
 1

Non-self-overlapping Hermite interpolation mapping: a practical solution for 

structured quadrilateral meshing 

 
 

Charlie C. L. Wang             

Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, 

Shatin, N.T., Hong Kong 

E-mail: cwang@acae.cuhk.edu.hk  

Kai Tang* 

Department of Mechanical Engineering, The Hong Kong University of Science and Technology, 

Clear Water Bay, N.T., Hong Kong 

E-mail: mektang@ust.hk  

 

 
Abstract 

This paper addresses the problem of constructing a structured quadrilateral grid inside a given four-sided 

2D region by a particular boundary-conforming mapping scheme – Hermite Interpolation Mapping (HIM). 

When the four given boundary curves are concave and convoluted, all boundary-conform mapping methods 

suffer from potential self-overlapping problem. Under HIM, the geometry of the grid depends on both the four 

boundary curves and the tangent vector functions associated with the curves. While the four boundary curves are 

fixed, the tangent functions in HIM can be varied to suit the need of controlling the characteristics of the mesh 

inside the given region so to prevent self-overlapping. Besides tangent functions, the four twist vectors at the 

corners of the region can also be adjusted to influence the distribution of the inner grid elements. In our 

approach, a constrained functional optimization scheme is adopted to adjust the tangent functions and the twist 

vectors, adaptive to the geometry of the boundary curves, so that the resulting HIM will be free of self-

overlapping.  The optimization is carried out on the shape control energy that measures the overall mesh quality 

of the underlying HIM while the self-overlapping is strongly prevented in the form of constraints to the 

optimization. Experimental results show the promise of the proposed method as a practical and effective 

solution for structured grid generation. 

 

Keywords: structured grid, quadrilateral mesh, parametric space, self-overlap, and Hermite interpolation. 

                                                           
* Corresponding author 

This is the Pre-Published Version 



 2

1. Introduction 

A task frequently encountered in the computer-aided engineering process is finding an aggregate of simple 

planar elements, e.g., triangles and quadrilaterals, which fills a given region R  in the plane bounded by four 

curves. This is referred to as a (2D) meshing operation. The region R  can be either a planar (thin plate) part that 

itself needs to be meshed or the parametric region of a trimmed 3D surface that will be readily meshed once its 

parametric region is meshed. As thousands or even hundreds of thousands of elements are usually required to 

accurately approximate a part surface, such a meshing operation inevitably has to be done by a computer, either 

fully automatically or semi-automatically with minimum human involvement. 

The finite element method and the finite difference method are the two most powerful analysis tools in 

engineering. The finite element method usually works on either triangular grids or quadrilateral grids, and the 

grids can be structured or unstructured. Quadrilateral grids in general are preferred over triangular grids as the 

former ones usually generate smaller analysis errors than the latter. Unstructured 2D quadrilateral grids can be 

applied to the finite element computing packages. However, the finite difference method generally uses 

structured quadrilateral grids (or simply called structured grids) that are associated historically with rectangular 

Cartesian grids, since such a regular lattice structure provides easy identification of neighboring points to be 

used in the representation of derivatives. The purpose of our work in this paper is to construct non-self-

overlapping structured quadrilateral grids in a give four-sided 2D region. 

Automatic 2D mesh generation has been studied for decades [1-3]. Among various approaches, the three 

most popular ones are Delaunay-triangulation method [4-8], the partial differential equation (PDE) method [9-

13], and the boundary-conforming mapping (BCM) method [14-17]. The Delaunay-triangulation approach 

meshes a region R  by incrementally inserting points into the interior of R  while maintaining certain special 

geometric properties on the resulting triangles. Although fully automatic, it can only generate triangular 

elements, which are less favored than quadrilaterals, and is very susceptible to geometric degeneracy and 

numerical instability, in addition to the high complexity of implementing the algorithm. Also, the result mesh 

can hardly be converted into structured grids. The PDE technique generates grids by first distributing points on 

the boundary curve and then solving elliptic PDEs in the field. Elegant formulation notwithstanding, it requires 

delicate numerical solutions and usually runs very slow; moreover, since it requires second-order derivatives, 

singularities appear when the boundary curve is only 1C  continuous or its second-order derivative is difficult to 

compute. The BCM method requires no algorithmic computation like the other two, thus it is fast and immune 



 3

to any numerical instability problem. Basically, a BCM is a continuous mapping from a square to a planar 

region R  enclosed by its four curves. By trivially sampling the square into a rectangular grid and then mapping 

it into R , one obtains a quadrilateral mesh of R. Because of its simplicity, BCM method is widely used in 2D 

meshing. It is not an overstatement that every commercial surface meshing software package has a meshing 

utility module based on some kind of BCM. 

Unfortunately, while being extremely simple and numerically robust, all BCM schemes suffer from a well-

known deficiency: when the four bounding curves are concave and very convoluted, self-overlapping often 

tends to occur in the mesh, i.e., some quadrilateral elements overlap with each other, which makes the mesh 

useless to downstream applications. As an illustration, we made a trimmed surface with four trimming curves 

and fed the corresponding four parametric trimming curves to a leading commercial mesh software package 

using a bilinear Coons patch mapping (which is a popular BCM scheme favored by many mesh software 

packages); the output result is shown in Fig. 1 where the self-overlapping is obvious. 

  
(a) in the parametric region (b) on the 3D surface 

Fig. 1    Self-overlapping mesh from Coons patch mapping 

Abundance of research can also be found in literature relating to mesh smoothing [18-24]. Most of them are 

based on the idea of relocating one node in a mesh to optimize the shapes of adjacent elements, where the 

Laplacian and Winslow smoothing techniques are widely utilized. However, all of these smoothing methods 

require a valid initial grid. For structured quadrilateral meshes, the initial grids are usually generated 

algebraically, e.g., via a BCM method. The smoothing approaches preserve non-self-overlapping condition only 

when the initial grid is valid, i.e., self-overlapping free. 

