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Abstract

We present a robust and efficient algorithm for the pairwise non-rigid registration of partially overlapping 3D sur-

faces. Our approach treats non-rigid registration as an optimization problem and solves it by alternating between

correspondence and deformation optimization. Assuming approximately isometric deformations, robust corre-

spondences are generated using a pruning mechanism based on geodesic consistency. We iteratively learn an

appropriate deformation discretization from the current set of correspondences and use it to update the corre-

spondences in the next iteration. Our algorithm is able to register partially similar point clouds that undergo large

deformations, in just a few seconds. We demonstrate the potential of our algorithm in various applications such

as example based articulated segmentation, and shape interpolation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Surface registration is central to various aspects of computer
graphics. Given a source and a target surface, the goal of reg-
istration is to find a motion that optimally positions points on
the source surface into the scene in which the target surface
lies. This is a common problem in 3D scanning [WJH∗07],
where multiple 3D scans of a moving object need to be reg-
istered, and in geometry processing, where correspondences
between different surfaces are needed for applications, such
as segmentation [SY07], information transfer [SP04] and
morphing [KMP07].

So far, most of the surface registration algorithms have fo-
cused on rigid registrations, i. e., when the motion between
the source and target is rigid. Dominant rigid registration al-
gorithms are Iterative Closest Point (ICP) [BM92] and its
variants [RL01]. ICP alternates between computing corre-
spondences between the source and target and performing
a rigid motion in response to these correspondences. If the
distance between source and target is large, correspondences
tend to be unstable and ICP easily gets trapped in local
minima. To address this problem, another category of ap-
proaches [GMGP05, HFG∗06] uses feature matches to gen-
erate initial guesses of the optimal motion which can be fed
into ICP. Most challenges posed by rigid registration have
been addressed, and there are several automatic 3D scanning
systems [RHHL02, HH03].

Despite the amazing advances regarding rigid registration,
the problem of automatic non-rigid registration has mainly
only been tackled for small deformations [HTB03, BR07,
MFO∗07, WJH∗07]. In this paper however, we consider au-

tomated registration under large deformations. One of the
main challenges in this setting is obtaining stable correspon-
dences. Incorrect correspondences easily trap the registra-
tion in local minima. In addition, appropriate deformation
models are central to efficiency and robustness of non-rigid
registration algorithms.

We present a novel framework for non-rigid registration,
addressing the two challenges outlined above. We formulate
non-rigid registration as an optimization problem and solve
it by alternating correspondence computation and deforma-
tion optimization in terms of the resulting correspondences.
Enforcing that correspondences preserve geodesic distances
greatly improves stability. We also learn an appropriate de-
formation discretization during the optimization, leading to
significantly better registration results. The major compo-
nents of our algorithm are illustrated in Fig. 1.

Our algorithm has great advantages in various applica-
tions where correspondences across surfaces are required.
We demonstrate its potential in example based articulated
segmentation and shape interpolation. For example based
segmentation, we do not need any correspondences between
example poses, and it is even possible to handle incomplete
examples. Our method can be used for shape interpolation
because of its high suitability for dealing with extremely
large deformations before steps.

In summary, our main contributions are

• An efficient and robust non-rigid registration framework
for aligning partially overlapping point clouds. By enforc-
ing that geodesic distances are preserved between sets of
corresponding points, we are able to extract extremely sta-
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Figure 1: Illustration of the major components in our non-rigid registration algorithm. High quality correspondences are

computed from a downsampled representation using feature guidance and spectral pruning. Rigid clusters are identified during

registration. The source is iteratively deformed based on the computed correspondences and clusters to yield the final non-rigid

registration.

ble correspondences. This removes the need for manually
established landmark correspondences.

• An adaptive deformation model that allows for stable
deformations also for parts of the surface for which
good correspondences are not available. Our deformation
model does not have strong assumptions on rigidity or ar-
ticulatedness, and can adapt to the deformation present in
the model.

• We propose two algorithms that showcase the strength of
our method. Building upon the registration framework,
our methods for example based segmentation and defor-
mation interpolation do not require recomputed corre-
spondences, and work even with incomplete and noisy
data.

