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Abstract

In this paper we present a new approach for the non-rigid registration of multi-modality images.
Our approach is based on an information theoretic measure called the cumulative residual entropy
(CRE), which is a measure of entropy defined using cumulative distributions. Cross-CRE between
two images to be registered is defined and maximized over the space of smooth and unknown non-
rigid transformations. For efficient and robust computation of the non-rigid deformations, a tri-
cubic B-spline based representation of the deformation function is used. The key strengths of
combining CCRE with the tri-cubic B-spline representation in addressing the non-rigid
registration problem are that, not only do we achieve the robustness due to the nature of the CCRE
measure, we also achieve computational efficiency in estimating the non-rigid registration. The
salient features of our algorithm are: (i) it accommodates images to be registered of varying
contrast+brightness, (ii) faster convergence speed compared to other information theory-based
measures used for non-rigid registration in literature, (iii) analytic computation of the gradient of
CCRE with respect to the non-rigid registration parameters to achieve efficient and accurate
registration, (iv) it is well suited for situations where the source and the target images have field of
views with large non-overlapping regions. We demonstrate these strengths via experiments on
synthesized and real image data.
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1. Introduction

Image registration is a ubiquitous problem in medical imaging and many other applications
of image analysis including but not limited to geo-spatial imaging, satellite imaging, movie
editing, archeology etc. In medical imaging, non-rigid registration is particularly common in
longitudinal studies such as in child development, ageing studies and also in comparisons
between controls and pathologies to assess progress or remission of disease. There is an
abundance of non-rigid registration algorithms in literature, the most popular approaches
come in two varieties, those that assume brightness constancy in their cost function being
optimized and others that use information theory based cost functions that don’t require the
aforementioned restrictive assumption. The former are applicable only to same modality
data sets while the latter can be applied to multi-modal data sets. There are many
applications wherein use of multi-modality data sets is desired e.g., image-guided
neurosurgery where an MR is used to locate the tumor and a registered high resolution CT is
used for guidance. Another application is in cognitive studies where, MRI and fMRI
registration is sought.
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In this paper, we develop a multi-modal non-rigid registration technique which is based on a
recently introduced information theoretic matching criterion (Wang et al., 2003) called cross
cumulative residual entropy (CCRE) to measure the similarity between two images. In
Wang et al. (2003), Wang et al. presented a new entropy measure defined on cumulative
distributions rather than probability densities which is the usual norm. The mathematical
properties of this new measure were developed in a follow up article in Rao et al. (2004).
This new measure dubbed cumulative residual entropy (CRE) unlike the well known
Shannon entropy was shown to be consistently valid across discrete and continuous domains
i.e., the discrete version converges to the continuous one in the limit. Since its definition is
based on cumulative distribution functions (CDFs) rather than probability densities and the
former are more regular, this measure is more robust in the presence of noise. This property
was borne out in the results depicted in Wang et al. (2003) for rigid and affine registration
under a variety of noise levels.

In this paper, we use CCRE for achieving non-rigid registration between uni-modal and
multi-modal data sets. We derive the analytic gradient of this match measure in order to
achieve efficient and accurate non-rigid registration. The CCRE is then minimized over a
class of smooth non-rigid transformations expressed in a B-spline basis. The key strengths
of our proposed nonrigid registration scheme are: (1) it can accommodate images to be

registered of varying contrast+brightness, and it is also robust in the presence of noise; (2)
It can be empirically shown to converge faster in comparison to other registration methods

that use information theory based cost functions; (3) The cost function and its derivative

share common terms and this leads to computational savings being accrued in the numerical

optimization process; (4) It is well suited for situations where the source and the target

images have field of views with large non-overlapping regions (which is quite common in

practice).

The rest of this paper is organized as follows. The remainder of Section 1 contains a brief
review of the literature, focusing on the non-rigid registration methods. Section 2 contains a
description of our model and all the associated details. Experimental results on synthetic and
real image data sets are presented in Section 3. Finally, we draw conclusions in Section 4.

1.1. Previous Work

Non-rigid image registration methods in literature to date may be classified into feature-
based and “direct” methods. Most feature-based methods are limited to determining the
registration at the feature locations and require an interpolation at other locations. If
however, the transformation/registration between the images is a global transformation e.g.,
rigid, affine etc. then, there is no need for an interpolation step. In the non-rigid case
however, interpolation is required. Also, the accuracy of the registration is dependent on the
accuracy of the feature detector.