In this paper, we study this self-overlapping behavior of a particular boundary-conforming mapping scheme 

– the Hermite Interpolation Mapping (HIM) [25-27], and investigate what measures can be taken to prevent the 

potential self-overlapping from occurring in the mesh. Under HIM, the geometry of the mesh depends on both 

the four bounding curves and the tangent vector fields associated with the bounding curves. While the four 



 4

bounding curves are given and hence fixed, the tangent vector fields are user-specified and can vary to suit our 

needs of controlling the characteristics of the mesh. This is the primary motivation behind. Explicitly, we set 

forth to develop a methodology that will find suitable tangent vector fields, adaptive to the input bounding 

curves, so that the resultant HIM will be free of self-overlapping. Rather than trying to seek the exact and 

analytical solution, which is achievable conceivably only for very simple types of bounding curves and tangent 

field vector functions due to high non-linearity of the differential equations involved, we model the solution as a 

functional optimization problem and propose a numerical method for solving it. 

The paper is organized as follows. After giving necessary preliminaries and propositions in section 2, the 

tangent functions of the Hermite Interpolation Mapping are defined in section 3 as four Bézier polynomials. In 

section 4, the non-self-overlapping mesh generation problem is formulated as a constrained functional 

optimization problem, where the objective function is derived for the shape control of grid elements, and the 

non-self-overlapping condition is set as a constraint to the optimization. Section 5 gives the numerical 

implementation method of the constrained optimization, and section 6 considers the influence of sample points. 

Finally, in section 7 we show some experimental results to demonstrate the effectiveness of the proposed non-

self-overlapping HIM approach, and in section 8 we conclude the paper with pointers to some future research. 

),( ηξX

)(0 ξQ

)(1 ξQ

)(0 ηP )(1 ηP

ξ
η

u

v

)(0 ηV

)(0 ξU

)(1 ηV

)(1 ξU

 
Fig. 2    Definition of Hermite Interpolation Mapping 

2. Preliminaries 

Refer to Fig. 2, let )(0 ξQ , )(1 ξQ , )(0 ηP  and )(1 ηP  )1,0( ≤≤ ηξ  be four 1C  continuous curves in the 

vu −  plane that form a simple closed curve, and )(0 ξU , )(1 ξU , )(0 ηV , and )(1 ηV  )1,0( ≤≤ ηξ  be four 1C  

continuous vector functions that meet the following boundary conditions 

)0()0( 00 PU ′= , )0()1( 10 PU ′= , )1()0( 01 PU ′= , )1()1( 11 PU ′= ,                                    (1) 



 5

)0()0( 00 QV ′= , )0()1( 10 QV ′= , )1()0( 01 QV ′= , )1()1( 11 QV ′= . 

We define the following three mappings from parametric ηξ −  domain to the vu −  plane  

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(
)(
)(
)(

)()()()(),(

1

0

1

0

32101

η
η
η
η

ξξξξηξ

V
V
P
P

ffffX ,                                           (2) 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(
)(
)(
)(

)()()()(),(

3

2

1

0

10102

η
η
η
η

ξξξξηξ

f
f
f
f

UUQQX ,                                         (3) 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(
)(
)(
)(

)1()0(
)1()0(

)1()1()1()1(
)0()0()0()0(

)()()()(),(

3

2

1

0

111011

010000

1010

1010

32103

η
η
η
η

ξξξξηξ

f
f
f
f

ttVV
ttVV

UUQQ
UUQQ

ffffX ,               (4) 

where 00t  through 11t  are called twist vectors and can be of arbitrary values, and the )(tf i s are Hermite 

interpolation functions: 32
0 231)( tttf +−= , 32

1 23)( tttf −= , 32
2 2)( ttttf +−= , 32

3 )( tttf +−= . The 

Hermite Interpolation Mapping (HIM) is then defined as: 

),(),(),(),( 321 ηξηξηξηξ XXXX −+=     )1,0( ≤≤ ηξ                                         (5) 

The HIM of Eq. (5) can be verified to satisfy the boundary conditions of derivatives below: 

)()1,(),()0,(),(),1(),(),0( 1010 ξξξξηηηη ηηξξ UXUXVXVX ==== ,                      (6) 

and 

11100100 )1,1(,)0,1(,)1,0(,)0,0( tXtXtXtX ==== ξηξηξηξη .                              (7) 

The mapping of Eq. (5) is easily seen to be boundary conforming, that is, we have the following one-to-one 

mapping between the four sides of the ηξ −  square and the four bounding curves in the u-v plane: 

)(),1(),(),0(),()1,(),()0,( 1010 ηηηηξξξξ PXPXQXQX ==== .                             (8) 

For a region R  in the u-v plane bounded by )(0 ξQ , )(1 ξQ , )(0 ηP  and )(1 ηP , the mapping ),( ηξX  is 

further said to be region conforming if the set }1,0:),({ ≤≤ ηξηξX  is equal to region R . This is one 

necessary condition for meshing R  using ),( ηξX  – a grid element must not go outside the region. However, a 

region-conforming ),( ηξX  does not yet ensure non-self-overlapping on the mesh, the mapping also has to be 

one-to-one, as we stipulate in the proposition below. 



 6

Proposition 1 The meshing of region R  under mapping ),( ηξX  is free of self-overlapping if and only if 

),( ηξX  is one-to-one; that is, ),(),( 1100 ηξηξ XX =  if and only if ),(),( 1100 ηξηξ =  for any ),( 00 ηξ , 

),( 11 ηξ ]1,0[∈ . 