1.1. Related Work

Correspondence Computation. The simplest correspon-
dences are closest point correspondences [BM92,RL01] ob-
tained by computing for each point on the source its clos-
est point on the target surface. However, closest point cor-
respondences tend to be unstable when the two surfaces are
far apart. Therefore, most of the methods [HTB03,WJH∗07,
BR07] that use this kind of correspondences assume that the
source and target surfaces are very close, an assumption we
avoid in this paper.

In [SLW02], Sharp et al. propose to use a combination
of Euclidean distances and feature distances to improve cor-
respondence stability for rigid registration. However, in the
presence of non-rigid motions, the correspondences com-
puted with this method are not robust enough to ensure cor-
rect registration.

Using landmark correspondences can alleviate the stabil-
ity problems [ACP03,PMG∗05,BBBK08]. However, manu-
ally labeling and associating landmarks is a tedious and time
consuming task. Geometric feature matching [GMGP05,
HFG∗06] has been successfully used to automatically gen-
erate landmark correspondences in the rigid case. In the
non-rigid case, however, such landmarks are not necessar-
ily persistent across frames, and geometric feature matching
can be unreliable. To overcome this problem, we s enforce
that the resulting correspondences are consistent and respect
geodesic distances.

A very elegant technique for obtaining dense correspon-
dences comes from computer vision. Optical flow meth-
ods can generate correspondences from video [ATD∗08,
ATR∗08], rendered animations or densely sampled 3D scans
[MFO∗07]. However, these methods only work when the
motions between frames are small.

Anguelov et al. [ASP∗05] solved the problem of non-
rigid correspondences by searching in the space of all pos-
sible correspondences using belief propagation. They also
use geodesic distances as a quality criterion; however, their
method assumes that the data surface can be fully embedded
in the model surface.

Correspondences in 2D images have also been computed
using modal analysis [SP95]. This method could also be ap-
plicable to 3D shapes, however, it requires complete shapes
and a discretization suitable for finite element analysis.

Deformation Model. Deformation models have been
studied in great detail in the context of shape deformation
and we refer to [Sor06, NMK∗05] for a good overview and
to [HSL∗06,BPGK06,SZT∗07,SSP07,LCOGL07] for some
recent advances.

In non-rigid registration, the deformation model used de-
termines which assumptions about the deformations of the
shape are made. Isometric models [PMG∗05, BBBK08], as-
rigid-as-possible models [ACP03, WJH∗07] and skeleton
driven models [EPT∗07, PG08] have been used. In this pa-
per, we allow for a wide variety of deformations by adapt-
ing the deformation model to the deformation observed dur-
ing registration. In the presence of constraints obtained from
correspondences, our model favors as-rigid-as-possible de-
formations, while in the absence of good correspondences,
we assume an articulated motion, adaptively reducing the
number of unknowns to obtain more robust results.

2. Overview

Throughout the paper, all vectors and matrices will be set in
a bold font, while sets are set in script. The different steps in
our algorithm are illustrated in Fig. 1 and outlined in more
detail in Fig. 2.

Given source surface S = {si} and a target surface T =
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Figure 2: Overview of the non-rigid registration pipeline. After downsampling the source and target point clouds and computing

neighborhoods and features, we iteratively compute reliable correspondences and cluster and update the deformation field.

After non-rigid registration we deform the original full resolution source point cloud to align with the target surface.

{ti}, both represented as point clouds, the goal of non-rigid
registration is to find correspondences that relate points on S
to points on T . Correspondences should associate measure-
ments of the same physical point. These correspondences
are then used to align the two surfaces by deforming S to
S′. If the correspondences are valid, this deformation results
in close overlap of S′ and T . If the point cloud surfaces are
incomplete and/or noisy, the alignment is partial and approx-
imate.

We solve the non-rigid registration problem using an iter-
ative two-step procedure. From the current deformed surface
S′, we compute reliable correspondences that relate sample
points on S to sample points on T . Given these correspon-
dences, we update the deformed surface S′ using energy
minimization. This procedure is iterated until convergence.
The result of our algorithm is a set of correspondences as
well as a deformed source surface S′ registered to the target
surface T .

