Non-repudiation Evidence Generation for CORBA using XML

Michael Wichert
GMD - German National Research Center for
Information Technology
SIT - Institute for Secure Telecooperation
64295 Darmstadt, Germany
wichert@gmd.de

Abstract

This paper focuses on the provision of a non-
repudiation service for CORBA. The current OMG
specification of a CORBA non-repudiation service forces
the programmer to augment the application with calls to
functions for generating or validating evidence.
Furthermore, the application itself has to manage the
exchange of this evidence between parties and its storage.
The paper describes our design for a generic CORBA
non-repudiation service implementation. Our approach
provides a separation between the application business
logic and the generation of evidence allowing non-
repudiation support to be incorporated into applications
with the minimum of programmer effort. Our design is
described in this paper using the example of ordering
goods over the Internet. The non-repudiation service
provides the parties with evidence proving that the
transaction has taken place. This proof is a XML
document based on the proposed IETF Internet standard
Digital Sgnaturesfor XML.

1. Introduction

It is predicted that U.S. business trade on the Internet
will explode from $43 billion in 1998 to $1.3 trillion in
2003, meaning that more than 9% of total U.S. business
sales will be done on the Internet in four years time [3].
The first e-.commerce systems were based on point to
point communication, where the buyer communicated
directly to the seller and submitted orders using e-mail or
Web forms. The complexity is now increasing with
tighter integration with back-office systems to alow order
data to be electronically transferred between businesses.
The order phase is only one aspect of a typica
transaction, for example, an interaction could include
product selection from a categorised catalogue, electronic
payment, and in the case of soft goods, electronic
delivery.

David Ingham and Steve Caughey
Department of Computing Science
Newcastle University
Newcastle upon Tyne
NE1 7RU, UK
[dave.ingham, sj.caughey] @ncl.ac.uk

One of the popular e-commerce models is the
electronic marketplace which enables purchasers to select
products from multiple vendors. This idea is being
extended in the EU-funded MultiPLECX project (Multi-
party Processes for Large-scale Electronic Commerce
Transactions) which is looking at the issues involved in
linking together federated marketplaces [8]. Figure 1
shows an example in which a single categorised product
catalogue is available at all linked marketplaces. Each
marketplace has a set of ‘local’ buyers and sellers but the
marketplaces are inter-connected to allow buyers to see
products from sellers hosted at remote marketplaces. For
the buyer, this has the advantage that a broad selection of
products are available through his home marketplace
which provides a well-understood policy concerning
payment, and terms and conditions of delivery.

These more complex models place additional
requirements on the underlying technology; simple e-mail
and Web communication is not sufficient. Distributed
object technology is a good candidate for building such
systems as it provides a strong separation between a
service interface and its implementation thereby
facilitating the construction of inter-organisation
applications. The currently available technologies include
Microsoft's DCOM (Distributed Component Object
Model) [1] and the Object Management Group’s CORBA
(Common Object Request Broker Architecture) [10].
Trading systems with interfaces specified in CORBA can
easily be integrated in existing enterprise resource
planning systems (ERP) to avoid multiple manual data
input. This enables a continuous data flow from the
vendor’'s back end system to the client’s system possibly
via several marketplaces using a Web browser with its
familiar user interface.

In an Internet based trading system, communication
between the parties is notoriously insecure; transferred
data could be eavesdropped or worse still, tampered with
by an attacker. Because business data is often sensitive, it
should be protected by security mechanisms like

trust boundary

purchaser

market
place 1

http
IIOP

A 4

ERP = Enterprise Resource
Planning system

IIOP = Internet Inter-ORB
Protocol

HTTP = HyperText Transfer
Protocol

trust boundary

trust boundary

vendor

market
place 2

http
UL hrowser

Figure 1. Data Flow in a Trading System

encryption and digital signatures to provide privacy,
integrity and authenticity of the data. In trading, several
partners are involved with different interests and there is
often only limited trust between them. This leads to a
need for a system that provides non-repudiation to
compensate for the lack of trust between different
companies across trust boundaries. Non-repudiation is
necessary for commercia transactions like placing an
order by a client or updating an internet catalogue that is
located at a market place by a vendor.

Non-repudiation is provided by generating an
unforgeable evidence that is held by each party that can
be used after the fact to resolve disputes. If the non-
repudiation system includes both proof of origin and
proof of delivery then both business partners have egual
rights and none of them is preferred in contrast to
traditional e-commerce systems where vendors of goods
arein apreferred position.

