonic and fermionic operators of
the Schrödinger superalgebra. The new commutation relations read

[

D, Q+
]

= −Q+ ,
[

D, S
]

= S ,
[

K, Q+
]

= S ,

[

Jab, S
]

= −1

2
γabS ,

[

S, H
]

= Q+ ,
[

S, Pa

]

=
1

2
γa0Q− ,

[

R, Q±
]

= ±γ0Q± ,
[

R, S
]

= γ0S ,

(5.4)

for the extra boson-fermion combinations and
{

S, S
}

= −γ0C−1 K ,
{

S, Q−
}

= γaC−1 Ga ,

{

S, Q+
}

=
1

2
γ0C−1 D +

1

4
γ0abC−1 Jab +

3

4
C−1 R ,

(5.5)

for the anti-commutators of all additional fermionic supercharges.

5.2 Gauging

In this section we are going to perform the gauging procedure in the same way as
we did e.g. in chapter 4 for the Newton–Hooke algebra. The transformation rules
are given in subsection 5.2.1, the constraints in 5.2.2 and the dependent gauge-fields
are treated in subsection 5.2.3.

After imposing the conventional constraints we will find that the gauge-fields
ωµ

ab, ωµ
a, fµ and φµ of spatial rotations, Galilean boosts, special conformal trans-

formations and S-supersymmetry transformations, respectively, together with the
spatial components ba = eµ

abµ of the dilatation gauge-field bµ are dependent. The
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time-component b = τµbµ of bµ will turn out to be a Stückelberg field for special
conformal transformations, just like in the bosonic case [29]. Eventually, we will
use this to set b to zero, gauge-fixing special conformal transformations. For no-
tational purposes though, and because the dependent field does not differ from
the independent ones in e.g. transformation rules or the expression of the covari-
ant curvature, it is easier to keep the full bµ. For notational purposes we will also
refrain from denoting the dependence of the dependent fields on the independent
ones. From here on, the fields ωµ

ab, ωµ
a, fµ, φµ and ba are always understood to be

dependent.

5.2.1 Transformation rules of the independent fields

We start with the transformations of the independent bosonic fields under the bosonic
symmetries. They are

δτµ = 2 ΛD τµ ,

δeµ
a = λa

b eµ
b + λa τµ + ΛD eµ

a ,

δmµ = ∂µσ + λa eµ
a ,

δbµ = ∂µΛD + ΛK τµ ,

δrµ = ∂µρ .

(5.6)

For the fermionic fields we find

δψµ+ =
1

4
λabγabψµ+ + ΛD ψµ+ − γ0ψµ+ ρ ,

δψµ− =
1

4
λabγabψµ− − 1

2
λaγa0ψµ+ + γ0ψµ− ρ .

(5.7)

Here ΛD and ρ are the parameters of dilatations and R-symmetry transformations,
respectively. The parameters λa

b and λa of spatial rotation and Galilean boosts are
the same as in the previous chapters.

The fermionic symmetries act on the bosonic fields as follows:

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

δbµ = −1

4
ǭ+γ0φµ − 1

4
η̄ γ0ψµ+ ,

δrµ = −3

8
ǭ+φµ +

3

8
η̄ ψµ+ ,

(5.8)

where ǫ± are the two Q-supersymmetry parameters while η is the single S-super-
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symmetry parameter. Under these fermionic symmetries the fermionic fields trans-
form as follows:

δψµ+ = Dµǫ+ − bµ ǫ+ + rµ γ0ǫ+ − τµ η ,

δψµ− = Dµǫ− − rµ γ0ǫ− +
1

2
ωµ

aγa0ǫ+ +
1

2
eµ

aγa0η .
(5.9)

Since we expect the transformation rules of the dependent gauge-fields to change
when we solve for them we will not denote them here. Rather, we will first solve
for the gauge-fields ωµ

ab, ωµ
a, ba, fµ and φµ. To do so, we need to impose curvature

constraints. A full discussion of the complete set of constraints that we impose on
our theory is given in the following section.

5.2.2 Curvature constraints

While gauging the Schrödinger superalgebra we impose several curvature con-
straints. These follow mostly from requiring the correct transformation proper-
ties under diffeomorphisms. At the same time, they allow us to solve for some
of the gauge-fields in terms of the remaining independent ones. According to the
Schrödinger superalgebra the curvatures of the independent gauge-fields are given
by

Rµν(H) = 2 ∂[µτν] − 4 b[µτν] −
1

2
ψ̄[µ+γ0ψν]+ ,

Rµν
a(P) = 2 ∂[µeν]

a − 2 ω[µ
abeν]

b − 2 ω[µ
aτν] − 2 b[µeν]

a − ψ̄[µ+γaψν]− ,

Rµν(Z) = 2 ∂[µmν] − 2 ω[µ
aeν]

a − ψ̄[µ−γ0ψν]− ,

Rµν(D) = 2 ∂[µbν] − 2 f[µτν] +
1

2
ψ̄[µ+γ0φν] ,

Rµν(R) = 2 ∂[µrν] +
3

4
ψ̄[µ+φν] ,

(5.10)

and

Ψ̂µν+(Q+) = 2 ∂[µψν]+ − 1

2
ω[µ

abγabψν]+

− 2 b[µψν]+ + 2 r[µγ0ψν]+ − 2 τ[µφν] ,

Ψ̂µν−(Q−) = 2 ∂[µψν]− − 1

2
ω[µ

abγabψν]−

− 2 r[µγ0ψν]− + ω[µ
aγa0ψν]+ + e[µ

aγa0φν] .

(5.11)

Note that we slightly changed the notation with respect to previous chapter. The
covariant curvatures of the dependent gauge-fields, which are denoted by R here,
are not a priori given by the “curvatures” R that follow from the structure constants
of the Schrödinger superalgebra. This is so because the transformation rules of the
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dependent gauge-fields are not necessarily equal to the ones that follow from the
structure constants of the algebra, see e.g. the fermionic transformation rules given
in eqs. (5.37). For the following discussion we will need the curvatures of spatial
rotations, Galilean boosts and S-supersymmetry. In the case of spatial rotations the
full curvature coincides with the expression that follows from the structure con-
stants, i.e. R(J) = R(J), but in the other two cases there are additional terms in R
since the fermionic transformation rules of those gauge-fields contain extra terms
beyond those that are determined by the structure constants, see eq. (5.37). We
therefore have that

Rµν
ab(J) = 2 ∂[µων]

ab − 1

2
φ̄[µγ0abψν]+ , (5.12)

but that

Rµν
a(G) = Rµν

a(G) + additional terms , (5.13)

with the structure constant dependent part Rµν
a(G) given by

Rµν
a(G) = 2 ∂[µων]

a − 2 ω[µ
abων]

b − 2 ω[µ
abν] − 2 f[µeν]

a + φ̄[µγaψν]− . (5.14)

We will not need the “additional terms” in R(G) except for a special trace combi-
nation in which case the full expression for R(G) is given by

R0a
a(G) = R0a

a(G)− eµ
a ψ̄µ−γ0

Ψ̂a0−(Q−) . (5.15)

The additional terms in (5.13) were given explicitly in (3.69), using a different nota-
tion though. Moving on with our new notation we find the curvature of the gauge-
field of S-supersymmetry is given by

Rµν(S) = 2 ∂[µφν] −
1

2
ω[µ

abγabφν] + 2 b[µ φν] + 2 r[µ γ0φν] + 2 f[µ ψν]+

+ 2 γ0ψ[µ+

[1

4
εab Rν]0

ab(J)−Rν]0(R)
]

− 2 γcψ[µ−
[1

4
εab Rν]c

ab(J) +Rν]c(R)
]

,

(5.16)

where only the first line comprises terms that follow from the structure constants.

In the following subsection we will solve for the gauge-fields ωµ
ab, ωµ

a, ba, fµ

and φµ in terms of the independent ones using the following set of conventional
constraints:

Rµν
a(P) = 0 , Rµν(Z) = 0 , Ra0(H) = 0 ,

Ψ̂a0+(Q+) = 0 , γa
Ψ̂a0−(Q−) = 0 ,

Ra0(D) = 0 , R0a
a(G) = 0 .

(5.17)
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Note that the last constraint involves the curvature of the dependent Galilean boost
gauge-field, whose definition in terms of the part of the curvature that is deter-
mined by the structure constants is given in eq. (5.15). Since the conventional con-
straints are used to solve for some of the gauge-fields their supersymmetry trans-
formations do not lead to new constraints. We note that, imposing constraints on
the curvatures, the Bianchi identities generically imply further constraints on the
curvatures, which holds for the constraints in (5.17) and those to be discussed be-
low.

Besides the conventional constraints we also impose the foliation constraint

Rµν(H) = 0 . (5.18)

The time-space component of this constraint is conventional but the space-space
part is not. Its Q+-supersymmetry transformation leads to

Ψ̂µν+(Q+) = 0 , (5.19)

where, again, only the space-space part is a new, un-conventional constraint. The
latter two equations lead to

Rab(D) = 0 , (5.20)

as the consequence of a Bianchi identity. Now we consider supersymmetry trans-
formations of the un-conventional constraint Ψ̂ab+ = 0. We find that a Q−-variation
enforces 1

Ψ̂ab−(Q−) = 0 . (5.21)

Upon use of all know constraints and Bianchi identities, we find that the only non-
trivial variation of (5.21) is its Q−-variation which we combine with a Q+-variation
of (5.19) to get

Rab(R) = 0 , Rab
cd(J) = 0 . (5.22)

At this point we have checked the symmetry variations of all constraints except the
last two, i.e. (5.22). Before we go on determining the implications of their transfor-
mations we note that using all constraints so far we find the Bianchi identity

Rab(S) = 0 . (5.23)

1 One might wonder how the supersymmetry transformation of a fermionic [bosonic] constraint can
lead to another fermionic [bosonic] constraint. It is true that this is not possible when following generic
transformation rules of covariant quantities. However, those rules only apply if we already know the full
set of constraints and the commutator algebra closes precisely because some constraints are needed to
eliminate apparently non-covariant terms. Hence, we can certainly take guidance from those covariant
rules, but when we use them too naively we might miss some constraints.
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This identity is useful in showing that the only non-trivial transformation of the
first constraint in (5.22) leads to 1

3

4
εab Rµν

ab(J) = Rµν(R) . (5.24)

Since (5.24) essentially identifies R(J) with R(R) we have derived all consequences
of (5.22). The constraint (5.24) itself is inert under all symmetries and hence we have
derived the full set of un-conventional constraints that follow from (5.18).

In summary, the set of constraints comprises the following chain of un-conven-
tional constraints:

Rab(H) = 0
Q+−→ Ψ̂ab+ = 0

Q−−→ Ψ̂ab− = 0 −→
Ψ̂ab+ = 0
Ψ̂ab− = 0

}

Q±−→ Rab(R) = 0
Q+−→ 3

4
εab Rµν

ab(J) = Rµν(R) .
(5.25)

The most important Bianchi identities that feature in the discussion above are given
by

Rab(D) = 0 , R0[a
b](G) = 0 ,

Rab(S) = 0 , Rab
c(G) = 2R0[a

b]c(J) .
(5.26)

The equations (5.17), (5.25) and (5.26) comprise all constraints of the Schrödinger
supergravity theory.

5.2.3 The dependent gauge-fields

Let us now determine the expressions of the dependent gauge-fields. We first de-
termine the spatial component of bµ. Using Ra0(H) = 0 we find

ba = eµ
abµ =

1

2
eµ

aτν
(

2 ∂[µτν] −
1

2
ψ̄[µ+γ0ψν]+

)

. (5.27)

Like in the bosonic case [29], the (independent) scalar b = τµbµ is a Stückelberg
field for special conformal transformations:

δb = ΛK + τµ∂µΛD − 2 ΛD b − λa ba −
1

4
τµ (ǭ+γ0φµ + η̄ γ0ψµ+)

− 1

2
b ǭ+γ0ψρ+τρ − 1

2
ba τρ (ǭ+γaψρ− + ǭ−γaψρ+) .

(5.28)
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Therefore, we could choose to set b = 0 already at this point. Doing so would
induce the compensating transformation

ΛK = −τµ∂µΛD + λa ba +
1

4
τµ (ǭ+γ0φµ + η̄ γ0ψµ+)

+
1

2
ba τρ (ǭ+γaψρ− + ǭ−γaψρ+) .

(5.29)

However, we will not set b = 0 just yet because we want to keep special conformal
transformations in our supergravity background. Still, we would also like to point
out that since no independent field transforms under special conformal transforma-
tions there would in essence be no effect from this gauge-fixing, when considering
only independent fields.

We proceed with determining the spin- and boost-connection ωµ
ab and ωµ

a.
This calculation works in precisely the same way as we described in chapter 4,
using the constraints Rµν

a(P) = 0 and Rµν(Z) = 0. It leads to the expressions

ωµ
ab = 2 eν[a

(

∂[νeµ]
b] − 1

2
ψ[ν+γb]ψµ]− − b[ν eµ]

b]
)

+ eµ
ceρaeνb

(

∂[ρeν]
c − 1

2
ψ[ρ+γcψν]− − b[ρ eν]

c
)

− τµeρaeνb
(

∂[ρmν] −
1

2
ψ[ρ−γ0ψν]−

)

,

(5.30)

ωµ
a = −τν

(

∂[νeµ]
a − 1

2
ψ[ν+γaψµ]− − b[ν eµ]

a
)

+ eµ
ceρaτν

(

∂[ρeν]
c − 1

2
ψ[ρ+γcψν]− − b[ρ eν]

c
)

+ eνa
(

∂[µmν] −
1

2
ψ[µ−γ0ψν]−

)

− τµeρaτν
(

∂[ρmν] −
1

2
ψ[ρ−γ0ψν]−

)

,

(5.31)

which of course differ from (4.21) and (4.22) because of the additional dilatation
gauge-field bµ. The field φµ is determined by the constraints in the third line of
(5.17) giving

eµ
a φµ = −eµ

aτν
(

2 ∂[µψν]+ − 1

2
ω[µ

abγabψν]+ − 2 b[µψν]+ + 2 r[µγ0ψν]+

)

,

τµφµ = τµeν
c γ0c

(

2 ∂[µψν]− − 1

2
ω[µ

abγabψν]− + ω[µ
aγa0ψν]+ − 2 r[µγ0ψν]−

)

.

(5.32)
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Thus, we obtain

φµ = −τν
(

2 ∂[µψν]+ − 1

2
ω[µ

abγabψν]+ − 2 b[µψν]+ + 2 r[µγ0ψν]+

)

+ τµτρeν
cγ0c

(

2 ∂[ρψν]− − 1

2
ω[ρ

abγabψν]− + ω[ρ
aγa0ψν]+ − 2 r[µγ0ψν]−

)

.

(5.33)

Finally, to solve for fµ we use Ra0(D) = 0 and R0a
a(G) = 0. We get, from the first

and the second identity, respectively,

eµ
a fµ = eµ

aτν
(

2 ∂[µbν] +
1

2
ψ̄[µ+γ0φν]

)

,

τµ fµ =
1

2
τµeν

a

(

2 ∂[µων]
a − 2 ω[µ

abων]
b − 2 ω[µ

abν] + φ̄[µγaψν]−
)

− 1

2
eµ

a ψ̄µ−γ0ψ̂a0− .

(5.34)

Hence, the full expression for fµ is

fµ = τν
(

2 ∂[µbν] +
1

2
ψ̄[µ+γ0φν]

)

− 1

2
τµeρ

a ψ̄ρ−γ0ψ̂a0−

+
1

2
τµτρeν

a

(

2 ∂[ρων]
a − 2 ω[ρ

abων]
b − 2 ω[ρ

abν] + φ̄[ργaψν]−
)

.