Several feature-based methods involve detecting surfaces landmarks (Chui et al., 2003;
Paragios et al., 2003; Audette et al., 2003; Leow et al., 2004), edges, ridges etc. Most of
these assume a known correspondence with the exception of the work in Chui et al. (2003),
Jian and Vemuri (2005), Wang (2006) and Guo and Rangarajan (2004). Work reported in
Irani and Anandan (1998), it uses the energy (squared magnitude) in the directional
derivative image as a representation scheme for matching achieved using the SSD cost
function. Recently, Liu et al. (2002) reported the use of local frequency in a robust statistical
framework using the integral squared error a.k.a., L2E. The primary advantage of L2E over
other robust estimators in literature is that there are no tuning parameters in it. The idea of
using local phase was also exploited by Mellor and Brady (2004), who used mutual
information (MI) to match local-phase representation of images and estimated the non-rigid
registration between them. However, robustness to significant non-overlap in the field of
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view (FOV) of the scanners was not addressed. For more on feature-based methods, we refer
the reader to the recent survey by Zitová and Flusser (2003).

In the context of “direct” methods, the primary matching techniques for intra-modality
registration involve the use of normalized cross-correlation, modified SSD, and
(normalized) mutual information (MI). Ruiz-Alzola et al. (2000) presented a unified
framework for non-rigid registration of scalar, vector and tensor data based on template
matching. For scalar images, the cost function is the extension of modified SSD using a
different definition of inner products. However this model can only be used on images from
the same modality as it assumes similar intensity values between images. In Marroquin et al.
(2002), Vemuri et al. (2000), a level-set based image registration algorithm was introduced
that was designed to non-rigidly register two 3D volumes from the same modality of
imaging. This algorithm was computationally efficient and was used to achieve atlas-based
segmentation. Direct methods based on the optical-flow estimation form a large class for
solving the non-rigid registration problem. Hellier et al. (2001) proposed a registration
method based on a dense robust 3-D estimation of the optical flow with a piecewise
parametric description of the deformation field. Their algorithm is unsuitable for multi-
modal image registration due to the brightness constancy assumption. Variants of optical
flow-based registration that accommodate for varying illumination maybe used for inter-
modality registration and we refer the reader to Szeliski and Coughlan (1997) and Lai and
Fang (1999) for such methods. Guimond et al. (2001) reported a multi-modal brain warping
technique that uses Thirion’s Demons algorithm (Thirion, 1998) with an adaptive intensity
correction. The technique however was not tested for robustness with respect to significant
non-overlap in the FOVs. More recently, Cuzol et al. (2005) introduced a new non-rigid
image registration technique which basically involves a Helmholtz decomposition of the
flow field which is then embedded into the brightness constancy model of optical flow. The
Helmholtz decomposition allows one to compute large displacements when the data contains
such displacements. This technique is an innovation on accommodating for large
displacements and not one that allows for inter-modality non-rigid registration. For more on
intra-modality methods, we refer the reader to the comprehensive surveys (Toga and
Thompson, 2001; Zitová and Flusser, 2003).

A popular framework for “direct” methods is based on the information theoretic measures
(D’Agostino et al., 2004), among them, mutual information (MI) pioneered by Viola and
Wells (1995) and Collignon et al. (1995) and modified in Studholme et al. (1996) has been
effective in the application of image registration. Reported registration experiments in these
works are quite impressive for the case of rigid motion. The problem of being able to handle
non-rigid deformations in the MI framework is a very active area of research and some
recent papers reporting results on this problem are Mellor and Brady (2004), Mattes et al.
(2003), Rueckert et al. (2003), Hermosillo et al. (2002), Rueckert et al. (1999), Leventon and
Grimson (1998), Gaens et al. (1998), Loeckx et al. (2004), Rohde et al. (2003), and Duay et
al. (2004). In Mattes et al. (2003), Mattes et al. and in Rueckert et al. (2003), Rueckert et al.
presented mutual information based schemes for matching multi-modal image pairs using B-
Splines to represent the deformation field on a regular grid. Guetter et al. (2005) recently
incorporated a learned joint intensity distribution into the mutual information formulation, in
which the registration is achieved by simultaneously minimizing the KL divergence between
the observed and learned intensity distributions and maximizing the mutual information
between the reference and alignment images. Recently, D’Agostino et al. (2006),
D’Agostino et al. presented an information theoretic approach wherein tissue class
probabilities of each image being registered are used to match over the space of
transformations using a divergence measure between the ideal case (where tissue class labels
between images at corresponding voxels are similar) and actual joint class distributions of
both images. This work expects a segmentation of either one of the images being registered.
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Computational efficiency and accuracy (in the event of significant non-overlaps) are issues
of concern in most if not all the MI-based non-rigid registration methods.