To provide security for CORBA applications the
Object Management Group (OMG) has specified the
CORBA security services [9]. This specification describes
interfaces to services that provide access contral,
integrity, confidentiality, non-repudiation and others.
These services are designed to be as transparent as
possible so as to minimise the impact on the business
logic of the application. However, in the case of the non-
repudiation service, the programmer has to augment the
application with calls to functions for generating or
validating evidence. Furthermore, the application itself
has to manage the exchange of this evidence between
parties and its storage. This paper describes the design of

a non-repudiation service that relieves this programmer
burden by separating the evidence generation and
management from the business logic of the application.
The application programmer has to identify for which
method invocations non-repudiation is required and the
non-repudiation service automatically generates the
appropriate evidence, transparently transfers it between
parties, verifies its authenticity and stores it. Orthogonal
to the management of the evidence is the issue as to what
form the evidence should take.

The remainder of the paper is structured as follows:
Section 2 gives an overview of the background
technologies of non-repudiation and CORBA. Section 3
describes our design in two parts, first the mechanics of
evidence management and secondly the form of the
evidence itself. Finally, we draw conclusions.

2. Background

This section gives a short introduction into non-
repudiation and CORBA. It aso explains the
specification of the CORBA non-repudiation security
service.

2.1 Non-repudiation
Non-repudiation is one of five security services

defined by the Internationa Organization for
Standardization (1SO), the others being authentication,

access control, data confidentiality, and data integrity [4]. vendors. CORBA provides a mechanism for objects with
According to 1SO, non-repudiation is defined as follows: interfaces defined in an Interface Definition Language
(IDL) to communicate with each other no matter in what

“The Non-repudiation service involves the language they are implemented nor on what platform they

generation, verification and recording of evidence, andare located. The objects invoke methods on a server
the subsequent retrieval and re-verification of this object through the Object Request Broker (ORB) using
evidence in order to resolve disputes. Disputes cannothe Inter-ORB Protocol (IOP). The IOP was specialised
be resolved unless the evidence has been previousljor objects to communicate over the Internet in the
recorded.” [5] specification of the Internet Inter ORB Protocol (IIOP).
Using CORBA, method invocations can be performed in

Non-repudiation itself can be split in different types a distributed environment where the client does not have

[6], the main types being: to know where the server object is located whether locally
or across a network. The ORB finds the object if only a
* non-repudiation with proof of origin; reference to it is known, transfers a method call with its

* and non-repudiation with proof of delivery. parameters to the server, invokes the method and returns

the result to the client.
The non-repudiation with proof of origin service

provides the recipient of the data with evidence proving2 3 CORBA non-repudiation service
that the sender has sent the referenced data at a certain

time. The n-repudiation with proof of delivery service The CORBA security service specification describes
is also often called non-re_zpudle}tlon of receipt. It provides i, following services [9]:

the sender of the data with evidence that proves that the
recipient has received the referenced data at a certain time
but it does not prove that the recipient has also processed
the data.

Usually the evidence is generated using asymmetric
cryptography where the data is digitally signed with the
private key. The proof is sent to the communication
partner where the digital signature is verified with a
public key digital certificate issued by a trusted third i >
party. It is important for the recipient to store the evidence "M @ number of vendors but, at the time of writing, no
to resolve later disputes. It is also possible to usenon-repudiation service is known to _eXISt. There are a
symmetric cryptographic algorithms for creating a proof. number of reasons for this. Firstly, the importance of non-

But then an online trusted third party is needed to digitally "®Pudiation is not currently widely acknowledged by
sign the data with its secret key (notary service). software manufactures and Internet traders alike. This is

For a trading system both non-repudiation with proof reinforced by the fact that support for non-repudiation is
of origin and proof of receipt are necessary. The non-&" optional part of the specification and therefore vendors

repudiation service is required to provide the following &€ able to sell compliant products without it. The
specification is also somewhat incomplete in that

identification and authentication;
authorisation and access control,
security auditing;

security of communication;

and non-repudiation.

Implementations of the first four services are available

functions: 3 ; X X

mechanisms for evidence delivery, evidence storage and
» evidence generation: interoperabilifcy of _non—repudiation evidc—_zn(_:e is miss_ing.
» evidence delivery: The_ specification of a non-repudiation service by
» evidence verification: OMG is bgst_ad on an ISO S'Fanda_lrd_[G] that specifies the
» evidence storage: non-repudiation service functionality in terms of:
» evidence retrieval;)) T
= and evidence re-verification. = evidence generation and verification;

= evidence storage and retrieval;
2.2 CORBA = and delivery authority.