(5.35)

At this point we have found all dependent gauge-fields in terms of the independent
ones. In the following we derive the transformation rules of the dependent fields.
We find

δωµ
ab = ∂µλab ,

δωµ
a = ∂µλa − ωµ

a
bλb + bµλa + λa

b ωµ
b − ΛD ωµ

a + ΛK eµ
a ,

δ fµ = ∂µΛK + 2 ΛK bµ − 2 ΛD fµ − τµ λb R0a
ab(J) ,

δφµ =
1

4
λabγabφµ − ΛD φµ − ΛK ψµ+ − γ0φµ ρ ,

(5.36)

i.e. most transformation rules are un-altered. The only change appears for fµ, which
acquires a non-trivial transformation under Galilean boosts. In [29] this was cir-
cumvented by redefining fµ by adding terms with mµ and Rµν

ab(J) in one of the
conventional constraints that is used to solve for fµ. However, then the field ac-
quired a non-trivial transformation under the central charge symmetry Z. We will
not attempt any redefinition of that kind here.
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Concerning the fermionic Q and S-transformations we calculate

δωµ
ab = −1

4
ǭ+γab0φµ +

1

4
η̄ γab0ψµ+ ,

δωµ
a = ǭ−γ0

Ψ̂µ
a− − 1

2
ǭ−γaφµ +

1

4
eµb ǭ+γb

Ψ̂
a

0−

+
1

4
ǭ+γa

Ψ̂µ0− − 1

2
η̄ γaψµ− ,

δφµ = Dµη + bµ η + rµ γ0η + fµ ǫ+ + γ0ǫ+
[1

4
εab Rµ0

ab(J)−Rµ0(R)
]

+ γcǫ−
[1

4
εab Rµc

ab(J) +Rµc(R)
]

.

(5.37)

These transformations allow us to explicitly check that the commutator algebra (of
the fermionic symmetries) is realized by the formula

[

δ(Q1, S1), δ(Q2, S2)
]

= δg.c.t.
(

Ξ
µ
)

+ δJ

(

Λ
ab
)

+ δG

(

Λ
a
)

+ δZ

(

Σ
)

+ δR

(

ρR

)

+ δQ+

(

Υ+
)

+ δQ−
(

Υ−
)

+ δD

(

λD

)

+ δK

(

λK

)

,

(5.38)

where the parameters are given by

Ξ
µ =

1

2
ǭ2+γ0ǫ1+ τµ +

1

2

(

ǭ2+γaǫ1− + ǭ2−γaǫ1+

)

eµ
a ,

Λ
ab = −Ξ

µωµ
ab +

1

4

(

ǭ1+γ0abη2 − η̄1 γ0abǫ2+
)

,

Λ
a = −Ξ

µωµ
a +

1

2

(

ǭ1−γaη2 + η̄1 γaǫ2−
)

,

Σ = −Ξ
µmµ + ǭ2−γ0ǫ1− ,

λD = −Ξ
µbµ +

1

4

(

ǭ1+γ0η2 + η̄1 γ0ǫ2+
)

,

Υ± = −Ξ
µψµ± ,

λK = −Ξ
µ fµ +

1

2
η̄2 γ0η1 ,

ρR = −Ξ
µrµ +

3

8

(

ǭ1+η2 − η̄1 ǫ2+
)

,

η = −Ξ
µφµ .

(5.39)

This finishes the discussion of the “conformal” supergravity background.

Note that our analysis of the Schrödinger theory is not fully complete, since we
did not derive the variation of the dependent field fµ under fermionic symmetries.
Even so, this was not needed to show that the set of constraints (5.25) is a consistent
one and that the commutator algebra closes on all independent fields.
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5.3 Concluding remarks

In previous works, see [77] and also chapter 4, the gauging was followed by a
gauge-fixing to a Galilean observer. However, as shown in [29] this procedure does
not lead to any new results with respect to the Bargmann case. The reason is that
the Schrödinger theory is “gauge-equivalent” to the Newton–Cartan theory plus
a scalar, see also [102]. Gauge-fixing the scalar, much in the same way as we are
going to do in the next chapter, eliminates the dilatation symmetry and from there
on the theory is equivalent to Newton–Cartan gravity. Therefore, we refrain from
performing this analysis here.

An interesting problem is to define dynamics for this supergravity background.
It is indeed highly non-trivial to find an equation of motion for the independent
fields that is invariant under all symmetries. In the case of Newton–Cartan (su-
per)gravity we would interpret the constraint R̂0a

a(G) = 0 as the equation of mo-
tion. Here, R0a

a(G) = 0 is a conventional constraint that we used to solve for fµ.
Because this constraint is not invariant under boost transformations we cannot re-
duce it to an invariant equation of motion. Not unless we require that Rµν

ab(J) = 0
which, on the other hand, is not part of the constraints that we discussed in sub-
section 5.2.2. A systematic approach to find an equation of motion for Schrödinger
(super)gravity can be found in [102].

While it is interesting to derive a non-relativistic theory of “conformal” super-
gravity, this was not the only motivation for us to do so. In the next chapter, we
will use the Schrödinger supergravity theory as the basis for the Schrödinger ten-
sor calculus. For example, we will derive a theory of Newton–Cartan supergravity
with torsion. This is not surprising as e.g. the analysis in [29] proved that gauging
the Schrödinger algebra can be used for precisely that purpose. In hindsight, the
interesting and surprising fact is that there indeed does exist a truncation to zero
torsion, i.e. to the Newton–Cartan supergravity theories that we have seen so far.

Last but not least, let us draw your attention to a connection of the theory dis-
cussed in this chapter, to condensed matter theory. The authors of [73] used the very
same non-relativistic Chern–Simons theory of [91], whose algebra we just gauged
in this section, and showed that it too can be used to describe features of the frac-
tional Quantum Hall effect.
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6
Schrödinger tensor calculus

In this chapter we present another generalization of three-dimensional Newton–
Cartan supergravity, namely the theory with non-zero torsion. To derive it we
use “superconformal”, hereafter called Schrödinger, techniques where compen-
sating matter multiplets are used to gauge-fix the extra symmetries (with re-
spect to the Bargmann algebra) of the Schrödinger supergravity theory of the
last chapter.
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In this last chapter we derive yet another generalization of Newton–Cartan su-
pergravity, the theory with non-zero torsion [137]. To do so, we will use a non-
relativistic version of the superconformal tensor calculus, see e.g. [97] for an intro-
duction and references. This chapter will also serve as an exposition of how these
methods work and how they can be applied in the non-relativistic case.

Before doing this in the non-relativistic case we will briefly recall how it works
in the relativistic case. The main idea is to gauge-fix the extra symmetries that
the superconformal theory possesses with respect to the Poincaré symmetries. For
this purpose, one adds (at least one) so-called compensator multiplet that also re-
alizes the superconformal algebra. Then, one fixes dilatations and conformal S-
supersymmetry by eliminating/gauge-fixing fields of the compensator multiplet.

Let us be more concrete and discuss a well-known example. The four-dimensio-
nal N = 1 Weyl multiplet consists of the independent fields (Eµ

A, Ψµ, Aµ) which
realize the superconformal algebra. (Special conformal symmetries were gauge-
fixed by setting the gauge-field of dilatations Bµ to zero.) As a compensator, we
might consider the chiral multiplet which comprises two complex scalars and a
spinor (Φ, χ, F). To derive a Poincaré multiplet from the Weyl multiplet we need
to gauge-fix dilatations D, R-symmetry and conformal S-supersymmetry. We may
choose

Φ = 1 : fixes dilatations D and R-symmetry ,

χ = 0 : fixes conformal S-supersymmetry .
(6.1)

With this analysis we derive the old minimal Poincaré multiplet which consists of
(Eµ

A, Ψµ, Aµ, F) [142–145]. Alternatively, one can use a different compensator mul-

tiplet to obtain the new minimal formulation with the fields (Eµ
A, Ψµ, Vµ, Aµ, D)

[146–148]. Here D is a real scalar and the theory still enjoys a global U(1)-symmetry.

We will find that the non-relativistic case works quite similarly. Our equivalent
of the Weyl multiplet is given by the Schrödinger multiplet which we derived in
chapter 5 and it consists of the independent fields (τµ, eµ

a, mµ, rµ, ψµ±). In analogy
to the relativistic case we eliminate the scalar b to get rid of special conformal trans-
formations.1 Furthermore, we need to gauge-fix dilatations and S-supersymmetry
using a compensating matter multiplet.

In this chapter we will use two different multiplets for that purpose, which are
related to the scalar and the vector multiplet, respectively, in the relativistic case.
This will lead to the non-relativistic analogs of the old and the new minimal for-
mulation of Poincaré supergravity, which we discussed above. In particular, we
find the “old” minimal multiplet with the independent field content (see subsec-
tion 6.2.1)

non-relativistic old minimal :
(

τµ, eµ
a, mµ, rµ, ψµ±, χ−, F1, F2

)

, (6.2)

1 As shown in the (bosonic) analysis in [102] there is in fact no need to eliminate b as it simply drops
out of all expressions. We did not investigate if this is also true in the supersymmetric case.



6.1 MATTER COUPLINGS 107

and the “new” minimal formulation with (see subsection 6.2.2)

non-relativistic new minimal :
(

τµ, eµ
a, mµ, rµ, ψµ±, S

)

. (6.3)

It was shown in [29], and chapter 5, that the gauging of the Schrödinger algebra
naturally leads to Newton–Cartan geometry with torsion. In the previous chapter
we found that the torsion is provided by the spatial components of the dilatation
gauge-field ba, that are dependent on the other fields. This feature remained in
the construction of the Schrödinger supergravity multiplet and our non-relativistic
Schrödinger tensor calculus therefore naturally leads to torsionfull Newton–Cartan
supergravity theories. In this way, we are thus able to extend the constructions
of [77] and chapter 3 to the torsionfull case. The torsionless case can be retrieved by
putting the torsion to zero. As the torsion is provided by gauge-field components
that depend on the other fields in the supergravity multiplet, this truncation is non-
trivial and its consistency has to be examined. We will study this truncation only
in the case of non-relativistic new minimal supergravity and we will show that this
truncation leads to the off-shell three-dimensional N = 2 theory of chapter 3.

We have organized this chapter as follows. The next section 6.1 is entirely de-
voted to the derivation of two non-relativistic matter multiplets. These will be used
in section 6.2 to derive Newton–Cartan supergravity with non-zero torsion. The
truncation to a theory with zero torsion is investigated in section 6.3 and in section
6.4 we end with a discussion.

6.1 Matter couplings

In this section we present matter multiplets that realize the same commutators cor-
responding to the Schrödinger superalgebra as we derived for the Schrödinger su-
pergravity multiplet, see eq. (5.39). These multiplets will be used in the follow-
ing section as compensator multiplets to derive off-shell formulations of Newton–
Cartan supergravity.

One of those off-shell formulations was discussed in chapter 3. We obtained
it by taking a non-relativistic limit of the three-dimensional N = 2 new minimal
Poincaré multiplet [114]. Recall that the new minimal Poincaré multiplet follows
from superconformal techniques using a compensating (relativistic) vector multi-
plet. Hence, in order to derive its non-relativistic analog, we should use as a com-
pensator a non-relativistic vector multiplet. This is one of the two non-relativistic
matter multiplets which we derive in this section. The other one is the scalar mul-
tiplet, which we shall later use to derive a new off-shell formulation of Newton–
Cartan supergravity.

This section also focuses on the method that we use to derive those novel mat-
ter multiplets. It would be very efficient if we could use the non-relativistic lim-
iting procedure of chapter 3. However, we cannot do so because the Schrödinger
superalgebra does not follow from the contraction of any relativistic algebra and
the same applies to the Schrödinger supergravity theory. Instead, we shall pro-
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ceed in the following way. We start from the rigid version of a relativistic matter
multiplet that realizes the Poincaré superalgebra and take the non-relativistic limit
thereof.2 The important thing is that at this point we have derived the field content
of the non-relativistic multiplet. It turns out that the same multiplet also provides
a representation of the rigid Schrödinger superalgebra. Therefore, once we have
obtained this non-relativistic matter multiplet, we can couple it to the fields of the
Schrödinger supergravity theory, thereby realizing the commutator algebra derived
in the previous section, in the standard way.

6.1.1 The scalar multiplet
In this subsection we construct the non-relativistic scalar multiplet. We start with
the three-dimensional rigid relativistic N = 2 scalar multiplet which comprises
two complex scalar and two spinors. In real notation we are thus left with the
fields (ϕ1, ϕ2, χ1, χ2; F1, F2):

δϕ1 = η̄1χ1 + η̄2χ2 ,

δϕ2 = η̄1χ2 − η̄2χ1 ,

δχ1 =
1

4
γµ∂µ ϕ1 η1 −

1

4
γµ∂µ ϕ2 η2 −

1

4
F1 η1 −

1

4
F2 η2 ,

δχ2 =
1

4
γµ∂µ ϕ2 η1 +

1

4
γµ∂µ ϕ1 η2 −

1

4
F2 η1 +

1

4
F1 η2 ,

δF1 = −η̄1γµ∂µχ1 + η̄2γµ∂µχ2 ,

δF2 = −η1γµ∂µχ2 − η2γµ∂µχ1 .

(6.4)

Note that we do not consider bosonic transformations yet. We will add them only
to the final result.

Let us recall the salient points of the limiting procedure that we introduced in
chapter 3. To take the limit we use a limiting parameter ω which we will send to
infinity. The rescaling of the symmetry parameters follows from the Inönü–Wigner
contraction of the related symmetry generators. This means for example that we
will require

ǫ± =
ω∓1/2

√
2

(η1 ± γ0η2) . (6.5)

It remains to find the scalings of all other fields which are not determined a priori by
the procedure, like for example the scalings of the auxiliary fields. Those scalings
are relatively easy to find and it turns out that we need to use

χ± =
ω−1±1/2

√
2

(χ1 ± γ0χ2) , (6.6)

2 This (rigid) limit coincides with the non-relativistic limit performed in [65].
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for the two spinors, while we need to take

ϕ̃i =
1

ω
ϕi , F̃i = − 1

ω
Fi , (6.7)

for the scaling of the bosons. Note that the scaling of the spinor variables (6.6)
differs from the rescaling of the gravitini (which of course scale in the same way
as the symmetry parameters ǫ± (6.5)). The effect is that they transform oppositely
under boost transformations, i.e. the role of plus and minus spinors is exchanged,
see (6.9).

Using (6.5)–(6.7) in (6.4) we can derive the transformation rules for finite ω.
After calculating the transformation rules in the limit ω → ∞ we drop the tildes
and find

δϕ1 = ǭ+χ+ + ǭ−χ− ,

δϕ2 = ǭ+γ0χ+ − ǭ−γ0χ− ,

δχ+ =
1

4
γ0ǫ+ ∂t ϕ1 +

1

4
ǫ+ ∂t ϕ2 +

1

4
γiǫ− ∂i ϕ1 +

1

4
γi0ǫ− ∂i ϕ2

+
1

4
ǫ− F1 +

1

4
γ0ǫ− F2 ,

δχ− =
1

4
γiǫ+ ∂i ϕ1 −

1

4
γi0ǫ+ ∂i ϕ2 +

1

4
ǫ+ F1 −

1

4
γ0ǫ+ F2 ,

δF1 = ǭ+γi∂iχ+ + ǭ+γ0∂tχ− + ǭ−γi∂iχ− ,

δF2 = ǭ+γi0∂iχ+ + ǭ+∂tχ− − ǭ−γi0∂iχ− .

