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Abstract. The sensorimotor approach argues that in order to perceive one needs

to first “master” the relevant sensorimotor contingencies, and then exercise the

acquired practical know-how to become “attuned” to the actual and potential

contingencies a particular situation entails. But the approach provides no further

detail about how this mastery is achieved or what precisely it means to become

attuned to a situation. We here present an agent-based model to show how sen-

sorimotor attunement can be understood as a dynamic and non-representational

process in which a particular sensorimotor coordination is enacted as a response

to a given environmental context, without requiring deliberative action selection.
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1 Introduction

The sensorimotor approach to perception argues that in order to perceive one must

have “mastered” the relevant sensorimotor contingencies (SMCs), i.e. one must acquire

a kind of practical know-how, or implicit knowledge, of the laws governing the co-

relation between bodily movement and associated sensory stimulation [1]. Moreover,

to perceive here and now one has to exercise or deploy the mastered know-how and

“tune into” the actual and potential contingencies of the current situation (ibid.). But the

primary literature on the subject is mostly silent on the how this mastery is achieved,

what form the practical know-how might take, or what kind of process the notion of

attunement refers to. The purpose of this paper is to illustrate with a model what it might

mean to exercise one’s practical know-how in order to became attuned to a situation and

enact the appropriate SMCs. But since the notion of attunement is tightly linked to that

of mastery we have to first discuss the relation between the two concepts. In order to

develop some intuition as to how they are to be understood, we can take a look at how

they are used:

“Over the course of life, a person will have encountered myriad visual attributes

and visual stimuli, and each of these will have particular sets of sensorimotor

contingencies associated with it. Each such set will have been recorded and

will be latent, potentially available for recall: the brain thus has mastery of

all these sensorimotor sets. But when a particular attribute is currently being

seen, then the particular sensorimotor contingencies associated with it are no

longer latent, but are actualized, or being currently made use of. [...] among all
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previously memorized action recipes that allow you to make lawful changes in

sensory stimulation, only some are applicable at the present moment. The sets

that are applicable now are characteristic of the visual attributes of the object

you are looking at, and their being currently exercised constitutes the fact of

your visually perceiving that object.” (ibid., p. 945)

“[...] seeing is constituted by the brain’s present attunement to the changes that

would occur as a consequence of an action on the part of the perceiver” (ibid.,

p. 968, italics added)

It is clear that “mastery” is supposed to refer to the “accommodation” of certain

regularities in the environment, and attunement to the exploitation of these regularities.

But “accommodation” in this context does not necessarily mean that the contingent as-

pects of the environmental regularities are stored internally by the agent, but simply

that the agent has undergone some changes such that whenever the regularities present

themselves in a new situation, the agent is able to re-enact sensorimotor engagements

that have previously been adequate in similar sensorimotor situations. It is also implied

that the act of exercising one’s SM knowledge is not a deliberative process of con-

sciously weighing different possible SM coordinations to engage in. It rather seems to

be an automatic process in which the right coordination is solicited as a response to

a particular situation, in other words a kind of “resonance” between environment and

agent. Moreover, from the second quote it follows that the exercise of my know-how

can be counterfactual, i.e. my perception of possibilities for interaction with an object

depends not only on my current engagement with it, but also on my practical knowledge

of properties of the object that are not directly available.

Before describing a dynamic model that we think captures the essence of the pro-

cess of attunement, we draw on Merleau-Ponty’s account of skill acquisition [2–4] to

further elucidate some of these notions. Three aspects characterise the learning of senso-

rimotor skills according to Merleau-Ponty. Firstly, in the acquisition of everyday skills,

the accumulation of experience serves to discriminate situations that solicit a particu-

lar response with increasing specificity. Secondly, experience also allows a person to

incrementally refine her dispositions to respond to these solicitations. And thirdly, be-

havioural responses to a situation take the form of movement towards the completion

of a Gestalt, or equilibrium, to which the body tends without the need to mentally rep-

resent it. Though still a rather abstract account of skill acquisition, translating these

three elements into dynamical systems terminology allows us to arrive at a description

that will be useful in the analysis and interpretation of models addressing the issues of

mastery and attunement.