Some registration methods under the direct approach are inspired by models from
mechanics, either from elasticity (Davatzikos, 1997; Gee et al., 1993), or fluid mechanics
(Bro-Nielsen and Gramkow, 1996; Christensen et al., 1996). Fluid mechanics-based models
accommodate for large deformations, but are largely computationally expensive.
Christensen (Geng et al., 2005) recently developed an interesting version of these methods,
where the direct deformation field and the inverse deformation field are jointly estimated to
guarantee the symmetry of the deformation with respect to permutation of input images. A
more general and mathematically rigorous treatment of the non-rigid registration which
subsumes the fluid-flow methods was presented in Trouve (1998). All these methods
however are primarily applicable to intra-modality and not inter-modality registration.

In order to overcome the problems encountered in both feature-based and intensity-based
methods, a “hybrid” approach was developed by Hellier and Barillot (2003), wherein they
combined feature-based and intensity-based methods to register images in the context of
inter-subject brain registration. An optical flow based intensity energy equation was
incorporated with a local sparse constraint, which is, landmark-based correspondences
located on the brain’s cortical sulci. The main limitation of this method is that there are
several tuning parameters in the energy function, and the optical flow based energy function
limits this algorithm to be applicable only to intra-modality registration tasks. Recently,
Azar et al. (2006) presented an interactive hybrid nonrigid registration framework in which
the intensity-based deformation field and feature-based deformation field are updated
iteratively until convergence. The resulting transformation combines both intensity-based
and feature-based deformation fields. This method also has many tuning parameters that
need to be appropriately set for successful operation, which makes it rather unattractive for
practical use.

2. The Registration Technique: Theory & Algorithm

In this section, we present the theoretical aspects of our registration model and the
motivation for the use of a new information theoretic measure to drive the registration. We
begin by introducing the energy function for the non-rigid registration and this is followed
by a description of the non-rigid transformation model. We then present the derivative of the
analytic gradient of the energy function with respect to the non-rigid transformation
parameters. Finally we summarize our nonrigid registration algorithm at the end.

2.1. The Registration Model

An automatic registration method requires the choice of an image discrepancy criterion that
measures the similarity of the test image to the reference image. The measure we choose is
defined based on a new information theoretic measure called Cumulative Residual Entropy
(CRE) which was introduced in Rao et al. (2004) and is reproduced here for convenience.
Let x be a random variable in ℝ, and F(λ): = P(|x| > λ) is the cumulative residual
distribution, which is also called survival function in the Reliability Engineering literature.
The cumulative residual entropy (CRE) of x, is defined as:

(1)

Where ℝ+ = (x ∈ ℝ; x ≥ 0). The key idea in the definition is to use the cumulative
distribution in place of the density function in Shannon’s definition of entropy. The
distribution function is more regular because it is defined in an integral form unlike the
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density function, which is defined as the derivative of the distribution. The definition also
preserves the well established principle that the logarithm of the probability of an event
should represent the information content in the event. CRE can be related to the well-known
concept of mean residual life function in Reliability Engineering which is defined as:

(2)

The mF(t) is of fundamental importance in Reliability Engineering and is often used to
measure departure from exponentiation. CRE can be shown to be the expectation of mF(t)
(Asadi and Zohrevand, 2006), i.e.

(3)

Based on CRE, cross-CRE (CCRE) between two random variables was defined, and applied
to solve the image alignment problem, which is defined as: Given a pair of images I1(x) and
I2(x′), where (x′)t = T(x)t and T is the matrix corresponding to the unknown parameterized
transformation to be determined, define a match metric M(I1(x), I2(x′)) and maximize/
minimize M over all T. The class of transformations can be rigid, affine, projective or non-
rigid transformations. Several matching criteria have been proposed in the past, some of
which were reviewed earlier. Amongst them, mutual information is very popular and is
defined as follows for the continuous random variable case,

(4)

where h(X) is the differential entropy of the random variable X and is given by

, where p(x) is the probability density function and can be estimated
from the image data using any of the parametric and nonparametric methods. The reason for
defining MI in terms of differential entropy as opposed to Shannon entropy is to facilitate
the optimization of MI with respect to the registration parameters using any of the gradient
based optimization methods. Note that MI defined using the Shannon’s entropy in discrete
form will not converge to continuous case defined here due to the fact that Shannon’s
entropy does not converge to the differential entropy (see Thomas and Cover, 1991).