Consider the vector function 
ηξ ∂
∂

×
∂
∂ XX , since R  is a planar region in the vu −  plane, 

ηξ ∂
∂

×
∂
∂ XX  is always 

perpendicular to the vu −  plane. We use the scalar function )(),(
ηξ

ηξ
∂
∂

×
∂
∂

=
XXwJ  to denote the w-component 

of the vector 
ηξ ∂
∂

×
∂
∂ XX , and call it the Jacobian of the mapping ),( ηξX , where w designates the direction 

perpendicular to both u- and v-axis. We can compute it by the equation 

vuvu
XXXXJ ξηηξηξ −=),( ,                                                          (9) 

where
u

X ξ and 
v

X ξ  represent the u- and v-components of ξX , and 
u

Xη  and 
v

Xη  represent the u- and v-

components of ηX . As ),( ηξX  is 1C  continuous, from classical functional analysis and differential geometry 

[28] (see also [29]), its Jacobian directly relates to the one-to-one property of the mapping; the following 

proposition is in order. 

Proposition 2 The mapping ),( ηξX  is one-to-one if and only if its Jacobian ),( ηξJ  is positive in the entire 

parametric domain )1,0( ≤≤ ηξ . 

Therefore, our task now becomes how to control those variables in Eq.(5) so that the resulting Jacobian 

),( ηξJ  is guaranteed to be positive in the entire vu −  square. This calls first to look into the formulation of the 

tangent vector functions )(0 ξU , )(1 ξU , )(0 ηV , and )(1 ηV , as to be discussed next.  

3. Formulation of Boundary Tangent Functions 

Since )(0 ξU , )(1 ξU , )(0 ηV , and )(1 ηV  are four 1C  continuous vector functions, they can be 

approximated as parametric curves. Here, we deal with them as Bézier curves 

∑
=

Β=
m

i
miiaU

0
,0 )()( ξξ , ∑

=

Β=
m

i
miibU

0
,1 )()( ξξ , ∑

=

Β=
n

j
njjcV

0
,0 )()( ηη , ∑

=

Β=
n

j
njjdV

0
,1 )()( ηη ,         (10) 



 7

where )(, ξmiΒ  and )(, ηnjΒ  are the Bernstein basis functions of degree m and n with jkj
kj tt

k
j

t −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Β )1()(, , 

and ia , ib , ic , and id  are vectors that control the shape of the tangent functions – they are called control 

vectors. To satisfy the boundary condition of an HIM for )(0 ξU , )(1 ξU , )(0 ηV , and )(1 ηV  – Eq.(1), by the 

property of Bernstein basis function [27], we have 

)0(00 Pa ′≡ , )0(1Pam ′≡ , )1(00 Pb ′≡ , )1(1Pbm ′≡ ,                                            (11) 

)0(00 Qc ′≡ , )0(1Qcn ′≡ , )1(00 Qd ′≡ , )1(1Qdn ′≡ . 

The rest of the control vectors, i.e., { 11111111 ,,,,,,,,,,, −−−− nnmm ddccbbaa LLLL }, can then be adjusted 

to influence the distribution of the tangent on the boundary of a Hermite Interpolation Mapping. By varying the 

tangent distribution on the boundary of ),( ηξX , one thus can control the distribution of the Jacobian ),( ηξJ  

inside ),( ηξX . For example, as  in Fig. 3, when changing )(0 ξU  from the form of  

)0()0()1()( 100 PPU ′+′−= ξξξ  

to the form of  

)0()1(2)0()1()( 1
2

10
2

0 PaPU ′+−+′−= ξξξξξ , with )500,0(1 =a , 

the number of points with negative Jacobian is decreased tremendously (the points with negative Jacobians are 

shown with small cubes). Therefore, as the control vectors influence the shape of the tangent functions which in 

turn influence the Jacobian on ),( ηξX , they play the central role in our non-self-overlapping HIM construction 

algorithm. 

 

  
(a)  (b) 

Fig. 3    Example I – the influence of the tangent functions on the Jacobian distribution 

(a) )0()0()1()( 100 PPU ′+′−= ξξξ ; (b) )0()1(2)0()1()( 1
2

10
2

0 PaPU ′+−+′−= ξξξξξ  with )500,0(1 =a  



 8

Let },,{ 11 −maa L , },,{ 11 −mbb L ,  },,{ 11 −ncc L , and },,{ 11 −ndd L  be the adjustable control vectors of 

boundary tangent functions )(0 ξU , )(1 ξU , )(0 ηV , and )(1 ηV  respectively. The Jacobian then is a function of 

all these control vectors, plus the four twist vectors 00t , 01t , 10t , and 11t , i.e.,  

),,,,,,,,,,,,,,,( 1110010011111111 ttttddccbbaaJ nnmm −−−− LLLL . 

By carefully “designing” these vectors so that the corresponding Jacobian ),( ηξJ  is non-negative in the entire 

parametric space )1,0( ≤≤ ηξ , the self-overlapping in the mapping ),( ηξX  is effectively eliminated. Thus, 

these vectors are called design vectors. When solving this “design” problem, the differentiation simplicity is an 

important criterion for selecting the base type of the tangent vector functions (i.e., their derivatives and other 

differentiation operations can be performed easily). Since our tangent vector functions are formulated as Bézier 

curves which are polynomials, this criterion is satisfied due to the superb algebraic simplicity of Bezier 

functions. 