In correspondence to the three aspects, firstly, if we consider an agent as a dynamical

system coupled to its environment, then different environmental conditions, reflected in

different sensory inputs, can result in the divergence of initially identical agent states.

At a future point in time, therefore, the agent can react to the same sensory stimulus

in different ways, as the accumulated history of its coupling with the environment has

left the agent in different parts of its state space. In other words, the accumulation of

experience allows the agent to discriminate between different contexts when exposed

to identical sensory perturbations. Secondly, the behaviour of the agent as a dynamical
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system depends on its limit sets. Since through continued environment interaction the

agent is able to reach different areas of state space, from these different initial condi-

tions the agent may then follow different behavioural tendencies as determined by its

attracting and repelling sets. Experience therefore can also serve to tune those limit sets

such that the agent’s movement through state space corresponds to the desired response

that a given situation solicits. And thirdly, the agent’s movements are fully determined

by the relaxation of its dynamics towards the limit set in whose basin it finds itself at

any given time. And the agent can not in any meaningful way be said to represent what

the final state is that it is tending towards.

In short, the learning of a SM skill, in this view, corresponds to the tuning of the

agent’s dynamical landscape such that different environmental contexts leave the agent

in different parts of state space, and such that the appropriate response corresponds to

a particular trajectory of the dynamics when relaxing towards equilibrium. We would

like to suggest here then, that in the process of mastery an agent’s dynamical land-

scape is shaped over time to incrementally refine the discrimination of and response to

different environmental situations; and that attunement is a process of interaction with

the environment, such that a particular situation solicits the appropriate sensorimotor

coordination.

We next describe a model to illustrate this latter interpretation of attunement in more

detail.

2 Materials and Methods

The model presented here consists of an agent artificially evolved to identify only

through touch the properties of a planar surface presented at different relative orien-

tations and positions. After a period of unconstrained interaction with the surface, the

agent has to demonstrate that is has retained something about its properties by pro-

ducing movements following the orientation of the surface without the surface being

present any longer (i.e. without the corresponding sensory stimulation). In other words,

the agent has to re-enact the now invisible surface, or act as if it was still present. Note

that we consider the evolved agent as already having mastered the required skill. The

analysis of the agent’s behaviour focuses on how the acquired know-how is exercised.

The model is summarised in panel A of Figure 1. The agent’s body is a two-joint arm

controlled by a continuous-time recurrent neural network [5] and equipped with a touch

sensor (pink, dotted line). The environment consists of a planar surface (green line)

whose position and orientation relative to the arm can vary. The agent’s touch sensor

can register the distance to the surface when in close proximity, but the arm can freely

pass through it. The agent’s neural network has a fully connected hidden layer receiving

three inputs: the arm’s two joint angles θ1,2 and the distance D between end-effector and

surface as measured by the sensor. Two output neurons are fully connected to the hidden

layer and control the desired joint angles θ
d
1,2. These are transformed by PD controllers

into joint torques that are applied to the arm (blue arrows) to produce the required

movement. The arm dynamics are given by a common model derived from Newton-

Euler equations and d’Alembert’s Principle (for details see [6]). The parameters of the

PD controllers were tuned by hand to achieve a somewhat underdamped response.
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Fig. 1. Experimental setup. A: two-joint planar robot arm controlled by PDs whose set points

(desired joint angles θ
d
1,2) are determined by the outputs of a recurrent neural network. B: Di-

mensions of the arm and range of surface positions and orientations. Surfaces are presented at

two positions and orientations covering a range of 30 degrees. C: time course of each trial show-

ing the progression of evaluation phases and the state of the sensor.