Correspondence Computation. Correspondences K =
{(si, ti)} are computed for a subset of surface sample points
si ∈ Ŝ ⊂ S and ti ∈ T̂ ⊂ T . We discuss the sample selec-
tion in Sec. 3. For each sample point in the source and the
target surface, we compute a feature vector f and match sam-
ple points that are close in Euclidean space and in signature
space, i. e., when both ‖s′i − ti‖ and ‖f(si)− f(ti)‖ are small.
Here, s′i corresponds to the current deformed position of the
sample si. For large deformations, feature matches gener-
ate much better correspondences than closest point matches.
However, closest point matches yield good correspondences
when the surfaces are close. As the registration progresses
and S′ approaches T , our algorithm automatically reverts
to closest point matching. Note that when computing f, we
only assume geometric information; no color or other tex-
ture information is used to compute correspondences. If this
is desired, it is easy to incorporate additional information
into the feature matching.

In the presence of non-rigid deformations, feature
matches can be treacherous. Since the shape deforms, point
signatures based on geometry change, and matches are un-
reliable. We assume that deformations are roughly isomet-
ric, and therefore, geodesic distances between points should
be preserved by the correspondences. Therefore, we prune

the initial set of correspondences to enforce this property:
If two sample points si and s j in S have geodesic distance
dg(si,s j), then their corresponding target sample points ti

and t j should have a similar geodesic distance on T , i. e.,
dg(si,s j) ≈ dg(ti, t j). We discuss the correspondence com-
putation in more detail in Sec. 4.

Deformation Field Optimization. Given the correspon-
dences, we deform the source surface to align it with the tar-
get surface. We use an energy minimization approach similar
to [SSP07]. In regular intervals, source samples with similar
transformations are grouped into clusters Ck, for which we
compute optimal rigid transformations. Neighboring cluster
transformations are coupled to ensure a smooth deformation
field. We then update the deformed source samples s′i by
minimizing the sum of a correspondence energy and a lo-
cal rigidity preserving energy.

The clustering effectively constrains points within a clus-
ter to move rigidly. In case of partial overlap between source
and target scan, the clustering extends rigid transformations
computed in regions with correspondences to regions where
such correspondences are not available. Only relying on
an energy term penalizing deformation can lead to drift,
severely degrading the quality of the alignment. The clus-
tering is performed adaptively and hence we allow both ar-
ticulated motions as well as general deformable motions. We
discuss the clustering and deformation optimization in more
detail in Sec. 5.

3. Downsampled Representation

As both input point clouds potentially consist of millions of
points, we perform the computations on subsets. We denote
the chosen subsets of S and T as Ŝ = {si} and T̂ = {ti}
respectively. The subsampling is performed using a com-
bination of uniform sampling on the surface and uniform
sampling in normal space as was proposed in [RL01]. The
positional sampling is done by constructing an octree and
picking one sample point per leaf cell, the one closest to the
leaf’s box center. The normal space sampling generates ad-
ditional points by uniform sampling on the sphere obtained
from the Gauss map of the input surface. These additional
points, as noted also by [RL01], ensure proper sampling of
all features. Surface normals are computed using the tech-
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Figure 3: Robust correspondence computation between

source (silver) and target (gold). From left to right: Clos-

est point correspondences, improved correspondences by

local feature matching, filtered kernel correspondences by

geodesic consistency and final propagated correspondences

with the confidence weight color-coded from red (not confi-

dent at all) to blue (very confident).

nique proposed in [MNG04]. Note that this subsampling can
be just as easily applied to meshes or any other surface repre-
sentation. Except for implementation details, the full surface
registration pipeline is therefore equally applicable to those
representations.

Neighborhoods. Our algorithm makes heavy use of
geodesic distances on surfaces and sets of nearest neighbors
with respect to this distance metric. In the following, we de-
note with Ng(p,P) the set of k nearest neighbors to p that
are part of the set of points P .