Evidence generation and verification are specified in
tail and several functions are defined to generate or
verify non-repudiation evidence (e.g., generate_token,
verify _token). The evidence is generated in the form of a
non-repudiation token that cannot be repudiated later.
Any holder of such a token can use the non-repudiation
service to verify the evidence and may store it in case of

CORBA [10] was introduced by the Object de
Management Group (OMG) in 1991. The OMG was
founded in 1989 as a non-profit organisation which now
includes more than 800 members. Its main task is to
standardise CORBA in a specification that allows
interoperability between products of different software

Client

Marketplace

-> shop.process_order(offer)

request

outgoing filter
- sign

request

incoming filter
- verify
- audit

Trust Manager
audit log

Figure 2. Non-repudiation of an order

later disputes. Because the specified CORBA non-
repudiation services are under the control of the
applications rather than used automatically on object
method invocations the possessor of a token is normally
the application that generated it. The specification lacks
of a description of storage and retrieval of tokens that
means that the application is responsible for administering
the tokens. It is also not specified how the token is sent to
the recipient but it is proposed to pass it on an invocation
as a parameter to a request. According to the
specification, a non-repudiation token should be
composed of the following components:

= non-repudiation policy (or policies) applicable to
the evidence;

type of action or event;

parameters related to the type of action or event;
date and time of action or event;

digital signature or secure envelope.

Though the token components are defined the format
of it is not. This will lead to interoperability problems
between products from different vendors. Depending on
the chosen cryptographic technology non-repudiation
tokens are generated as secure envelopes in the case of
symmetric cryptography (requiring a trusted third party)
or in the case of asymmetric cryptography the content is

digitally signed with the initiator’'s private key and the
corresponding public key is certified by a trusted
certification authority. It is not specified what digital
signature algorithms and formats to use, nor is it clear
how a secure envelope should be composed. The
conclusion is that the non-repudiation service for CORBA
specified by OMG describes a general approach how a
non-repudiation service could be implemented but it
doesn't specify an interface to a non-repudiation service
that satisfies interoperability criteria.

3. A Transparent non-repudiation service

One of the main design goals for our CORBA non-
repudiation service was the minimisation of the burden of
evidence management on the application programmer. To
this end, we separate the format and specification of
evidence from its creation, transport and storage.
Application objects, such as an order, are responsible for
defining the format of their non-repudiation evidence and
application programmers tag object interfaces to indicate
the requirement for evidence generation. The non-
repudiation service then automatically requests an object
to provide evidence where appropriate, transports it
between the parties, verifies its authenticity and finally
stores it securely. We shall first describe these evidence

management mechanisms before discussing the format of
the evidence itself.

In the CORBA environment, object interfaces are
defined using language-independent IDL, as previously
mentioned. The IDL is pre-processed to create language-
specific stubs. A client application invokes a method on a
stub object and the underlying ORB-core transparently
passes the request to the target object which may reside in
a remote process. Our non-repudiation service uses the
concept of filters (or interceptors) to transparently
manage evidence generation, transport, verification and
storage. Filters operate by trapping method invocations as
they flow through the ORB. Using filters it is possible to
mani pulate method invocations at four points:

¢ astherequest leaves the client (pre-request);

e when the request arrives at the server but before it
is passed to the target object (pre-dispatch);

e dfter the target object has serviced the request but
before the response leaves the server (post-
dispatch);

* and before the response is returned to the client
(post-request).

The filter interface provides access to the name of the
invoked method, to the target object to which the method
belongs and to the parameters of the invocation. The C++
signature of the preRequest filter is shown below™:

virtual bool preRequest (
CORBA_hj ect _ptr p,
CORBA_ULong reql d,
const char* op,
OBBuf f er & buf);

Our service operates by using a pre-request filter (the
outgoing filter) to create appropriate evidence, sign it and
append it to the request. A pre-dispatch filter (the
incoming filter) removes the evidence, verifiesit and store
it for later use. The invocation is then passed up to the
application for process as normal.