(6.8)

Together with the bosonic transformation rules, which we refrain from giving here
but which can be obtained easily by similar techniques, the transformation rules
(6.8) realize the rigid Bargmann superalgebra. Next, we promote this multiplet to a
representation of the rigid Schrödinger superalgebra by assigning transformations
under the Schrödinger transformations that are not contained in the Bargmann su-
peralgebra. After that, we couple the multiplet to the fields of Schrödinger super-
gravity. Following standard techniques of coupling matter to supergravity we find
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for the bosonic transformations

δϕ1 = w ΛD ϕ1 +
2w

3
ρ ϕ2 ,

δϕ2 = w ΛD ϕ2 −
2w

3
ρ ϕ1 ,

δχ+ =
1

4
λabγabχ+ − 1

2
λaγa0χ− + (w − 1)ΛDχ+ −

(2w

3
+ 1

)

γ0χ+ ρ ,

δχ− =
1

4
λabγabχ− + w ΛDχ− +

(2w

3
+ 1

)

γ0χ− ρ ,

δF1 = (w − 1)ΛDF1 + 2
(w

3
+ 1

)

ρ F2 ,

δF2 = (w − 1)ΛDF2 − 2
(w

3
+ 1

)

ρ F1 ,

(6.9)

while the fermionic transformation rules are given by

δϕ1 = ǭ+χ+ + ǭ−χ− ,

δϕ2 = ǭ+γ0χ+ − ǭ−γ0χ− ,

δχ+ =
1

4
γ0ǫ+ τµD̂µ ϕ1 +

1

4
ǫ+ τµD̂µ ϕ2 +

1

4
γaǫ− eµ

aD̂µ ϕ1

+
1

4
γa0ǫ− eµ

aD̂µ ϕ2 +
1

4
ǫ− F1 +

1

4
γ0ǫ− F2 −

w

4
γ0η ϕ1 −

w

4
η ϕ2 ,

δχ− =
1

4
γaǫ+ eµ

aD̂µ ϕ1 −
1

4
γa0ǫ+ eµ

aD̂µ ϕ2 +
1

4
ǫ+ F1 −

1

4
γ0ǫ+ F2 ,

δF1 = ǭ+γaeµ
aD̂µχ+ + ǭ+γ0τµD̂µχ− + ǭ−γaeµ

aD̂µχ− − (w + 1) η̄ γ0χ− ,

δF2 = ǭ+γa0eµ
aD̂µχ+ + ǭ+τµD̂µχ− − ǭ−γa0eµ

aD̂µχ− − (w + 1) η̄ χ− .

(6.10)

The covariant derivatives that appear in (6.10) can be deduced from the transfor-
mation rules (6.9) and (6.10). For the bosonic fields they are given by

D̂µ ϕ1 = ∂µ ϕ1 − w bµ ϕ1 −
2w

3
rµ ϕ2 − ψ̄µ+χ+ − ψ̄µ−χ− ,

D̂µ ϕ2 = ∂µ ϕ2 − w bµ ϕ2 +
2w

3
rµ ϕ1 − ψ̄µ+γ0χ+ + ψ̄µ−γ0χ− ,

D̂µF1 = ∂µF1 − (w − 1) bµ F1 − 2
(w

3
+ 1

)

rµ F2 − ψ̄µ+γaeρ
aD̂ρχ+

− ψ̄µ+γ0τρD̂ρχ− − ψ̄µ−γaeρ
aD̂ρχ− + (w + 1) φ̄µγ0χ− ,

D̂µF2 = ∂µF2 − (w − 1) bµ F2 + 2
(w

3
+ 1

)

rµ F1 − ψ̄µ+γa0eρ
aD̂ρχ+

− ψ̄µ+τρD̂ρχ− + ψ̄µ−γa0eρ
aD̂ρχ− + (w + 1) φ̄µχ− ,

(6.11)
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while for the covariant derivatives of the fermions we find

D̂µχ+ = Dµχ+ +
1

2
ωµ

aγa0χ− − (w − 1) bµχ+ +
(2w

3
+ 1

)

rµ γ0χ+

− 1

4
γ0ψµ+ τρD̂ρ ϕ1 −

1

4
ψµ+ τρD̂ρ ϕ2 −

1

4
γaψµ− eρ

aD̂ρ ϕ1

− 1

4
γa0ψµ− eρ

aD̂ρ ϕ2 −
1

4
ψµ− F1 −

1

4
γ0ψµ− F2

+
w

4
γ0φµ ϕ1 +

w

4
φµ ϕ2 ,

D̂µχ− = Dµχ− − w bµ χ− −
(2w

3
+ 1

)

rµ γ0χ− − 1

4
γaψµ+ eρ

aD̂ρ ϕ1

+
1

4
γa0ψµ+ eρ

aD̂ρ ϕ2 −
1

4
ψµ+ F1 +

1

4
γ0ψµ+ F2 .

(6.12)

This completes our derivation of the first non-relativistic matter multiplet. In sec-
tion 6.2 we will use this scalar multiplet to derive an new off-shell formulation of
Newton–Cartan supergravity.

6.1.2 The vector multiplet

The N = 2 vector multiplet in three dimensions contains a vector, a physical scalar,
two spinors and an auxiliary scalar (Cµ, ρ, λi, D). Using the three-dimensional ep-
silon symbol we can define a new “dual” vector Vµ = εµ

νρ ∂νCρ which obeys

∂µVµ = 0 , (6.13)

and has the dimension of an auxiliary field. In terms of (ρ, λi, Vµ, D) we have the
following supersymmetry transformation rules

δρ = εij η̄iλj ,

δλi = −1

2
γµηi Vµ − 1

2
εijηj D − 1

4
γµεijηj ∂µρ ,

δD =
1

2
εij η̄i γµ∂µλj ,

δVµ =
1

2
δij η̄i γµ

ν∂νλj .

(6.14)

Note that the constraint (6.13) is needed to close the algebra on the relativistic mul-
tiplet.

Next, we perform the non-relativistic limiting procedure. We have to find the
scalings of the fields starting again with (6.5). We define new spinors

λ± =
ω−1±1/2

√
2

(λ1 ± γ0λ2) , (6.15)
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and the bosonic field

φ =
ρ

ω
. (6.16)

Furthermore, we find it useful to introduce the new fields

S = − 1

ω
V0 − D , F =

1

ω3
V0 −

1

ω2
D ,

Ci =
1

ω

(

Vi +
1

2
εij ∂jρ

)

.

(6.17)

In the limit ω → ∞ this leads to the following supersymmetry transformations:

δφ = ǭ+γ0λ+ − ǭ−γ0λ− ,

δλ+ =
1

4
ǫ+ ∂tφ − 1

2
γ0ǫ+ S +

1

2
γi0ǫ− ∂iφ − 1

2
γiǫ− Ci ,

δS =
1

2
ǭ+ ∂tλ+ − ǭ−γi0∂iλ+ − 1

2
ǭ− ∂tλ− ,

δCi = ǭ−γij∂jλ− +
1

2
ǭ+γi0∂tλ− ,

δλ− = −1

2
γiǫ+ Ci +

1

2
γ0ǫ− F ,

δF = ǭ+γi0∂iλ− .

(6.18)

To prove closure one has to use the constraint

∂iCi =
1

2
∂tF , (6.19)

which follows from inserting the definitions (6.17) in the relativistic constraint (6.13)
and sending ω → ∞.

An effect of taking the non-relativistic limit is that there exists a consistent trun-
cation of this multiplet. As this simplifies the calculation that we will perform in
the next section considerably, we impose

Ci = 0 , F = 0 , λ− = 0 . (6.20)

This results in the following representation of the rigid Bargmann superalgebra:

δφ = ǭ+γ0λ+ ,

δλ+ =
1

4
ǫ+ ∂tφ − 1

2
γ0ǫ+ S +

1

2
γi0ǫ− ∂iφ ,

δS =
1

2
ǭ+ ∂tλ+ − ǭ−γi0∂iλ+ .

(6.21)
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While this multiplet looks like a scalar multiplet and appears to be simpler than
(6.8), its relation to the relativistic vector multiplet manifest itself in the following
way. Due to the redefinition (6.17) the auxiliary field S is related to the zero com-
ponent of the vector field. As a consequence of this the auxiliary fields transforms
non-trivially under Galilean boost. This can already be seen in the rigid transfor-
mations but we will only give the bosonic transformations when we couple (6.21)
to the Schrödinger supergravity. After coupling to supergravity the bosonic trans-
formations read

δφ = w ΛDφ ,

δλ =
1

4
λabγabλ + (w − 1)ΛD λ − ρ γ0λ ,

δS = (w − 2)ΛD S − 1

2
εabλa eµ

bD̂µφ ,

(6.22)

while the fermionic ones take the form

δφ = ǭ+γ0λ ,

δλ =
1

4
ǫ+ τµD̂µφ +

1

2
γa0ǫ− eµ

aD̂µφ − 1

2
γ0ǫ+ S − w

4
η φ ,

δS =
1

2
ǭ+τµD̂µλ − ǭ−γa0eµ

aD̂µλ − w − 1

2
η̄ λ .

(6.23)

Note the odd transformation of S under local Lorentz boosts, see eq. (6.22). This
makes clear the vector multiplet origin of (6.22) and (6.23). In the formulas above
we use the covariant derivatives

D̂µφ = ∂µφ − ψ̄µ+γ0λ − w bµ φ ,

D̂µλ = ∂µλ − 1

4
ωµ

abγabλ − (w − 1) bµλ + rµ γ0λ +
w

4
φµ φ

− 1

4
ψµ+ τνD̂νφ − 1

2
γa0ψµ− eν

aD̂νφ +
1

2
γ0ψµ+ S ,

D̂µS = ∂µS + 2 bµ S − 1

2
ψ̄µ+τρD̂ρλ + ψ̄µ−γa0eρ

aD̂ρλ

+
1

2
εab ωµ

a eρ
bD̂ρφ +

w − 1

2
λ̄ φµ .

(6.24)

This finishes our derivation of a second non-relativistic matter multiplet. In the
following section we will use those two matter multiplets to derive two inequiva-
lent formulations of Newton–Cartan supergravity with torsion. Before doing so we
will give an overview of the multiplets, the matter and the supergravity ones, that
we have discussed this far and which provide for us the basis of a non-relativistic
superconformal tensor calculus, see table 6.1.

Note that if we were to add a third column to this table for Z-weight we would
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Overview of non-relativistic multiplets

multiplet field type D-weight R-weight

Schrödinger τµ time-like vielbein 2 0
eµ

a spatial vielbein 1 0
mµ Z gauge-field 0 0
rµ R gauge-field 0 0
b “D gauge-field” -2 0

ψµ+ Q+ gravitino 1 -1
ψµ− Q− gravitino 0 1

Scalar ϕ1 physical scalar w 2w
3

ϕ2 physical scalar w − 2w
3

χ+ spinor w − 1 − 2w
3 − 1

χ− spinor w 2w
3 + 1

F1 auxiliary scalar w − 1 2w
3 + 2

F2 auxiliary scalar w − 1 − 2w
3 − 2

Vector φ physical scalar w 0
λ spinor w − 1 -1
S auxiliary w − 2 0

Table 6.1: Properties of three-dimensional non-relativistic multiplets.

find only zeros. The fact that we do not know how to realize the Schrödinger alge-
bra on a field that is charged under Z is one of the obstacles that prevents us from
discussing an on-shell supergravity theory with torsion. We will come back to this
issue in the conclusion section and in the last chapter.

6.2 Newton–Cartan supergravity with torsion

At this point we have at our disposal a “conformal” supergravity theory and mat-
ter multiplets which we can use to fix some of the gauge-symmetries. This enables
us to use superconformal techniques to derive non-relativistic supergravity multi-
plets. The Schrödinger tensor calculus naturally leads to a Newton–Cartan super-
gravity theory with torsion, i.e. the curl of the gauge-field of local time-translations
τµ is non-zero. The origin of the torsion is the spatial part ba of the dilatation gauge-
field. Unlike in the relativistic case, this spatial part cannot be shifted away by
a special conformal transformation. Instead, it is a dependent gauge-field whose
presence leads to torsion.

In this section we show how the extra symmetries of the Schrödinger superalge-
bra that are not contained in the Bargmann superalgebra, i.e. dilatations D, special
conformal transformations K, S-supersymmetry and possibly R-symmetry, can be
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eliminated by using a compensating matter multiplet. First, we eliminate the spe-
cial conformal transformations by setting

b = τµbµ = 0 . (6.25)

The induced compensating transformation is (5.29). This step is independent of
which compensating multiplet we use. In the following we shall use both, the scalar
and the vector multiplet from the previous section. In analogy to the relativistic
case, we refer to the resulting off-shell formulations as the “old minimal” one when
we use a compensating scalar multiplet and the “new minimal” formulation when
the compensator multiplet is the vector multiplet.

6.2.1 The “old minimal” formulation

In this subsection we choose the scalar multiplet, whose transformation rules can
be found in (6.9) and (6.10), as the compensator multiplet. Like in the relativistic
case we eliminate both physical scalars thus gauge-fixing dilatations and also the
local U(1) R-symmetry. One of the fermions is used to get rid of the conformal
supersymmetry:

ϕ1 = 1 :

ϕ2 = 0 :

}

fixes dilatations and R-symmetry , (6.26)

χ+ = 0 : fixes conformal S-supersymmetry . (6.27)

The compensating transformations are given by

ΛD = − 1

w
ǭ−χ− , ρ = − 3

2w
ǭ−γ0χ− , (6.28)

and

η = − 1

w
ǫ+ τµψ̄µ−χ− + γ0ǫ+ τµ

(2

3
rµ +

1

w
ψ̄µ−γ0χ−

)

− γa0ǫ−
(

ba +
1

w
eµ

a ψ̄µ−χ−
)

− γaǫ− eµ
a

(2

3
rµ +

1

w
ψ̄µ−γ0χ−

)

+
1

w
γ0ǫ− F1 −

1

w
ǫ− F2 −

2

w
λaγaχ− .

(6.29)

Hence, we end up with the field content given in eq. (6.2). The transformation rules
of all fields are given by those of the Schrödinger background fields, see chapter 5,
and eqs. (6.9) and (6.10) with the compensating transformations (5.29), (6.28) and
(6.29) all taken into account. Note that because of the lengthy nature of the compen-
sating transformations (5.29) and especially (6.29) the transformation rules of fields
that transform non-trivially under S-supersymmetry and special conformal trans-
formations proliferate quite quickly. We find the following bosonic transformations
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for the independent fields:

δτµ = 0 ,

δeµ
a = λa

b eµ
b + τµ λa ,

δmµ = ∂µσ + λaeµ
a ,

δrµ = − 3

4w
λa ψ̄µ+γaχ− ,

δF1 = 0 ,

δF2 = 0 ,

(6.30)

and

δψµ+ =
1

4
λabγabψµ+ +

2

w
τµ λaγaχ− ,

δψµ− =
1

4
λabγabψµ− − 1

2
λaγa0ψµ+ +

1

w
eµ

a λb γaγb0χ− ,

δχ− =
1

4
λabγabχ− .

(6.31)

Note the non-trivial boost transformation of the gauge-field rµ in (6.30). Due to
complicated compensating transformation (6.29) the supersymmetry transforma-
tions are much longer. They are given by

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

δrµ = −3

8
ǭ+φµ +

1

4
ǭ+γ0ψµ+ τρrρ +

1

4
ǭ−γa0ψµ+ eρ

arρ +
3

8
ǭ−γa0ψµ+ ba

+
3

8w
ǭ−γ0ψµ+ F1 −

3

8w
ǭ−ψµ+ F2 −

3

8w
ǭ+γaψρ− τρ ψ̄µ+γaχ−

+
3

8w
ǭ−ψρ− eρ

a ψ̄µ+γa0χ− − 3

8w
ǭ−γ0ψρ− eρ

a ψ̄µ+γaχ− ,

(6.32)

for the “physical” bosonic fields. The auxiliary fields Fi and all fermionic fields
transformed under S-supersymmetry, hence we get more elaborate expressions.
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For the fermions we find

δψµ+ = Dµǫ+ − eµ
a ba ǫ+ +

(

rµ − 2

3
τµτρrρ

)

γ0ǫ+ +
2

3
γaǫ− τµ eρ

a rρ

+ γa0ǫ− τµ ba −
1

w
γ0ǫ− τµ F1 +

1

w
ǫ− τµ F2 −

1

w
ψµ+ ǭ−χ−

+
3

2w
γ0ψµ+ ǭ−γ0χ− +

1

w
τµ γaχ− ǭ+γaψρ− τρ

− 1

w
τµ γa0χ− ǭ−ψρ− eρ

a +
1

w
τµ γaχ− ǭ−γ0ψρ− eρ

a ,

δψµ− = Dµǫ− − rµ γ0ǫ− +
1

2
ωµ

aγa0ǫ+ − 1

3
γaǫ+ eµ

aτρ rρ

− 1

3
γaγb0ǫ+ eµ

aeρ
b rρ +

1

2
γaγbǫ− eµ

a bb −
1

2w
γaǫ− eµ

a F1

− 1

2w
γa0ǫ− eµ

a F2 −
3

2w
γ0ψµ− ǭ−γ0χ−

− 1

2w
γaγb0χ− ǭ+γbψρ− eµ

a τρ − 1

2w
γaγbχ− ǭ−ψρ− eµ

aeρ
b

− 1

2w
γaγb0χ− ǭ−γ0ψρ− eµ

aeρ
b ,

δχ− = −w

6
γa0ǫ+ eµ

a rµ − w

4
γaǫ+ ba −

1

3w
ǫ− χ̄−χ− +

1

4
ǫ+ F1

− 1

4
γ0ǫ+ F2 −

1

4
γaγbχ− ǭ+γbψµ− eµ

a .

