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Non-Selfadjoint Perturbations of
Selfadjoint Operators in 2 Dimensions I

Michael Hitrik and Johannes Sjöstrand

Abstract. This is the first in a series of works devoted to small non-selfadjoint
perturbations of selfadjoint h-pseudodifferential operators in dimension 2. In the
present work we treat the case when the classical flow of the unperturbed part is
periodic and the strength ε of the perturbation is � h (or sometimes only � h2) and
bounded from above by hδ for some δ > 0. We get a complete asymptotic description
of all eigenvalues in certain rectangles [−1/C, 1/C] + iε[F0 − 1/C, F0 + 1/C].

1 Introduction

In [20], A. Melin and the second author observed that for a wide and stable class
of non-selfadjoint operators in dimension 2 and in the semi-classical limit (h→ 0),
it is possible to describe all eigenvalues individually in an h-independent domain
in C, by means of a Bohr-Sommerfeld quantization condition. This result is quite
remarkable since the corresponding conclusion in the selfadjoint case seems to
be possible only in dimension 1 or under strong (and unstable) assumptions of
complete integrability. The underlying reason for this result is the absence of small
denominators which allows us to avoid the usual trouble with exceptional sets in
the KAM theorem.

As a next step, the second author noticed ([22]) that for non-selfadjoint op-
erators of the form P (x, hDx) + iεQ(x, hDx) it is possible to find a similar result,
when P is selfadjoint, ε > 0 small and fixed and the classical bicharacteristic
flow is periodic on each real energy surface. (Again, it is important that we are in
dimension 2.) The method is similar to the one in [20] and uses non-linear Cauchy-
Riemann equations, now in an “ε-degenerate” form. (See also [24] for a different
extension.)

It soon became quite clear that we run into a fairly vast program, and that
logically one should start with even smaller perturbations, say ε = O(hδ), for
some δ > 0. The present work is planned to be the first in a series, devoted
to small perturbations of selfadjoint operators in dimension 2. In addition to the
challenge of doing plenty of things in dimension 2, that can usually only be done in
dimension 1, we have been motivated by recent progress around the damped wave
equation ([19], [2], [25], [14]), as well as the problem of barrier top resonances for
the semi-classical Schrödinger operator ([17]) where more complete results than the
corresponding ones for eigenvalues of potential wells ([26], [3], [21]) seem possible.
One long term goal of this series is to get improved results on the distribution of
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resonances for strictly convex obstacles in R3. See [30] (and references given there)
for a first result on Weyl asymptotics for the real parts inside certain bands. In the
case of analytic obstacles, much more can probably be said, especially in dimension
3 (and 2).

Let M denote R2 or a compact real-analytic manifold of dimension 2.
When M = R2, let

Pε = P (x, hDx, ε;h) (1.1)

be the Weyl quantization on R2 of a symbol P (x, ξ, ε;h) depending smoothly on
ε ∈ neigh (0,R) with values in the space of holomorphic functions of (x, ξ) in a
tubular neighborhood of R4 in C4, with

|P (x, ξ, ε;h)| ≤ Cm(Re (x, ξ)) (1.2)

there. Here m is assumed to be an order function on R4, in the sense that m > 0
and

m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R4. (1.3)

We also assume that
m ≥ 1. (1.4)

We further assume that

P (x, ξ, ε;h) ∼
∞∑

j=0

pj,ε(x, ξ)hj , h→ 0, (1.5)

in the space of such functions. We make the ellipticity assumption

|p0,ε(x, ξ)| ≥
1
C
m(Re (x, ξ)), |(x, ξ)| ≥ C, (1.6)

for some C > 0.
When M is a compact manifold, we let

Pε =
∑

|α|≤m
aα,ε(x;h)(hDx)α, (1.7)

be a differential operator on M , such that for every choice of local coordinates,
centered at some point of M , aα,ε(x;h) is a smooth function of ε with values in
the space of bounded holomorphic functions in a complex neighborhood of x = 0.
We further assume that

aα,ε(x;h) ∼
∞∑

j=0

aα,ε,j(x)hj , h→ 0, (1.8)

in the space of such functions. The semi-classical principal symbol in this case is
given by

p0,ε(x, ξ) =
∑

aα,ε,0(x)ξα, (1.9)
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and we make the ellipticity assumption

|p0,ε(x, ξ)| ≥
1
C
〈ξ〉m, (x, ξ) ∈ T ∗M, |ξ| ≥ C, (1.10)

for some large C > 0. (Here we assume that M has been equipped with some
Riemannian metric, so that |ξ| and 〈ξ〉 = (1 + |ξ|2)1/2 are well defined.)

Sometimes, we write pε for p0,ε and simply p for p0,0. Assume

Pε=0 is formally selfadjoint. (1.11)

In the case when M is compact, we let the underlying Hilbert space be
L2(M,µ(dx)) for some positive real-analytic density µ(dx) on M .

Under these assumptions, Pε will have discrete spectrum in some fixed neigh-
borhood of 0 ∈ C, when h > 0, ε ≥ 0 are sufficiently small, and the spectrum in
this region will be contained in a band |Im z| ≤ O(ε). The purpose of this work and
later ones in this series, is to give detailed asymptotic results about the distribution
of individual eigenvalues inside such a band.

Assume for simplicity that (with p = pε=0)

p−1(0) ∩ T ∗M is connected. (1.12)

Let Hp = p′ξ · ∂
∂x − p′x · ∂

∂ξ be the Hamilton field of p. In this work, we will always
assume that for E ∈ neigh (0,R):

The Hp-flow is periodic on p−1(E) ∩ T ∗M with
period T (E) > 0 depending analytically on E.

(1.13)

Let q = 1
i (

∂
∂ε)ε=0

pε, so that

pε = p+ iεq + O(ε2m), (1.14)

in the case M = R2 and pε = p+ iεq + O(ε2〈ξ〉m) in the manifold case. Let

〈q〉 =
1

T (E)

∫ T (E)/2

−T (E)/2

q ◦ exp tHpdt on p−1(E) ∩ T ∗M. (1.15)

Notice that p, 〈q〉 are in involution; 0 = Hp〈q〉 =: {p, 〈q〉}. In Section 3, we shall
see how to reduce ourselves to the case when

pε = p+ iε〈q〉 + O(ε2), (1.16)

near p−1(0)∩T ∗M . An easy consequence of this is that the spectrum of Pε in {z ∈
C; |Re z| < δ} is confined to ]−δ, δ[+iε]〈Re q〉min,0−o(1), 〈Re q〉max,0 +o(1)[, when
δ, ε, h → 0, where 〈Re q〉min,0 = minp−1(0)∩T∗M 〈Re q〉 and similarly for 〈q〉max,0.
We will mainly think about the case when 〈q〉 is real-valued but we will work
under the more general assumption that

Im 〈q〉 is an analytic function of p and Re 〈q〉, (1.17)

in the region of T ∗M , where |p| ≤ 1/|O(1)|.
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Let F0 ∈ [〈Re q〉min,0, 〈Re q〉max,0]. The purpose of the present work is to
determine all eigenvalues in a rectangle

] − 1
|O(1)| ,

1
|O(1)| [ + iε ]F0 −

1
|O(1)| , F0 +

1
|O(1)| [ , (1.18)

for
h
 ε ≤ O(hδ), (1.19)

where δ > 0 is any fixed number. (When the subprincipal symbol of P is zero, we
can treat even smaller values of ε: h2 
 ε ≤ O(hδ).) We will achieve this under
the general assumption that

T (0) is the minimal period of every Hp-trajectory in Λ0,F0 , (1.20)

where
Λ0,F0 := {ρ ∈ T ∗M ; p(ρ) = 0, Re 〈q〉(ρ) = F0}, (1.21)

in the following three cases:
I) The first case is when

dp, dRe 〈q〉 are linearly independent at every point of Λ0,F0 . (1.22)

This implies that every connected component of Λ0,F0 is a two-dimensional La-
grangian torus. For simplicity, we shall assume that there is only one such compo-
nent. Notice that in view of (1.20), the space of closed orbits in p−1(0) ∩ T ∗M ;

Σ := (p−1(0) ∩ T ∗M)/ ∼,

where ρ ∼ µ if ρ = exp tHpµ for some t ∈ R, becomes a 2-dimensional symplectic
manifold near the image of Λ0,F0 , and (1.22) simply means that Re 〈q〉, viewed
as a function on Σ, has non-vanishing differential along the image of Λ0,F0 . The
image of Λ0,F0 is just a closed curve. The main results in this case are Theorems
6.2, 6.4 and they show that the eigenvalues form a distorted lattice.
II) The second case is when F0 ∈ {〈Re q〉min,0, 〈Re q〉max,0}. In this case, we again
view 〈Re q〉 as a smooth function on Σ near the image of Λ0,F0 and assume that

The Hessian of 〈Re q〉 is non-degenerate (positive
or negative) at every point ρ ∈ Σ, with 〈Re q〉(ρ) = F0.

(1.23)

The main results in this case are given by Theorems 6.6, 6.7 which tell us that the
eigenvalues form a distorted half-lattice.
III) The third natural case would be when F0 is a critical value of Re 〈q〉 corre-
sponding to a saddle point. We hope to study this case in the near future.

The analyticity assumptions are introduced, because the optimal spaces are
deformations of the usual L2-space obtained by adding exponential weights with
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exponents that are O(ε), and there are closely related Fourier integral operators
with complex phase some of which have associated complex canonical transforma-
tions that are ε-perturbations of the identity. When ε ∼ hδ, 0 < δ < 1, appropriate
Gevrey type assumptions would probably suffice, but in the case ε ∼ h we seem to
need analyticity assumptions at one point, even though standard C∞-microlocal
analysis would suffice for most of the steps. At the opposite extreme, ε small but
independent of h, the analyticity assumptions seem necessary, and in order to avoid
technicalities, we have chosen to assume analyticity independently of the size of ε.