All nodes in the agent’s neural network are modelled as leaky integrators:

τiẏi =−yi +
n

∑
j=1

w jiσ(y j +θ j)

where yi is the activation of neuron i, τi ∈ [0.01,4] its time constant, w ji ∈ [−10,10] the

strength of the connection from neuron j to i, θ j ∈ [−10,10] a bias term, and σ(x) =
1/(1+ e−x) a sigmoidal activation function. Both arm and neural dynamics are Euler

integrated with a step size of 0.05.

The surface can vary in position and angle, and a unique combination is tested in

each experimental trial. The range of surfaces evaluated is shown in panel B of Figure 1.

The arm (shown in black) at maximum extension has a length of 0.65 units (indicated

by the light grey half-disk). The distance sensor is attached at the end of the arm and

can sense objects up to 0.05 units ahead (dark grey half-disk). Its response signal is

inversely proportional to the sensed distance and scaled to the range [0, 1]. Surfaces
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are presented at two different positions (0.44 and 0.56 units from the arm’s origin) and

are 1.4 units in length. The angular range covered by the surfaces is 30◦ (0±15◦). Two

more surfaces per position are used in the experiment (at ±7.5◦) but not shown here for

clarity.

The task is to move the agent’s end effector along the particular surface presented in

each trial, even after its touch sensor is disabled. A version of the microbial genetic al-

gorithm [7] is used to search for neural network parameters that allow the agent to solve

this task. Each candidate solution is evaluated on 10 trials, in each of which the agent is

presented with a different surface (2 positions x 5 orientations). The time course of fit-

ness evaluation in each trial is shown in panel C of Figure 1. During the first 2 seconds

the agent’s movements are unconstrained, i.e. its behaviour does not contribute to its

measured fitness. During the “probe” phase (2.6 s), the agent is rewarded for proximity

to the surface but is otherwise free to move in an arbitrary manner. Its fitness in this

period is equal to the end effector’s average proximity to the surface (measured using

the shortest distance). In the ”follow” phase (last 4 seconds), the agent’s fitness is deter-

mined by the combination of average proximity and the end effector’s average velocity

parallel to the surface (measured as the absolute length of the projection of the velocity

vector onto the surface). After blackout, the agent can no longer sense the surface, yet

has to keep moving along it (e.g. unidirectional or by oscillating back and forth in the

corresponding plane). The total fitness of the agent in a single trial is the average of the

fitness achieved in the probe and follow periods, and the overall fitness across all trials

is equal to the minimum of individual trial fitnesses.

Given this experimental setup, there are two types of solutions to the task. After

blackout, i.e. when the agent is “touch-blind” and has to re-enact the previously en-

countered surface orientation, the only sensory inputs available are the agent’s current

joint angles. Hence, if the agent were to rely on sensory inputs only to discriminate the

different surfaces and produce a different SM coordination in response, this would im-

ply that the joint configurations at the time of blackout would have to be unique for all

surfaces encountered. If, in contrast, the joint configurations at blackout are not unique,

then a successful agent must have used the initial exploration phase to reach differ-

ent parts of its state space, such that different behaviours can be produced in response

to identical sensory states. Such a process of state differentiation in covariation with

relevant environmental variables we would then be happy to label “attunement”.

3 Results

Successful agents evolved reliably with as few as 3 hidden neurons, but better perfor-

mance could be achieved with a larger number. In the following we present results for

an agent with 8 hidden neurons, which achieved a fitness of 82%.

3.1 Evolved behaviour

In panels A-D of Figure 2 we show typical examples of the agent’s end effector trajec-

tories (grey, darker shades indicating greater touch response) overlaid on top of each

corresponding environmental surface (red). The data is shown in joint space (θ2 vs. θ1),
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i.e. the red lines correspond to those joint configurations the arm would have to adopt

to reach points on the surface. The left and right column show data for the two extremal

surface orientations. The first and second row correspond to surfaces at the closer and

farther distance respectively. Note that the simple planar environmental surfaces are in

fact complex curves in motor space; and that surface orientation and position in Carte-

sian space seem to become surface position and scale in motor space respectively.
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Fig. 2. Joint space trajectories of successfully evolved agent. A-D: Shown in red are those joint

configurations that the agent would have to adopt to reach points on the surface, i.e. the planar

surface translated into joint space. Overlayed in grey are the performed trajectories, with darker

shades indicating greater touch sensor activity. Green markers indicate the initial position. A and

B correspond to surfaces at different orientations (+- 15 degrees). C and D correspond to the same

orientations as A and B respectively, but at a greater surface distance (+ 0.12). E: Trajectories

for three surface positions (in red, green and blue) and five orientations, darker shades again

indicating greater touch response.