(6.33)

For the Fi we obtain

δF1 = ǭ+γ0τµD̂µχ− + ǭ−γaeµ
aD̂µχ− +

2

w
ǭ−χ− F1 −

2

w
ǭ−γ0χ− F2

− 1

4
ǭ+γaψµ− eµ

a F1 +
1

4
ǭ+γa0ψµ− eµ

a F2 +
w

4
ǭ+γa0φµ eµ

a

+
1

2
ǭ+γaγb0χ− eµ

a ωµ
b − w

6
ǭ+γaψµ+ eµ

aτρ rρ

− w

6
ǭ+γaγb0ψµ− eµ

aeρ
b rρ +

2(w + 1)

3
ǭ+χ− τµ rµ

− 2(w + 1)

3
ǭ−γa0χ− eµ

a rµ +
w

4
ǭ+γaγbψµ− eµ

a bb

+ (w + 1) ǭ−γaχ− ba +
1

4
ǭ+γaγb0χ− ψ̄ρ−γbψµ+ eµ

aτρ

− 1

4
ǭ+χ− ψ̄ρ−ψµ− eµ

aeρ
a +

1

4
ǭ+γab0χ− ψ̄ρ−γ0ψµ− eµ

aeρ
b ,

(6.34)
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and

δF2 = ǭ+γ0τµD̂µχ− − ǭ−γa0eµ
aD̂µχ− +

2

w
ǭ−χ− F2 +

2

w
ǭ−γ0χ− F1

− 1

4
ǭ+γa0ψµ− eµ

a F1 −
1

4
ǭ+γaψµ− eµ

a F2 −
w

4
ǭ+γ0φµ eµ

a

− 1

2
ǭ+γaγbχ− eµ

aωµ
b − w

6
ǭ+γa0ψµ+ eµ

aτρ rρ

− w

6
ǭ+γaγbψµ+ eµ

aeρ
b rρ −

2(w + 1)

3
ǭ+γ0χ− τµ rµ

− 2(w + 1)

3
ǭ−γaχ− eµ

a rµ − w

4
ǭ+γaγb0ψµ− eµ

a bb

− (w + 1) ǭ−γa0χ− ba +
1

4
ǭ+γaγbχ− ψ̄ρ−γbψµ+ eµ

aτρ

+
1

4
ǭ+γ0χ− ψ̄ρ−ψµ− eµ

aeρ
a +

1

4
ǭ+γabχ− ψ̄ρ−γ0ψµ− eµ

aeρ
b .

(6.35)

These are only the transformations of the independent fields. Those of the depen-
dent fields ωµ

ab, ωµ
a, fµ, ba and φµ would be even longer, which is why we refrain

from denoting them at all. They can be derived easily from (5.6), (5.8), (5.36) and
(5.37). Note that in the transformations of ωµ

a and φµ one should also take into ac-
count the new expressions for curvatures of the gravitini ψµ− and of rµ, see also the
next section were we do work out those transformations for the dependent fields.

6.2.2 The “new minimal” formulation

In this subsection we choose the vector multiplet, see eqs. (6.22) and (6.23), as the
compensator multiplet. The gauge-fixing of dilatations and the special conformal
S-supersymmetry is done by imposing

φ = 1 : fixes dilatations ,

λ = 0 : fixes S-supersymmetry ,
(6.36)

and the resulting compensating gauge transformations are

ΛD = 0 , η = − 2

w
γ0ǫ+ S − 2 γa0ǫ− ba . (6.37)

At this point we are left with the symmetries of the Bargmann superalgebra, eqs. (5.1)
and (3.50), plus an extra U(1) R-symmetry. These symmetries are realized on the set
of independent fields of the “new minimal” Newton–Cartan supergravity theory
given in eq. (6.3). This theory is the non-relativistic version of the three-dimensional
N = (2, 0) new minimal Poincaré supergravity theory, with torsion. The trunca-
tion to zero torsion is discussed in the following section, where we will relate this
theory to the one we have derived in chapter 3.
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The bosonic symmetry transformations are

δτµ = 0 ,

δeµ
a = λa

b eµ
b + τµ λa ,

δmµ = ∂µσ + λaeµ
a ,

δrµ = ∂µρ ,

δS = −1

2
εabλabb ,

(6.38)

and

δψµ+ =
1

4
λabγabψµ+ − γ0ψµ+ ρ ,

δψµ− =
1

4
λabγabψµ− − 1

2
λaγa0ψµ+ + γ0ψµ+ ρ .

(6.39)

Note that S transforms non-trivially under Galilean boosts. This transformation is
proportional to ba, i.e. to torsion. The supersymmetry transformations including
the compensating terms that follow (6.37) are given by

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

δrµ =
3

4
ǭ−γa0ψµ+ ba −

3

8
ǭ+φµ − 3

4w
ǭ+γ0ψµ+ S ,

δS =
w

8
ǭ+φµ τµ +

w

4
ǭ+γa0ψµ− τµ ba −

1

4
ǭ+γ0ψµ+ S

− w

4
ǭ−γa0φµ eµ

a −
w

2
ǭ−γaγbψµ− eµ

a bb −
1

2
ǭ−γaψµ+ eµ

a S ,

(6.40)

and

δψµ+ = Dµǫ+ − ǫ+ eµ
a ba + γ0ǫ+ rµ +

2

w
γ0ǫ+ τµ S + 2 γa0ǫ− τµ ba ,

δψµ− = Dµǫ− − γ0ǫ− rµ + γaγbǫ− eµ
a bb +

1

2
γa0ǫ+ ωµ

a +
1

w
γaǫ+ eµ

a S .

(6.41)

In the new minimal formulation the transformations of the dependent fields
ωµ

ab, ωµ
a, ba and φµ are not too difficult. Therefore, and in order to proceed with

the truncation in the next section, we also denote them here. The bosonic transfor-
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mations are

δωµ
ab = ∂µλab ,

δωµ
a = ∂µλa − ωµ

abλb + λa eµ
b bb + eµ

aλb bb + λa
b ωµ

b ,

δba = λa
b bb ,

δφµ =
1

4
λabγabφµ − γ0φµ ρ − ψµ+ λa ba .

(6.42)

and

δωµ
ab = −1

4
ǭ+γab0φµ +

1

2w
ǭ+γabψµ+ S + ǭ−γ[aψµ+ bb] ,

δωµ
a = ǭ−γ0ψ̂µ

a− +
1

4
eµ

b ǭ+γbψ̂a
0− +

1

4
ǭ+γaψ̂µ0− − 1

w
ǭ+γa0ψµ− S

− 1

w
ǭ−γa0ψµ+ S − 2 εab ǭ−ψµ− bb + eµ

beρ
a ǭ−γ0γbγcψρ− bc

− 1

2
eµ

beρ
a ǭ−γb

(

φρ +
2

w
γ0ψρ+ S

)

+
1

2
eµ

a τρ ǭ+γbψρ+ bb ,

δba = −1

2
ǭ+γbψµ− eµ

b ba −
1

2
ǭ+γ0ψµ+ τµ ba −

1

4
ǭ+γ0φµ eµ

a

− 1

2w
ǭ+ψµ+ eµ

a S ,

δφµ = ǫ+ fµ − 2

3
γ0ǫ+

[

R̂µ0(R) +
3

2
τν ψ̄[µ−γa0ψν]+ ba −

3

4w
τν ψ̄[µ+γ0ψν]+ S

]

+
4

3
γaǫ−

[

R̂µa(R) +
3

2
eν

a ψ̄[µ−γb0ψν]+ bb −
3

4w
eν

a ψ̄[µ+γ0ψν]+ S
]

−
(

Dµ + eµ
a ba + rµ γ0

)( 2

w
γ0ǫ+ S + 2 γb0ǫ− bb

)

.

(6.43)

Here, we used the covariant curvatures of the independent gauge-fields ψµ− and
rµ, which are

ψ̂µν− = 2 ∂[µψν]− − 1

2
ω[µ

abγabψν]− − 2 r[µ γ0ψν]− + ω[µ
a γa0ψν]+

+ 2 γaγbψ[ν− eµ]
abb +

2

w
γaψ[ν+ eµ]

a S ,

R̂µν(R) = 2 ∂[µrν] +
3

4
ψ̄[µ+φν] −

3

2
ψ̄[µ−γa0ψν]+ ba +

3

4w
ψ̄[µ+γ0ψν]+ S .

(6.44)

The expression for the special conformal gauge-field fµ can be found in (5.35). We
did not derive its transformation rule because no independent field transforms to
fµ and therefore its variation is not needed for any checks on e.g. closure of the
commutator algebra.
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6.3 Truncation to zero torsion

In the previous section we derived a Newton–Cartan supergravity multiplet with
non-zero torsion. This needs to be contrasted with the Newton–Cartan supergrav-
ity theories of chapters 3 and 4 which have zero torsion. To see the difference it is
instructive to compare the curvature of local time translations for the theories with
and without torsion. Indicating the curvature of the torsionfull theory with R(H)
and the one of the zero-torsion theory with R̂(H) we have

Rµν(H) = 2 ∂[µτν] − 4 b[µ τν] −
1

2
ψ̄[µ+γ0ψν]+ ,

R̂µν(H) = 2 ∂[µτν] −
1

2
ψ̄[µ+γ0ψν]+ .

(6.45)

Note that the space-space components of both curvatures are the same. The differ-
ence is in the time-space component. In the torsionfull case, setting the time-space
component to zero, is a conventional constraint that is used to solve for the spatial
part ba of the dilatation gauge-field, whereas in the torsionless case it represents an
un-conventional constraint. Indeed, we have

ba =
1

2
R̂a0(H) , (6.46)

and therefore setting the torsion to zero, i.e.

ba = 0 , (6.47)

leads to the un-conventional constraint R̂a0(H) = 0 in the torsionless theory.

This points us to an interesting observation: the existence of a non-trivial trun-
cation of the old minimal and the new minimal Newton–Cartan supergravity mul-
tiplets constructed in the previous section 6.2. Indeed, we shall show in this section
how we can reduce the new minimal torsionfull theory constructed in subsection
6.2.2 to the known new minimal torsionless Newton–Cartan supergravity theory of
chapter 3.

We will now investigate the consequences imposing the constraint (6.47). It is
convenient to use explicit expression for the gauge-field of S-supersymmetry φµ,
which simplifies to

φµ = γa0ψ̂aµ− − 2

w
γ0ψµ+ S , (6.48)

when we use the curvatures and constraints that we introduce below. The only de-
pendent gauge-fields of the Newton–Cartan supergravity theory are the connection
fields for spatial rotations and Galilean boosts. For the supersymmetry transforma-
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tion rules of the independent fields we find

δτµ =
1

2
ǭ+γ0ψµ+ ,

δeµ
a =

1

2
ǭ+γaψµ− +

1

2
ǭ−γaψµ+ ,

δmµ = ǭ−γ0ψµ− ,

δrµ = −3

8
ǭ+γa0ψ̂aµ− − 3

2w
ǭ+γ0ψµ+ S ,

δS =
w

8
ǭ+γa0ψ̂a0− ,

(6.49)

and

δψµ+ = Dµǫ+ + γ0ǫ+ rµ +
2

w
γ0ǫ+ τµ S ,

δψµ− = Dµǫ− − γ0ǫ− rµ +
1

2
γa0ǫ+ ωµ

a +
1

w
γaǫ+ eµ

a S .

(6.50)

The covariant curvatures and derivatives of the new minimal Newton–Cartan su-
pergravity theory are now given by (6.45) and

R̂µν
a(P) = 2 ∂[µeν]

a − 2 ω[µ
abeν]

b − 2 ω[µ
aτν] − ψ̄[µ+γaψν]− ,

R̂µν(Z) = 2 ∂[µmν] − ψ̄[µ−γ0ψν]− ,

R̂µν(R) = 2 ∂[µrν] +
3

2w
ψ̄[µ+γ0ψν]+ S +

3

4
ψ̄[µ+γa0ψ̂aν]− ,

D̂µS = ∂µS − w

8
ψ̄µ+γa0ψ̂a0− ,

ψ̂µν+ = 2 ∂[µψν]+ − 1

2
ω[µ

abγabψν]+ − 2 γ0ψ[µ+ rν] −
4

w
γ0ψ[µ+ τν] S ,

ψ̂µν− = 2 ∂[µψν]− − 1

2
ω[µ

abγabψν]− + 2 γ0ψ[µ− rν] + ω[µ
aγa0ψν]+

− 2

w
γaψ[µ+ eν]

a S .

(6.51)

As we explained at the beginning of this section, the zero-torsion constraint
(6.47) may convert a conventional constraint into an un-conventional one. If this
happens we have to check if the supersymmetry variation of this un-conventional
constraint leads to further constraints. To perform this check we need the transfor-
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mation rules of the dependent connection gauge-fields which reduce to

δωµ
ab = −1

2
ǭ+γ[aψ̂b]

µ− +
1

w
ǭ+γabψµ+ S ,

δωµ
a = ǭ−γ0ψ̂µ

a− +
1

4
eµ

b ǭ+γbψ̂a
0− +

1

4
ǭ+γaψ̂µ0−

− 1

w
ǭ+γa0ψµ− S − 1

w
ǭ−γa0ψµ+ S .

(6.52)

The corresponding curvatures read

R̂µν
ab(J) = 2 ∂[µων]

ab + ψ̄[µ+γ[aψ̂b]
ν]− − 1

w
ψ̄[µ+γabψν]+ S ,

R̂µν
a(G) = 2 ∂[µων]

a − 2 ω[µ
abων]

b − 2 ψ̄[µ−γ0ψ̂ν]
a− − 1

2
e[ν

bψ̄µ]+γbψ̂a
0−

− 1

2
ψ̄[µ+γaψ̂ν]0− +

2

w
ψ̄[µ+γa0ψν]− S ,

(6.53)

in agreement with (3.89).

We are now ready to discuss the constraint structure of the truncated theory.
Some of the curvatures did not change, hence we can immediately infer that

R̂ab(R) = 0 ,
3

4
εab R̂µν

ab(J) = R̂µν(R) . (6.54)

The constraints R̂µν
a(P) = 0 and R̂µν(Z) = 0 are identities when we insert the

expressions for the connection gauge fields, i.e. they are conventional constraints.
More importantly though, we find new constraints. This is due to the fact that
we imposed R̂a0(H) = 0, which is an example of a conventional constraint (nec-
essary to solve for the spatial part ba of the dilatation gauge field) that gets con-
verted into an un-conventional constraint. Together with the constraint R̂ab(H) = 0
which reads the same in the torsionfull as well as in the torsionless case, we find
R̂µν(H) = 0. Supersymmetry variations of this constraint reveal the following ad-
ditional constraints:

Q−−→ ψ̂ab− = 0 (6.55)

R̂µν(H) = 0
Q+−→ ψ̂µν+ = 0

Q+−→ R̂µν
ab(J) =

4

w
εab τ[µD̂ν] S . (6.56)

Further transformations only lead to Bianchi identities. By combing the constraints
(6.56) with (6.54) we furthermore derive that

− 6

w
D̂[µ

(

τν] S
)

= 2 D̂[µrν] . (6.57)

This constraint implies that up to an arbitrary constant the R-symmetry gauge-field
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rµ is determined by τµ and S. In fact, when we set

rµ = − 3

w
τµ S , (6.58)

the truncated theory precisely leads to the off-shell Newton–Cartan multiplet that
was presented in chapter 3. Furthermore, by making the redefinition

rµ = −Vµ − 1

w
τµ S , (6.59)

one obtains precisely the off-shell multiplet that was obtained when taking the limit
of the new minimal Poincaré multiplet.