Once the base type of the tangent functions and the design vectors are decided, the next task is then to 

assign proper values to these design variables that will enforce the non-negativity of the Jacobian in the square 

)1,0( ≤≤ ηξ . Originally, we contemplated on deriving a general analytical and exact solution. However, owing 

to the complexity of relationship between the design variables and the Jacobian, this attempt was not successful. 

Instead, we propose to model this assignment problem as a functional optimization problem and present a 

numerical solution for determining the optimum, as to be detailed next. 

4. Problem Formulation 

An intuitive way of finding good values for the design variables is to formulate them into the following 

functional minimization problem 

min [ ]∫∫Ω −−−−−= ηξddttttddccbbaaJHE nnmm )),,,,,,,,,,,,,,,(( 1110010011111111 LLLL  

where Ω stands for the ηξ − square and H(t) is the Heaviside function (i.e., H(t) = 1 if t > 0 and H(t) = 0 

otherwise). As E counts exactly the number of points with negative Jacobian in the ηξ −  square, by minimizing 

it we also minimize the degree of self-overlapping, and a zero E indicates a mapping with no self-overlapping.  

One caveat of the above formulation is the outright omission of the points in the ηξ −  square that have 

positive Jacobian. As an immediately consequence, the shape quality of the elements in the final mesh is 

completely ignored. Actually, the element shape quality is an essential issue in a grid generation algorithm; the 



 9

ideal shape of elements in a quadrilateral mesh is rectangular [3]. Similar to other algebraic grid generation 

approaches, the grid is established by uniformly subdividing the square )1,0( ≤≤ ηξ  into NM ×  elements, 

where the parameters of the element node ),( ji  in ),( ηξX  is given by 

⎪
⎩

⎪
⎨

⎧

==

==

),,0(

),,0(

Nj
N
j

Mi
M
i

j

i

L

L

η

ξ
.                                                            (12) 

It is thus plausible to inquire if we can reformulate the problem with the element shape quality also considered.  

Proposition 3 Every element in the mesh under a mapping ),( ηξX  is rectangular if ηξ XX ⊥  (i.e., 

0=⋅ ηξ XX ) at every ( ) [ ] [ ]1010 ,,, ×∈ηξ . 

Combining this requirement for shape control and the original objective of maintaining non-negative 

),( ηξJ in )1,0( ≤≤=Ω ηξ , we now reformulate the problem as a constrained functional minimization 

problem. In this new formulation, the solution space remains the same, i.e., they are the design variables, or 

},,,,,,,,,,,,,,,{ 1110010011111111 ttttddccbbaa nnmm −−−−=Π LLLL ; the minimization objective however is now 

the shape control energy ES, augmented by the constraint of positive Jacobian ),( ηξJ : 10 ≤≤ ηξ , . Explicitly, 

we now have the following problem to solve: 

min ∫∫Ω + ηξηξηξ ddXXXX
vvuu

2)(                                                            (13) 

subject to 0)( >−
vuvu

XXXX ξηηξ : ( ) Ω∈ηξ , . 

In our objective function, in order to simplify the variational computation process, only the orthogonal 

control is conducted. Other factors, such as aspect ratio and element size, can be left to the mesh smoothing 

procedures after obtaining an initial non-self-overlapping grids from our approach. Done this way is more 

convenient than considering all the factors at one time and in one functional. 

5. Numerical Implementation 

This section describes the necessary formulas and procedures for solving the constrained optimization 

problem as defined in Eq. (13). A penalty function based method is adopted to convert this constrained 

optimization problem into an unconstrained optimization problem, where our numerical implementation 

minimizes the objective function by means of the conjugate gradient method.  



 10

We convert the constrained optimization problem of Eq. (13) into its unconstrained counter-part by adding 

the constraint as a penalty term on the objective function [30]. The objective function to be optimized now 

becomes 

( )[ ] ( )[ ]{ }∑∑
∈∈

−++=Π
Ik

k
Ik

kO vuvuvvuu
XXXXXXXXJ

22
0,max)( ηξξηηξηξ λ                        (14) 

where I symbolizes the set of sample points on the patch X and λ  is the coefficient to balance the weight 

between the penalty term and the shape control energy term. The static choice of λ  is not easy; for a smallerλ , 

which deemphasizes the non-self-overlapping part, the computing process converges to a non-self-overlapping 

HIM very slowly; for a larger λ , on the other hand, the control on the shapes of the final grid elements would 

be weak. In our implementation, we incrementally increase λ  during the optimization. Theoretically, we arrive 

at an optimum *Π  in the limit as λ  tends to infinity. The optimized OJ  with respect to Π  is determined by a 

conjugate gradient method which includes the iterative process of computing gradients at the current point and 

searching an optimum point along the conjugate direction [30]. The values of all design vectors in Π  are 

adjusted during the optimization along the conjugate direction, after each iteration. In this approach, the 

gradients are computed analytically, so most computing time during the optimization is spent on the optimum 

point search along the conjugate direction. The unnecessary details of the conjugate gradient method and its 

related gradient formulas are omitted here.  

The initial values for the design vectors at the start of the optimization, i.e., 0Π , are set by us as: 

t00 = t01 = t10 = t11 = 0 

)1,,1(,)1(,)1( 00 −=+−=+−= mib
m
ib

m
iba

m
ia

m
ia mimi L                              (15) 

      )1,,1(,)1(,)1( 00 −=+−=+−= njd
n
jd

n
jdc

n
jc

n
jc njni L . 

These initial conditions set up a “natural” state where every tangent function is a linear interpolation of its two 

end vectors as determined by the derivative boundary condition (Eq. (11)) and the four corners of the mesh are 

essentially flat due to the zero-value twist vectors. Any single closed 2D region can be elastically deformed 

from a rectangle without overlap. When the region R is a rectangle, the above initial condition (Eq.(15)) gives a 

non-self-overlapping mapping with rectangular elements. When an arbitrary region R is given, choosing the 

above initial condition is based on simulating the elastic deformation by the re-location of four corners. 