Inspecting the trajectories we observe that the agent initially performs a stereotyp-

ical transient that eventually makes contact with each surface at a point that depends

on the configuration of the surface (the trajectories turn from grey to black here). All

points of first contact occur at the ”lower” end of the area of highest curvature. After

contact has been established, the agent uses its sensor to move the end effector along

the surface in a single direction. Finally, when the sensor is disabled (trajectories turn

grey again), the agent continues to move along the opposing side of the surface. While

towards the end of the trial the agent begins to deviate from the surface, for a significant

time after blackout the agent manages to follow it well.

At first glance the observed behaviour might not seem remarkable. However, the

agent has control only over the position of the arm in joint space. Hence to follow the

curvature of the surface, the neural network has to produce a complex time-series of

joint angles such that the corresponding end-effector positions lie on that same curve.
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In other words, after blackout the agent cannot rely on some form of inertia to keep it

moving along the required curve. Nor can the agent simply hold certain variables fixed

in order to keep moving in the same direction, as would be the case for a wheeled robot

following a straight line for example.

The most important aspect of the observed behaviour is the fact that for each surface

the agent produces a different trajectory after blackout, even though the touch sensor

returns the same signal in all cases. This difference in SM behaviour in response to

different surfaces becomes more salient when we draw all trajectories in a single figure,

as shown in panel E for three different surface positions and five orientations each.

We observe that some end effector trajectories cross each other in motor space but

subsequently follow different paths. Since during this phase in the trial the same joint

angles also serve as the only inputs to the agent’s neural network (motor and sensory

space are the same), it is already clear that the behaviour cannot be determined by

instantaneous sensory input alone (since the same sensory input here leads to different

behavioural responses). Instead, the differentiation of identical sensory configurations

must be based on the history of the agent’s engagement with the surface, as accumulated

in the agent’s state.

3.2 Generalization

Before identifying what sort of mechanism underlies the agent’s unique behavioural

response to identical sensory stimulations, we will demonstrate how the agent’s perfor-

mance generalises to a larger range of surface configurations than encountered during

evolution, and identify the kind of features the agent might use to achieve this.

In panel A of Figure 3 we plot a heatmap of the agent’s fitness as a function of

surface orientation (horizontal axis) and position (vertical axis) at 30 different values

each. The surface configurations used during evolution are located at the intersections

of the red lines. It is clear that the agent establishes successful interactions with the

surface over a wide range of surface configurations.

This task would be relatively simple if there existed a simple, instantaneous sensory

feature that uniquely identifies each of the 900 tested surfaces. For example, since the

agent initially performs a stereotypical transient, one could imagine that the time of first

contact with the surface might be unique, or equivalently the joint configuration at this

point in time; or, perhaps, the joint angles at the point when the sensor is disabled.

To see whether this is the case, in panel B of Figure 3 we plot for each of the 900

surface configurations a point whose coordinates are the time of first contact (tc), as well

as the state of the two joint angles when the sensor is disabled (denoted by θ
′

1,2). One

can observe that the resulting points lie on a curved surface that folds back on itself in

the tc dimension. From the curvature of this manifold two implications can be derived.