6.4 A brief summary

This chapter served various purposes. We introduced matter multiplets and thus
showed how we can couple non-relativistic matter to non-relativistic supergrav-
ity backgrounds. Secondly, we derived another generalization of Newton–Cartan
supergravity, namely the theory with torsion. Lastly, we showed that there is no
obstacle in taking over the ideas of the superconformal tensor calculus used in the
relativistic setting and applying them to our non-relativistic supergravity theories.

Note that we did not derive an on-shell Newton–Cartan supergravity theory
with torsion. It would be interesting to see how one can go on-shell in the presence
of torsion. Unlike the truncation to zero torsion that we performed in section 6.3
this is not a straightforward thing to do. The problem is that even in the bosonic
case the equations of motion describing Newton–Cartan gravity with torsion have
not been written down so far.3 Even in the absence of torsion the equations of
motion have only been written down under the assumption that the curvature of
spatial rotations is zero [80]. It is not difficult to write down the equations of motion
for the case that this curvature is nonzero but the price one has to pay is that one
has to add extra terms to the equation of motion proposed in [80] that break the
invariance under central charge transformations [29]. In the non-relativistic super-
conformal approach we are using in this work this requires the introduction of two
compensating scalars: one for dilatations and one for the central charge transforma-
tions. Unlike the compensating scalar for dilatations, the compensating scalar for
central charge transformations should transform non-trivially under central charge
transformations and hence should be part of a different multiplet. The construc-
tion of such a multiplet is different from our investigations in section 6.1 and goes
beyond the scope of this thesis.

3 A systematic approach to construct such an equation of motion is part of the analysis in [102].



7
Conclusion

In this chapter we will recap the results that we have obtained and take another
look at generalizations and extensions thereof. For a large part this will be but
a repetition of the outlook given in each of the previous chapters.
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7.1 Summary of the thesis

In this thesis we constructed non-relativistic theories of supergravity in three space-
time dimensions. Two different methods were used for that purpose. Gauging
techniques, which are known to provide one way towards supergravity in the rela-
tivistic case [95], and which were used in the derivation of the first Newton–Cartan
supergravity too, featured in chapters 4 and 5. A limiting and contraction proce-
dure was developed in chapter 3 and later used in chapter 4 to re-derive the result
obtained previously by gauging techniques and in chapter 6 the limit was used to
construct non-relativistic matter multiplets.

Before summarizing the result let us comment a bit more on the main character-
istics and differences of those two methods. For comparison, we have highlighted
some of those features in table 7.1. Let us focus first on the gauging techniques. It

Methods to obtain non-relativistic theories

gauging limit

NH supergravity, NC (super-)gravity,

results Schrödinger supergravity, off-shell supergravity,

NH supergravity,

drawbacks not easy: close algebra on g.c.t. starting point is crucial

no off-shell formulation need correct constraints

Table 7.1: In this table we enlist the main results achieved using both methods and
their drawbacks. We use the abbreviations NC for Newton–Cartan and NH for
Newton–Hooke, while g.c.t. stands for general coordinate transformations.

is straightforward to realize an algebra on a set of gauge-fields. The challenge is
to make those gauge-fields transform under general coordinate transformations in
the correct way. To achieve this one usually has to imposes curvature constraints
to identify local translations with diffeomorphisms. These curvature constraints
are constraints on the theory and their consequences have to be investigated care-
fully. Certainly, one option is to set the curvatures of all gauge-fields to zero, but
then we are left with a “trivial” theory only, i.e. all fields are pure gauge. The main
question in this approach is thus if we can find a set of non-trivial curvature con-
straints that make the superalgebra close (with diffeomorphisms).1 Ideally, those
same constraints will also allow us to solve for all dependent gauge-fields in terms
of the independent ones. The drawback of this approach is that it does not enable
one to find, in a straightforward manner, multiplets that contain auxiliary fields.

1 Also, if we use Newton–Cartan structures to describe e.g. phenomena in condensed matter theory,
these constraints should comply with expectations from those condensed matter models, e.g. we might
not want to set torsion to zero.
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However, as we showed in chapter 6, Schrödinger techniques might be one option
to circumvent this obstacle.

In conclusion, the starting point here is easy and the difficulty lies in converting
this into a geometric theory. We should also point out that, while we sometimes
made use of both techniques, ultimately all supergravity theories in this thesis were
derived using gauging techniques.

In contrast, the difficulty of the limiting procedure lies in finding the correct
starting point. From then on, one just needs to apply the procedure and see what
it leads to. It might just be that one finds the limit does not work. For example, in
order to avoid divergent terms when taking the limit, we might be forced to put
too many constraints on the independent fields of the theory. Then, one could try
to tweak the starting point, or one must deduce that the theory under consideration
does not have this kind of non-relativistic limit.

Let us now turn to the results that we have obtained. To provide an overview
over the different non-relativistic supergravity theories discussed in this thesis we
summarize them in table 7.2. The first line, on-shell Newton–Cartan supergravity,

Overview of supergravities

field content limit of algebra gauged

NC τµ, eµ
a, mµ, ψµ± on-shell Poincaré N = 2 Bargmann

off-shell NC NC plus S new minimal multiplet (N = 2 Bargmann)

NH NC AdS supergravity N = (2, 0) NH

Schrödinger NC plus rµ no limit Schrödinger

TNC “old” NC plus rµ, F1, F2, χ no limit (known) (N = 2 Bargmann)

TNC “new” NC plus rµ, S no limit (known) (N = 2 Bargmann)

Table 7.2: In this table we review the non-relativistic supergravities of this thesis
and some of their features. The abbreviations NC, NH and AdS stand for Newton–
Cartan, Newton–Hooke and anti-de Sitter, respectively. TNC “old”/“new” refer
to the old/new minimal formulation of Newton–Cartan supergravity with torsion.
The algebras in brackets indicate that the theory is not obtained by gauging tech-
niques, but nevertheless realizes this algebra.

is the first example of a theory of non-relativistic supergravity. This thesis is very
much built on that result and aimed to generalize it in various directions, which
we have depicted in figure 1.2 in the introduction. Our generalizations given in
the first column of table 7.2, comprise the following extentions. The cosmological
extension that we called Newton–Hooke supergravity featured in chapter 4. A
“conformal” extension that we dubbed Schrödinger supergravity was presented
in chapter 5. Finally, an extension with non-vanishing torsion and two novel off-
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shell formulations of the original Newton–Cartan supergravity theory of [77] were
the subject of chapter 6 (and also chapter 3).

The field content of the various theories, given in the second column of table
7.2, always consists of

(

τµ, eµ
a, mµ, ψµ±

)

+ more , (7.1)

i.e. at least the fields of on-shell Newton–Cartan supergravity. Several extensions
then include more fields which are either auxiliary, or in the case of Schrödinger
supergravity where there are more symmetries, extra gauge-fields. Recall that we
argued in chapter 6 that one can eliminate the gauge-field rµ (we also used the
notation Vµ) of R-symmetry when considering the truncation to zero torsion of the
new minimal formulation. Thus, the difference in field content of the two new
minimal formulations in line two and six of table 7.2.

In those cases where we also discussed the connection to a relativistic theory,
via the limiting procedure, we indicated this “parent” theory in the third column
of table 7.2. As we mentioned in chapter 5 there is no way to apply the limiting
procedure in the case for Schrödinger supergravity. In contrast, we do not claim
that no such limit exists for the torsional Newton–Cartan supergravity theories.
However, taking the limit as discussed in chapter 3, especially for the new minimal
theory, imposes that the theory be torsionless. Therefore we did not indicate related
relativistic theories here.

The purpose of the last column is to depict the symmetry algebra that the multi-
plet realizes. In most cases that means that this theory is obtained by gauging said
algebra, as shown in many examples in our work. Only for the off-shell formula-
tions this is not possible in a straightforward way.

In hindsight we realize that not all extensions are on the same footing, as suggested
by figure 1.2 in the introduction. Having gone through the gauge-fixings and other
truncations (on-shell/off-shell and torsion/no torsion) in detail in chapter 6, we
understand the relation between all those extensions much better now. It turns out
that the figure should look more like figure 7.1. The form of this diagram is also
suggestive of extensions of this work. Can we first go on-shell and then truncate
to zero torsion? What is off-shell formulation of Newton–Hooke supergravity? We
come back to these points in the following section, when we provide an outlook on
future work.

The construction of non-relativistic (conformal) supergravity enabled us to con-
struct non-relativistic matter multiplets too. This was part of our analysis in chapter
6, where we also made use of our limiting procedure. Let us repeat part of the table
where the field content and weights of the fields of the matter multiplets were sum-
marized, see table 7.3. These are the only matter multiplets that we constructed so
far but there are certainly others. Indeed, the construction of one particular matter
multiplet with a (scalar) field that is charged under central charge symmetry is part
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The relation between the extensions of Newton–Cartan supergravity

Schrödinger supergravity + compensator multiplets

off-shell, torsion-full
Newton–Cartan supergravity

truncation to zero torsion

going on-shell

“original”
Newton–Cartan supergravity

cosmological extensions:
Newton–Hooke supergravity

Figure 7.1: The relation of the different supergravity theories discussed in this the-
sis.

of one very interesting extension of this work. We come back to this issue in the
next section, when discussing in more detail the possible extensions of our work.

Finally, in the last chapter we also showed that the techniques from the supercon-
formal tensor calculus can be applied in the non-relativistic setting in a straight-
forward way. This enabled us to re-derive and extend all of the previous results
on torsionless supergravities. It also provided a very efficient way to construct tor-
sionfull theories.

This finishes our summary of the results that we have obtained in this thesis. In the
following, we will expand on possible extensions of this work.

7.2 Outlook

To start, let us come back to some issues which we have just found in the previ-
ous section. For example, looking at the table 7.2 we realize that we do not have
an on-shell formulation of torsional Newton–Cartan supergravity. The problem
here is that we do not have a compensating matter multiplet that contains a field
which transforms under the central charge symmetry. Remember, if R̂µν

ab(J) 6= 0
the equation of motion is not invariant under boosts. Say, we add extra terms that
solve this problem, then we obtain an equation of motion that is not invariant under
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Overview of non-relativistic matter multiplets

multiplet field type D-weight R-weight

Scalar ϕ1 physical scalar w 2w
3

ϕ2 physical scalar w − 2w
3

χ+ spinor w − 1 − 2w
3 − 1

χ− spinor w 2w
3 + 1

F1 auxiliary scalar w − 1 2w
3 + 2

F2 auxiliary scalar w − 1 − 2w
3 − 2

Vector φ physical scalar w 0
λ spinor w − 1 -1
S auxiliary w − 2 0

Table 7.3: Properties of three-dimensional non-relativistic matter multiplets.

central charge transformations. In the bosonic case, it suffices to use a Stückelberg
field to overcome this problem, see e.g. [29]. In the supersymmetric case, this Stück-
elberg field must be part of a multiplet. Hence, a matter multiplet with a field that
transforms under central charge symmetry is definitely worth looking for.

This is were this possible extension connects with the exploration of non-relati-
vistic superspace. Indeed, finding more realizations of the Bargmann or Schrödin-
ger superalgebra would be part of an extension of this work. It would be of interest
to investigate more in non-relativistic superspace. A very rewarding, and hugely
simplifying, project would be to describe non-relativistic supersymmetric physics
in an equally elegant superspace formulation as it is possible in the relativistic case,
see e.g. [149]. Of course there is no need to refrain from the component formulation.

In this work we considered only pure, simple Newton–Cartan supergravity.
Some extensions comprise for example considering more extended supersymme-
try algebras, or more general non-relativistic matter-coupled supergravity. Matter-
coupled supergravities would lead towards the non-relativistic analogue of the ge-
ometries that one encounters in the relativistic matter-coupled supergravity theo-
ries. It would be interesting to find out what the analogue of a Kähler target space
is.

In this work we consider non-relativistic superalgebras with two supercharges
to be minimal. How do we extend this with more supercharges? Perhaps it makes
sense to consider any number bigger than two, but maybe we should only take N
to be a multiple of two if we want to retain similar structures in the algebra.

In the last chapter we have shown that techniques that are used in the relativis-
tic case can be put to use in the non-relativistic case too. Apparently this works for
superconformal techniques, so why not for other ones. In particular, we might ask
if there is a non-relativistic version of localization techniques. In fact, the construc-
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tion of off-shell multiplets throughout this work was an effort in this direction.
Off-shell formulations are needed to put (rigid) supergravity on a curved back-
ground, see e.g. [76]. So obviously, now that we have those off-shell formulations
one extension can consist of answering the question on what backgrounds we can
put a non-relativistic theory of supergravity. In a next step, one can ask if we can
apply localization techniques to calculate partition functions for non-relativistic su-
persymmetric theories on curved backgrounds.

An equally obvious but probably more “physical” extension would be to go to
higher dimensions. Using techniques presented in this thesis we might aim to con-
struct Newton–Cartan supergravity in four space-time dimensions, a goal which
has remained elusive this far. The limiting procedure put forward in chapter 3
might be useful for that purpose.

In fact, one can find several applications for the non-relativistic limiting proce-
dure that we developed here. For example, one could set out to derive the non-
relativistic string [101] in a way similar to the point-particle limit that we took
in chapter 3. To do so, one would first have to find a suitable extension of the
Poincaré algebra whose Inönü–Wigner contraction leads to the extended Galilei al-
gebra of [64].

The procedure need not be used to take non-relativistic limits only. The basic
idea of the limiting procedure goes beyond that. It should be clear from the analysis
of chapter 3 that, naively, all we need to perform the limit is the contraction of
one algebra to another one. There possibly exist similar limits that descend from
the ultra-relativistic contraction of the Poincaré algebra, which leads to the Carroll
algebra. Ideally, such a contraction procedure would lead to an ultra-relativistic
version of gravity, such as the theory of Carroll gravity introduced by Hartong [61].
Perhaps, such a limit could also be used to derive the Carroll (super-)particle in a
curved background, see [59, 60].

It is not clear whether every algebra contraction can be translated into a con-
traction at the level of the field theory representing that algebra. Moreover, certain
non-relativistic symmetry algebras cannot be viewed as contractions of relativistic
ones. An example of such an algebra is given by the Schrödinger algebra. However,
the Bargmann and the Schrödinger algebra can be obtained as light-like reductions
of relativistic algebras [150, 151]. Perhaps one can define a different sort of contrac-
tion or limiting procedure related to such kind of reductions, which would give
rise to (torsional) Newton–Cartan structures as presented in [29, 80]. In view of the
recent applications of torsional Newton–Cartan geometry in non-relativistic holog-
raphy [15, 25–28], it would be interesting to investigate this case in more detail.

This brings us back to the putative applications of our results in condensed mat-
ter theory. Recall that our search for off-shell formulations was motivated by the
long-term goal to investigate localization techniques in the non-relativistic context.
If such techniques can indeed be applied, they might prove very useful in yield-
ing exact results (partition functions, which lead to response functions, etc. . . ) for
non-relativistic field theories.

For example, one piece of the action of Son’s effective model for the quantum
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Hall effect [30] remains undetermined in that work. As he points out, symmetry
arguments certainly restrict the possible terms that can appear as extra contribu-
tions to the action. Perhaps requiring supersymmetry can put enough restrictions
to determine the possible terms even more.
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(première partie) (Suite),” Ann. École Norm. Sup. 41 (1924) 1–25. link to full text (in
French).

[4] C. Duval, “On Galileian isometries,” Class.Quant.Grav. 10 (1993) 2217–2222,
arXiv:0903.1641 [math-ph].

[5] D. Son and M. Wingate, “General coordinate invariance and conformal invariance in
nonrelativistic physics: Unitary Fermi gas,” Annals Phys. 321 (2006) 197–224,
arXiv:cond-mat/0509786 [cond-mat].

[6] Y. Nishida and D. T. Son, “Nonrelativistic conformal field theories,” Phys.Rev. D76
(2007) 086004, arXiv:0706.3746 [hep-th].

[7] D. Son, “Toward an AdS/cold atoms correspondence: A Geometric realization of the
Schrodinger symmetry,” Phys.Rev. D78 (2008) 046003, arXiv:0804.3972
[hep-th].

[8] M. Geracie, D. T. Son, C. Wu, and S.-F. Wu, “Spacetime Symmetries of the Quantum
Hall Effect,” Phys.Rev. D91 (2015) 045030, arXiv:1407.1252
[cond-mat.mes-hall].