We now define the cross-CRE (CCRE) using CRE defined in Eq. (1).

(5)

We will use this quantity as a matching criterion in the image alignment problem. More
specifically, let IT(x) be a test image we want to register to a reference image IR(x). The
transformation g(x; μ) describes the deformation from VT to VR, where VT and VR are
continuous domains on which IT and IR are defined, μ is the set of the transformation
parameters to be determined. We pose the task of image registration as an optimization
problem. To align the reference image IR(x) with the transformed test image IT(g(x; μ)), we
seek the set of the transformation parameters μ that maximizes (IT, IR) over the space of
smooth transformations i.e.,
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(6)

The computation of CCRE requires estimates of the marginal and joint probability
distributions of the intensity values of the reference and test images. We denote p(l, k; μ) as
the joint probability of (IT ◦ g(x; μ), IR). Let pT(l; μ) and pR(k) represent the marginal
probability for the test image and reference images respectively, LT and LR are the discrete
sets of intensities associated with the test image and reference image respectively. Then, we
can rewrite the CCRE(IT ◦ g(x; μ), IR) as follows:

(7)

Let  and . Using the fact that pT(l; μ) = Σk∈LR
p(l, k; μ), we have P(i > λ μ) = Σk∈LR

P(i > λ, k; μ). Equation (7) can be further simplified,
which leads to,

(8)

To illustrate the difference between CCRE and the now popular information theoretic cost
functions such as MI and NMI, we choose to plot these functions against a parameter of the
transformation, for illustrative purposes, say the rotations. The image pair we used here
consists of MR and CT images that were originally aligned, and the MR and CT data
intensities range from 0–255 with the mean 55.6 and 60.6 respectively. The cost functions
are computed over the rotation angle that was applied to the CT image to misalign it with
respect to the MR image. In each plot of the Fig. 1 the X-axis shows the 3D rotation angle
about an arbitrarily chosen axis of rotation in 3D, while the Y-axis shows the values of
CCRE, MI and NMI computed from the misaligned (by a rotation) image pairs. The second
row shows a zoom-in view of the plots over a smaller region, so as to get a detailed view of
the cost function. The following observations are made from this plot:

1. Similar to MI and NMI, the maximum of CCRE occurs at 0° of rotation, which
confirms that our new information measure needs to be maximized in order to find
optimum transformation between two misaligned images.

2. The CCRE shows much larger range of values than MI and NMI. This feature plays
an important role in the numerical optimization since it leads to a more stable
numerical implementation by avoiding cancelation, round off etc. that often plague
arithmetic operations with smaller numerical values.

3. Upon closer inspection, we observe that CCRE is much smoother than MI and NMI
in the registration of MR and CT data pair, this empirically validates that CCRE is

WANG and VEMURI Page 6

Int J Comput Vis. Author manuscript; available in PMC 2010 August 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



more regular than MI and NMI. Theoretically, this justification stems from the fact
that CCRE is based on CDFs which are more regular than density functions which
are at the heart of the definitions of MI and NMI respectively.

2.2. Transformation Model for Non-Rigid Motion

We model the non-rigid deformation field between two 3D image pairs using a cubic B-
splines basis in 3D. B-splines have a number of desirable properties for use in modeling the
deformation field. (1) Splines provide inherent control of smoothness (degree of continuity).
(2) B-splines are separable in multiple dimensions which provides computational efficiency.
Another feature of B-splines that is useful in a non-rigid registration system is the “local
control”. Changing the location of a single control point modifies only a local neighborhood
of the control point.

The basic idea of the cubic B-spline deformation is to deform an object by manipulating an
underlying mesh of control points γi. The deformation g is defined by a sparse regular
control point grid. In 3D case, the deformation at any point x = [x, y, z]T in the test image
can be interpolated with a linear combination of cubic B-spline convolution kernel.

(9)

where β(3)(x) = β(3)(x)β(3)(y)β(3)(z) and Δρ is spacing of the control grid. δj is the expansion
B-spline coefficients computed from the sample values of the image. For the implementation
details, we refer the reader to Forsey and Bartels (1988) and Mattes et al. (2003).

2.3. Optimization of CCRE

Calculation of the gradient of the energy function is necessary for its efficient and robust
maximization. The gradient of CCRE is given as,

(10)

Each component of the gradient can be found by differentiating Eq. (7) with respect to a
transformation parameters. We consider the two terms in Eq. (7) separately when computing
the derivative. For the first term in Eq. (7), we have,

(11)

where , and
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(12)

The derivative of the second term is given by,

(13)

where , and

(14)

Combining the derivatives of the two terms together, and using the fact that

(15)

we have the analytic gradient of CCRE,

(16)

note that in the derivation, we use the fact that P(i > λ; μ) = Σk∈LR
P(i > λ, k; μ).