Firstly, there is no unique time of first contact across all surfaces (e.g. the top part of the

manifold is curved such that points in closer and farther regions relative to the plane of

the screen can have identical tc coordinates). This can in fact be seen already in panel

E of Figure 2, where trajectories for different surfaces split from the initial transient at

the same time. It follows that the state of the proprioceptive joint sensors at this time

cannot be unique. Secondly, because of the fold, the joint angle configuration θ
′

1,2 when

the sensor is disabled does not uniquely identify each surface either.
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Fig. 3. Performance for 900 different surface configurations (30 orientations x 30 positions). A:

heatmap of fitness achieved for each surface (for fitness scale see colour bar shown above, theo-

retical maximum = 1.0). The intersections of red lines indicate the 10 surfaces encountered during

evolution. The dark area on the right corresponds to surfaces that the agent failed to re-enact. B:

Scatter plot showing for each of the 900 surfaces a 3d point whose coordinates are the time of

first contact between end effector and surface (tc), and the joint configuration of the arm when

the touch sensor is disabled (θ
′

1,2).

What is unique, however, is the combination of these two features, as there are

no two points that coincide in both tc and θ
′

1,2. It is clear that there must be some

combination of features that can be used to distinguish all surfaces, as otherwise the

agent would not be able to solve the task. The question is how the agent manages to

retain information about the initial contact such as to respond appropriately later on

when the sensor is disabled. In other words, how does the agent integrate sensory signals

over time such that it can respond uniquely to ambiguous sensory information at the

time of sensor blackout?

3.3 Neural mechanism underlying surface disambiguation

To better understand how the agent differentiates between surfaces even when instan-

taneous sensory feedback is not unique we look at the agent’s dynamics in higher di-

mensions. Figure 4.A shows a projection of the agent’s state that consists of the two

joint angle sensors (θ1,2) and the output of a hidden neuron (h1). Lines of the same

colour correspond to trials where surfaces are positioned at the same distance but ori-

ented differently. Colour shade varies with orientation, and different colours correspond

to different surface positions. Black dots mark the time when the sensor is disabled.

Starting from a common initial position, the combination of all initial transients

forms an arc that traces the stereotypical movement pattern exhibited by the agent if

no surface was present. For different surfaces, then, the trajectories separate from this

arc at different points, namely the point at which contact is made with the surface. One

can observe that trajectories belonging to surfaces of different orientations but identical
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Fig. 4. Three-dimensional projection of the agent’s neural state onto the two proprioceptive input

neurons (θ1,2) and a hidden neuron (h1). A: trajectories for three different surface positions (blue,

green and red) and five different orientations each (shading of colour changes with surface angle).

Black markers indicate the point of touch sensor deactivation and a grey marker the common

initial state. B: Trajectories for two surface positions over a period of 50 s. A red marker indicates

the common attractor position.

distances (i.e. those of the same colour) are already ordered at this time. In other words,

the time of first contact correlates with surface orientations.

However, there are also trajectories that start diverging at the same point, even

though the corresponding surfaces are located in different positions (differently coloured

lines); i.e. trajectories belonging to different surface positions are still partly “entan-

gled”. During the period of sensor-based surface interaction, however, these trajectories

eventually become disentangled, forming clearly separated bundles. For each surface

position corresponding trajectories now form curved manifolds that lie parallel to each

other, and in each of which trajectories are ordered by surface orientation. Thus when

viewed from certain angles or in certain projections, trajectories belonging to different

manifolds might seem to cross (like in Figure 2), while in fact being well separated in

higher dimensions. Finally, just before the sensor is disabled, each manifold is being

twisted. This preserves the established ordering, but ensures that subsequent parts of

the trajectories are shaped such that their projections into Cartesian space are approxi-

mately straight (like the corresponding surface).

What keeps the trajectories separate after the sensor is disabled? Do they relax into

different steady-states? To answer this question we observe the dynamics beyond the

duration of the trial with the sensor remaining off. This makes the agent an autonomous

system, which should eventually reach a steady state. The result can be seen in panel

B of Figure 4, which shows the same projection as panel A, but from a different angle

and for clarity only two surface positions. One can see that within the plotted duration

of time, the agent approximately reaches steady-state, and in particular the same stable
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attractor for all trajectories. In principle the meticulous ordering of trajectories within

and across manifolds could also have been the result of trajectories tending towards dif-

ferent attractors. Here, however, the different sensorimotor coordinations are formed by

different transients within the same attractor basin, but in such a way that their separa-

tion is maintained until the end of the trial. Similar forms of state-determined sensitivity

to the environment have been studied using information-theoretic techniques [8], which

could be of use in this case as well.