Consider the example of a Marketplace with a
categorised catalogue offering goods for sale on the
Internet. A Client selects some goods he intends to buy.
The Marketplace then sends an offer to the Client and the
Client has to decide whether to accept or reject the offer.
If it is accepted, e.g., with a button press in a Web
browser user interface, then the offer is sent to the
Marketplace. This is done with the invocation of the
method process_order on the object shop with the
object of f er passed as parameter as shown in Figure 2.

! This C++ code is taken from the filter mechanism that we
have added to the ORBacus 3.1 ORB from OOC. See
<URL: http://ww. ooc. coni >.

The method invocation is intercepted by our outgoing
filter which then generates a non-repudiation token that
contains:

= dateandtime;

= type of non-repudiation (non-repudiation with
proof of origin);

= method name (pr ocess_or der);

= and a representation of the parameters (the
of fer).

Note: the representation of the parameters and the
format of the evidence will be discussed further in
later sections, we will first describe the basic
operation of the mechanism.

To provide non-repudiable evidence, the token is
digitally signed. The public key certificate and the digital
signature are also appended to the token. For interactions
which involve human participants, the information to be
signed can be presented to the Client before the digital
signature is applied. Typically, the Client will be
requested to type in a PIN to unlock a smart card, where
the private key is located. In other situations where the
interaction does not involve human participants the
signature can be applied automatically. Finally the filter
appends the digitally signed token to the existing buffer of
the request parameters.

The request is sent via [IOP to the Marketplace where
the incoming filter verifies the signature on the token and
sends the token to the Trust Manager which is responsible
for storing and retrieving non-repudiation tokens. The
Trust Manager thus has the task of evidence storage and
retrieval defined by the CORBA non-repudiation service
specification. The token is then removed from the
parameter list before the message is passed up to the
application level shop object. The token can be retrieved
from the Trust Manager in case of disputesto prove that a
specific action has taken place as claimed.

3.1 Representing user classobjects

Passing instances of user classes as parameters in a
non-repudiable method call requires special attention.
Until very recently, CORBA has only supported the
passing of user objects by reference whereas instances of
basic types, such as integers are passed by value. In our
example, this means that under normal circumstances it
will be areferenceto the of f er rather than its state that is
passed in the process_order invocation. Any
invocations that the implementation of the
process_or der method makes on the of f er object will
result in remote communication back to the of f er object
in the client address space. Clearly, this is inappropriate

for the purposes of non-repudiation as including the
object reference in the non-repudiation token will not
provide evidence as to the state of the offer when the
request to process it was made.

CORBA 2.3 maintains this default parameter passing
model but aso introduces the concept of valuetypes,
which are user objects that are passed by value. Since, at
the time of writing, CORBA 2.3 compliant ORBs are not
widely available, we will first present a design assuming
no support for valuetypes and then show how they can be
used to simplify our design for CORBA 2.3 compliant
ORBs.

Without ORB support for value types

Without ORB support for valuetypes, it is necessary to
implement our own pass-by-value mechanism for the
purposes of non-repudiation. The requirement is that the
state of the parameters that are manipulated by the
implementation of the method be the same as the states
that are preserved in the non-repudiation token.

Our approach operates by tagging user classes that are
required to be passed by value by inheriting them from a
service-provided IDL interface, ByVal ue. The ByVal ue
interface defines methods for packing the state of the
object into a buffer and for unpacking the state from a
buffer into the object. Illustrative IDL is shown below:

interface ByVal ue {
voi d pack (in Buffer buffer);
voi d unpack (in Buffer buffer);

I

User objects that inherit from ByVval ue implement
their own class-specific pack and unpack routines. The
pack and unpack operations must encode sufficient
information so that packed objects can be recreated at the
server side. The format of the packed datais configurable,
further details are provided in the next section. The
outgoing filter invokes the pack operation on each
ByVal ue-derived parameter. The packed states are used
in the non-repudiation token.

It is not sufficient to simply use the packed state for
evidence but allow the implementation of the target
method to use a reference to the original object within its
processing. Instead a copy of the object is created in the
server address space based on the packed state held in the
token. This is done automaticaly by the incoming filter:
for each user class parameter, a new object is created and
the unpack operation is used to recreate its state from the
packed data. Before passing the invocation up to the
application, the filter modifies the object references in the
parameter list to point to these newly created objects
causing the implementation of the method to use the local
copies rather than references to the originas.

Unfortunately, this results in an altering of the semantics
of the parameter passing model as there now exist two
copies of the objects with no mechanism to ensure that
their states are consistent. Application developers have to
be aware of this feature when using the non-repudiation
mechanism.