Therefore, at the corners, non-self-overlapping and element shape are preserved by the above initial condition. 

Before testing the experimental examples, we introduce the following global grids quality measurement 

factor: 



 11

∑∑
= =

⋅
++

=
M

i

N

j ji

ji

ji

ji
S

X

X

X

X
NM

E
0 0 ),(

),(

),(

),(
)1)(1(

1
ηξ

ηξ

ηξ

ηξ

η

η

ξ

ξ .                                        (16) 

Obviously, when 0=SE , it indicates ηξ XX ⊥  at every ),( ii ηξ  – so very element is rectangular. The smaller 

SE , the better mesh quality. 

 

 
(a) the grid generated with the initial HIM, with self-overlapping (M=20, N=20 with 6383.0=SE ) 

 
                            (b) M = N = 20 (after optimization with 400 sample points) - 6147.0=SE  

 
(c) M = 40, N = 20 (by the HIM obtained from the optimization with 400 sample points) - 6177.0=SE  

Fig. 4    Example II – independence between the sample points and the grid 

 



 12

6. Sampling Points 

How to sample the points in domain Ω is critical to expediting the convergence of the functional 

optimization as given in Eq. (13). In our numerical implementation, the sample points set I is generated 

randomly – the sample points are not required to coincide with the grid nodes. This is an important feature due 

to the fact that our optimization objective is not limited to the individual grid nodes, but rather pertains to the 

HIM that governs the final grid generation. In all our examples, the population size of sample points is set to be 

400. Of course, more sample points give more accurate result, but at the same time, slow down the computation 

of optimization. Therefore, we need to seek a balance between the speed and the accuracy. After our testing, we 

found that 400 sample points work well for the grids with size NM ×  less than 1000. It is because that one 

sample point can have effect on four grid nodes when it is not coincident to a grid node; after considering the 

probability of being coincident with grid node and two sample points fall in the same grid, the possible grid size 

could maximally be 2.5 times the number of sample points. This decoupling between the grid nodes and the 

sample points is very helpful, from the performance point of view at least, since the size of the grid elements is 

usually required to be very small by downstream applications, which otherwise would result in a large number 

of sample points if the two are coincided and consequently consumes longer computing time. In Fig. 4, we show 

example II that demonstrates our point. 

To further accelerate the convergence, we did not use the normal random sampling for region 

Ω )1,0( ≤≤ ηξ ; instead, a Gaussian random sampling distribution is used. This new sampling strategy favors 

places where severe self-overlapping occurs but at the same time still maintains the randomness nature. First, a 

uniform distribution of sample points is generated randomly, and the mean point cq  of the sample points with a 

negative Jacobian is computed. Then, we re-generate the sample points around cq  by following a Gaussian 

distribution. A Gaussian distribution can be converted from a planar distribution by the polar form of the Box-

Muller transformation [31, 32]. Our algorithm of generating sample points around cq  with a Gaussian 

distribution is as shown in Table 1. Why would Gaussian random sampling distribution expedite the 

convergence rate? This distribution gives more weights at the regions where self-overlap occur during the 

constrained optimization; correspondingly, greater gradients at those regions are achieved during the 

optimization – leading to faster convergence. 

 



 13

Table 1    Algorithm GaussianSamplePointsGeneration( n, cq ) 

Algorithm GaussianSamplePointsGeneration( n, cq  ) 
Input: the number of sample points n, and the location of the Gaussian distribution’s center cq  
Output: the sample point list sL  
1. φ←sL  and 0←i ; 
2. Generate sample points on the boundaries uniformly; 
3. Do { 
4. Do { 
5. Do { 
6. 1()2 −← ranfpξ ; 
7. 1()2 −← ranfpη ; 

8. pw ← ; 
9. } while( 0.1>=w ); 
10. www )ln2(−← ; 
11. cqwpp +← ; 
12. } while( ]1,0[]1,0[ ×∉p ); 
13. Add p  into sL ; 
14. 1+← ii ; 
15. } while( ni < ); 

 

 
  

(a) grid with the init HIM (b) uniform distributed sample 
points 

(c) Gaussian distributed sample 
points 

 

  
 (d) the grid with the HIM after 

one iteration step with uniform 
distributed sample points 

(e) the grid with the HIM after 
one iteration step with Gaussian 

distributed sample points 

Fig. 5    Uniform-random vs. Gaussian-random distribution of sampling points 



 14

To illustrate our point, an example is given in Fig. 5. Fig. 5(a) is the mesh generated by the initial HIM. The 

sample points with uniform random distribution are displayed in Fig. 5(b), and the sample points with Gaussian 

distribution centered at the mean point of the self-overlapping region are shown in Fig. 5(c). With one iteration 

step, the HIM optimized meshes based respectively on the uniform random and Gaussian distributions give out 

the grids as shown in Fig. 5(d) and 5(e) respectively. Obviously as seen from the figure, the latter mesh (Fig. 

5(e)) has eliminated more self-overlapping than the former one (Fig. 5(d)).  