In the selfadjoint case there have been many works about operators whose
associated classical flow is periodic ([31], [8], [5], [11], [9], [16]), and we follow one
of the main ideas in those works, namely to use some sort of averaging procedure
in order to reduce the dimension by one unit, so that in our case, we come down
to a one-dimensional problem. The implementation of this is more complicated in
our case because of the need to work in modified exponentially weighted spaces
(after suitable FBI-transforms). It should also be pointed out that in the case
when ε is small but independent of h ([22]), this does not seem to work and the
problem remains two-dimensional. The same seems to be the case (for the whole
scale of ε) in other situations, when the Hp-flow is completely integrable without
being periodic, or more generally when the energy surface p−1(0)∩ T ∗M contains
certain invariant Lagrangian tori. We intend to treat such situations later in this
series.

The plan of the paper is the following:
In Section 2, we reexamine the Egorov theorem in a form suitable for us, and
complete some observations of [13] about the two term version of this result.
In Section 3 we perform dimension reduction by averaging.
In Section 4 we make a complete reduction in the torus case (I) and determine the
corresponding quasi-eigenvalues.
In Section 5 we do the analogous work in the extreme case (II).
In Section 6 we justify the earlier computations by treating an auxiliary global
(Grushin) problem, and we obtain the two main results.
In Section 7, we give a first application to barrier top resonances.
In the appendix, we review some standard facts about FBI-transforms on mani-
folds.

The next work(s) in this series (in addition to [22]) will remain in the case
when the classical flow of the unperturbed part is periodic. We intend to study
the saddle point case (III), and the case when 〈q〉 vanishes.
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2 Quantization of canonical transformations between non-simply
connected domains in phase space

We first give an affirmative answer to a question asked in Appendix A of [13].
Let κ : neigh ((y0, η0), T ∗Rn) → neigh ((x0, ξ0), T ∗Rn) be an analytic canonical
transformation and consider a corresponding Fourier integral operator

Uu(x) = h−
n+N

2

∫∫
eiφ(x,y,θ)/ha(x, y, θ;h)u(y)dydθ, (2.1)

with a = a0 + O(h), a classical symbol in S0,0 (see the appendix), and φ non-
degenerate phase function in the sense of Hörmander [15] (without the homogeneity
requirement in θ) which generates the graph of κ. (Since we work microlocally, φ, a
are assumed to be defined near a fixed point (x0, y0, θ0) with φ′θ(x0, y0, θ0) = 0,
(x0, ξ0) = (x0, φ

′
x(x0, y0, θ0)), (y0, η0) = (y0,−φ′y(x0, y0, θ0)).) We require U to be

unitary:
U∗U = 1, microlocally near (y0, η0), (2.2)

and we are interested in the improved Egorov property:

If PU = UQ, where P = Pw, Q = Qw are h-pseudodifferential (2.3)
operators of order 0, then P ◦ κ = Q+ O(h2).

Here and in what follows we use the same letter to denote an operator and a cor-
responding Weyl symbol. In Appendix A of [13], it was shown that such U ’s exist
and we shall answer the question raised there, by establishing the following propo-
sition. (We learned from C. Fefferman that Jorge Silva has obtained essentially
the same result in the framework of classical Fourier integral operators.)

Proposition 2.1 Within the class of operators satisfying (2.1) and (2.2), the pro-
perty (2.3) is equivalent to:

a0|Cφ
has constant argument. (2.4)

Here φ is defined in some open set D(φ) ⊂ R2n+N and

Cφ = {(x, y, θ) ∈ D(φ); φ′θ(x, y, θ) = 0}.

Proof. We first consider the special case of pseudodifferential operators, i.e., the
case when κ is the identity. Then a0 is the principal symbol and (2.2) implies that
|a0| = 1 (after inserting an additional factor (2π)−n in front of the integral and
taking the standard phase φ = (x− y) · θ). Write

U−1PU = P + U−1[P,U ].

We see that (2.3) holds iff {p, a0} = 0 for all p, i.e., iff a0 = Const. The proposition
follows in the case of pseudodifferential operators since we also know in general



Vol. 5, 2004 Non-selfadjoint Perturbations of Selfadjoint Operators in 2 Dimensions I 7

that the property (2.4) is invariant under changes of (φ, a) in the representation
of the given operator.

When φ is quadratic and a is constant, we have a metaplectic operator and
κ is linear. In that case, we know that (2.3) holds, and using the special case of
h-pseudodifferential operators, we see that we have equivalence between (2.3) and
(2.4) in the case when κ is linear.

Consider a smooth deformation of canonical transformations [0, 1] � t 
→
κt, with a deformation field Ha(t), so that ∂tκt(ρ) = Ha(t)(κt(ρ)) where a(t) =
a(t, x, ξ) is smooth and independent of h. Let A(t) = aw(x, hDx) and consider a
corresponding family of Fourier integral operators U(t) associated to κt:

hDtU(t) +A(t) ◦ U(t) = 0. (2.5)

Since A(t) are selfadjoint, unitarity of U(t) is conserved under the flow of (2.5).
Let U(t) be such a unitary family.

Proposition 2.2 We have (2.3) for one value of t iff we have it for all values of t.

Proof. Suppose we have (2.3) for U(0). From (2.5) we get

hDt(U(t)−1) = U(t)−1A(t).

Consider a family P (t) = U(t)PU(t)−1. Then

hDtP (t) + [A(t), P (t)] = 0,

and on the level of Weyl symbols, we get

∂tP (t) + {a(t), P (t)} = O(h2),

or in other words,
(∂t +Ha(t))P (t) = O(h2).

This means that

P (t) ◦ (κt(ρ)) = P (0) ◦ κ0 + O(h2) = P (ρ) + O(h2),

where we used (2.3) for U(0) in the last step. Then P (t) fulfills (2.3) for all t. �
On the other hand, if U(t) fulfills (2.5), we know, using that the subprincipal

symbol of A(t) is 0, that if we represent

U(t) = h−
n+N

2

∫∫
e

i
hφt(x,y,θ)at(x, y, θ;h)u(y)dydθ,

with φt, at depending smoothly on t, then the argument of at,0|Cφt

is constant

along every curve in {(t, x, θ); (x, θ) ∈ Cφt} corresponding to a Ha(t)-trajectory:
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t 
→ (κt(ρ), κ0(ρ)). This can be seen either by a direct computation leading to a
real transport equation for the leading symbol, (using that

e−iφ(x)/h ◦ aw(x, hDx) ◦ eiφ(x)/h = (a(x, φ′(x) + hDx))w + O(h2),

see Appendix A in [13]), or by using Hörmander’s definition ([15]) of the principal
symbol of a Fourier integral operator, as well as a result of Duistermaat-Hörmander
giving a real transport equation for the principal symbol for the evolution problem
(2.5).

In particular, if at|Cφt

has constant argument for one value of t, the same
holds for all other values.

For a given U associated to κ, choose κt and U(t) as in (2.5), so that κ0 is
linear and U(1) = U . (We may assume for simplicity that (y0, η0) = (x0, ξ0) =
(0, 0) and take κt(y, η) = 1

tκ(t(y, η)).) Then using Proposition 2.2 and the above
remark, we get the equivalences: [U satisfies (2.3).] ⇔ [U(0) satisfies (2.3).] ⇔ [The
principal symbol of U(0) has constant argument.] ⇔ [The principal symbol of U
has constant argument.] This gives Proposition 2.1. �

Let X,Y be analytic manifolds of dimension n equipped with analytic inte-
gration densities L(dx) = LX(dx), L(dy) = LY (dy). Let

κ : ΩY → ΩX

be a canonical transformation (and diffeomorphism), analytic for simplicity, where

ΩY ⊂⊂ T ∗Y, ΩX ⊂⊂ T ∗X,

are connected, open with smooth boundary. We do not assume ΩX ,ΩY to be
simply connected, so we may have finitely many closed cycles γ1, . . . , γN ⊂ ΩY
which generate the homotopy group of ΩY .

Let S : L2(X) → HΦ(X̃), T : L2(Y ) → HΨ(Ỹ ) be corresponding FBI-
transforms as in the appendix, where X̃, Ỹ denote tubular complex neighborhoods
of X,Y and with associated canonical transformations:

κS : T ∗X ∩ {|ξ| < C} → ΛΦ, κT : T ∗Y ∩ {|η| < C} → ΛΨ,

where we equip HΦ, HΨ with the scalar products that make S, T unitary, and we
can have C > 0 as large as we like. Choose C large enough, so that κS , κT are well
defined on ΩX ,ΩY respectively, and let

Ω̃X = πxκSΩX ⊂ X̃, Ω̃Y = πyκTΩY ⊂ Ỹ .

Let κ̃ : ΛΨ → ΛΦ be the lift of κ, so that κ̃ = κS ◦κ◦κ−1
T . Here ΛΦ,Ψ are restricted

to Ω̃X,Y : ΛΨ = {(y, 2
i ∂yΨ); y ∈ Ω̃Y }, ΛΦ = {(x, 2

i ∂xΦ); x ∈ Ω̃X}.
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We shall define a multi-valued “Floquet periodic” Fourier integral operator
U : L2(Y ) → L2(X) which is only microlocally defined from ΩY to ΩX and asso-
ciated to κ. Requiring that U be microlocally unitary with the improved Egorov
property, we will see that we can have the Floquet periodicity:

γ∗U = eiθ(γ)U, (2.6)

where γ is a closed loop in ΩY joining some point ρ to itself, U denotes the
operator U as it is defined near ρ and the left-hand side of (2.6) denotes the
operator obtained from U by following the loop γ. We will then achieve (2.6) with
θ(γ) = h−1S(γ) + k(γ)π/2, where S(γ) =

∫
κ◦γ ξdx −

∫
γ
ηdy is the difference of

the actions of κ ◦ γ and γ, and k(γ) ∈ Z is a “Maslov index”, both quantities
depending only on the homotopy class of γ. (Requiring only the unitarity of U ,
we could take θ(γ) = S(γ)/h.)