These sets are computed by using a breadth first search
on the Euclidean k-nearest neighbor graph of the set P . We
typically use k = 15. We precompute and store Ng(s,S) and
Ng(s, Ŝ) for all s ∈ Ŝ, as well as Ng(t,T ) and Ng(t, T̂ ) for
all t ∈ T̂ .

Geodesic distances are approximated using the graph dis-
tance dg(si,s j) which corresponds to the length of the short-

est path between si and s j on the graph defined by Ng(s, Ŝ)

for s ∈ Ŝ.

Features. Using multi-level fitting of quadratic patches
[CP03], we compute a feature vector

f(si) = [κ1
1(si),κ

1
2(si), . . . ,κ

N
1 (si),κ

N
2 (si)]

T (1)

for each sample point in Ŝ and T̂ . Here, κ
j
1,2 denote the prin-

cipal curvatures for fitting level j, remapped to lie within the
interval [−1,1]. For each quadratic fit, we use all points that
have a geodesic distance smaller than d

25−5 j , where d is the
diagonal length of the bounding box of the model. In our
experiments, we use N = 4 fitting levels.

4. Correspondence Computation

Obtaining a good set of correspondences is crucial for faith-
ful alignment of the source and target surface. To allow effi-
cient computation for large point sets, we compute corre-
spondences using the smaller subsets Ŝ ⊂ S and T̂ ⊂ T
defined above. The actual correspondence computation is
performed in four major steps, illustrated in Fig. 3. First,
we create a set of possible correspondences by connecting

points that are close in Euclidean space and feature space
(see Sec. 4.1). Next, we prune this dense set by extracting a
kernel of correspondences that are consistent in the sense
that geodesic distances between source sample points are
close to the geodesic distances between their corresponding
target points. Sec. 4.2 discusses how this pruning can be ef-
ficiently done using a spectral method. Then, we expand the
set of correspondences by propagating correspondence in-
formation from the kernel correspondences to other points
on the surface (Sec. 4.3). Here, every correspondence is also
given a confidence score. Finally, we fine-tune the corre-
spondences by allowing correspondences to end in any point
on the original target surface T , as described in Sec. 4.4.

4.1. Initial Correspondence Computation

For each sample point si, we define an initial correspondence
by computing the closest point ti on the target with respect
to the current deformed position s′i .

We improve the initial correspondence (si, ti) by replac-
ing ti with the point t j ∈ Ng(ti, T̂ ) in its neighborhood that
minimizes d f (si, t j) = ‖f(si)− f(t j)‖. We iterate this until
we find a local minimum of d f .

Similarly, we update si by moving it to the source sam-
ple s j that corresponds to the closest local minimum of
d f (s j, t j). We discard the correspondence if ‖si − s j‖ is
above a user-defined threshold. Large movement of si after
ti has been optimized indicates an unstable correspondence.
The reasoning is similar to the heuristic used in [TL94]. An
illustration of this procedure is shown in Fig. 3.

4.2. Correspondence Pruning

The initial set of correspondences might be inconsistent with
the assumption that deformations are approximately isomet-
ric. Hence, we prune the set of correspondences to enforce
that the geodesic distance between each pair of samples si

and s j, should be similar to the distance between their corre-
sponding target sample points, dg(si,s j) ≈ dg(ti, t j).

By removing correspondences that are not consistent with
our assumption, we can greatly improve their quality and
robustness. We are looking for the largest set of correspon-
dences that are consistent assuming isometric deformation.
This kernel extraction can be performed using a standard
spectral matching method [LH05]. We only briefly summa-
rize the method here, please refer to [LH05] for more details.