[9] B. Bradlyn and N. Read, “Low-energy effective theory in the bulk for transport in a
topological phase,” Phys. Rev. B91 (2015) 125303, arXiv:1407.2911
[cond-mat.mes-hall].

[10] T. Brauner, S. Endlich, A. Monin, and R. Penco, “General coordinate invariance in
quantum many-body systems,” Phys. Rev. D90 (2014) 105016, arXiv:1407.7730
[hep-th].

http://dx.doi.org/10.1002/andp.200590044
http://dx.doi.org/10.1002/andp.200590044
https://eudml.org/doc/81417
http://www.numdam.org/item?id=ASENS_1924_3_41__1_0
http://dx.doi.org/10.1088/0264-9381/10/11/006
http://arxiv.org/abs/0903.1641
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://arxiv.org/abs/cond-mat/0509786
http://dx.doi.org/10.1103/PhysRevD.76.086004
http://dx.doi.org/10.1103/PhysRevD.76.086004
http://arxiv.org/abs/0706.3746
http://dx.doi.org/10.1103/PhysRevD.78.046003
http://arxiv.org/abs/0804.3972
http://arxiv.org/abs/0804.3972
http://dx.doi.org/10.1103/PhysRevD.91.045030
http://arxiv.org/abs/1407.1252
http://arxiv.org/abs/1407.1252
http://dx.doi.org/10.1103/PhysRevB.91.125303
http://arxiv.org/abs/1407.2911
http://arxiv.org/abs/1407.2911
http://dx.doi.org/10.1103/PhysRevD.90.105016
http://arxiv.org/abs/1407.7730
http://arxiv.org/abs/1407.7730


136 REFERENCES

[11] K. Jensen, “On the coupling of Galilean-invariant field theories to curved spacetime,”
arXiv:1408.6855 [hep-th].

[12] K. Jensen, “Aspects of hot Galilean field theory,” JHEP 1504 (2015) 123,
arXiv:1411.7024 [hep-th].

[13] K. Jensen and A. Karch, “Revisiting non-relativistic limits,” JHEP 1504 (2015) 155,
arXiv:1412.2738 [hep-th].

[14] K. Jensen, “Anomalies for Galilean fields,” arXiv:1412.7750 [hep-th].

[15] J. Hartong, E. Kiritsis, and N. A. Obers, “Field Theory on Newton-Cartan
Backgrounds and Symmetries of the Lifshitz Vacuum,” JHEP 08 (2015) 006,
arXiv:1502.00228 [hep-th].

[16] M. Geracie, K. Prabhu, and M. M. Roberts, “Curved non-relativistic spacetimes,
Newtonian gravitation and massive matter,” J. Math. Phys. 56 (2015) 103505,
arXiv:1503.02682 [hep-th].

[17] M. Geracie, K. Prabhu, and M. M. Roberts, “Fields and fluids on curved
non-relativistic spacetimes,” JHEP 08 (2015) 042, arXiv:1503.02680 [hep-th].

[18] O. Andreev, M. Haack, and S. Hofmann, “On Nonrelativistic Diffeomorphism
Invariance,” Phys.Rev. D89 no. 6, (2014) 064012, arXiv:1309.7231 [hep-th].

[19] R. Banerjee, A. Mitra, and P. Mukherjee, “A new formulation of non-relativistic
diffeomorphism invariance,” Phys.Lett. B737 (2014) 369–373, arXiv:1404.4491
[gr-qc].

[20] R. Banerjee, A. Mitra, and P. Mukherjee, “Localization of the Galilean symmetry and
dynamical realization of Newton-Cartan geometry,” Class.Quant.Grav. 32 (2015)
045010, arXiv:1407.3617 [hep-th].

[21] O. Andreev, “More On Nonrelativistic Diffeomorphism Invariance,” Phys.Rev. D91
no. 2, (2015) 024035, arXiv:1408.7031 [hep-th].

[22] R. Banerjee, A. Mitra, and P. Mukherjee, “General algorithm for nonrelativistic
diffeomorphism invariance,” Phys.Rev. D91 no. 8, (2015) 084021,
arXiv:1501.05468 [gr-qc].

[23] A. Mitra, “Weyl rescaled Newton-Cartan geometry from the localization of Galilean
and scale symmetries,” arXiv:1508.03207 [hep-th].

[24] R. Banerjee and P. Mukherjee, “New approach to nonrelativistic diffeomorphism
invariance and its applications,” arXiv:1509.05622 [gr-qc].

[25] M. H. Christensen, J. Hartong, N. A. Obers, and B. Rollier, “Torsional Newton-Cartan
Geometry and Lifshitz Holography,” Phys.Rev. D89 (2014) 061901,
arXiv:1311.4794 [hep-th].

[26] M. H. Christensen, J. Hartong, N. A. Obers, and B. Rollier, “Boundary Stress-Energy
Tensor and Newton-Cartan Geometry in Lifshitz Holography,” JHEP 1401 (2014) 057,
arXiv:1311.6471 [hep-th].

[27] J. Hartong, E. Kiritsis, and N. A. Obers, “Lifshitz spacetimes for Schrödinger
holography,” Phys.Lett. B746 (2015) 318–324, arXiv:1409.1519 [hep-th].

[28] J. Hartong, E. Kiritsis, and N. A. Obers, “Schrödinger Invariance from Lifshitz
Isometries in Holography and Field Theory,” Phys. Rev. D92 (2015) 066003,
arXiv:1409.1522 [hep-th].

http://arxiv.org/abs/1408.6855
http://dx.doi.org/10.1007/JHEP04(2015)123
http://arxiv.org/abs/1411.7024
http://dx.doi.org/10.1007/JHEP04(2015)155
http://arxiv.org/abs/1412.2738
http://arxiv.org/abs/1412.7750
http://dx.doi.org/10.1007/JHEP08(2015)006
http://arxiv.org/abs/1502.00228
http://dx.doi.org/10.1063/1.4932967
http://arxiv.org/abs/1503.02682
http://dx.doi.org/10.1007/JHEP08(2015)042
http://arxiv.org/abs/1503.02680
http://dx.doi.org/10.1103/PhysRevD.89.064012
http://arxiv.org/abs/1309.7231
http://dx.doi.org/10.1016/j.physletb.2014.09.004
http://arxiv.org/abs/1404.4491
http://arxiv.org/abs/1404.4491
http://dx.doi.org/10.1088/0264-9381/32/4/045010
http://dx.doi.org/10.1088/0264-9381/32/4/045010
http://arxiv.org/abs/1407.3617
http://dx.doi.org/10.1103/PhysRevD.91.024035
http://dx.doi.org/10.1103/PhysRevD.91.024035
http://arxiv.org/abs/1408.7031
http://dx.doi.org/10.1103/PhysRevD.91.084021
http://arxiv.org/abs/1501.05468
http://arxiv.org/abs/1508.03207
http://arxiv.org/abs/1509.05622
http://dx.doi.org/10.1103/PhysRevD.89.061901
http://arxiv.org/abs/1311.4794
http://dx.doi.org/10.1007/JHEP01(2014)057
http://arxiv.org/abs/1311.6471
http://dx.doi.org/10.1016/j.physletb.2015.05.010
http://arxiv.org/abs/1409.1519
http://dx.doi.org/10.1103/PhysRevD.92.066003
http://arxiv.org/abs/1409.1522


REFERENCES 137

[29] E. A. Bergshoeff, J. Hartong, and J. Rosseel, “Torsional Newton-Cartan Geometry and
the Schrödinger Algebra,” Class.Quant.Grav. 32 (2015) 135017, arXiv:1409.5555
[hep-th].

[30] D. T. Son, “Newton-Cartan Geometry and the Quantum Hall Effect,”
arXiv:1306.0638 [cond-mat.mes-hall].

[31] C. Hoyos and D. T. Son, “Hall Viscosity and Electromagnetic Response,”
Phys.Rev.Lett. 108 (2012) 066805, arXiv:1109.2651 [cond-mat.mes-hall].

[32] A. G. Abanov and A. Gromov, “Electromagnetic and gravitational responses of
two-dimensional noninteracting electrons in a background magnetic field,” Phys. Rev.
B90 (2014) 014435, arXiv:1401.3703 [cond-mat.str-el].

[33] A. Gromov and A. G. Abanov, “Thermal Hall Effect and Geometry with Torsion,”
Phys.Rev.Lett. 114 (2015) 016802, arXiv:1407.2908 [cond-mat.str-el].

[34] X. Wen and A. Zee, “Shift and spin vector: New topological quantum numbers for
the Hall fluids,” Phys.Rev.Lett. 69 (1992) 953–956.

[35] C. Hoyos, S. Moroz, and D. T. Son, “Effective theory of chiral two-dimensional
superfluids,” Phys. Rev. B89 (2014) 174507, arXiv:1305.3925
[cond-mat.quant-gas].

[36] S. Moroz and C. Hoyos, “Effective theory of two-dimensional chiral superfluids:
gauge duality and Newton-Cartan formulation,” Phys.Rev. B91 no. 6, (2015) 064508,
arXiv:1408.5911 [cond-mat.quant-gas].

[37] B. Carter and I. Khalatnikov, “Canonically covariant formulation of Landau’s
Newtonian superfluid dynamics,” Rev.Math.Phys. 6 (1994) 277–304.

[38] B. Carter and N. Chamel, “Covariant analysis of newtonian multi-fluid models for
neutron stars: I milne-cartan structure and variational formulation,” Int.J.Mod.Phys.
D13 (2004) 291–326, arXiv:astro-ph/0305186 [astro-ph].

[39] B. Carter and N. Chamel, “Covariant analysis of Newtonian multi-fluid models for
neutron stars: 2 Stress - energy tensors and virial theorems,” Int. J. Mod. Phys. D14
(2005) 717–748, arXiv:astro-ph/0312414 [astro-ph].

[40] B. Carter and N. Chamel, “Covariant analysis of Newtonian multi-fluid models for
neutron stars. 3. Transvective, viscous, and superfluid drag dissipation,” Int. J. Mod.
Phys. D14 (2005) 749–774, arXiv:astro-ph/0410660 [astro-ph].

[41] N. Banerjee, S. Dutta, and A. Jain, “Null Fluids - A New Viewpoint of Galilean
Fluids,” arXiv:1509.04718 [hep-th].

[42] A. Jain, “Galilean Anomalies and Their Effect on Hydrodynamics,”
arXiv:1509.05777 [hep-th].

[43] M. Taylor, “Non-relativistic holography,” arXiv:0812.0530 [hep-th].

[44] K. Balasubramanian and J. McGreevy, “Gravity duals for non-relativistic CFTs,”
Phys.Rev.Lett. 101 (2008) 061601, arXiv:0804.4053 [hep-th].

[45] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,”
Class.Quant.Grav. 26 (2009) 224002, arXiv:0903.3246 [hep-th].

[46] A. Bagchi and R. Gopakumar, “Galilean Conformal Algebras and AdS/CFT,” JHEP
0907 (2009) 037, arXiv:0902.1385 [hep-th].

http://dx.doi.org/10.1088/0264-9381/32/13/135017
http://arxiv.org/abs/1409.5555
http://arxiv.org/abs/1409.5555
http://arxiv.org/abs/1306.0638
http://dx.doi.org/10.1103/PhysRevLett.108.066805
http://arxiv.org/abs/1109.2651
http://dx.doi.org/10.1103/PhysRevB.90.014435
http://dx.doi.org/10.1103/PhysRevB.90.014435
http://arxiv.org/abs/1401.3703
http://dx.doi.org/10.1103/PhysRevLett.114.016802
http://arxiv.org/abs/1407.2908
http://dx.doi.org/10.1103/PhysRevLett.69.953
http://dx.doi.org/10.1103/PhysRevB.89.174507
http://arxiv.org/abs/1305.3925
http://arxiv.org/abs/1305.3925
http://dx.doi.org/10.1103/PhysRevB.91.064508
http://arxiv.org/abs/1408.5911
http://dx.doi.org/10.1142/S0129055X94000134
http://dx.doi.org/10.1142/S0218271804004542
http://dx.doi.org/10.1142/S0218271804004542
http://arxiv.org/abs/astro-ph/0305186
http://dx.doi.org/10.1142/S0218271805006821
http://dx.doi.org/10.1142/S0218271805006821
http://arxiv.org/abs/astro-ph/0312414
http://dx.doi.org/10.1142/S0218271805006845
http://dx.doi.org/10.1142/S0218271805006845
http://arxiv.org/abs/astro-ph/0410660
http://arxiv.org/abs/1509.04718
http://arxiv.org/abs/1509.05777
http://arxiv.org/abs/0812.0530
http://dx.doi.org/10.1103/PhysRevLett.101.061601
http://arxiv.org/abs/0804.4053
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://dx.doi.org/10.1088/1126-6708/2009/07/037
http://dx.doi.org/10.1088/1126-6708/2009/07/037
http://arxiv.org/abs/0902.1385


138 REFERENCES

[47] G. ’t Hooft, “Dimensional reduction in quantum gravity,” arXiv:gr-qc/9310026
[gr-qc].

[48] L. Susskind, “The World as a hologram,” J.Math.Phys. 36 (1995) 6377–6396,
arXiv:hep-th/9409089 [hep-th].

[49] A. Castro, M. R. Gaberdiel, T. Hartman, A. Maloney, and R. Volpato, “The Gravity
Dual of the Ising Model,” Phys.Rev. D85 (2012) 024032, arXiv:1111.1987
[hep-th].

[50] M. R. Gaberdiel and R. Gopakumar, “Minimal Model Holography,” J.Phys. A46
(2013) 214002, arXiv:1207.6697 [hep-th].

[51] D. Grumiller, W. Riedler, J. Rosseel, and T. Zojer, “Holographic applications of
logarithmic conformal field theories,” J.Phys. A46 (2013) 494002, arXiv:1302.0280
[hep-th].

[52] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity,”
Commun.Math.Phys. 104 (1986) 207–226.

[53] S. Detournay, T. Hartman, and D. M. Hofman, “Warped Conformal Field Theory,”
Phys. Rev. D86 (2012) 124018, arXiv:1210.0539 [hep-th].

[54] D. M. Hofman and B. Rollier, “Warped Conformal Field Theory as Lower Spin
Gravity,” Nucl. Phys. B897 (2015) 1–38, arXiv:1411.0672 [hep-th].

[55] C. Duval, G. W. Gibbons, and P. A. Horvathy, “Conformal Carroll groups,” J. Phys.
A47 (2014) 335204, arXiv:1403.4213 [hep-th].

[56] A. Bagchi, S. Chakrabortty, and P. Parekh, “Tensionless Strings from Worldsheet
Symmetries,” arXiv:1507.04361 [hep-th].

[57] C. Duval, G. W. Gibbons, P. A. Horvathy, and P. M. Zhang, “Carroll versus Newton
and Galilei: two dual non-Einsteinian concepts of time,” Class. Quant. Grav. 31 (2014)
085016, arXiv:1402.0657 [gr-qc].

[58] C. Duval, G. W. Gibbons, and P. A. Horvathy, “Conformal Carroll groups and BMS
symmetry,” Class. Quant. Grav. 31 (2014) 092001, arXiv:1402.5894 [gr-qc].

[59] E. Bergshoeff, J. Gomis, and G. Longhi, “Dynamics of Carroll Particles,”
Class.Quant.Grav. 31 (2014) 205009, arXiv:1405.2264 [hep-th].

[60] E. Bergshoeff, J. Gomis, and L. Parra, “The Symmetries of the Carroll Superparticle,”
arXiv:1503.06083 [hep-th].

[61] J. Hartong, “Gauging the Carroll Algebra and Ultra-Relativistic Gravity,” JHEP 08
(2015) 069, arXiv:1505.05011 [hep-th].

[62] J. Gomis and H. Ooguri, “Nonrelativistic closed string theory,” J.Math.Phys. 42 (2001)
3127–3151, arXiv:hep-th/0009181 [hep-th].

[63] U. H. Danielsson, A. Guijosa, and M. Kruczenski, “IIA/B, wound and wrapped,”
JHEP 0010 (2000) 020, arXiv:hep-th/0009182 [hep-th].