When discussing the improved property (2.3), recall from [13] and [29], that
on a manifold with a preferred positive density, we can define the Weyl symbol of
a 0-th order h-pseudodifferential operator modulo O(h2) by taking the ordinary
Weyl symbol for some system of local coordinates x1, . . . , xn for which the preferred
density reduces to the Lebesgue measure. Clearly Proposition 2.1 extends to this
situation.

We first notice that if

V u(x) = h−
n+N

2

∫∫
eiφ(x,y,θ)/ha(x, y, θ;h)u(y)dydθ

is an elliptic Fourier integral operator with leading symbol a0(x, y, θ) �= 0 on Cφ,
then we can obtain V ∗V = 1 +O(h) by multiplying a0 by a positive real-analytic
function.

The same remark applies to

Ṽ : H loc
Ψ (Ω̃Y ) → H loc

Φ (Ω̃X),

where we put Ṽ = S ◦ V ◦ T−1 and represent it as in [20] by

Ṽ u(x) = h−n
∫
eiψ(x,y)/hb(x, y;h)u(y)e−2Ψ(y)/hL(dy). (2.7)

Here ψ(x, y) is the multi-valued grad-periodic function near πx,yΓ, with

∂x,yψ = 0, ∂x,yb = 0 near πx,y(Γ),

∂xψ(x, y) =
2
i
∂xΦ(x), ∂yψ(x, y) =

2
i
∂yΨ(y) on πx,y(Γ),

Φ(x) + Ψ(y) + Imψ(x, y) ∼ dist ((x, y), πx,y(Γ))2,

where Γ denotes the graph of κ̃. (In [20] the first equation holds only to infinite
order on πx,y(Γ) and the present improvement follows from the analyticity of κ̃.)
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Recall that Imψ is single-valued, and that

var(κ̃◦γ,γ)ψ =
∫

κ̃◦γ
ξdx−

∫

γ

ηdy, (2.8)

is the action difference, when γ is a closed curve in ΛΨ and (κ̃ ◦ γ, γ) denotes the
curve t 
→ (κ̃(γ(t)), γ(t)). Here we also identify ΛΨ,ΛΦ with Ω̃Y , Ω̃X whenever so
is convenient.

Thus after multiplying b|πx,y(Γ)
by a positive real-analytic function, we may

assume that
V ∗V = 1 + O(h). (2.9)

In order to have the improved Egorov property, we further need that locally on
πx,y(Γ):

arg b0(x, y) = K(y) + Const., (notice that x = x(y) on Γ), (2.10)

where K(y) is a grad-periodic function on πx,y(Γ), that we do not try to compute
here, but whose existence we infer from Proposition 2.1 and the computation of
Ṽ as S ◦ V ◦ T−1, with V written microlocally with a real phase as in (2.1).

We can find b0 satisfying (2.10) everywhere if we accept that b0|πx,y(Γ)
is

multi-valued. More precisely, K is not globally well defined on πx,y(Γ) � ΩY , but
ω = dK is a well defined closed real 1-form on ΩY and we can find b0|πx,y(Γ)

,
unique up to a constant factor of modulus 1, such that (2.9), (2.10) hold, though
b0 will be multi-valued:

γ∗b0 = exp (i
∫

γ

ω)b0, (2.11)

where γ∗b0 denotes the new locally defined symbol obtained by following b0 around
the closed loop γ in πx,y(Γ) � ΩY .

Proposition 2.3 We have
∫
γ ω = k(γ)π2 for some integer k(γ) ∈ Z, for every closed

loop γ ⊂ πx,y(Γ).

Proof. Let γ be a closed loop and cover γ by small open topologically trivial sets
Ω̃0, Ω̃1, . . . , Ω̃N−1 with increasing index corresponding to the orientation of γ in
the natural way. Let Ω̃N = Ω̃0. Let Ωj be the corresponding regions in ΩY . In Ωj ,
we represent V by

Vju(x) = h−
n+Nj

2

∫∫

θ∈RNj

eiφj(x,y,θ)/haj(x, y, θ;h)u(y)dydθ. (2.12)

For a given point in Ωj ∩ Ωj+1, we have

φj = φj+1, aj+1 = rj+1,je
iαj+1,jπ/2aj + O(h), rj+1,j > 0, αj+1,j ∈ Z,
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at the corresponding points in Cφj , Cφj+1 , provided that we require all the fiber-
variable dimensions Nj to have the same parity. (Cf. [15].) This last property is
easy to achieve since we can always add one fiber-variable. We conclude that

∫

γ

ω =
π

2
(α1,0 + α2,1 + · · · + αN,N−1),

and the proposition follows. �

Take V as above with b = b0 in (2.7), so that (2.9), (2.10) hold. Put

U = V (V ∗V )−
1
2 . (2.13)

Then Ũ = SUT−1 is of the form (2.7) with b = b0 +O(h). We have U∗U = 1 and
U satisfies (2.3). Since the unitarization is a local operation which commutes with
multiplication by a constant factor of modulus 1, (2.11) becomes valid also for b:

γ∗b = eik(γ)π
2 b. (2.14)

Here we also used Proposition 2.3.
Summing up, we get

Theorem 2.4 Under the assumptions above on κ, we can find a microlocally defined
multi-valued Fourier integral operator U associated to κ, and a corresponding lift
Ũ = SUT−1 of the form (2.7), such that U is unitary: U∗U = 1 + O(e−1/(Ch)),
satisfies the improved Egorov property (2.3), and

γ∗U = ei(S(γ)/h+k(γ)π/2)U,

for every closed loop in ΩY , where k(γ) ∈ Z and

S(γ) =
∫

κ◦γ
ξdx−

∫

γ

ηdy.

3 Reduction by averaging along trajectories

Let P , M be as in the introduction. We work in a neighborhood of p−1(0)∩T ∗M ,
and recall that P = Pε has the semi-classical principal symbol

pε = p+ iεq + O(ε2), (3.1)

in a complex neighborhood of p−1(0)∩T ∗M . Let G0 be an analytic function defined
near p−1(0) ∩ T ∗M such that

HpG0 = q − 〈q〉, (3.2)
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where 〈q〉 is the trajectory average, defined in (1.15). We may take

G0 =
1

T (E)

∫ T (E)/2

−T (E)/2

(1R−(t)(t+
T (E)

2
) + 1R+(t)(t− T (E)

2
))q ◦ exp tHpdt, (3.3)

on p−1(E).
We replace R4 by the new IR-manifold

ΛεG0 = exp (iεHG0)(R
4), (3.4)

which is defined in a complex neighborhood of p−1(0) ∩ T ∗M . Writing (x, ξ) =
exp (iεHG0)(y, η), and using ρ = (y, η) as real symplectic coordinates on ΛεG0, we
get

pε|ΛεG0
= pε(exp (iεHG0)(ρ)) (3.5)

=
∞∑

k=0

(iεHG0)k

k!
(pε) = p+ iε〈q〉 + O(ε2).

Iterating this procedure, or looking more directly for G(x, ξ, ε) as an asymp-
totic sum

G ∼
∞∑

0

εkGk(x, ξ) (3.6)

in some complex neighborhood of p−1(0) ∩ T ∗M , we see that we can find G1,
G2 . . . such that if

ΛεG = exp (iεHG)(R4), (3.7)

and we again write ΛεG � (x, ξ) = exp (iεHG)(y, η) and parametrize by the real
variables (y, η), then

pε|ΛεG
= p+ iε〈q〉 + ε2q2 + ε3q3 + · · · , (3.8)

where qj = 〈qj〉, j ≥ 2. This means that we can transform pε to pε ◦ exp (iεHG) in
such a way that we get a new leading symbol which Poisson commutes with the
unperturbed leading symbol.

As is well known in the selfadjoint case, this construction can be extended to
the level of operators, and we may develop this globally in another paper. In the
present work we will do it only after a reduction to a torus-like situation.

After replacing pε by pε ◦ exp (iεHG0) and correspondingly Pε, by U−1
ε ◦ Pε ◦

Uε, where Uε is the Fourier integral operator Uε = e−
i
h iεG0(x,hDx) = e

ε
hG0(x,hDx)

(defined microlocally near p−1(0)∩T ∗M), we may assume that our operator Pε is
microlocally defined near p−1(0) ∩ T ∗M and has the h-principal symbol

pε = p+ iε〈q〉 + O(ε2). (3.9)
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This can be done in such a way that Pε=0 remains the original unperturbed oper-
ator. We refer to the beginning of Section 6 for the construction of Uε by means
of an FBI-transform.

Let γ0 ⊂ p−1(0) ∩ T ∗M be a closed Hp-trajectory and assume that T (0) is
the minimal period of γ0. Let g : neigh (0,R) → R be the analytic function defined
by

g′(E) =
T (E)
2π

, g(0) = 0. (3.10)

Then Hg◦p = g′(p)Hp has a 2π-periodic flow and the same closed trajectories as
Hp. Clearly 2π is the minimal period of γ0 when viewed as a Hg◦p-trajectory.

Proposition 3.1 There exists an analytic canonical transformation κ : neigh ({τ =
x = ξ = 0}, T ∗(S1

t × Rx)) → neigh (γ0, T
∗M), mapping {τ = x = ξ = 0} onto γ0,

such that g ◦ p ◦ κ = τ .