Two correspondences (si, ti) and (s j, t j) are consistent if
the ratio of geodesic distances dg(si,s j)/dg(ti, t j) is close to
1. Hence, we can define the consistency measure between 0
and 1,

ci j = min

{

dg(si,s j)

dg(ti, t j)
,

dg(ti, t j)

dg(si,s j)

}

, (2)

where cii is defined as 1. Spectral matching proceeds by con-
structing a consistency matrix M. To account for discretiza-
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tion errors and to allow for small non-isometric deforma-
tions, we define M as

Mi j =

{

(
ci j−c0

1−c0
)2 ci j > c0,

0 otherwise,
(3)

where the threshold c0 determines how much error in the
consistency we are willing to accept. We use a value of 0.7.
As shown in [LH05], the entries in the eigenvector x corre-
sponding to the largest eigenvalue λmax of M define a score
for the initial correspondences.

Starting from an empty set, we iteratively add the corre-
spondence that has the next highest score to our set of kernel
correspondences K, but only if its consistency measure (2)
with respect to all kernel correspondences already in K is
above the threshold c0.

4.3. Correspondence Propagation

The kernel extraction results in a set of consistent correspon-
dences. However, this set can be very sparse. Therefore, we
expand the set of correspondences using a propagation strat-
egy that respects the geodesic consistency criterion.

Given a sample si that does not have a corresponding
point, we look for the nearest s j with a correspondence
(s j, t j). We then assign a target sample that is most con-
sistent with the kernel correspondences using the geodesic
distance criterion

ti = argmin
t∈Ng(t j ,T̂ )

eK(si, t) (4)

where the consistency error eK is defined as

eK(s, t) = ∑
(sk ,tk)∈K

[dg(s,sk)−dg(t, tk)]
2, (5)

where the summation is over all kernel correspondences
(sk, tk). The correspondence propagation continues until all
samples are assigned to a target point.

After propagation we assign a confidence weight to all
correspondences. This weight is defined as a function of the
correspondence’s consistency compared to the consistency
of the kernel correspondences

wi = exp(−
eK(si, ti)

2e
), e =

1

|K| ∑
(sk,tk)∈K

eK(sk, tk). (6)

4.4. Correspondence Fine-Tuning

Due to efficiency reasons, the above computations were per-
formed using the reduced sample sets Ŝ and T̂ . This means
that a correspondence always has its end point in the reduced
set T̂ . When S′ is close to T , the correspondences on Ŝ and
T̂ become inaccurate. Hence, correspondences are allowed
to have end points in the full target point cloud T as opposed
to the subset T̂ .

For each correspondence (si, ti), we replace the end point
ti with t j ∈ Ng(ti,T ), if t j is the nearest neighbor of the
deformed sample s′i in T .

Figure 4: Correspondences between source (silver) and tar-

get (gold) for various examples. A small subset of the corre-

spondences is shown for the sake of clarity.

The final result of the correspondence computation is a
set of correspondences {(si, ti)} that relate points si ∈ Ŝ to
a target sample ti ∈ T . Fig. 4 illustrates the correspondences
for three different non-rigid registration examples. Note how
reliable correspondences are found even under large defor-
mations.

5. Deformation Optimization

Once correspondences are computed, we deform the surface
to best align the corresponding points. In this section, we
first describe how sample points can be grouped together
in clusters whose deformation can be roughly described us-
ing a single rigid transformation. We then discuss how this
clustered representation is used to find the optimal deformed
sample positions using an energy minimization approach, af-
ter which we describe how to propagate the deformations
onto the complete surface.

5.1. Cluster Computation

Clusters are groups of sample points whose deformation can
be described by a single rigid transformation. For exam-
ple, when aligning body scans, the lower and upper arm can
each be represented by a single cluster, while the sample
points near the elbow each define their own cluster. Group-
ing points and sharing their transformation greatly improves
the stability of the optimization process when registering in-
complete and noisy scans.

At the beginning of the clustering process, we create a
single cluster Ci = {si} for every sample si. We then apply
a forward search method [FCOS05] to iteratively combine
neighboring clusters until a user-defined quality threshold is
reached. In [FCOS05], forward search methods have been
used in finding points that can be fitted well by planes. In
our paper, we use forward search methods to find correspon-
dences that can be described by rigid motions.

For every cluster Ck, we define the extended cluster C̃k by
adding all neighboring points to the extended cluster:

C̃k = Ck

[

si∈Ck

Ng(si, Ŝ). (7)

We will call two clusters neighboring if their extended clus-
ters intersect.