[64] J. Brugues, T. Curtright, J. Gomis, and L. Mezincescu, “Non-relativistic strings and
branes as non-linear realizations of Galilei groups,” Phys.Lett. B594 (2004) 227–233,
arXiv:hep-th/0404175 [hep-th].

http://arxiv.org/abs/gr-qc/9310026
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9409089
http://dx.doi.org/10.1103/PhysRevD.85.024032
http://arxiv.org/abs/1111.1987
http://arxiv.org/abs/1111.1987
http://dx.doi.org/10.1088/1751-8113/46/21/214002
http://dx.doi.org/10.1088/1751-8113/46/21/214002
http://arxiv.org/abs/1207.6697
http://dx.doi.org/10.1088/1751-8113/46/49/494002
http://arxiv.org/abs/1302.0280
http://arxiv.org/abs/1302.0280
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1103/PhysRevD.86.124018
http://arxiv.org/abs/1210.0539
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.011
http://arxiv.org/abs/1411.0672
http://dx.doi.org/10.1088/1751-8113/47/33/335204
http://dx.doi.org/10.1088/1751-8113/47/33/335204
http://arxiv.org/abs/1403.4213
http://arxiv.org/abs/1507.04361
http://dx.doi.org/10.1088/0264-9381/31/8/085016
http://dx.doi.org/10.1088/0264-9381/31/8/085016
http://arxiv.org/abs/1402.0657
http://dx.doi.org/10.1088/0264-9381/31/9/092001
http://arxiv.org/abs/1402.5894
http://dx.doi.org/10.1088/0264-9381/31/20/205009
http://arxiv.org/abs/1405.2264
http://arxiv.org/abs/1503.06083
http://dx.doi.org/10.1007/JHEP08(2015)069
http://dx.doi.org/10.1007/JHEP08(2015)069
http://arxiv.org/abs/1505.05011
http://dx.doi.org/10.1063/1.1372697
http://dx.doi.org/10.1063/1.1372697
http://arxiv.org/abs/hep-th/0009181
http://dx.doi.org/10.1088/1126-6708/2000/10/020
http://arxiv.org/abs/hep-th/0009182
http://dx.doi.org/10.1016/j.physletb.2004.05.024
http://arxiv.org/abs/hep-th/0404175


REFERENCES 139

[65] J. Gomis, K. Kamimura, and P. K. Townsend, “Non-relativistic superbranes,” JHEP
0411 (2004) 051, arXiv:hep-th/0409219 [hep-th].

[66] J. Gomis and F. Passerini, “Rotating solutions of non-relativistic string theory,” Phys.
Lett. B617 (2005) 182–192, arXiv:hep-th/0411195 [hep-th].

[67] J. Gomis, J. Gomis, and K. Kamimura, “Non-relativistic superstrings: A New soluble
sector of AdS(5) x S**5,” JHEP 0512 (2005) 024, arXiv:hep-th/0507036
[hep-th].

[68] J. Gomis, F. Passerini, T. Ramirez, and A. Van Proeyen, “Non relativistic Dp branes,”
JHEP 10 (2005) 007, arXiv:hep-th/0507135 [hep-th].

[69] B. S. Kim, “World Sheet Commuting beta gamma CFT and Non-Relativistic String
Theories,” Phys. Rev. D76 (2007) 106007, arXiv:0708.4261 [hep-th].

[70] B. S. Kim, “Non-relativistic superstring theories,” Phys. Rev. D76 (2007) 126013,
arXiv:0710.3203 [hep-th].

[71] X. Bekaert and K. Morand, “Connections and dynamical trajectories in generalised
Newton-Cartan gravity I. An intrinsic view,” arXiv:1412.8212 [hep-th].

[72] X. Bekaert and K. Morand, “Connections and dynamical trajectories in generalised
Newton-Cartan gravity II. An ambient perspective,” arXiv:1505.03739
[hep-th].

[73] D. Tong and C. Turner, “The Quantum Hall Effect in Supersymmetric Chern-Simons
Theories,” arXiv:1508.00580 [hep-th].

[74] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson
loops,” Commun.Math.Phys. 313 (2012) 71–129, arXiv:0712.2824 [hep-th].

[75] M. Marino, “Lectures on localization and matrix models in supersymmetric
Chern-Simons-matter theories,” J.Phys. A44 (2011) 463001, arXiv:1104.0783
[hep-th].

[76] G. Festuccia and N. Seiberg, “Rigid Supersymmetric Theories in Curved
Superspace,” JHEP 1106 (2011) 114, arXiv:1105.0689 [hep-th].

[77] R. Andringa, E. A. Bergshoeff, J. Rosseel, and E. Sezgin, “3D Newton-Cartan
Supergravity,” Class.Quant.Grav. 30 (2013) 205005, arXiv:1305.6737 [hep-th].

[78] S. R. Coleman and J. Mandula, “All Possible Symmetries of the S Matrix,” Phys.Rev.
159 (1967) 1251–1256.

[79] R. Haag, J. T. Lopuszanski, and M. Sohnius, “All Possible Generators of
Supersymmetries of the s Matrix,” Nucl.Phys. B88 (1975) 257.

[80] R. Andringa, E. Bergshoeff, S. Panda, and M. de Roo, “Newtonian Gravity and the
Bargmann Algebra,” Class.Quant.Grav. 28 (2011) 105011, arXiv:1011.1145
[hep-th].

[81] A. Bagchi, R. Gopakumar, I. Mandal, and A. Miwa, “GCA in 2d,” JHEP 1008 (2010)
004, arXiv:0912.1090 [hep-th].

[82] C. Hagen, “Scale and conformal transformations in galilean-covariant field theory,”
Phys.Rev. D5 (1972) 377–388.

[83] U. Niederer, “The maximal kinematical invariance group of the free Schrödinger
equation.,” Helv.Phys.Acta 45 (1972) 802–810.

http://dx.doi.org/10.1088/1126-6708/2004/11/051
http://dx.doi.org/10.1088/1126-6708/2004/11/051
http://arxiv.org/abs/hep-th/0409219
http://dx.doi.org/10.1016/j.physletb.2005.04.061
http://dx.doi.org/10.1016/j.physletb.2005.04.061
http://arxiv.org/abs/hep-th/0411195
http://dx.doi.org/10.1088/1126-6708/2005/12/024
http://arxiv.org/abs/hep-th/0507036
http://arxiv.org/abs/hep-th/0507036
http://dx.doi.org/10.1088/1126-6708/2005/10/007
http://arxiv.org/abs/hep-th/0507135
http://dx.doi.org/10.1103/PhysRevD.76.106007
http://arxiv.org/abs/0708.4261
http://dx.doi.org/10.1103/PhysRevD.76.126013
http://arxiv.org/abs/0710.3203
http://arxiv.org/abs/1412.8212
http://arxiv.org/abs/1505.03739
http://arxiv.org/abs/1505.03739
http://arxiv.org/abs/1508.00580
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://dx.doi.org/10.1088/1751-8113/44/46/463001
http://arxiv.org/abs/1104.0783
http://arxiv.org/abs/1104.0783
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://dx.doi.org/10.1088/0264-9381/30/20/205005
http://arxiv.org/abs/1305.6737
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1016/0550-3213(75)90279-5
http://dx.doi.org/10.1088/0264-9381/28/10/105011
http://arxiv.org/abs/1011.1145
http://arxiv.org/abs/1011.1145
http://dx.doi.org/10.1007/JHEP08(2010)004
http://dx.doi.org/10.1007/JHEP08(2010)004
http://arxiv.org/abs/0912.1090
http://dx.doi.org/10.1103/PhysRevD.5.377


140 REFERENCES

[84] R. Puzalowski, “Galilean supersymmetry,” Acta Phys.Austriaca 50 (1978) 45.

[85] G. De Franceschi and F. Palumbo, “Spontaneous supersymmetry breaking and
superconductivity in a nonrelativistic model,” Nucl.Phys. B162 (1980) 478.

[86] T. Clark and S. Love, “Nonrelativistic supersymmetry,” Nucl.Phys. B231 (1984) 91.

[87] J. Beckers and V. Hussin, “Dynamical Supersymmetries of the Harmonic Oscillator,”
Phys.Lett. A118 (1986) 319–321.

[88] J. Beckers, D. Dehin, and V. Hussin, “Symmetries and Supersymmetries of the
Quantum Harmonic Oscillator,” J.Phys. A20 (1987) 1137–1154.

[89] J. P. Gauntlett, J. Gomis, and P. Townsend, “Supersymmetry and the physical phase
space formulation of spinning particles,” Phys.Lett. B248 (1990) 288–294.

[90] J. de Azcarraga and D. Ginestar, “Nonrelativistic limit of supersymmetric theories,”
J.Math.Phys. 32 (1991) 3500–3508.

[91] M. Leblanc, G. Lozano, and H. Min, “Extended superconformal Galilean symmetry in
Chern-Simons matter systems,” Annals Phys. 219 (1992) 328–348,
arXiv:hep-th/9206039 [hep-th].

[92] C. Duval and P. Horvathy, “On Schrödinger superalgebras,” J.Math.Phys. 35 (1994)
2516–2538, arXiv:hep-th/0508079 [hep-th].

[93] O. Bergman and C. B. Thorn, “SuperGalilei invariant field theories in
(2+1)-dimensions,” Phys.Rev. D52 (1995) 5997–6007, arXiv:hep-th/9507007
[hep-th].

[94] O. Bergman, “Galilean supersymmetry in (2+1)-dimensions,” Int.J.Mod.Phys. A12
(1997) 1173–1182, arXiv:hep-th/9609098 [hep-th].

[95] A. H. Chamseddine and P. C. West, “Supergravity as a Gauge Theory of
Supersymmetry,” Nucl.Phys. B129 (1977) 39.

[96] E. Inonu and E. P. Wigner, “On the Contraction of groups and their represenations,”
Proc.Nat.Acad.Sci. 39 (1953) 510–524.

[97] D. Z. Freedman and A. Van Proeyen, “Supergravity,” Cambridge University Press
(2012) .

[98] V. Bargmann, “On Unitary ray representations of continuous groups,” Annals Math.
59 (1954) 1–46.
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Samenvatting

De zwaartekracht is een ongetwijfeld alomtegenwoordige, fundamentele kracht in
de natuur. Ze is zo gewoon voor ons dat we ons nauwelijks een wereld zonder
haar kunnen voorstellen. Uiteraard werd de zwaartekracht ook als eerste onder-
worpen aan onderzoek door natuurkundigen. Newton en Kepler waren de eersten
die de beweging van deeltjes en planeten, die gravitationele interactie ondergaan,
succesvol beschreven. Echter geloven we tegenwoordig dat de Newtoniaanse the-
orie maar een effectieve beschrijving van een andere, meer fundamentele theorie
is. Deze algemene relativiteitstheorie werd formeel voor het eerst beschreven door
Einstein precies honderd jaar geleden.

De theorie van Einstein berust slechts op enkele pijlers, uitspraken die beperkin-
gen vastleggen, bepaalde wetten die de theorie moet gehoorzamen. Een daarvan
is dat de theorie onafhankelijk van het coördinatensysteem, dat gebruikt wordt om
de theorie te beschrijven, moet zijn. In de hedendaagse (theoretische, maar niet uit-
sluitend) natuurkunde is dit een voor de hand liggend ding om te doen. Dat wil
zeggen dat men onveranderlijkheid van de theorie en haar voorspellingen onder
algemene coördinatentransformaties vereist. Echter, achteraf gezien vragen we ons
af waarom niemand deze vraag aan de theorie van Newton gericht had. Zelfs vóór
de ontdekking van de algemene relativiteitstheorie had men het concept van dif-
feomorfismeinvariantie op een theorie, die tot nu toe alleen op een zodanige wijze
geformuleerd was dat ze invariant onder Galileı̈sche coördinatentransformaties is,
kunnen richten.

Op dat moment kan dit voldoende zijn geweest. Fysische modellen werden
meestal beschouwd door zogenaamde vrije-val, of inertiaalstelsel. Dit zijn coördi-
natensystemen waarin een waarnemer geen enkele zwaartekracht voelt. Verschil-
lende niet-relativistische inertiaalstelsels worden vervolgens gerelateerd door Gal-
ileı̈sche coördinatentransformaties. (In de relativistische context zijn dit de Lorentz
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transformaties.) Galileı̈sche transformaties verbinden twee verschillende coördi-
natensystemen via constante rotaties, boosts en verschuivingen. Daarentegen zijn
willekeurige algemene coördinatentransformaties niet onderworpen aan enige be-
perking, zoals bestendigheid van de symmetrie parameters. Zoals eerder vermeld,
beschouwt men in de context van niet-relativistische theorieën meestal alleen Gal-
ileı̈sche transformaties. Echter, in principe moet er een beschrijving van elke niet-
relativistische theorie, en dus ook van de Newtoniaanse zwaartekracht, die invari-
ant onder willekeurige transformaties van de coördinaten is, bestaan.

Dus, wat is de coördinatenonafhankelijke beschrijving van de Newtoniaanse
zwaartekracht? Slechts een paar jaar na de ontdekking van Einsteins algemene rel-
ativiteitstheorie werd deze vraag uiteindelijk beantwoord. Het werd ontdekt door
de Franse wiskundige Cartan en de theorie is nu bekend onder de naam Newton–
Cartan zwaartekracht. Het is deze coördinatenonafhankelijke beschrijving van de
Newtoniaanse zwaartekracht die we voornamelijk behandelen in dit proefschrift.

Merk op dat terwijl de Newton–Cartan theorie wel één van de pilaren waarop
de Einsteinse theorie gebaseerd is gehoorzaamt, wijkt ze van de algemene rela-
tiviteitstheorie in een ander cruciaal aspect af. Namelijk, in de Newton–Cartan
theorie bestaat geen limiterende snelheid. We bespreken dit onderwerp ook in dit
proefschrift en we onderzoeken hoe de theorie van Einstein wordt vervormd wan-
neer we het snelheidslimiet, de lichtsnelheid, naar oneindig laten gaan. Zoals we
laten zien, biedt dit een manier om de Newton–Cartan theorie van de algemene
relativiteitstheorie af te leiden.

Recente belangstelling voor het beschrijven van theorieën die invariant onder
niet-relativistische algemene coördinatentransformaties zijn, is aangewakkerd door
ontwikkelingen in de theorie van de gecondenseerde materie. Dit leidde tot meer
systematische studies, met name hoe niet-relativistische veldentheorieën aan New-
ton–Cartan achtergronden koppelen. Er is opgemerkt dat naast de “gewone” ijk-
velden, de tijd-achtige en ruimtelijke vielbein, een extra vectorveld moet worden
toegevoegd om niet-relativistische veldentheorieën consistent aan willekeurige ge-
kromde achtergronden te koppelen. In het algemeen laten deze onderzoeken ook
een ander belangrijk aspect van de achtergrond geometrie zien: dat men de torsie
van de niet-relativistische zwaartekracht theorie niet mag beperken.

De noodzaak om een extra vectorijkveld aan de Newton–Cartan velden toe te
voegen was bijvoorbeeld gerealiseerd door Son. Het gebruik van Newton–Cartan
structuren is verplicht in zijn effectieve actie voor het Quantum Hall effect. Dit
model is vanzelf voorzien van een zogenaamde Wen–Zee term welke de koppeling
tussen het extra ijkveld en de kromming beschrijft. Dit codeert de Hall viscositeit en
beschrijft dus meer universele kenmerken van het Quantum Hall effect dan alleen
de gekwantiseerd Hall geleidbaarheid. Door middel van een soortgelijke koppel-
ing met een U(1) ijkveld en een Wen–Zee term verkrijgt men een ook een effectieve
actie voor chirale superfluı̈de vloeistof. Het werd gerealiseerd dat Newton–Cartan
structuren een bijzonder nette manier bieden om de actie in een covariante vorm te
schrijven, en dus bieden ze een handige kader om, bijvoorbeeld, de energiestroom
van de superfluı̈de vloeistof te berekenen. Newton–Cartan structuren zijn ook es-
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sentieel in het beschrijven van Newtoniaanse vloeistoffen. In het bijzonder werden
dergelijke modellen gebruikt om de effecten van superfluı̈diteit in Neutronenster-
ren te beschrijven. Een studie van de niet-relativistische vloeistoffen, of “Galileı̈sche
vloeistoffen”, dat wil zeggen hydrodynamica op Galileı̈sche achtergronden, maakt
ook gebruik van Newton–Cartan structuren.