  
(a) before optimization ( 6481.0=SE ) 

  
(b) after optimization ( 6525.0=SE ) 

     
(c) the mesh after Winslow smoothing 

Fig. 6    Example III – a trimmed parametric surface 

 



 15

7. Experimental Results and Discussion 

Fig. 6 shows the third example, example III, of the experimental results, the structured grid of a trimmed 

surface. The initial meshes in the parametric space and on the surface (based on the initial setting of Eq. (21)) 

are displayed in Fig. 6(a), where 6481.0=SE . After the constrained optimization, the resulting meshes, as 

shown in Fig. 6(b), are free of self-overlapping, where 6525.0=SE . In our five testing examples, this is the 

only example with quality factor increased after optimization. The major reason for the increase of SE  is that 

the optimization is constrained by the non-self-overlapping condition, so in order to fully satisfy this constraint 

the computation sometime needs to release the requirement of element quality. Fig. 6(c) exhibits the resultant 

mesh after applying the Winslow smoothing [21] to the grids of the optimized HIM; if applying such a 

smoothing algorithm directly to the initial mesh (Fig. 6(a)), the overlap will still be there after smoothing. This 

is because the basic idea of mesh smoothing algorithms is to relocate a node based on the positions of its 

adjacent nodes. Thus, if some of the adjacent nodes are flipped, the smoothing algorithm can hardly flip them 

back. 

For a more poignant comparison for example III, Fig. 7(a) and 7(b) draw the four tangent functions (which 

are Bézier curves in the u-v plane) before and after the optimization, respectively.  The final four twist vectors 

after the optimization are t00 = (-13.1, -9.4), t01 = (-65.4, 98.4), t10 = (44.5, -50.8), and t11 = (-2.7, 6.8).  

-200 -100 100 200 300
u

-100

100

200

300

400

500

v

-500 -400 -300 -200 -100 100
u

520

530

540

550

v

 
100 200 300 400 500

u

-450

-400

-350

-300

-250

v

500 600 700 800
u

-600

-400

-200

200
v

0U  1U  0V  1V  
(a) tangent functions before optimization 

-200 -100 100 200 300
u

-100

100

200

300

400

500

v

 
-500 -400 -300 -200 -100 100

u

440

460

480

500

520

540

560
v

100 200 300 400
u

-255

-250

-245

-240

v

500 600 700 800
u

-600

-400

-200

200
v

0U  1U  0V  1V  
(b) tangent functions after optimization 

Fig. 7    Example III – comparison of tangent functions 

Fig. 8 depicts the tangent functions of the optimization result of the first example, Example I, which has 

been previously visited in Fig. 3. The final four twist vectors are t00 = (-54.5, -85.1), t01 = (60.9, -82.6), t10 = (7.1, 

41.7), and t11 = (-6.5, 42.7). This example demonstrates that our algorithm has reasonably small condition 

number, e.g., the mesh will reserve the symmetry of the region, as manifested by the symmetry among the 



 16

finally optimized tangent functions. The global grids quality measurement factor SE  decreases from 0.3328 to 

0.3166 by the optimization. 

200 400 600 800 1000
u

100

200

300

400

v

 -1000 -800 -600 -400 -200
u

100

200

300

400

v

 

5 10 15 20
u

-400

-200

200

400

v

 

450 450 450 450
u

-1

-0.5

0.5

1

v

 
0U  1U  0V  1V  

(a) tangent functions before optimization ( 3328.0=SE ) 

200 400 600 800 1000
u

100

200

300

400

v

 
-1000 -800 -600 -400 -200

u

100

200

300

400

v

 

20 40 60 80 100 120 140
u

-300

-200

-100

100

200

300

v

 

437.5 440 442.5 445 447.5 450
u

-30

-20

-10

10

20

30

v

 
0U  1U  0V  1V  

(b) tangent functions after optimization ( 3166.0=SE ) 

Fig. 8    Example I – comparison of tangent functions 

 
(a) initial mesh ( 7313.0=SE ) 

 
(b) optimization result with degree-two tangent functions after 100 iterations ( 6415.0=SE ) 

 
(c) optimization result with degree-three tangent functions after 50 iterations ( 6005.0=SE ) 

Fig. 9    Example IV – choose the proper degree of tangent vector functions 



 17

When applying the functional optimization to determine the optimized HIM, the degrees of the tangent 

vector functions – m and n as given in Eq. (10) – ought to be chosen carefully. We have observed in our 

experiments that, if the degree of a tangent function is lower than the degrees of the given four boundary curves, 

the functional optimization might not converge. As an illustration, the four boundary curves in the example 

shown in Fig. 9 are of degree-3. When setting m = n = 2 for the four tangent vector functions, the self-

overlapping still remains even after 100 iterations (Fig. 9(b)). By increasing the degree of the tangent functions 

just by one from 2 to 3, we successfully obtain a non-self-overlapping HIM after just 50 iterations (Fig. 9(c)). 

On the other hand, however, higher order polynomials tend to make the final shape of the tangent functions 

oscillate violently which would adversarially affect the overall quality of the mesh, in addition to the extra 

computational cost (time and memory requirement). Thus, we usually set the degree of tangent functions to be 

the same as that of the boundary curves or just one degree higher. 

 

⇒  

 
(a) irremovable self-overlapping due to negative Jacobian at a corner point ( 4786.0=SE ) 

 

 

⇒  

 
(b) optimization with all positive Jacobian corner points ( 3673.0=SE ) 

Fig. 10    Example V – the influence of the Jacobian at the corner points 



 18

Another issue worth mentioning is the corner condition of the given boundary curves. The Jacobians at the 

corner points of the four given boundary curves are completely determined by these curves (see Eqs. (1) through 

(8)) and are independent of the mapping ),( ηξX . Therefore, a negative Jacobian corner point will always 

remain negative regardless of the optimization. Because Hermite mapping ),( ηξX  is 1C  continuous, for a 

corner, say (0, 0), with negative Jacobian, there must exist a neighborhood (0, ε)×(0, ε) for some ε>0 in which 

the Jacobian is negative. Thus, any mesh will incur self-overlapping regardless of the optimization (see Fig. 