Each cluster Ck is assigned a rigid transformation that
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Figure 5: Two views of the clusters color coded on the

source surface for the registration example on the left. The

registration deforms the source by an almost 180 degree ro-

tation as indicated by the arrows. Many clusters are used in

the regions on the lower back and around the arm pit where

the source surface bends to align with the target. Large clus-

ters can be used in regions that roughly deform rigidly.

maps its undeformed sample points si to their deformed sam-
ple positions s′i . We obtain translation Tk and rotation Rk by
minimizing

Ek = ∑
si∈C̃k

‖Rksi +Tk − s
′
i‖

2. (8)

This is a simple rigid registration problem with known cor-
respondences, which can be solved efficiently [Hor87].

For cluster merging, we sort the clusters in order of in-
creasing rigid registration error Ek. We pick the first cluster
Ck and compute the maximal residual registration error Ekl

for all its neighboring clusters Cl :

Ekl = max
si∈C̃l

‖Rksi +Tk − s
′
i‖

2. (9)

We merge Ck with all neighboring clusters that have a max-
imal rigid registration error Ekl below a threshold Emax. We
then recompute Ek, resort the list of clusters, and iterate.

The result of our clustering algorithm is a set of K clusters
Ck, where every sample belongs to exactly one cluster. In the
subsequent deformation optimization process we will use the
extended overlapping clusters C̃k to enforce continuity in the
rigid transformations.

In the first 10 iterations of the deformation optimization
we do not invoke the clustering algorithm, i. e., we use a sin-
gle cluster Ci = {si} per sample point. Otherwise the cluster-
ing would result in one big cluster because in the beginning
s′i = si. Starting from the 10th iteration, we cluster at regular
intervals of 10 iterations.

Fig. 5 Illustrates the clustering for a non-rigid alignment
example involving partial scans and large deformations.

5.2. Energy Minimization

After computing new correspondences, we update the de-
formed sample points s′i so that they are best aligned with
their corresponding target points ti. We use a combination
of point-to-point and point-to-plane constraints, motivated
from the local quadratic approximation of the squared dis-
tance function [MGPG04].

Hence, we wish to find the deformed sample positions s′i
that minimize

Ecorr = ∑
si∈Ŝ

wi

[

α‖s
′
i − ti‖

2 +β((s′i − ti)
T

ni)
2
]

, (10)

where wi is the consistency weight (Eq. 6), ni is the surface
normal corresponding to the target point ti and α and β are
parameters that vary the contribution of the point-to-point
and point-to-plane energies. We use α = 0.6 and β = 0.4.

To avoid the trivial solution s′i = ti, we add an additional
energy that penalizes local non-rigid deformations. Using
the cluster energy Ek, we define the total rigidity error as

Erigid = ∑
k

Ek = ∑
k

∑
si∈C̃k

‖Rksi +Tk − s
′
i‖

2. (11)

Note that because the extended neighboring clusters overlap,
the resulting transformations vary smoothly.

The total deformation energy is now given by

E = λcorrEcorr +λrigidErigid, (12)

where λcorr and λrigid vary the contribution of both energy
terms. We typically use λcorr = 2 and λrigid = 1.

The goal is to find the deformed sample positions s′i that
minimize E. Due to the dependence of the cluster rotations
Rk on s′i , this is a non-linear problem. We solve for the de-
formed sample positions by fixing Rk and Tk in each step
and solving for s′i , and then computing new optimal rota-
tions Rk and translations Tk [SA07, XZY∗07]. On average,
only 6 iterations were required for convergence.

5.3. Surface Deformation

The result of the registration algorithm is a set of deformed
positions s′i for the samples si in the downsampled source
surface Ŝ. After the registration process is complete, we ex-
trapolate these deformations to the entire source point cloud
S. We use a simple partition of unity approach [SSP07]. The
new position of s j ∈ S is given by

s
′
j = ∑

sk∈Ng(s j ,S)

θ jk(Rks j +Tk), (13)

where Rk and Tk are the rotation and translation associated
with sk’s cluster.