Comparing the expressions for CCRE and derivative of CCRE

(17)
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we note that the two formulas in (17) are similar to each other and they share the common

term . From a computational viewpoint, this is quite beneficial since the
common term can not only save memory space, but also make the calculation of gradient
more efficient. From the formulation, we can also see that calculation of CCRE and

derivative of CCRE require us to find a method to estimate P(i > λ, k; μ) and . We
will address the computation of these terms in the next subsection.

2.4. Computation of P(i > λ, k; μ) and 

We will use the Parzen window technique to estimate the cumulative distribution function
and its derivative. The calculation of P(i > λ, k; μ) requires estimate of the cumulative
probability distributions of the intensity values of the reference and test images. Let β(0) be a
zero-order spline Parzen window (centered unit pulse) and β(3) be a cubic spline Parzen
window, the smoothed joint probability of (IR, IT ◦ g) is given by

(18)

where α is a normalization factor that ensures Σp(l, k) = 1, and IR(x) and IT(g(x; μ) are
samples of the reference and interpolated test images respectively, which is normalized by

the minimum intensity value, , and the intensity range of each bin, ΔbR, ΔbT.

Since , we have the following,

(19)

where Φ() is the cumulative residual function of cubic spline kernel defined as follows,

(20)

Note that , we can then take the derivative of Eq. (19) with respect to μ, and
we get
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(21)

where  is the image gradient.

2.5. Algorithm Summary

The registration algorithm can be summarized as follows,

• For the current deformation field, interpolate the test image by IT ◦ g(x; μ).

Calculate P(i > λ, k; μ) and  using Eqs. (19) and (21) respectively.

• Compute P(i > λ; μ) as Σk∈LR
P(i > λ, k; μ), which is used to calculate the common

term in both CCRE and gradient of CCRE, i.e., .

• Compute the energy function and its gradient using the formulas given in Eq. (17),
we can then use the Quasi-Newton method to numerically solve the optimization
problem.

• Update the deformation field g(x; μ). Stop the registration process if the difference
in consecutive iterates is less than ε = 0.01, a pre-chosen tolerance, otherwise go to
Step 1.

3. Implementation Results

In this section, we present the results of applying our non-rigid registration algorithm to
several data sets. The results are presented for synthetic as well as real data. The first set of
experiment was done with synthetic non-rigid motion. We show the advantage of using the
CCRE measure in comparison to other information theoretic registration methods. We show
that our algorithm is not only more robust, but also converges faster than others. We begin
by applying our algorithm to register image pairs for which the ground truth was available.

3.1. Synthetic Motion Experiments

In this section, we demonstrate the robustness property of CCRE and will make a case for its
use over Mutual Information in the alignment problem. The case will be made via
experiments depicting faster convergence speed and superior performance under noisy
inputs in matching the image pairs misaligned by a synthesized non-rigid motion.
Additionally we will depict a larger capture range over MI-based methods in the estimation
of the motion parameters.

The data we use for this experiment are corresponding slices from an MR T1 and T2 image
pair, which were obtained from the brainweb site at the Montreal Neurological Institute
(http://www.bic.mni.mcgill.ca/brainweb, 1997). They are originally aligned with each other.
The two images are defined on a 1mm isotropic voxel grid in the Talairach space, with
dimension (256 × 256). We applied a known non-rigid transformation to the T2 image so as
to misalign it with respect to the T1 image, and the goal is to recover this deformation by
applying our registration method. The mutual information algorithm/implementation which
we will compare with here was originally reported in Mattes et al. (2003) and Thévenaz and
Unser (2000). This implementation makes explicit use of the gradient of MI with respect to
the transformation parameters. The analytic formula for this gradient was presented in
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Mattes et al. (2003) and Thévenaz and Unser (2000), thus allowing for the efficient
application of gradient-based optimization methods.

3.1.1. Convergence Speed—In order to compare the convergence speed of CCRE
versus MI, we designed the experiment as follows: with the MR T1 and T2 image pair as
our data, we chose the MR T1 image as the source, the target image was obtained by
applying a known smooth non-rigid transformation that was procedurally generated. Notice
the significant difference between the intensity profiles of the source and target images. For
comparison purposes, we used the same gradient descent optimization scheme, and let the
two registration methods execute for the same amount of time, and show the registration
result visually and quantitatively.