Proof. Fix a point ρ0 ∈ γ0 and choose local symplectic coordinates (t, τ ;x, ξ)
centered at ρ0, with g ◦ p = τ . This means that

{ξ, x} = 1, {t, x} = {t, ξ} = 0 (3.11)

Hτ t = 1, Hτx = Hτ ξ = 0. (3.12)

Now extend the definition of t, τ, x, ξ to a full neighborhood of γ0, by putting
τ = g ◦ p and requiring t, x, ξ to solve (3.12). Since the Hτ -flow is 2π-periodic
(with 2π as the minimal period) near γ0, we see that x, ξ are well defined single-
valued functions, while t becomes multi-valued in such a way that it increases by
2π each time we make a loop in the increasing time direction. (3.11) extends to a
full neighborhood of γ0. This is equivalent to the proposition. �

Notice that
p ◦ κ = f(τ), (3.13)

where f := g−1. From (3.9) we infer that

pε ◦ κ = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2), (3.14)

for a new function 〈q〉 which is independent of t (and obtained from the earlier
one by composition with κ).

If we let the Fourier integral operator U quantize κ as in Section 2, we get a
new operator U−1PεU with leading semi-classical symbol pε ◦κ as in (3.14). (Here
Pε is the new version of Pε; Pε,new = U−1Pε,oldU .)

Now write simply p, pε, Pε for the transformed objects. Then

Pε = P (t, x, hDt,x, ε;h)

is the formal Weyl quantization of a symbol P (t, x, τ, ξ, ε;h) which has an asymp-
totic expansion (1.5) in the space of holomorphic functions in a fixed complex
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neighborhood of {Im t = τ = x = ξ = 0} in T ∗(S̃1 ×C), with S̃1 = S1 + iR, and
we will use the same notation as in Section 1. (An exact value of the new sym-
bol P (t, x, τ, ξ, ε;h) cannot be easily defined, but we know how to define it mod
O(e−1/(Ch)). We shall however avoid using the full power of analytic pseudodiffer-
ential operators, and content ourselves with the knowledge of P mod O(h∞).)

Now look for G(1) = εG1(t, τ, x, ξ) + ε2G2(t, τ, x, ξ) + · · · such that

pε ◦ exp iεHG(1) = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2)

is independent of t. Here the left-hand side can be written

∞∑

k=0

1
k!

(iεHG(1))kpε,

and we get

pε + iε2HG1(f(τ)) + O(ε3) =

f(τ) + iε〈q〉(τ, x, ξ) − iε2f ′(τ)
∂

∂t
G1 + O(ε2) + O(ε3),

where the O(ε2) term is the same as in (3.14). It is clear that we can find G1 so
that the ε2-term in this expression is independent of t. Looking at the O(ε3)-term
we then determine G2 and so on. (In this construction, we could have applied κ at
the very beginning before replacing q by 〈q〉 by averaging, and then incorporated
G0 into the expression G = G0 + εG1 + · · · , and as already indicated, this could
also have been done entirely (and in a full neighborhood of p−1(0)∩T ∗M), before
applying κ.)

After replacing pε by pε ◦ exp iεHG(1) , we are now reduced to the case when

pε = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2) (3.15)

is independent of t, up to O(ε∞).
Finally we remove the t-dependence from the lower order terms. After conju-

gating Pε by a Fourier integral operator Vε, which quantizes exp iεHG(1) , we may
assume that pε in (3.15) is the principal symbol of Pε (and that it is independent
of t). Look for an h-pseudodifferential operator A(t, x, hDt,x, ε;h) with symbol

A(t, x, τ, ξ, ε;h) ∼
∞∑

k=1

ak(t, x, τ, ξ, ε)hk, (3.16)

such that the full (Weyl) symbol of

e
i
hAPεe

− i
hA = e

i
h adAPε =

∞∑

k=0

1
k!

(
i

h
adA)kPε (3.17)
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is independent of t. Since A = O(h) we know that i
hadA lowers the order in h by

one (with the convention that a symbol = O(h−j) is of order j), so (3.17) makes
sense asymptotically. The subprincipal symbol of (3.17) is

h(p1,ε(x, ξ) + {pε, a1}) = h(p1,ε(x, ξ) + f ′(τ)
∂

∂t
a1(t, τ, x, ξ, ε) + O(ε)),

and we make this independent of t by successively determining the coefficients in
the asymptotic series

a1(t, τ, x, ξ, ε) =
∞∑

j=0

a1,j(t, τ, x, ξ)εj .

After that we return to (3.17) and see that the construction of a2, a3, . . . is
essentially the same.

Actually, we do not have to do this construction in 2 steps, and we can view
εG(1) above as (a constant factor times) the leading symbol a0 = O(ε2) in

A ∼
∞∑

k=0

ak(t, x, τ, ξ, ε)hk, (3.18)

such that if Pε denotes the very first operator we get on S1×R, then the left-hand
side of (3.17) has a symbol which is well defined as an asymptotic series in (ε, h)
and is independent of t, up to O(h∞). This can be seen by first determining a0 from
(3.17) (leading to a repetition of what we already did) and then the other terms.
(When ε is small but fixed, the problem becomes more subtle and the break-up
into two steps is more natural, with the first step being the one containing the
new difficulties.)

Summing up the discussion of this section, we have

Proposition 3.2 Let P , M be as in Section 1. Let γ0 ⊂ p−1(0) ∩ T ∗M be a closed
Hp-trajectory where T (0) is the minimal period and let κ be the canonical trans-
formation of Proposition 3.1. Let U be a corresponding elliptic Fourier integral
operator as in Section 2. Then there exist G(x, ξ, ε) (independent of γ0, κ, U) with
the asymptotic expansion (3.6) in the space of holomorphic functions in some fixed
complex neighborhood of p−1(0)∩ T ∗M and a symbol A(t, x, τ, ξ, ε;h) as in (3.16),
where

ak ∼
∞∑

j=0

ak,j(t, x, τ, ξ)εj (3.19)

in the space of holomorphic functions in a fixed complex neighborhood of Im t =
τ = x = ξ = 0 in T ∗(S̃1 × C)), such that if G,A also denote the corresponding
Weyl quantizations, the operator

P̃ε = e
i
hAU−1e−

ε
hGPεe

ε
hGUe−

i
hA = Ad

e
i
h

AU−1e−
ε
h

GPε (3.20)
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has a symbol

P̃ε(x, τ, ξ, ε;h) ∼
∞∑

0

p̃k(x, τ, ξ, ε)hk (3.21)

independent of t (up to O(h∞)). Here each p̃k = p̃k(x, τ, ξ, ε) ∼
∑∞

j=0 p̃k,j(x, τ, ξ)ε
j

in the space of holomorphic functions in a fixed complex neighborhood of τ, x, ξ = 0.
Moreover

p̃0,ε = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2). (3.22)

If 〈q〉 has a non-degenerate extreme value along γ0, then the proposition is
directly applicable (see Section 5), while in other situations (such as in Section 4),
it is not global enough.

4 Normal forms and quasi-eigenvalues in the torus case

Let P,M, p, q, 〈q〉,Λ0,F0 be as in Section 1. After replacing q by q − F0, we may
assume that F0 = 0, so we consider

Λ0,0 : p = 0, Re 〈q〉 = 0. (4.1)

Notice that Λ0,0 is invariant under the Hp-flow. We assume that T (0) is the min-
imal period for all the closed trajectories in Λ0,0 and that

dp, d〈Re q〉 are independent at the points of Λ0,0, (4.2)

so that Λ0,0 is a Lagrangian manifold and also a union of tori. Assume for sim-
plicity that Λ0,0 is connected, so that it is equal to one single Lagrangian torus.
In this section we work microlocally near Λ0,0 and proceed somewhat formally. In
Section 6 we follow up with suitable function spaces and see how to justify the
computation of the spectrum via a global Grushin problem. We have seen that we
can reduce ourselves to the case when

pε = p+ iε〈q〉 + O(ε2). (4.3)

Assume from now on that 〈q〉 is real-valued or more generally that 〈q〉 is a function
of p and Re 〈q〉. We can make a real canonical transformation

κ : neigh (ξ = 0, T ∗T2) → neigh (Λ0,0, T
∗M), T2 = (R/2πZ)2, (4.4)

such that p ◦ κ = p(ξ1), 〈q〉 ◦ κ = 〈q〉(ξ) (with a slight abuse of notation).
Recall that this can be done in the following way: Let ΛE,F be the Lagrangian

torus given by p = E,Re 〈q〉 = F , for (E,F ) ∈ neigh (0,R2). Let γ1(E,F ) be the
cycle in ΛE,F corresponding to a closed Hp-trajectory with minimal period, and
let γ2(E,F ) be a second cycle so that γ1, γ2 form a fundamental system of cycles
on the torus ΛE,F . Necessarily γ2 maps to the simple loop given by Re 〈q〉 = F
in the abstract quotient manifold p−1(E)/RHp. Now it is classical (see [1]) that
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we can find a real analytic canonical transformation κ : neigh (η = 0, T ∗T2) �
(y, η) 
→ (x, ξ) ∈ neigh (Λ0,0, T

∗M), such that

ηj =
1
2π

(
∫

γj(E,F )

ξdx−
∫

γj(0,0)

ξdx),

where E,F depend on (x, ξ) and are determined by (x, ξ) ∈ ΛE,F , i.e., by E =
p(x, ξ), F = Re 〈q〉(x, ξ). We also know that here η1 = η1(E) is a function of E
only.