The normalized weights θ jk = θ jk/∑l θ jl with θ jk =

exp(−‖s j − sk‖
2/σ2) are defined to smoothly decay with

increasing distance. σ is a user-defined parameter that de-
termines the support of the sample points.

6. Results and Discussion

We tested our algorithm on various data sets with both partial
similarity and full similarity. For each model, we are given a
set of poses, and we compute registrations for each possible
pair of poses. Table 1 summarizes the statistics. All timings
were measured on a 3.2GHz PC with 2GB of RAM.

Some example pairs are shown in Fig. 6. As can be seen
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Figure 6: Non-rigid registration under large deformation

for various data sets.

from these figures, our algorithm is able to align incomplete
surfaces that undergo significant deformations.

For the Horse and Armadillo, we use the original unde-
formed point cloud as the source surface and various de-
formed instances as the target surface. Note that we did not
exploit the fact that the source and target shapes share a com-
mon discretization. All correspondences were computed us-
ing our algorithm. However, using this ground truth, we were
able to validate our registration algorithm and found that the
resulting deformed shapes were all correctly aligned.

The Arms, Shoulders and Torso data sets are incomplete

data set #poses #pairs |S| |Ŝ| pre time reg time

Horse 10 45 80k 2500 7.4s 13.6s

Armadillo 12 66 332k 2500 7.6s 14.8s

Arms 36 630 80k 600 2.1s 1.1s

Shoulder 33 528 117k 800 3.4s 1.9s

Torso 27 231 325k 1100 4.5s 4.5s

Table 1: Data set statistics. Shown are the number of poses

and the resulting number of registration pairs for each

model, the average number of points per pose (the numbers

vary between poses for real-world scans), the cardinality of

the sets S and Ŝ, as well as the average timing per pair,

for preprocessing (computation of neighborhoods, geodesic

distances and features) and registration.

✖✕
✗✔

(a) (b) (c) (d)

Figure 7: Comparison of different strategies for the non-

rigid alignment of the Torso data set. (a) Source (gray) and

target (gold). Each image (b)-(d) shows the deformed source

surface and the target surface. (b) Using closest point cor-

respondences. (c) Using our strategy, but without clustering.

(d) Using both our feature based correspondences and the

rigid clustering results in much better results for this diffi-

cult non-rigid registration problem.

scans of a moving person, and no ground truth was available.
We therefore validated the registration visually.

Note that some of the models are partially and approxi-
mately symmetric. For such models, there are local minima
that can trap our algorithm. We found that similar to rigid
registration, these local minima can be avoided by trying
all initial rotations from the icosahedral rotational symmetry
group. In practice, we only try more than one initial rotation
if the total registration error is very high. Since our regis-
tration method is very fast, this is not a problem. Using this
approach we obtained valid registrations for all pairs of the
Arms, Shoulders and Torso data sets.

Since we use subsampled versions of the point clouds to
compute the registrations, the full point clouds are not pre-
cisely aligned. A local deformation using closest point cor-
respondences can be used to optimize the final alignment.
On the other hand, subsampling makes the alignment more
robust in the presence of noise.

Fig. 7 shows a comparison with two alternatives for the
registration of the Torso data set. Using simple closest point
correspondences instead of the consistent geodesic and fea-
ture based correspondences leads to severe misalignments. If
we filter the correspondences for geodesic consistency, but
do not use clustering during the deformation optimization,
shrinkage occurs in underconstrained regions, e. g., near the
wrist. Using a single rigid transformation for large clusters
of sample points reduces the effect of bad or sparse corre-
spondences and results in better registration quality.

One of the limitations of our method is that if the as-
sumption of geodesic consistency between the surfaces is
invalid due to topological changes, our method will result
in erroneous registration. Changes in topology cause abrupt
changes in geodesic distances on the surface, leading to very
few, or even wrong correspondences after filtering. In the fu-
ture, we plan to address these problems by only considering
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Figure 8: Example based articulated segmentation. Left:

Possibly incomplete example poses. Middle: Rigid clusters

on the source shape. Right: Extracted skeleton.

the most consistent samples both in kernel extraction and
correspondence propagation.