With ORB support for valuetypes

The value type mechanism specified in CORBA 2.3
can be used instead of the aforementioned bespoke
approach to provide non-repudiation evidence for user
classes. Value types are defined at the IDL level and the
ORB automatically serialises their state when they are
passed as parameters to method invocations. The
semantics of value types are very similar to our
implementation in that a copy of the object is created in
the server address space and there is no consistency
mechanism between the copy and the origina. The
advantage of using the value type facility is that the
semantics are well defined. The ORB provides default
support for packing (marshaling) and unpacking
(unmarshaling) value types. However, it is possible to
provide custom marshaling code to control the
representation of the packed objects.

3.2 Evidence for mat

Deciding on the format that the evidence should take is
non-trivial; it is essential that there is no possibility of any
misinterpretation of the token. The critical part of a token
in this sense is the invocation parameter list. There are
three requirements regarding the form of a serialised
object state. Firstly, it must be complete, in that al of the
salient information about the state of the object has to be
included so that an identical clone of the object can be
created at the server side. Secondly, the state has to be
machine-understandable to allow the creation of the
clone. Thirdly, the state of the object should be human-
understandable otherwise validating and interpreting the
evidence in case of dispute would require the availability
of the software to ‘decode’ the binary information.

Consider an example where the parameter part of a
non-repudiation token consists of three 16-bit integers
like "0000 0000 0000 0001 0000 0000 0000 0010 0000
0000 0000 0011". It could be interpreted the following
way: the client has ordered one item of an article with
order number 2 for 3 dollars. Or it could be read as, the
client has ordered three pieces of article with order
number 1 for 2 pounds each, depending on the sequence.
To overcome these possible misinterpretations, the
implementations of the serialise and unserialise operations
would have to be agreed upon (i.e., signed) by each party
and stored safely. This would greatly complicate the
evidence management system. Without care, software

versioning could also lead to possible misinterpretations.
Conversely, an ASCII text representation of the object
state could be interpreted correctly by humans but would
be difficult for machine interpretation. Another possibility
is to have two structures, one for the machine and one for
the user. But it is impossible to be sure that both have the
same meaning without interpreting both structures by the
same entity. Our design goal is therefore to have a single
representation that is both machine and human readable.
To simplify inspection of stored evidence, tool support is
necessary that can interpret the state in away that it could
not be misinterpreted. Additionally a conversion
agorithm must exist that transforms the text structure into
an Java or C++ object to alow processing of the non-
repudiable data by the incoming filter. This is aso
important for transferring the data to an enterprise
resource planning systems (ERP) for further processing.

Several languages comply with this requirement, for
example XML (eXtensible Markup Language) and
ASN.1. For our implementation, we have chosen XML
due to the widespread availability of interpreters in
different implementation languages. Furthermore, current
trends suggest that XML is to be the de-facto standard
structure description language of the future. XML [13] is
specified by the World Wide Web Consortium (W3C) and
is a subset of SGML (Standard Generalized Markup
Language) [7]. It is a language that describes the structure
of documents and data. The most important syntax
dement of XML is the markup which encodes a
description of the document’s layout and logical structure.
Example markups are tags like <form> or </form> in
HTML. XML could be used to describe the content of an
object which is done by its pack method. The produced
document can be displayed if required to the user after
parsing it with an XML parser. It is also possible to
reconstruct the original object when it is described in
XML. Such a document is shown in the following
example, which shows how the content of an offer object
could be described.

<?xml version="1.0"?>

<offer>

<purchaser>
<name>Tom Buyer</name>
<address>
15 Vendor St.,Shopcity
</address>

</purchaser>

<article>
<quantity>1</quantity>
<order_number>1345</order_number>
<name>KTM Sorento</name>
<catogory>bicyle</category>
<price>795</price>
<currency>EUR</currency>

</article>

</offer>

Not only can the object be described in XML but also
al parameters of a method invocation or even the whole
non-repudiation token. If this evidence token is a
document described in XML then the applied digital
signature could be integrated in XML as well. There are
severa initiatives specifying standards for digital
signatures incorporated in documents. One important
initiative is the proposed Internet standard Digital
Sgnatures for XML [2]. It specifies the syntax of a digital
signature within an XML document. A digitally signed
non-repudiation token complying with this standard could
look like:

<NR-token>
<Token-data id="to-be-signed">
<nr-type>origin</nr-type>
<method>process_order</method>
<parameters><offer>...</offer><parameters>
</Token-data>
<Signature>
<Manifest>
<Resource>
<Locator href="#to-be-signed"/>
<ContentType type="text/data"/>
<Digest>
<DigestAlgorithms>

</DigestAlgorithms>
<Value encoding="base64">
pkKE602pK7EIdfdilK8Sfb5FjT3V=
</Value>
</Digest>
</Resource>
<Originatorinfo>
(identification information block)
(keying material information block)
</Originatorinfo>
<Recipientinfo>
(identification information block)
(keying material information block)
</Recipientinfo>
<Attributes>
<Attribute type='signing-time'
critical="true'>
<Date value='1999-12-12T03:11+0100">
</Attribute>
</Attributes>
<SignatureAlgorithm>
(algorithm information block)
</SignatureAlgorithm>
</Manifest>
<Value encoding="base64">
uSDdfa2sSD82fAS4FD52dfaDsdf3=
</Value>
</Signature>
</NR-token>

The non-repudiation token (NR-token block) consists
of the non-repudiation token data (Token-data block) and
the digital signature referring to the token-data (Signature
block). The Token-data block describes the type (non-
repudiation with proof of origin, non-repudiation with
proof of delivery) , method name and parameters of a
method invocation. The signature block refers to the
token-data block with the Locator markup and contains

the digital signature, information on the used algorithms,
the originator, the recipient, date and time. This or the like
could be an evidence for non-repudiation for CORBA
using XML and a standard digital signature format.

4. Conclusions

The specification of the CORBA non-repudiation
service describes the functionality of such a security
service but lacks interface details and interoperability.
This paper describes an implementation of a non-
repudiation service for CORBA that has minimum impact
on application programmers. Evidence management is
performed automatically, relieving programmer burden in
creating, transporting, validating and storing evidence.
Non-repudiation tokens are digitally signed and contain
date, time, non-repudiation type, method name and
method parameter information. Our approach uses the
same data for both non-repudiation evidence and
application processing improving system integrity. It is
proposed to encode the non-repudiation tokens using
digitally signed XML documents specified by the
proposed Internet standard Digital Sgnatures for XML. It
is believed that this approach could form the basis for a
proposal for interoperable non-repudiation tokens.

In the EU funded project MuUltiPLECX we are
implementing the generic non-repudiation service
described in this paper. The service will be used to
provide security for the created infrastructure required to
support multi-party Electronic Commerce. The project
will run pilots of commercia applications which will
demonstrably enable multi-party business-to-business e-
commerce transactions over the Internet in a fashion
which is secure, robust and scaleable.

5. References

[1] Microsoft Corp., Distributed Component Object Model,
http://www.mi crosoft.com/com/tech/dcom.asp.

[2] Richard D. Brown: Digital Sgnaturesfor XML. Proposed
Internet Standard, January 1999,
http://www.ietf.org/internet-drafts/draft-brown-xml-dsig-
00.txt, 42 pages.

[3] Forrester Research, Inc., http://www.forrester.com.

[4] 1SO 7498-2: Information processing systems -- Part2:
Security Architecture. International Organization for
Standardization, 1989.

[5] 1SO 10181-4: Information technology — Security
frameworks for open systems: Non-repudiation
framework International Organization for
Standardization, 1997.

[6] 1SO 13888-1: Information technology — Security
techniques — non-repudiation — Part 1: General.
International Organization for Standardization, 1997.

[7] 1S0 8879: Information processing — Text and Office
Systems — Standard Generalized Markup Language
(SGML) International Organization for Standardization,
1986.

[8] MultiPLECX: Multi-party Processes for Large-scale
Electronic Commerce TransactioridJ funded ESPRIT
project. http://www.multiplecx.org, 1999.

[9] OMG (Object Management Group): CORBA security
specification Http://www.omg.org, 1998.

[10] OMG (Object Management Group): Common Object
Request Broker Architecture (CORBA)
http://www.omg.org, 1999.

[11] Robert Orfali, Dan Harkey: Client/Server Programming
with Java and CORBAJohn Wiley & SonsInc., New
York, 1997

[12] Alan Pope: The CORBA Reference Guideldison
Wesdley, Reading, Massachusetts, 1998.

[13] Tim Bray et a.: Extensible Markup Language (XML).
W3C Recommendation.,
http://www.w3.0rg/TR/1998/REC-xml-19980210.html,
February 1998.