The source and target image pair along with the results of estimated transformation using
CCRE and MI applied to the source are shown in Fig. 2. As evident visually, we observe
that the result generated by CCRE is more similar in shape to the target image than the one
produced by MI.

Quantitative assessment of accuracy of the registration is presented in Fig. 3, where we
plotted the change of mean deformation error (MDE) obtained for the CCRE and the MI-

based algorithms respectively. MDE is defined as , where
g0(xi) and g(xi) are the ground truth and estimated displacements respectively at voxel xi. ||·||
denotes the Euclidean norm, and R is the volume of the region of interest. In both cases
mean deformation errors are decreasing with time, but the solid curve is decreasing faster
than the dotted curve. For example, it takes about 5 minutes for MI to reach an error level
below 1.2 units, while CCRE only requires about half that time to achieve the same error
level. This empirically validates the faster convergence speed of CCRE based algorithm
over the MI-based algorithm.

3.1.2. Registration Accuracy—Using the same experimental setting as in the previous
experiment, we present the registration error for our algorithm in the estimated non-rigid
deformation field as an indicator of the accuracy of estimated deformations. Fig. 4 depicts
the results obtained for this image pair. which is organized as follows, from left to right: the
first row depicts the source image with the target image segmentation superposed to depict
the amount of mis-alignment, the registered source image which is obtained using our
algorithm superposed with the target segmentation, followed by the target image; second
row depicts ground truth deformation field which we used to generate the target image from
the MR T2 image, the estimated non-rigid deformation field followed by histogram of the
estimated magnitude error. Note that the error distribution is mostly concentrated in the
small error range indicating the accuracy of our method. As a measure of accuracy of our
method, we also estimated the average, μ, and the standard deviation, σ, of the error in the
estimated non-rigid deformation field. The error was estimated as the angle between the
ground truth and estimated displacement vectors. The average and standard deviation are

1.5139 and 4.3211 (in degrees) respectively, which is quite accurate.

Table 1 depicts statistics of the error in estimated non-rigid deformation when compared to
the ground truth. For the mean ground truth deformation (magnitude of the displacement
vector) in Column-1 of each row, 5 distinct deformation fields with this mean are generated
and applied to the target image of the given source-target pair to synthesize 5 pairs of
distinct data sets. These pairs (one at a time) are input to our algorithm and the mean (μ) of
the mean deformation error (MDE) is computed over the five pairs and reported in
Column-2 of the table. Column-3 depicts the standard deviation of the MDE for the five
pairs of data in each row. As evident, the mean and the standard deviation of the error are
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reasonably small indicating the accuracy of our non-rigid registration algorithm. Note that

this testing was done on a total of 20 image pairs (= 40) as there are 5 pairs of images per

row.

3.1.3. Noise Immunity—In the next experiment, we compare the robustness of the two
methods, CCRE and MI, in the presence of noise. Still selecting the MR T1 image slice from
the previous experiment as our source image, we generate the target image by applying a
fixed smooth synthetic deformation field. We conduct this experiment by varying the
amount of Gaussian noise added and then for each instance of the added noise, we register
the two images using the two techniques. We expect both schemes are going to fail at some
level of noise. (“failed” here means that the optimization algorithm primarily diverged.) By
comparing the noise magnitude of the failure point, we can show the degree to which these
methods are tolerant. The numerical schemes used in the implementation of these
registration algorithms are based on the BFGS quasi-Newton algorithm (Nocedal and
Wright, 2000).

The mean magnitude of the synthetic motion is 4.37 pixel, with the standard deviation at
1.8852. Table 2 show the registration results for the two schemes. From the table, we
observe that the MI fails when the standard deviation of the noise is increased to 40, while
CCRE is tolerant until 66, a significant difference when compared to the MI. This
experiment conclusively depicts that CCRE has more noise immunity than MI when dealing
with the non-rigid motion.

3.1.4. Partial Overlap—Fig. 5 depicts an example of registration of the MR T1 and T2
data sets with large non-overlap. The left image of the figure depicts the MR T1 brain scan
as the source image, and the right image shows the MR T2 data as the target. Note that the
field of view (FOV) for the data sets are significantly non-overlapping. The non-overlap was
simulated by discarding 66% of the MR T1 image (source image). The middle column
depicts the transformed source image along with an edge map of the target (Deformed MR
T2 image) superimposed on the transformed source. As is evident, the registration is visually
quite accurate.