Let us also recall that κ can be constructed as follows: We start by taking a
first canonical transformation κ0 : neigh (ξ = 0, T ∗T2) → neigh (Λ0,0, T

∗M) such
that the zero section is mapped to Λ0,0 and the lines {x2 = Const, ξ = 0} are
mapped onto the closed Hp-trajectories in Λ0,0. Then using κ0, we can consider
p, 〈q〉 as living on T ∗T2. ΛE,F is then given by

ξ = φ′x, φ = φper(x,E, F ) + η1x1 + η2x2, with detφ′′x,(E,F ) �= 0,

with ηj = ηj(E,F ) as above (now being the actions/2π with respect to ξdx),
and φper being (2πZ)2-periodic. Moreover, φ′x(x, η) = 0, η = 0 for E = F =
0. It is easy to check, using that our functions are real-valued, that (E,F ) 
→
(η1(E,F ), η2(E,F )) is a local diffeomorphism, so we can use η1, η2 as new param-
eters replacing E,F , and write φ = φ(x, η). Consider

κ1 : (
∂φ

∂η
, η) 
→ (x,

∂φ

∂x
)

which maps the zero section to itself. Then κ := κ0◦κ1 has the required properties.
Let U be a corresponding Fourier integral operator, implementing κ, so that

if we denote by Pε also the conjugated operator U−1PεU , we have a new operator
with leading symbol

pε = p(ξ1) + iε〈q〉(ξ) + O(ε2). (4.5)

For the conjugated operator, we still have the property that Pε=0 is selfadjoint.
From the assumption (4.2) about linear independence, we get

∂ξ1p(0) �= 0, ∂ξ2Re 〈q〉(0) �= 0. (4.6)

As in the preceding section, we can find an h-pseudodifferential operator A with
symbol

∑∞
ν=0 h

νaν(x, ξ, ε), a0 = O(ε2), such that formally

e
i
hAPεe

− i
hA = e

i
hadA(Pε) =

∞∑

k=0

1
k!

(
i

h
adA)k(Pε) =: P̃ε, (4.7)

with P̃ε(x, ξ, ε;h) independent of x1, and leading symbol

p̃ε = p(ξ1) + iε〈q〉(ξ) + O(ε2)
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also independent of x1. We recall that the symbol A(x, ξ, ε;h) is a formal power
series both in ε and h with coefficients all holomorphic in the same complex neigh-
borhood of ξ = 0. This construction can be done in such a way that P̃ε=0 is
selfadjoint.

We next look for a further conjugation that eliminates the x2-dependence in
the symbol.

a) We start by considering the general case, when the subprincipal symbol of Pε=0

is not necessarily 0, so that the complete symbol of P̃ε takes the form

P̃ε(x2, ξ;h) =
∞∑

ν=0

hν p̃ν(x2, ξ, ε), (4.8)

with
p̃0(x2, ξ, ε) = p̃ε = p(ξ1) + iε〈q〉(ξ) + O(ε2), (4.9)

and p̃1(x2, ξ, 0) not necessarily identically equal to 0.
The easiest case is when h/ε ≤ O(hδ1) for some δ1 > 0, so that we can

consider h/ε as an asymptotically small parameter. Look for

B(x2, ξ, ε,
h

ε
, h) =

∞∑

ν=0

hνbν(x2, ξ, ε,
h

ε
), (4.10)

with bν = O(ε+ h/ε), such that on the operator level (with hDx instead of ξ),

e
i
hBP̃εe

− i
hB =: P̂ε(hDx, ε,

h

ε
, h) (4.11)

has a symbol independent of x. Notice that B(x2, hDx, ε;h) and p(hDx1) commute.
On the symbol level we write

P̃ε = p(ξ1) + ε(i〈q〉(ξ) + O(ε) +
h

ε
p̃1(x2, ξ, ε) + h

h

ε
p̃2(x2, ξ, ε) + · · · ) (4.12)

= p(ξ1) + ε(r0(x2, ξ, ε,
h

ε
) + hr1(x2, ξ, ε,

h

ε
) + · · · ),

with

r0(x2, ξ, ε,
h

ε
) = i〈q〉(ξ) + O(ε) +

h

ε
p̃1 = i〈q〉(ξ) + O(ε) + O(

h

ε
),

r1 =
h

ε
p̃2(x2, ξ, ε), . . .

Notice that rj = O(h/ε) for j ≥ 1. We shall treat h/ε as an independent parameter.
We use this and develop (4.11) to get, with adbc denoting the symbol of

adb(x,hDx)c(x, hDx) = [b(x, hD), c(x, hD)],
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p(ξ1)+ε
∞∑

k=0

∞∑

j1=0

···
∞∑

jk=0

∞∑

�=0

h�+j1+···+jk 1
k!

(
i

h
adbj1 )...(

i

h
adbjk )r�=p(ξ1)+ε

∞∑

n=0

hnr̂n,

with r̂n being equal to the sum of all coefficients for hn resulting from all the
expressions

h�+j1+···+jk 1
k!

(
i

h
adbj1 ) · · · ( i

h
adbjk )r�, (4.13)

with �+ j1 + · · · + jk ≤ n.
The first term is

r̂0 =
∑ 1

k!
Hk
b0r0 = r0 ◦ exp (Hb0),

where we want r̂0 to be independent of x2 (in addition to x1). We get with b0 =
O(ε+ h/ε):

r̂0 = i〈q〉(ξ) + O(ε+ h/ε) − i∂ξ2〈q〉∂x2b0 + O((ε,
h

ε
)2), (4.14)

and using that ∂ξ2〈q〉 �= 0, it is clear how to construct b0 = O(ε+ h/ε) as a formal
Taylor series in ε, h/ε, so that r̂0 = i〈q〉(ξ)+O(ε+h/ε) is independent of x (modulo
a term O(h∞)).

Assume for simplicity that the conjugation by e
i
h b0(x2,hDx,ε,h/ε) has already

been carried out, so that we are reduced to the case when r0 = i〈q〉(ξ)+O(ε+h/ε) is
independent of x2, and rj = O(ε+h/ε) for j ≥ 1. Then look for a new conjugation
exp i

hadB, with B(x2, ξ, ε, h/ε;h) =
∑∞

ν=1 h
νbν(x2, ξ, ε,

h
ε ). The new expression for

the left-hand side of (4.11) becomes

p(ξ1)+ε
∞∑

k=0

∞∑

j1=1

···
∞∑

jk=1

∞∑

�=0

h�+j1+···+jk 1
k!

(
i

h
adbj1 )...(

i

h
adbjk )r�=p(ξ1)+ε

∞∑

n=0

hnr̂n,

(4.15)
with r̂n equal to the sum of all coefficients for hn resulting from the expressions
(4.13) with �+ j1 + · · ·+ jk ≤ n and jν ≥ 1. Then r̂0 = r0, r̂1 = r1 +Hb1r0 = r1 −
Hr0b1, . . . , r̂n = rn−Hr0bn+sn, where sn only depends on b1, . . . , bn−1 and is the
sum of all coefficients of hn arising in the expressions (4.13) with �+j1+· · ·+jk ≤ n,
j1, . . . , jk, � < n, jν ≥ 1.

It is therefore clear how to find b1, b2, . . . successively with bj = O(ε + h/ε),
such that all the r̂j are independent of x and = O(ε + h/ε). This completes the
proof of (4.11).

Summing up the discussion so far, if we do not make any assumption on the
subprincipal symbol of Pε=0 and restrict the attention to h/ε ≤ O(hδ1) for some
δ1 > 0, then we can find

B0 = b0(x2, hDx, ε, h/ε), b0 = O(ε+ h/ε),
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and

B1 =
∞∑

ν=1

bν(x2, hDx, ε, h/ε)hν, bν = O(ε+ h/ε),

such that
P̂ε := e

i
h adB1 e

i
hadB0 P̃ε (4.16)

has a symbol independent of x:

P̂ε = p(ξ1) + ε(r0(ξ, ε,
h

ε
) + hr1(ξ, ε,

h

ε
) + · · · ), (4.17)

with r0 = i〈q〉(ξ) + O(ε+ h/ε), and rν = O(ε+ h/ε) for ν ≥ 1.
Remaining in the general case, without any assumption on the lower order

terms, we now assume merely that h/ε ≤ δ0 for some sufficiently small δ0 > 0.
This means that we can no longer construct b0 by a formal Taylor series in h/ε,
and we shall replace e

i
h b0(x2,hDx,ε,h/ε) by a Fourier integral operator, constructed

directly.
Look for φ = φ(x2, ξ, ε, h/ε) solving

r0(x2, ξ1, ξ2 + ∂x2φ, ε,
h

ε
) = 〈r0(·, ξ, ε,

h

ε
)〉, (4.18)

where 〈·〉 denotes the average with respect to x2. By the implicit function theorem,
(4.18) has a solution with ∂x2φ single-valued and O(ε+ h/ε). If we Taylor expand
(4.18), we get

(∂ξ2r0)(x2, ξ, ε,
h

ε
)∂x2φ+ (r0(x2, ξ, ε,

h

ε
) − 〈r0(·, ξ, ε,

h

ε
)〉) = O((

h

ε
, ε)2),

and using also that

∂ξ2r0(x2, ξ, ε,
h

ε
) = i∂ξ2〈q〉(ξ) + O(ε+

h

ε
),

we get,
φ = φper + x2ζ2,

with ζ2 = ζ2(ξ, ε, hε ) = O((ε, h/ε)2), and φper = O((ε, h/ε)) periodic in x2. Put
η = η(ξ, ε, h/ε) = (ξ1, ξ2 + ζ2), and

ψ(x, η, ε,
h

ε
) = x · η + φper,

where φper is viewed as a function of η rather than ξ.
Consider the canonical transformation

κ : (ψ′
η, η) 
→ (x, ψ′

x),
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which is (ε + h/ε)-close to the identity and can be viewed as a family of trans-
forms depending analytically on the parameter ξ1. With ξ = ξ(η, ε, hε ), we have by
construction:

(r0 ◦ κ)(y, η, ε,
h

ε
) = 〈r0(·, ξ, ε,

h

ε
)〉 = 〈r0(·, η, ε,

h

ε
)〉 + O(ε2 + (

h

ε
)2), (4.19)

and this is a function of (y, η) which is independent of y. Notice that p(ξ1) is
unchanged under composition with κ.