Sommige onderzoeken in de theorie van de gecondenseerde materie worden
gemotiveerd door de opkomst van nieuwe “holografische” technieken. Het holo-
grafische principe, dat een overeenstemming van zwaartekracht theorieën in anti-
de Sitter ruimte-tijd en conforme veldentheorieën voorspeld, de AdS/CFT cor-
respondentie, ligt aan de basis van deze technieken. Enkele eenvoudige, maar
inzichtelijke, manifestaties van deze dualiteit werden gevonden in modellen in
de drie-dimensionale ruimte-tijd, voortbouwend op een werk van Brown en Hen-
neaux, welke inderdaad een van de voorlopers van deze dualiteit is. Terwijl, zoals
we eerder hebben gezegd, dergelijke technieken al worden toegepast, moet nog
veel worden onderzocht wat de algemeenheid van deze correspondentie betreft.
Het onderzoek naar het vinden van niet-relativistische realisaties van deze dualiteit
is een poging in deze richting.

Newton–Cartan-achtige structuren, in feite duale structuren die meer gerela-
teerd zijn aan de ultra-relativistische natuurkunde dan aan niet-relativistische natu-
urkunde, komen ook in kromgetrokken conforme veldentheorieën te voorschijn.
Vermoedelijk spelen ze ook een rol bij de spanningsloze limiet van de snaartheorie.
De spanningsloze limiet betekent het nemen van een ultra-relativistische limiet, dat
tot “Carrollische” fysica en ruimte-tijd leidt. Deze zijn in vele opzichten duaal aan
Newton–Cartan structuren. Andere, in feite tegenovergestelde, niet-relativistische
limieten van de snaartheorie zijn ook overwogen. Niet-relativistische snaartheo-
rie werd bestudeerd als een mogelijk oplosbare sector in snaartheorie of M-theorie.
Deze onderzoeken zijn ook belangrijk voor de toepassingen van het holografische
principe in het kader van de theorie van gecondenseerde materie die we eerder
hebben vermeld. Bovendien, als we ons werk willen verbinden met snaartheorie
of M-theorie lijkt het alleen maar logisch dat we supersymmetrische uitbreidingen
van Newton–Cartan structuren zouden bestuderen. Daarom zijn we in dit proef-
schrift vooral genteresseerd in supersymmetrische uitbreidingen van Newton–Cartan
structuren.

Terwijl wij (niet-relativistische) supersymmetrie verderop gaan bespreken, laat
ons eerst onze motivaties voor onze interesse in deze extensie bespreken. Een van
de onderzoeken over het Quantum Hall effect maakt bijvoorbeeld gebruik van
een (niet-relativistisch) supersymmetrisch model. Verdere motivatie, en een van
de belangrijkste redenen voor deze stelling in het algemeen, is gerelateerd aan de
zeer succesvolle toepassing van lokalisatietechnieken in de relativistische context.
De toepassingen van lokalisatietechnieken zijn nuttig om exacte resultaten voor
relativistische supersymmetrische veldentheorieën te krijgen. Misschien kunnen
we op dezelfde manier ook succesvolle resultaten in de niet-relativistische con-
text verwachten. De werkwijze berust op de koppeling van niet-relativistische
veldentheorieën aan willekeurige supersymmetrische achtergronden. Om dit te
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doen moet men natuurlijk niet-relativistische supergravitatietheorieën bestuderen
om dergelijke achtergronden te kunnen beschrijven. Echter, de constructie die we
in gedachten hebben maakt gebruik van de zogenaamde off-shell formuleringen
van supergravitatie, een kenmerk dat de enige tot nu toe bekende theorie van niet-
relativistische supergravitatie niet bezit. Geschikte uitbreidingen van Newton–
Cartan supergravitatie zouden moeten worden nagegaan om te zien of deze tech-
nieken ook tot niet-relativistische theorieën uitgebreid kunnen worden.

We bespraken de belangrijkste drijfveren voor onze belangstelling voor niet-
relativistische fysica en verder dat Newton–Cartan structuren voor een handige
manier van aanduiding van de niet-relativistische achtergrond zorgen. Bovendien
gaven we een motivatie voor het overwegen van supersymmetrische theorieën.
Laten we nu terugkeren naar het punt waar we begonnen: symmetrieën.

Te eisen dat een theorie, Newtoniaanse zwaartekracht in dit geval, invariant
is onder algemene coördinatetransformaties betekent dat ze invariant hoort te zijn
onder een speciaal soort symmetrietransformatie. Symmetrieën spelen een belan-
grijke rol in de hedendaagse theoretische natuurkunde. Zij leggen sterke beperkin-
gen op aan een theorie, bijvoorbeeld omdat ze de aard van de interactietermen
beperken. Dit is van belang aangezien bepaalde symmetrieën van een theorie vaak
te vinden zijn in experimenten en daardoor de onderliggende “fundamentele” the-
orie veel beter kan worden beschreven. Alle (kwantum) theorieën die worden ge-
bruikt om het standaardmodel van deeltjesfysica te beschrijven zijn ijktheorieën.
Dat betekent dat ze invariant zijn onder een zekere symmetrie. De symmetrie
groepen zijn U(1) voor de elektrodynamica, SU(2) voor de zwakke interacties en
SU(3) voor de sterke wisselwerking. Op een bepaalde manier kan de algemene
relativiteitstheorie ook worden opgevat als een ijktheorie. Het is de ijktheorie van
diffeomorfismen. Deze functie, het ijktheoretische aspect van de algemene rela-
tiviteitstheorie, is van bijzonder belang voor ons.

Met het oog op een dergelijke veelheid aan toepassingen is het een interessante
vraag wat de meest algemene symmetrie (groep) is die we kunnen toestaan. Dit
is uitgebreid bestudeerd en één van de meest gevierde stellingen door Coleman
en Mandula stelt dat een fysieke theorie ten hoogste invariant kan zijn onder de
conforme groep. Alle andere symmetrieën moeten “interne” symmetrieën zijn, dat
betekent dat de fysieke waarneembaarheid altijd een scalaire representatie van die
symmetrieën moet zijn. Deze stelling geldt niet voor één uitzondering: ze geldt
niet voor fermionische symmetrieën. Zoals later bleek uit onderzoek van Haag,
Lopuszanski en Sohnius is de toevoeging van supersymmetrie, of superconforme
symmetrieën, echt de meest algemene mogelijkheid. Dit wijst op een fundamentele
aard van supersymmetrie, en dient als een extra motivatie voor ons bestuderen van
supersymmetrische theorieën in het verband met Newton–Cartan structuren in dit
proefschrift.

Laten we nu onze focus meer op niet-relativistische symmetrieën zetten. Om
te begrijpen hoe een theorie invariant onder niet-relativistische diffeomorfismen
kan worden moet men natuurlijk weten wat niet-relativistische diffeomorfismen
zijn. Dit is ook onderdeel van het huidige onderzoek. Een benadering bestaat
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uit het nabootsen van enkele ideeën die ook op de algemene relativiteitstheorie
toegepast kunnen worden. De algemene relativiteitstheorie kan als een ijktheo-
rie van de Poincaré algebra worden gezien. Dus kan men proberen om een niet-
relativistische versie ervan te ontlenen door het ijken van een niet-relativistische
symmetrie algebra in plaats van een relativistische symmetrie algebra. Deze aan-
pak werd succesvol voortgezet en het werd ook aangetoond hoe de ijktheorie van
de Bargmann algebra naar Newtoniaanse zwaartekracht kan worden verminderd
door het vastleggen van de ijking. De Newton–Cartan theorie was dus gekoppeld
aan de Newtoniaanse zwaartekracht en het werd duidelijk aangetoond dat het ver-
schil tussen deze theorieën juist “de hoeveelheid van symmetrie” die we toestaan
is. We gebruiken dezelfde ideeën, dat wil zeggen ijktechnieken, om een aantal
nieuwe (superzwaartekracht) theorieën af te leiden in dit proefschrift.

In wat voor soort niet-relativistische symmetrieën zijn we geı̈nteresseerd? We
hebben al Galileı̈sche symmetrieën en ook de Bargmann algebra besproken. Net als
in de relativistische geval kunnen wij deze met nog meer symmetrie generatoren
uitbreiden. In het relativistische geval leidt dit tot conforme symmetrie. In het niet-
relativistische geval hebben we echter de keuze tussen twee verschillende “con-
forme” uitbreidingen van de Galilei algebra. De Galileı̈sche conforme algebra is
het niet-relativistische analoog van de conforme algebra en de andere mogelijkheid
is de Schrödinger algebra. We zullen kiezen om met de laatstgenoemde te werken,
want deze is de enige mogelijke uitbreiding van de Bargmann algebra. Dit betekent
vooral dat we voor een eindige massa kunnen zorgen. De aanvullende symmetrie
van de Bargmann algebra (ten opzichte van de Galilei algebra) wordt vaak geı̈nter-
preteerd in verband met het behoud van massa (en in de non-relativistische con-
text betekent dit ook het behoud van het aantal deeltjes). De Schrödinger algebra
omvat de symmetrie generatoren die tot de symmetrie van de Schrödinger vergeli-
jking leiden (vandaar ook de naam). De Schrödinger transformaties laten ook de
eenvoudige actie van de niet-relativistische punt-deeltje invariant.

Dus, in de geest van Coleman–Mandula voegen we “conforme” extensies toe.
Maar in dit proefschrift in het bijzonder zullen we ook in een andere toepassing
van de niet-relativistische symmetrieën geı̈nteresseerd zijn, namelijk de toevoeging
van supersymmetrie. Boven gaven we een aantal “fysische” redenen om Newton–
Cartan theorieën te bestuderen en ook voor het bestuderen van supersymmetrie
in deze context. Een andere motivatie komt uit de analyse van de relativistische
context. In het relativistische geval zijn supersymmetrie of superconforme symme-
trieën de meest algemene symmetrieën die we kunnen toelaten voor een theorie. In
het niet-relativistische geval bestaan er echter geen argumenten vergelijkbaar met
die van Coleman–Mandula of Haag–Lopuszanski–Sohnius, maar het is nog steeds
interessant om te zien of we zelfs niet-relativistische theorieën kunnen vinden die
supersymmetrisch zijn.

Niet-relativistische supersymmetrie algebra’s zijn niet per se moeilijk om te
bouwen en enkele eenvoudige veldentheorieën die deze symmetrieën realiseren
zijn ook gevonden. De eerste lokale verwezenlijking van niet-relativistische super-
symmetrie stamt slechts uit het jaar 2013. Er zijn geen (bekende) obstakels die
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het vinden van dergelijke theorieën in principe zouden voorkomen. Echter, het
blijkt dat dit geen gemakkelijke taak is en men is geconfronteerd met heel wat
moeilijkheden. Dit gaf aanleiding om onszelf eerst bekend te maken met de bouw
van voorbeelden in een eenvoudiger setting. Dergelijke eenvoud kan bijvoorbeeld
komen door theorieën in lagere dimensies te overwegen. Enkele eenvoudige re-
alisaties van het holografische principe worden ook bestudeerd in drie ruimte-
tijd dimensies en een supersymmetrisch theorie die wordt gebruikt als een effec-
tieve beschrijving van de Quantum Hall effect berust ook op een driedimensionale
model. Daarom zijn de niet-relativistische supergravitatietheorieën die we in dit
proefschrift zullen bouwen theorieën in drie ruimte-tijd dimensies. We hopen dat
dit ook tot een beter begrip en een verklaring van de mechanismen in het geval van
vierdimensionale theorieën leidt.

Kortom, dit proefschrift gaat over de niet-relativistische supergravitatietheo-
rieën in drie ruimte-tijd dimensies. De belangstelling voor dergelijke theorieën
volgt uit effectieve modellen in de theorie van gecondenseerde materie en mogeli-
jke toepassingen van de lokalisatie technieken. Het feit dat we in drie dimensies
werken volgt uit een eenvoudiger motto van ons: eenvoud eerst.

In eerste instantie richten we ons op de vraag hoe we deze niet-relativistische
supergravitatietheorien bouwen. Hier gebruiken we twee verschillende technieken
voor. De eerste is afgeleid van de relativistische superzwaartekracht en het feit
dat deze door ijken van de Poincaré superalgebra kan worden verkregen. Met
toepassing van soortgelijke technieken kunnen wij niet-relativistische supergrav-
itatietheorieën vinden door het ijken van niet-relativistische superalgebra’s. De an-
dere methode om niet-relativistische supergravitaties af te leiden is een soort van
niet-relativistisch limiet dat pas is ontwikkeld in dit proefschrift.

Er zijn bijzondere redenen waarom we twee in plaats van slechts één meth-
ode gebruiken om niet-relativistische supergravitatietheorieën te verkrijgen. IJk-
technieken, in het bijzonder in drie dimensies, leiden tot voorstellingen die alleen
ijkvelden bevatten. Dit betekent dat ijktechnieken niet tot multipletten met extra
(hulp) velden, die typisch voor de zogenaamde off-shell formuleringen voor su-
pergravitatie zijn, leiden. Al gaat het uitvoeren van de toepassing van de lokalisati-
etechnieken buiten het bestek van dit proefschrift, streven we wel naar de con-
structie van off-shell formuleringen voor hun vermeende gebruik. In een een-
voudige manier om supergravitatie aan gekromde achtergronden te koppelen zijn
we namelijk genoodzaakt om bepaalde (niet nul!) waarden voor de hulpvelden te
kiezen. Vandaar de behoefte aan formuleringen die dergelijke velden bevatten.

In dit proefschrift introduceren we ook bepaalde technieken om off-shell formu-
leringen te verkrijgen via ijktechnieken. Echter, deze berekening zal afhangen van
het bestaan van materie multipletten en we gebruiken onze limiet procedure om
deze te verkrijgen. We maken hierbij gebruik van een niet-relativistische versie van
de superconforme tensorrekening om off-shell formuleringen van driedimension-
ale niet-relativistische supergravitatie te verkrijgen. Het blijkt dat deze structuren
vergelijkbaar zijn met de relativistische zaak.

Off-shell formuleringen van niet-relativistische superzwaartekracht zijn niet de
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enige extensies die we overwegen. Een andere generalisatie bestaat bijvoorbeeld uit
“kosmologische” extensies. We vinden deze door het ijken van een niet-relativis-
tische symmetrie algebra met een “kosmologische constante”. We kijken ook naar
theorieën die een “maximale” aantal symmetrieën bezitten. Daartoe construeren
we een supersymmetrische Schrödinger uitbreiding van de drie-dimensionale niet-
relativistische supergravitatie.

Een belangrijk aspect bij het koppelen van niet-relativistische veldentheorieën
aan willekeurige achtergronden is dat de torsie van de achtergrond theorie niet
beperkt mag zijn, dat wil zeggen dat de kromming van het ijkveld van tijds-ver-
schuivingen onbeperkt moet zijn. Wij zullen dan ook zijn vooral geı̈nteresseerd
zijn in extenties met torsie.

Tot slot breiden we de theorie die werd gepresenteerd in 2013 uit in de richtin-
gen weergegeven in figuur 2. In feite legt dit proefschrift ook uit dat niet alle uit-

Extensies van Newton–Cartan supergravitatie die we beschouwen

“originele” Newton–Cartan supergravitatie

off-shell formulatie “conforme” niet-nul torsie kosmologisch

Figure 2: Extensies van de “originele” drie-dimensionale, N = 2, nul-torsie, on-
shell, Newton–Cartan supergravitietheorie die we in dit proefschrift beschouwen.

breidingen op dezelfde voet staan en we leggen in detail uit hoe ze middels ijk-
bevestigingen en andere afknottingen (on-shell / off-shell en torsie / geen torsie)
aan elkaar gerelateerd zijn. Ook tonen we aan dat de technieken van de supercon-
forme tensorrekening op de niet-relativistische theorie op een eenvoudige manier
kan worden toegepast. Dit stelt ons in staat om alle voorgaande resultaten op tor-
sievrije supergravitaties uit te breiden. Het levert ook een zeer efficiënte manier op
om theorieën met torsie te construeren.
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