3.1.5. Convergence Range—To better demonstrate the convergence range of CCRE in
comparison with Mutual Information based algorithms, we will apply them to estimate the
3D rigid motion parameters between image pairs that are known be misaligned by a 3D rigid
motion. The data we use for this experiment is a pair of 3D MR T1 and T2 images from the
brainweb (http://www.bic.mni.mcgill.ca/brainweb), and they are originally aligned with
each other. The two volumes are defined on a 1mm isotropic voxel grid in Talairach space,
with dimension (181 × 217 × 181). We fix the standard deviation (7) of noise added to the
two images and vary the magnitude of the synthesized rigid motion until all of the methods
fail. With this experiment, we can compare the convergence range of each registration
algorithm. Notice that we used partial volume interpolation for all three methods in this

implementation (Collignon et al., 1995). Six parameters are displayed in each cell of Table
3. The first three are rotation angles (in degrees), while the next three values show the
translations (in mm). Both the rotation and translation parameters are in (x, y, z) order. From
Table 3, we observe that the convergence range of MI and Normalized MI is estimated at
(13°, 13°, 12°, 13, 13, 13) and (15°, 15°, 14°, 16, 16, 16) respectively, while our algorithm
has a much larger capture range at (32°, 32°, 25°, 32, 32, 32). It is evident from this
experiment that the capture range for reaching the optimum is significantly larger for CCRE
when compared with MI and NMI in the presence of noise.

WANG and VEMURI Page 12

Int J Comput Vis. Author manuscript; available in PMC 2010 August 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.bic.mni.mcgill.ca/brainweb


3.2. Real Data Experiments

In this section, we present the performance of our method on a series of CT and MR data
containing real non-rigid misalignments. For the purpose of comparison, we also apply the
MI-based registration algorithm implemented as was presented in Mattes et al. (2003) to
these same data sets. The CT image is of size (512, 512, 120) while the MR image size is
(512, 512, 142), and the voxel dimensions are (0.46, 0.46, 1.5) mm and (0.68, 0.68, 1.05) for
the CT and MR images respectively. The registration was performed on reduced volumes
(210 × 210 × 120) with the control knots placed every 16 × 16 × 16 voxels. The algorithm
was coded in the C++ and all experiments were performed on a 2.6 GHZ Pentium PC.

We used a set of eight volumes of CT data sets and the task was to register these eight
volumes to the MR data chosen as the target image for all registrations, by using both CCRE
and the MI algorithms. Note that all the CT and MR volume pairs were acquired from
different subjects and thus would involve non-rigid registration in order to align them. The
parameters used in both the algorithms were identical. For both algorithms, the iterative
optimization of the cost functions was halted when improvements of at least 0.01 in the cost
function could not be detected. The time required for registering all data sets for our
algorithm as well as MI method are given in Table 4. This table shows that, on the average,
our CCRE algorithm is about 2.5 times faster than the MI-based approach for this set of
experiments. For brevity, we only show one registration result in Fig. 6. Here, one slice of
the volume is shown in the first row with the source CT image on the left and reference
image on the right. The middle image shows the transformed CT image slice superimposed
with edge map from target image. In the second row, the source image superimposed with
edge map from target image is shown on the left, while shown in the middle and right are
the heads reconstructed from the transformed source using CCRE method and the target MR
image respectively. From this figure, we can see that the source and target image depict
considerable non-rigid changes in shape, nevertheless our method was able to register these
two images quite accurately. To validate the conformity of the two reconstructed surfaces,
we randomly sample 30 points from the surface of the transformed source using CCRE, and
then estimate the distances of these points to the surface in the target MR volume. The
average of these distances is about 0.47 mm, which indicates a very good agreement
between two surfaces. The resemblance of the reconstructed shapes from transformed source
with the target indicates that our CCRE algorithm succeeded in matching the source CT
volume to the target MR image.

The accuracy of the information theoretic based algorithm for non-rigid registration
problems was assessed quantitatively by means of an region-based segmentation task (Chan
and Vesse, 1999). ROIs (whole brain, eyes) were segmented automatically in these eight CT
data sets used as the source image and binary masks were created. The deformation fields
between the CT and MR volumes were computed and used to project the masks frsom each
of the CT to the MR volume. Contours were manually drawn on a few slices chosen at
random in MR volume (four slices/volume). Manual contours on MR and contours obtained
automatically were then compared using an accepted similarity index defined as two times
the number of pixels in the intersection of the contours divided by the sum of the number of
pixels within each contour (Rohde et al., 2003). This index varies between zero (complete
disagreement) and one (complete agreement) and is sensitive to both displacement and
differences in size and shape. Table 5 lists mean values for the similarity index for each
structure. It is customarily accepted that a value of the similarity index above 0.80 indicates
a very good agreement between contours. Our results are well above this value. For
comparison purposes, we also computed the same index for the MI method. We can
conclude from the table that our CCRE can achieve better registration accuracy than the MI
for the task of non-rigid registration of real multi-model images.
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4. Conclusion