We can quantize κ as a Fourier integral operator U and after conjugation by
this operator, we may assume that we have a new operator P̃ε as in (4.12) with
r0 = i〈q〉(ξ) + O(ε+ h/ε) independent of x and with rj = O(ε+ h/ε) .

As before, we can then make a further conjugation e
i
hadB1 in order to remove

the x-dependence completely and the conclusion is that if we make no assumption
on the subprincipal symbol and restrict the attention to h/ε ≤ δ0, for δ0 > 0 small
enough, then we can find a Fourier integral operator,

U−1u(x;h) =
1

(2πh)2

∫∫
e

i
h (ψ(x,η)−y·η)a(x, η;h)u(y)dydη, (4.20)

with ψ(x, η) = x · η + φper(x2, η, ε, h/ε), φper = O(ε+ h/ε), and

B1 =
∞∑

ν=1

bν(x2, hDx, ε,
h

ε
)hν , bν = O(ε+

h

ε
),

such that
P̂ε := e

i
hadB1AdU P̃ε

has a symbol independent of x as in (4.17), with the same estimates as there.
b) We now assume that in the original problem, Pε=0 has subprincipal symbol 0.
Then after a first time averaging, transportation to the torus, and the elimination
of the x1-dependence, we may assume that

P̃ (x2, ξ, ε;h) =
∞∑

ν=0

hν p̃ν(x2, ξ, ε), (4.21)

with p̃0 independent of x mod O(ε2):

p̃0(x2, ξ, ε) = p(ξ1) + iε〈q〉(ξ) + O(ε2), (4.22)

p̃1(x2, ξ, 0) = 0. (4.23)

(Recall from Section 2 and the references given there, that the canonical trans-
formations can be quantized in such a way that Egorov’s theorem holds modulo
O(h2).) In analogy with (4.12), we have with p̃1(x2, ξ, ε) = εq1(x2, ξ, ε),

P̃ε = p(ξ1) + ε(i〈q〉(ξ) + O(ε) + hq1(x2, ξ, ε) +
h2

ε
p̃2 + h

h2

ε
p̃3 + · · · )

= p(ξ1) + ε(r0(x2, ξ, ε,
h2

ε
) + hr1(x2, ξ, ε,

h2

ε
) + h2r2 + · · · ), (4.24)
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with

r0(x2, ξ, ε,
h2

ε
) = i〈q〉(ξ) + O(ε) +

h2

ε
p̃2,

r1(x2, ξ, ε,
h2

ε
) = q1(x2, ξ, ε) +

h2

ε
p̃3,

r2(x2, ξ, ε,
h2

ε
) =

h2

ε
p̃4, . . .

We first consider the case when

h2

ε
≤ hδ1 , (4.25)

for some fixed δ1 > 0. A first conjugation by e
i
h b0(x2,hDx,ε,

h2
ε ), with b0 = O(ε +

h2/ε), allows us to make r0 independent of x2, and we still have (4.24) with rj =
O(1) for j ≥ 1.

Then we look for a new conjugation exp i
hadB1 with

B1(x2, ξ, ε,
h2

ε
;h) =

∞∑

ν=1

hνbν(x2, ξ, ε,
h2

ε
). (4.26)

The conjugated operator (4.11) can be expanded as in (4.15) and as after that
equation it is clear how to get bν = O(1) for ν ≥ 1, such that the resulting r̂n are
independent of x2, with r̂0(ξ, ε, h2/ε) = i〈q〉(ξ) + O(ε+ h2/ε).

Summing up the discussion so far, if we assume that the subprincipal symbol
of Pε=0 vanishes, and restrict the attention to the range (4.25) for some fixed
δ1 > 0, then we can find B0 = b0(x2, hDx, ε,

h2

ε ) with b0 = O(ε + h2

ε ) and
B1(x2, hDx, ε,

h2

ε ;h) with symbol (4.26), and bν = O(1), such that

e
i
hadB1 e

i
hadB0 P̃ε = P̂ε

has the symbol

p(ξ1) + ε(r0(ξ, ε,
h2

ε
) + hr1(ξ, ε,

h2

ε
) + · · · ) (4.27)

independent of x and with

r0 = i〈q〉(ξ) + O(ε+
h2

ε
), rν = O(1), ν ≥ 1. (4.28)

If we replace (4.25) by the weaker assumption,

h2

ε
≤ δ0, δ0 
 1, (4.29)
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then again we have to replace the conjugation by e
i
hB0 by that by a Fourier integral

operator constructed as earlier: We solve (4.18) (with h/ε replaced by h2/ε) and
get ∂x2φ single-valued and O(ε+ h2/ε).

Taylor expanding (4.18) and using that

∂ξ2r0(x2, ξ, ε,
h2

ε
) = i∂ξ2〈q〉(ξ) + O(ε+

h2

ε
),

we get
φ = φper + x2ζ2,

with ζ2 = ζ2(ξ, ε, h
2

ε ) = O((ε, h
2

ε )2) and φper = O(ε + h2/ε) periodic in x2. Again
we put η = η(ξ, ε, h2/ε) = (ξ1, ξ2 + ζ2) and

ψ(x, η, ε,
h2

ε
) = x · η + φper.

The canonical transformation κ : (ψ′
η, η) 
→ (x, ψ′

x) is (ε + h2/ε)-close to the
identity and with ξ = ξ(η, ε, h2/ε), we have by construction

(r0 ◦ κ)(y, η, ε,
h2

ε
) = 〈r0(·, ξ, ε,

h2

ε
)〉 = 〈r0(·, η, ε,

h2

ε
〉 + O((ε,

h2

ε
)2), (4.30)

which is a function independent of y. Let U−1 be the corresponding Fourier integral
operator as before. Then after replacing P̃ε by AdU P̃ε, we still have (4.24), where
now r0 = i〈q〉(ξ) + O(ε+ h2/ε) is independent of x and rj = O(1) for j ≥ 1.

We can then make a further conjugation by e
i
hB1 as before, and we get

the following conclusion: Assume that the subprincipal symbol of Pε=0 vanishes
and restrict the attention to the range (4.29). Then we can find an elliptic Fourier
integral operator U−1 of the form (4.20) with ψ as above andB1(x2, hDx, ε, h

2/ε;h)
with symbol (4.26), and bν = O(1), such that

e
i
hadB1AdU P̃ε = P̂ε(hDx, ε, h

2/ε;h) (4.31)

has a symbol P̂ε(ξ, ε, h2/ε;h) of the form (4.27), such that (4.28) holds.
We finish this section by discussing what spectral results can be expected from

the reductions above. The first reduction (as in Section 3) was to conjugate the
original operator P by a Fourier integral operator eiG(x,hD,ε)/h, with G(x, ξ, ε) ∼
ε(G0(x, ξ) + εG1(x, ξ) + · · · ), defined in some complex neighborhood of p−1(0) ∩
T ∗M , to achieve that the leading symbol of the conjugated operator is of the
form p + iε〈q〉 + O(ε2) and Poisson commutes with p. At least formally, the new
operator also acts on L2(M) and we have no Floquet type conditions to worry
about. Geometrically, this corresponds to the fact that a canonical transformation
κ = expHG with a single-valued generatorG = O(ε) preserves actions along closed
loops:

∫
κ◦γ ξdx =

∫
γ ηdy, for every closed loop γ.

The second reduction was to take κ in (4.4) and to conjugate by the inverse
of the corresponding Fourier integral operator U . Let α1(=γ0) and α2 be the



24 M. Hitrik and J. Sjöstrand Ann. Henri Poincaré

fundamental cycles in Λ0,0 given by αj = κ ◦βj, where β1, β2 are the fundamental
cycles in T2 � {(x, 0) ∈ T ∗T2}, given by x2 = 0 and x1 = 0 respectively. Put

Sj =
∫

αj

ξdx, (4.32)

so that Sj is the difference of actions,
∫
κ◦βj

ξdx −
∫
βj
ηdy, j = 1, 2. Since κ is a

canonical transformation we know that if β is a closed loop homotopic to βj , then∫
κ◦β ξdx−

∫
β
ηdy = Sj.

As in [20] or as in Theorem 2.4, we see (at least formally) that if we want
Uu to be single-valued on M (possibly defined only microlocally near Λ0,0), then
u should not necessarily be periodic on R2 (i.e., a function on T2) but a Floquet
periodic function with

u(x− ν) = e
iν·S
2πh +

iν·k0
4 u(x), ν ∈ (2πZ)2, S = (S1, S2), k0 ∈ Z2. (4.33)

The conjugated operator Ad
U−1e

i
h

GPε should therefore act on Floquet periodic
functions as in (4.33).