7. Applications

Since the proposed algorithm reliably and automatically reg-
isters shapes that undergo large deformations, it is applica-
ble to a wide variety of problems in computer graphics. To
demonstrate the potential of the algorithm, we have imple-
mented an example-based mesh segmentation method that
can work with incomplete examples, as well as a deforma-
tion interpolation method.

7.1. Example Based Articulated Segmentation

Our framework can be used to compute the rigid parts of
an articulated object from multiple example poses. The re-
sulting segmentation can then be used to extract a skeleton
which in turn can be used to create new articulated poses.
Our proposed segmentation algorithm is more general and
flexible than previous approaches [JT05, SY07] in the sense
that we do not require known correspondences between the
source and the target poses, nor do we require the example
shapes to be complete.

In order to perform segmentation by example, we consider
one source surface S, but now register with respect to L tar-
get surfaces Tl . Similar to the original algorithms, we cluster
the source sample points in K clusters Ck, but we now con-
struct the clusters such that each can be rigidly aligned with
all the target poses. Hence, the alignment energy (Eq. 8) of
a cluster Ck now considers all target surfaces

Ek =
1

L

L

∑
l=1

∑
si∈C̃k

‖R
l
ksi +T

l
k − s

l
i‖

2, (14)

where Rl
k and Tl

k denote the rotation and translation for clus-

ter Ck with respect to the target surface Tl and sl
i is the de-

formed position of sample si for the alignment with Tl .

The clustering can result in over-segmentation for exam-
ple in the region of joints. As a post-processing step we re-
duce the number of clusters by only considering those clus-
ters with at least 40 sample points. The remaining sample
points are then added to neighboring clusters by iteratively
growing the surviving clusters. The resulting rigid clusters
can then be used to extract a skeleton.

Figure 9: Interpolated shapes (silver) between source and

target (gold).

Fig. 8 illustrates the segmentation algorithm for the Horse
model. From a set of 9 incomplete example poses we extract
clusters and a skeleton. The skeleton nicely captures the rigid
structure of the Horse model as learned from the examples.

7.2. Shape Interpolation

Given a source surface S and a target surface T , we can ap-
ply our approach to generate a series of surfaces Ml ,0≤ l ≤
L, where M0 =S and ML = T , which smoothly interpolate
between S and T .

We start by performing a non-rigid alignment between S
and T , assuming that the deformation is roughly isometric
such that our method is able to find reliable correspondences.
Next, we generate intermediate points sl

i for all the sample
points si obtained during registration by minimizing

EI =
L−1

∑
l=0

[

∑
k

∑
si∈Ck

‖Rks
l
i +Tk − s

l+1
i ‖2

+γ ∑
si∈Ŝ

‖s
l
i − s

l+1
i ‖2

]

,
(15)

subject to the hard constraints s0
i = si and sL

i = s′i . EI is a
variant of the energy used in [KMP07].

The first term constrains the interpolation to be as rigid as
possible. Note that if the motion between S and T is articu-
lated, then this information will be reflected in the clustering,
and the resulting interpolation will also be articulated. The
second term forces the interpolation path to be as short as
possible. We set γ = 0.001 as suggested in [KMP07].

Fig. 9 illustrates the shape interpolation for the Armadillo
model. Note that a high quality interpolation is obtained even
though the deformation from the source to the target shape
is large.

8. Conclusion

We have presented a novel algorithm for non-rigid registra-
tion of a pair of partially overlapping surfaces. Enforcing
consistency with respect to geodesic distances on the sur-
face greatly improves the quality of feature-based correspon-
dences. Especially when considering large deformation, the
new algorithm is significantly more robust than previous ap-
proaches. It allows for fully automatic alignment even for
hard cases involving partial overlap and noise.

As future work we plan to apply our method to non-rigid
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scan alignment and surface reconstruction involving multi-
ple point clouds [WJH∗07]. Special care will be required to
avoid drift.
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