10(a)). As a comparison, Fig. 10(b) shows a region similar to that in Fig. 10a, but without the negative Jacobian 

corner point; its non-self-overlapping mesh is easily constructed after just 50 iterations. 

The last example is the application of the proposed optimization algorithm in CAD. Very often when a 

conceptual part is initially designed, the designer first sketches a skeleton of space curves over which a “skin” 

surface is then delineated to define the shape of the part. Coons patch or Hermite interpolation patch are the two 

most popular types of “skin” surfaces for filling the “holes” in the skeleton. Fig. 11(b) gives the skeleton of a 

cell-phone cover shown in Fig. 11(a), and Fig. 11(c) displays the corresponding “skin” surface made of HIM 

using linear tangent functions and zero twists. The undesired swerving at the bottom of the U-shape boundary is 

clearly seen, which is due to the strong non-convexity* of the boundary curves. As a remedy, we first project the 

four skeleton edges of the cover onto the keyboard plane of the cell-phone; the proposed HIM optimization 

algorithm is then applied to the four projected curves in this plane, generating four tangent functions U0, U1, V0, 

and V1, as well as the four twist values t00, t01, t10, and t11. These are then used to define a Hermite interpolation 

directly on the four original (3D) edges. Fig. 11(d) depicts the final part thus obtained, where the improvement 

in the quality of the surface – in terms of both visual appealing and surface curvature smoothness – is evidently 

manifested (note the circled place in Fig. 11(c) and Fig. 11(d)).    

Finally, Table 2 lists the computing statistics of the examples – Example I through VI. All the tests are 

performed on a PIII 900 PC with the program written in Java. Usually, several minutes are needed including the 

displaying time. In the current prototypical implementation, we use rather primitive numerical methods to 

compute the functional optimization. It is believed that with more efficient functional optimization algorithms, 

the running time can be significantly shortened. 

 

                                                           
* Strictly speaking, the term “convexity” applies only to oriented 2D curves. Here it is used loosely for a 3D 
curve that is near planar. 



 19

Table 2    Running time cost of the examples 

Example Result figures Degree of tangent functions Running time 
I Fig. 8 3 5.3 min. 
II Fig. 4 3 2.3 min. 
III Fig. 6 and 7 3 2.9 min. 

Fig. 9(b) 2 3.1 min. IV Fig. 9(c) 3 1.8 min. 
Fig. 10(a) 3 5.5 min. V Fig. 10(b) 3 4.6 min. 

VI Fig. 11(d) 3 3.1 min. 

* The sample size for the numerical integration is 400. 

 

 

 
(a) the cell-phone to be modeled (b) skeleton of the cover 

                          
(c) the skinned surface by linear HIM patch (d) the skinned surface by our optimized HIM 

  
(e) the projected HIM before optimization (f) the projected HIM after optimization 

Fig. 11    Example VI – an application in CAD 



 20

8. Conclusion 

This paper proposes using Hermite interpolation mapping (HIM) for generating structured quadrilateral grid 

in a given 2D region defined by four boundary curves. As self-overlapping in the grid may occur under an HIM 

when the boundary curves are concave and convoluted, we present a numerical solution for adaptively 

“designing” the tangent functions in the HIM which will guarantee to be free of self-overlapping. In details, the 

four tangent fields on the four boundary curves are formulated as Bézier curves. The control vectors of these 

four curves are designed so that the resulting mesh will be free of self-overlapping. Other design vectors that are 

utilized to control the mesh quality are the twist vectors of the HIM. The “assignment” of these design vectors is 

then modeled as a constrained functional optimization problem, where the optimization is carried out on the 

shape control energy that measures the overall mesh quality of the underlying HIM while the self-overlapping is 

strongly prevented in the form of constraints to the optimization. To solve this constrained functional 

optimization problem, a penalty function based scheme is utilized that converts the constrained optimization into 

an unconstrained one which is then solved with a conjugate-gradient method. During the numerical 

computation, in order to archive a faster convergence, the polar form of the Box-Muller transformation is 

adopted to transform the uniform distributed sample points into a Gaussian distribution with center located at 

the mean point of the self-overlapped region. Testing examples show that our approach can generate non-self-

overlapping quadrilateral grids with good element shape in a 4-sided region, where the boundaries are very 

concave and convoluted.  

The ability to generate a grid system in a 4-sided region bounded by parametric boundary curves of any 

form with only 1C  continuity is a significant advantage of our HIM approach. It averts the singularity of elliptic 

PDE methods when only a 1C  continuous boundary is available; also, the four generic parametric 1C  boundary 

curves are not required to be converted into a specified representation form which might generate conversion 

errors.  

The main drawback of our HIM method, at least of the current implementation, is the computation time. 

The time cost of examples given in this paper is shown in Table 2. The same as other iteration-based methods, 

the computing usually takes several minutes. However, since rather primitive numerical methods are adopted in 

our current implementation for the functional optimization, the speed is respected to be improved when using 

more efficient optimization algorithms. Moreover, the following two topics or improvements are worth future 

research: 



 21

• In our current element shape control, the shapes of elements are controlled in the vu −  plane; when the 

shape of grid elements are to be controlled on the given parametric surface M  (i.e., in the spatial 

domain but not the parametric domain), the shape control energy term needs to be redefined – this time, 

we should try to make 0→⋅ ηξ MM  allover the patch.  

• Also, it will be interesting to see if the ideas of this paper can be extended into three-dimensional space 

to solve the algebraic grid generation problem in a given closed space using a Hermite solid. Then, the 

governing equation may come from the similar idea in this paper by detecting certain intrinsic 

properties of the Hermite solid. 