The further conjugations are by operators on the torus that conserve the
property (4.33). This is clear from the definitions, and corresponds to the fact that
a canonical transformation: (y, η) 
→ (x, ξ), generated by ψ(x, η) = x ·η+φper(x, η)
and close to the identity, conserves actions. Indeed, on the graph of the transform,
we have ξdx+ ydη = dψ, so

ξdx− ηdy = d(ψ − y · η) = d((x− y) · η + φper(x, η)),

and (x − y) · η + φper(x, η) is single-valued on the graph. On the other hand the
space of Floquet periodic functions as in (4.33), equipped with the L2-norm over
a fundamental domain of T2, has the ON basis:

ek(x) = e
i
hx·(h(k− k0

4 )− S
2π ), k ∈ Z2, (4.34)

and applying our reductions down to the operator P̂ε in the cases (a) and (b) above,
we get formally (in the sense that we do not define the notion of quasi-eigenvalue):

Proposition 4.1 Recall that we took F0 = 0 and that S, k0 are the actions and the
Maslov indices in (4.32), (4.33).
a) In the general case, Pε has the quasi-eigenvalues in ] − 1

|O(1)| ,
1

|O(1)| [+iε] −
1

|O(1)| ,
1

|O(1)| [ for ε = O(hδ), h/ε
 1:

P̂

(
h(k − k0

4
) − S

2π
, ε,

h

ε
;h
)
, k ∈ Z2, (4.35)

where P̂ (ξ, ε, hε ;h) is holomorphic in ξ ∈ neigh (0,C2), smooth in h
ε , ε ∈ neigh

(0,R) and has the asymptotic expansion (4.17), when h→ 0.
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b) If we assume that Pε=0 has subprincipal symbol 0, then Pε has the quasi-eigen-
values in ] − 1

|O(1)| ,
1

|O(1)| [+iε]−
1

|O(1)| ,
1

|O(1)| [ for ε = O(hδ), h2/ε
 1:

P̂

(
h(k − k0

4
) − S

2π
, ε,

h2

ε
;h
)
, k ∈ Z2, (4.36)

where P̂ (ξ, ε, h2/ε;h) is holomorphic in ξ ∈ neigh (0,C2), smooth in ε and h2/ε ∈
neigh (0,R) and has the asymptotic expansion (4.27), (4.28), when h→ 0.

5 Quasi-eigenvalues in the extreme cases

We make the assumptions of the case II in the introduction and assume, in order
to fix the ideas, that

0 = F0 = 〈Re q〉min,0. (5.1)

Apply Proposition 3.2 and reduce Pε near γ0 to P̃ε = P̃ (x, hDt,x, ε;h) with symbol
described in that proposition. Recall that P̃ε has the leading symbol

p̃ε = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2), (5.2)

where 〈q〉(τ, x, ξ) is equal to the original averaged function 〈q〉, composed with the
canonical transformation κ of Proposition 3.1. The assumptions (1.23) and (5.1)
imply that

Re 〈q〉(0, x, ξ) ∼ |(x, ξ)|2 (5.3)

on the real domain. Also recall that we have the assumption (1.17) which with
(5.3) implies that

〈q〉(τ, x, ξ) = g(τ,Re 〈q〉(τ, x, ξ)) (5.4)

on the real domain, for some analytic function g(τ,q) with g(0,0)=0, Re g(τ,q)=q.
We conclude that (x, ξ) 
→ i〈q〉(τ, x, ξ) +O(ε), appearing in (5.2), has a non-

degenerate critical point (x(τ, ε), ξ(τ, ε)) = O(|τ |+ε) depending analytically on τ, ε
and real when τ ∈ R, ε = 0. After composition with the (τ, ε)-dependent (symplec-
tic) translation (x, ξ) 
→ (x−x(τ, ε), ξ− ξ(τ, ε)) and subtracting the corresponding
critical value, we may assume that the critical point is (0, 0) and hence that

p̃ε(τ, x, ξ) = f(τ) + iεq(τ, x, ξ, ε), (5.5)

with
Re q(τ, x, ξ, ε) ∼ |(x, ξ)|2 (5.6)

on the real domain, and

q(τ, x, ξ, 0) = g(τ,Re q(τ, x, ξ, 0)), (5.7)

on the real domain, where g(τ, 0) = 0, Re g(τ, q) = q.
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We shall next construct a (τ, ε)-dependent canonical transformation in the
x, ξ-variables, which reduces p̃ε(τ, x, ξ) to a function of τ, ε, 1

2 (x2 + ξ2). In doing
so, we essentially follow Appendix B of [13], where the model was xξ rather than
p0 := 1

2 (x2 + ξ2). These two quadratic forms are equivalent up to a constant
factor and composition by a linear complex canonical transformation, so the only
difference is that the real domains are not the same.

Let p(x, ξ) ∼ (x, ξ)2 be real and analytic in a neighborhood of (0,0).

Lemma 5.1 There exists a real and analytic function f(E) defined near E = 0,
with f(0) = 0, f ′(0) > 0, such that the Hamilton flow of f ◦ p is 2π-periodic, with
2π as its minimal period except at (0, 0).

Proof. Consider, first for 0 < E 
 1, the action

I(E) =
∫

p−1(E)

ξdx = E

∫

q−1
E (1)

ηdy,

where qE(y, η) = 1
Ep(

√
E(y, η)), so that q0 is a positive quadratic form (in the

limit E → 0). Then qE is an analytic function of
√
E in a neighborhood of 0

and consequently we have the same fact for I(E). If we let E describe a simple
closed loop around 0 in neigh (0,C)\ {0}, then qE(y, η) transforms into q̃E(y, η) =
qE(−y,−η) and it follows that I(E) transforms into itself. It follows that I(E) is
analytic as a function of E. The period T (E) of the Hp-flow is given by T (E) =
I ′(E) and the period of the Hf◦p-flow is T (E)/f ′(E). It suffices to choose f with
f ′(E) = T (E)/2π and f(0) = 0. �

In the following discussion, we replace p by f ◦ p, so that we get a reduction
to the case when the Hp-flow is 2π-periodic. After composition with a real linear
canonical transformation, we may assume that p(x, ξ) = p0(x, ξ)+O((x, ξ)3), even
though that is not really needed for the argument to follow. Consider the involution
ι = exp (πHp) with ι2 = id. Correspondingly, we have ι0 = exp (πHp0), so that
ι0(ρ) = −ρ. Let h(x, ξ) be a real-valued analytic function defined near (0, 0) with
dh(0, 0) �= 0, and put g = 1

2 (h− h ◦ ι). Then dg(0) = dh(0, 0) �= 0, and

g ◦ ι = −g. (5.8)

Γ := g−1(0) is a real curve passing through the origin, invariant under the ac-
tion of ι. Let Γ also denote a corresponding complexification. If g0,Γ0 are the
corresponding objects for p0, we may assume (though this is not essential), that
dg(0, 0) = dg0(0, 0) so that Γ, Γ0 are tangent at (0, 0).

Since Γ is a curve, we have p|Γ = q2 for some analytic function q, and similarly
p0|Γ0

= q20 . (We may assume that dq0 = dq �= 0 at 0.) Let α : Γ0 → Γ be the
analytic diffeomorphism given by q ◦ α = q0, so that p ◦ α = p0 on Γ0. For

neigh ((0, 0),C2) � ρ = exp tHp0(ν), ν ∈ Γ0, t ∈ C, (5.9)
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we put
κ(ρ) = exp tHp(α(ν)). (5.10)

With the precautions taken above, it is easy to see that the definition of κ(ρ) does
not depend on how we choose ν ∈ Γ0 (unique up to the action of ι0) and t (unique
mod (2π), once ν has been chosen.) As in [13], we see that some exceptional points
ρ ∈ neigh ((0, 0),C2) cannot be represented as in (5.9), namely the ones �= (0, 0)
in the stable outgoing and incoming complex (Lagrangian) curves for the iHp0-
flow, and if ρ converges to one of these lines, then in general |t| → ∞ for the t in
(5.9), so a priori it is not clear then that the right-hand side of (5.10) is defined.
These difficulties were analyzed and settled in [13], and at this point there is no
difference with our situation, so we conclude that κ is a well-defined analytic map
in a neighborhood of (0, 0):

Lemma 5.2 With f, p as in Lemma 5.1, there exists an analytic canonical trans-
formation κ : neigh ((0, 0),R2) → neigh ((0, 0),R2), with f ◦ p ◦ κ = p0.

If p depends smoothly (analytically) on some real parameters, and fulfills the
assumptions above, then f, κ can be chosen to depend smoothly (analytically) on
the same parameters. If p = pε = O((x, ξ)2) is analytic in (x, ξ), depends smoothly
on ε ∈ neigh (0,R) and satisfies the assumptions above for ε = 0, then we get
fε(E), κε(x, ξ), holomorphic in E and x, ξ, depending smoothly on ε with fε ◦ pε ◦
κε = p0, but fε, κε are no more necessarily real when ε �= 0. Clearly Im fε(E) =
O(ε), Imκε(x, ξ) = O(ε) when E, x, ξ are real. In our case the parameters are τ, ε
and the above discussion gives:

Proposition 5.3 For p̃ε(τ, x, ξ) in (5.5), we can find a canonical transformation
(x, ξ) 
→ κτ,ε(x, ξ) depending analytically on τ and smoothly on ε with values in
the holomorphic canonical transformations: neigh ((0, 0),C2) → neigh ((0, 0),C2),
and an analytic function gε(τ, q) depending smoothly on ε such that

κτ,ε(0, 0) = (x(τ, ε), ξ(τ, ε)), (5.11)

p̃ε(τ, κτ,ε(x, ξ)) = f(τ) + iεgε(τ,
1
2
(x2 + ξ2)). (5.12)

Moreover, κτ,0 is real when τ is real and

∂

∂q
Re gε(0, 0) > 0. (5.13)

As a matter of fact, as in Section 4, we will apply this result to a modification
of p̃ε, containing also the leading lower order symbol. Before doing so, we recall
how to treat lower order symbols in general for operators with leading symbol
modelled on the 1-dimensional harmonic oscillator (similarly to what we did in
Section 3 and as in [26]).