In this paper, we presented a novel way to non-rigidly register multi-modal data sets based
on a recently introduced matching criterion called the cross cumulative residual
entropy(CCRE) (Wang et al., 2003) to measure the similarity between two images. The
matching criterion is defined based on a new information measure, namely the cumulative
residual entropy (CRE), which is defined based on the probability distributions as opposed
to probability densities. Since distributions are more regular than densities, there is inherent
robustness in the definition of CRE. Furthermore, CCRE also inherits this robustness
property from the CRE.

In this work, CCRE between two images to be registered is maximized over the space of
smooth and unknown non-rigid transformations. For efficient and robust computation of the
non-rigid deformations, a tensor product of tri-cubic B-spline based representation of the
deformation function is used. The key strengths of combining CCRE with the tri-cubic B-
spline representation in addressing the non-rigid registration problem are that, not only do
we achieve the robustness due to the nature of the CCRE measure but we also achieve
computational efficiency in estimating the non-rigid registration. The salient features of our
algorithm are that: (i) it accommodates images to be registered of varying contrast
+brightness, (ii) it has a faster convergence speed compared to other information theory-
based matching measures used for non-rigid registration in literature, (iii) the use of analytic
gradient of CCRE with respect to the non-rigid registration parameters achieves efficient
and accurate registration, (iv) it is well suited for situations where the source and the target
images have field of views with large non-overlapping regions.

Finally comparisons were made between CCRE and MI (Mattes et al., 2003; Forsey and
Bartels, 1988) and all the experiments depicted significantly better performance of CCRE
over the MI-based methods currently used in literature. Our future work will focus on
reducing the computational load by using adaptive meshing schemes for computing the B-
spline coefficients representing the non-rigid deformations. Validation of non-rigid
registration on real data with the aid of segmentations and landmarks obtained manually
from a group of trained anatomists is another one of the goals of our future work.
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Figure 1.

CCRE, MI and NMI functions plotted for the misaligned MR and CT image pair where
misalignment is generated by a 3D rotation of the CT image about an arbitrary axis in 3D.
First row: over the range −40° to 40°. Second row: zoom in view (between −0.5° to 0.5°) of
the region pointed to by the arrows in the first row; tri-linear interpolation was used in all the
three cases in this row. Third row: All three cost functions implemented with partial volume
interpolation (Collignon et al., 1995).
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Figure 2.

Upper left, MR T1 image as the source image; Upper right, deformed MR T2 image as the
target image; Lower left and right, results of estimated transformations using CCRE and MI
applied to the source respectively. Execution time for both the algorithms was set to 30 CPU
seconds –time to convergence of our algorithm. Both algorithms used the same gradient
descent technique.
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Figure 3.

Plot demonstrating the Mean Deformation Error for CCRE and MI-based registration as a
function of time. Solid curve shows the MDE for CCRE-based registration, while dotted
curve illustrates the MDE for the MI-based registration.

WANG and VEMURI Page 19

Int J Comput Vis. Author manuscript; available in PMC 2010 August 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.

Results from the synthetic data demonstrating the registration accuracy of our algorithm (see
text for details).
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Figure 5.

Registration results of MR T1 and and T2 image slice with large non-overlap. (left) MR T1
source image before registration; (right) Deformed T2 target image; (middle) the
transformed MR image superimposed with edge map from target image.
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Figure 6.

Registration results of different subjects using MR and CT brain data with real non-rigid
motion. (see text for details).
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Table 1

Statistics of the error in estimated non-rigid deformation.

μg Mean μ of MDE Standard deviation σ of MDE

2.4 0.5822 0.0464

3.3 0.6344 0.0923

4.5 0.7629 0.0253

5.5 0.7812 0.0714
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Table 2

Comparison of the registration results between CCRE and other MI-based algorithms for a fixed synthetic
deformation field.

σ

CCRE MI

MDE Standard deviation MDE Standard deviation

10 1.0816 0.9345 1.3884 1.4538

19 1.1381 1.1702 1.4871 1.5052

30 1.1975 1.3484 1.5204 1.5615

40 1.3373 1.6609 FAIL

60 1.3791 1.9072

66 FAIL
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