9. Reference 

[1] George PL. Automatic mesh generation: application to finite element methods. J. Wiley; Paris: Masson, 

1991. 

[2] Knupp P., Steinberg S. Fundamentals of grid generation. CRC Press: Boca Raton, 1994. 

[3] Thompson JF, Soni BK, Weatherill NP. Handbook of Grid Generation. CRC Press: Florida, 1999.  

[4] Chew LP. “Constrained Delaunay triangulations”. Algorithmica, vol.4, no.1, 1989, pp.97-108. 

[5] de Floriani L, Puppo E. “An online algorithm for constrained delaunay triangulation”, CVGIP-Graphical 

Models & Image Processing, vol.54, no.4, July 1992, pp.290-300. 

[6] Fang TP, Piegl LA. “Algorithm for constrained Delaunay triangulation”, Visual Computer, vol.10, no.5, 

1994, pp.255-65. 

[7] Anglada MV. “An improved incremental algorithm for constructing restricted Delaunay triangulations”, 

Computers & Graphics, vol.21, no.2, 1997, pp.215-23. 

[8] Chin F, Wang CA. “Finding the constrained Delaunay triangulation and constrained Voronoi diagram of 

a simple polygon in linear time”, SIAM Journal on Computing, vol.28, no.2, 1998, pp.471-86. 

[9] Thompson JF. “A survey of dynamically-adaptive grids in the numerical solution of partial differential 

equations”, Applied Numerical Mathematics, vol.1, 1985, pp.3-27. 

[10] Soni BK. “Elliptic grid generation system: control functions revisited. I”. Applied Mathematics & 

Computation, vol.59, 1993, pp.151-163. 

[11] Khamayseh A, Hamann B. “Elliptic grid generation using NURBS surfaces”, Computer Aided Geometric 

Design, vol.13, 1996, pp.369-386. 



 22

[12] Knupp PM. “Jacobian-weighted elliptic grid generation”, SIAM Journal on Scientific Computing, vol.17, 

1996, pp.1475-1490. 

[13] Kim S. “Control functions and grid qualities measurements in the elliptic grid generation around arbitrary 

surfaces”, International Journal for Numerical Methods in Fluids, vol.33, 2000, pp.81-88. 

[14] Smith RE, Eriksson LE. “Algebraic grid generation”, Computer Methods in Applied Mechanics & 

Engineering, vol.64, 1987, pp.285-300. 

[15] Shih TIP, Bailey RT, Nguyen HL, Roelke RJ. “Algebraic grid generation for complex geometries”, 

International Journal for Numerical Methods in Fluids, vol.13, 1991, pp.1-31. 

[16] Brakhage KH, Muller S. “Algebraic-hyperbolic grid generation with precise control of intersection of 

angles,” International Journal for Numerical Methods in Fluids, vol.33, 2000, pp.89-123. 

[17] Yang DCH, Chuang J-J, OuLee TH. “Boundary-conformed toolpath generation for trimmed free-form 

surfaces”, Computer-Aided Design, vol.35, no.2, 2003, pp.127-39. 

[18] Aiffa M., Flaherty JE. “A geometrical approach to mesh smoothing”, Computer Methods in Applied 

Mechanics & Engineering, vol.192, no.39-40, pp.4497-4514, 2003. 

[19] Hermansson J., Hansbo P. “A variable diffusion method for mesh smoothing”, Communications in 

Numerical Methods in Engineering, vol.19, no.11, pp.897-908, 2003. 

[20] Lee YK, Lee CK. “A new indirect anisotropic quadrilateral mesh generation scheme with enhanced local 

mesh smoothing procedures”, International Journal for Numerical Methods in Engineering, vol.58, no.2, 

2003, pp.277-300. 

[21] Knupp PM. “Winslow smoothing on two-dimensional unstructured meshes”, Engineering with 

Computers, vol.15, no.3, pp.263-268, 1999. 

[22] Amenta N, Bern M, Eppstein D. “Optimal point placement for mesh smoothing”, Proceedings of the 

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM. 1997, pp.528-37.  

[23] Charakhch'yam AA,  Ivanenko SA. “A variational form of the Winslow grid generator”, Journal of 

Computational Physics, vol.136, no.2, pp.385-398, 1997. 

[24] Parthasarathy VN,  Kodiyalam S. “A constrained optimization approach to finite element mesh 

smoothing”, Finite Elements in Analysis & Design, vol.9, no.4, Sept. 1991, pp.309-20. 

[25] Foley TA. “Scattered data interpolation and approximation with error bounds”, Computer Aided 

Geometric Design, vol.3, no.3, 1986, pp.163-77. 



 23

[26] Foley TA. “Weighted bicubic spline interpolation to rapidly varying data”, ACM Transactions on 

Graphics, vol.6, no.1, Jan. 1987, pp.1-18. 

[27] Mortenson ME. Geometric Modeling (2nd Edition). Wiley: New York, 1997.  

[28] do Carmo MP. Differential Geometry of Curves and Surfaces. Englewood Cliffs, N.J.: Prentice-Hall, 

1976. 

[29] Fomenko AT, Kunii TL. Topological modeling for visualization. Springer: Hong Kong, 1997. 

[30] Belegundu AD, and Chandrupatla TR. Optimization Concepts and Applications in Engineering, Upper 

Saddle River, N.J.: Prentice Hall, 1999. 

[31] Box GEP, and Muller ME. “A note on the generation of random normal deviates”, Annals Math. Stat,  

vol.29, 1958, pp.610-611. 

[32] Carter E. “Generating Gaussian random numbers”, (http://www.taygeta.com/random/gaussian.html). 