In summary, underlying the act of distinguishing and responding differently to var-

ious surface positions and orientations is the integration over time of several aspects of

the interaction. We have seen that surfaces that are positioned identically but oriented

differently can be identified in the neural dynamics by the time of first contact alone.

But at this point there still exists ambiguity with surfaces located at other distances.

The ongoing interaction with the surface helps to disambiguate these cases by splitting

trajectories into different manifolds. All trajectories now being perfectly separated and

ordered in state space allows them to relax towards a common attractor along unique

transients, with the shape of transients corresponding to the desired surface orientation.

4 Discussion

Our purpose has been to illustrate via a minimal model what it means to become attuned

to a situation and enact the appropriate SMCs. We have shown that attunement can be

interpreted as a continuous process of agent-environment interaction such that different

situations are discriminated via the separation of the agent’s dynamics. As a result,

unique behavioural responses can be enacted in the form of particular transients during

the relaxation towards equilibrium. Mastery of SMCs, then, corresponds to the process

that shapes the dynamical landscapes of an agent such that attunement is possible.

As noted in the introduction, the dynamical process can be interpreted as a minimal

example of Merleau-Ponty’s motor intentionality, and thereby illustrate how agents ex-

hibit embodied “purposeful” behaviours, without representing environmental features

or explicit goals. Just like, for example, a tennis player who performs his serve or return

without having to contemplate each required step, nor the details of the ideal posture to

adopt when hitting the ball, the performance of a SM skill is more like a habitual relax-

ation towards an optimal movement “gestalt” that is only implicit in agent-environment

dynamics, and which is solicited by a certain situation in the world.

Our model does not introduce new dynamical phenomena that we suppose to under-

lie the process of attunement. State retention and differentiation are well-known aspects

of dynamical systems. We also do not advocate the particular methodology adopted

here over other alternatives for investigating SMCs, such as information-theoretic anal-

ysis [8]. Nor did we aim to add to the already extensive catalogue of minimally cog-

nitive behaviours that even simple dynamical agents can exhibit. The purpose, rather,

was to clarify a core concept of the sensorimotor approach to perception, namely that of

attunement. We believe that the methodology has been adequate, and the results suffi-

cient, to show that the selection and exercise of SMCs can be understood as a dynamical

process that does not require a dedicated mechanism or organisational level at which

SMCs are “represented” (in any non-trivial sense of the term), nor the invocation of
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levels of explanation other than that of sensorimotor relations. Though the different

SMCs enacted by our agent were solutions to variants of the same task, this does not

limit the applicability of our interpretation (for enactment of radically different SMCs

see e.g. [9]). Equally, while for the investigated task successful agents’ dynamics tran-

siently separated into different manifolds depending on the environment, other manners

of separating and organizing dynamics (e.g. by attractor basin) are also compatible with

our account of attunement.

We have not here provided a model of how SM skills are mastered, i.e., how the

dynamical landscape of the agent is altered through experience (the evolutionary search

employed here to identify an appropriate agent is not meant to model the process of

mastery). Yet we believe that simple models of the kind presented can contribute to

filling in the gaps in sensorimotor theory. Not only by making more explicit what we

mean when we talk about notions such as “mastery” or “attunement”, but also by de-

riving implications that only become clear when these notions are operationalised [10].

One such implication is that sensorimotor theory does not have to evoke explicit rep-

resentational vehicles, nor deliberative processes of action selection to account for the

acquisition and exercise of SMCs. This lends further evidence to a radical reading of

sensorimotor theory [11], which rejects the role of contentful representations.
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