28 M. Hitrik and J. Sjöstrand Ann. Henri Poincaré

Consider a formal h-pseudodifferential operator Q(x, hDx;h) with symbol

Q(x, ξ;h) ∼ q0(x, ξ) + hq1(x, ξ) + · · · , (5.14)

defined in a neighborhood of (0, 0) ∈ R2. As usual, q0, q1, . . . are supposed to be
smooth and we assume

q0(x, ξ) = g0(p0(x, ξ)), (5.15)

where g0 ∈ C∞(neigh (0,R)) satisfies g0(0) = 0, g′0(0) �= 0. (We do not assume g0
to be real-valued.) As in Section 3 we find a smooth function a0(x, ξ), defined in
a neighborhood of (0, 0), such that

Hq0a0 = q1 − 〈q1〉, (5.16)

where 〈q1〉 is the trajectory average 1
2π

∫ 2π

0
q1 ◦ exp (tHp0)dt. Adding lower order

corrections, we see that there exists

A(x, ξ;h) ∼ a0(x, ξ) + ha1(x, ξ) + · · · (5.17)

with all aj smooth in some common neighborhood of (0, 0), such that

eiA(x,hDx;h)Q(x, hDx;h)e−iA(x,hDx;h) =: Q̂(x, hDx;h) (5.18)

has a symbol Q̂ ∼ q̂0 + hq̂1 + · · · , with q̂0 = q0 and

Hq0 q̂j = 0, ∀j. (5.19)

This means that q̂j is a smooth function of p0(x, ξ) and as is well known (and
exploited for instance in [26]), the facts (5.18), (5.19) can be reformulated by
saying that we have found A as in (5.17) such that

eiA(x,hD;h)Q(x, hD;h)e−iA(x,hD;h) = g(p0(x, hD);h),

where g(E;h) ∼
∑∞

0 gj(E)hj in C∞(neigh (0,R)), with g0 as before. When g0, qj
are holomorphic in fixed neighborhoods of E = 0 and (x, ξ) = (0, 0), we get the
corresponding holomorphy for gk, q̂�.

Now return to the operator P̃ε of the beginning of this section. Write the full
symbol as

P̃ε(τ, x, ξ, ε;h) ∼ p̃ε(τ, x, ξ) + hp̃1(τ, x, ξ, ε) + h2p̃2(τ, x, ξ, ε) + · · · (5.20)

a) Consider first the general case without any assumptions on the subprincipal
symbol, and assume that

h
 ε < hδ, (5.21)

for some fixed δ > 0. Following the strategy of Section 4, we rewrite (5.20) as

P̃ε(τ, x, ξ;h) = f(τ) + ε[(i〈q〉(τ, x, ξ) +O(ε) +
h

ε
p̃1(τ, x, ξ)) + h

h

ε
p̃2 + h2h

ε
p̃3 + · · · ].

(5.22)
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As before, we now treat h/ε as an additional small parameter. Proposition 5.3
extends to the case when p̃ε is replaced by p̃ε + εhε p̃1, so we have a canonical
transformation (x, ξ) 
→ κτ,ε,h/ε(x, ξ) depending analytically on τ and smoothly
on ε, hε , equal to κτ,ε when h

ε = 0, such that

(p̃ε + ε
h

ε
p̃1)(τ, κτ,ε,hε (x, ξ)) = f(τ) + iεgε,hε

(τ,
1
2
(x2 + ξ2)),

with gε,0 = gε appearing in Proposition 5.3.
As in Section 4, we therefore obtain an elliptic Fourier integral operator

Uε,h/ε, which is a convolution in t, and such that the Fourier transform with
respect to t, Ûε,h/ε(τ), is a 1-dimensional Fourier integral operator in x quantizing
κτ,ε,h/ε. After conjugation of P̃ε by Uε,h/ε, we get a new operator P̃ε of the same
type, with symbol

P̃ (τ, x, ξ, ε, h/ε;h) = f(τ) + ε[igε,hε (τ,
1
2
(x2 + ξ2)) + hp̃2 + h2p̃3 + · · · ], (5.23)

where p̃2, p̃3, . . . also depend on h/ε.
After a further conjugation by eiA(hDt,x,hDx,ε,

h
ε ;h), where each term Aj in the

h-asymptotic expansion:

A(τ, x, ξ, ε,
h

ε
;h) ∼ A0(τ, x, ξ, ε,

h

ε
) + hA1(τ, x, ξ, ε,

h

ε
) + · · ·

is holomorphic in τ, x, ξ in a fixed neighborhood of (0, 0, 0) ∈ C3 and smooth in
ε, h/ε, we get a new operator of the form

P̃ε = f(hDt) + iεG(hDt,
1
2
(x2 + (hDx)2), ε,

h

ε
;h), (5.24)

where

G(τ, q, ε,
h

ε
;h) ∼

∞∑

0

Gj(τ, q, ε,
h

ε
)hj , (5.25)

with Gj holomorphic in τ, q in a j-independent neighborhood of (0, 0) and smooth
in ε, h/ε. Moreover G0 is equal to the term gε,h/ε(τ, q) in (5.23). Recalling that
1
2 (x2 + (hDx)2) has the eigenvalues h(1

2 + k2), k2 ∈ N, we get the conclusion:

Proposition 5.4 Make the assumptions of case II in the introduction, and assume
that F0 = 〈Re q〉min,0 (the case when F0 is a maximum being analogous). Then in a
rectangle ]− 1

|O(1)| ,
1

|O(1)| [+iε]F0− 1
|O(1)| , F0 + 1

|O(1)| [, Pε has the quasi-eigenvalues:

f

(
h(k1 −

k0

4
) − S1

2π

)
+ iεG

(
h(k1 −

k0

4
) − S1

2π
, h(

1
2

+ k2), ε,
h

ε
;h
)
,

(k1, k2) ∈ Z × N. (5.26)
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Here f(τ) is real-valued with f(0) = 0, f ′(0) > 0. The function G has the properties
described in and after (5.25) and ReG0(0, 0, 0, 0) = F0, ∂

∂qReG0(0, 0, 0, 0) > 0.
Finally, k0 is a fixed integer.

b) We next consider the case when the subprincipal symbol of Pε=0 vanishes, and
assume that

h2 
 ε < hδ, (5.27)

for some fixed δ > 0. According to the improved Egorov theorem of Section 2,
we know that p̃1 in (5.20) vanishes for ε = 0, so we can write h

ε p̃1(τ, x, ξ, ε) =
hp̂1(τ, x, ξ, ε) in (5.22) and treat this term as a lower order term, while we now
allow h2

ε p̃2 to be a correction to the leading terms. As in the corresponding case
in Section 4, we get h2/ε as an additional small parameter instead of h/ε, and the
same procedure as in case a) now leads to (5.24), (5.25) with h/ε replaced by h2/ε.

Proposition 5.5 Make the assumptions of Proposition 5.4 and assume in addition
that the subprincipal symbol of Pε=0 vanishes. Then for ε in the range (5.27), Pε
has the quasi-eigenvalues as described in the preceding proposition, with the only
difference that “h/ε” in (5.26) should be replaced by “h2/ε”.

6 Global Grushin problem

Let Pε be as in Section 1. In Sections 4 and 5 we have constructed microlocal normal
forms for Pε near a Lagrangian torus and near a closed Hp-trajectory, respectively.
The purpose of this section is to justify the preceding microlocal constructions
and computations, and to show that the quasi-eigenvalues of Proposition 4.1 and
Propositions 5.4 and 5.5 give, modulo O(h∞), all of the true eigenvalues of Pε,
in suitable regions of the complex plane. This will be achieved by studying an
auxiliary global Grushin problem, well posed in a certain h-dependent Hilbert
space, and the first and the main step for us will be to define this space globally. The
actual setup of the Grushin problem and some of the details of the computations
will be closely related to the corresponding analysis in [20].

When constructing the Hilbert space, we shall inspect all the steps of the
microlocal reductions of Sections 3–5, and implement each step of the construction.
In doing so, for simplicity, we shall concentrate on the case when M = R2. In
view of the results of the appendix, it will be clear how to extend the following
discussion to the case of compact real-analytic manifolds. Also, in order to simplify
the presentation, we shall assume throughout the section that the order function
m, introduced in (1.2), is equal to 1. Again, it will be clear that the discussion
below will extend to the case of a general order function. Throughout this section
we shall assume that ε = O(hδ), for some fixed δ > 0.

Let G = G(x, ξ, ε) be as in (3.6). We shall introduce an IR-manifold ΛεG ⊂
C4, which in a complex neighborhood of p−1(0) ∩ R4 is equal to exp (iεHG)(R4),
and further away from p−1(0) ∩ R4 agrees with the real phase space R4. The
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manifold ΛεG will be ε-close to R4, and when defining it, it will be convenient to
work on the FBI transform side. We shall use the FBI-Bargmann transform

Tu(x) = Ch−3/2

∫
eiϕ(x,y)/hu(y) dy, x ∈ C2, C > 0, (6.1)

where ϕ(x, y) = i/2(x − y)2. Associated to T there is a complex linear canonical
transformation κT , given by

C4 � (y,−ϕ′
y(x, y)) 
−→ (x, ϕ′

x(x, y)) ∈ C4.

It is well known, see [28], that κT maps R4 onto

ΛΦ0 :=
{(

x,
2
i

∂Φ0

∂x

)
, x ∈ C2

}
, Φ0(x) =

(Imx)2

2
.

The IR-manifold ΛεG has already been defined near p−1(0) ∩ R4, and when con-
structing it globally, we require that the IR-manifold κT (ΛεG) should agree with
ΛΦ0 outside a bounded set and that it is ε-close to that manifold everywhere. We
define therefore ΛεG so that the representation

κT (ΛεG) =
{(

x,
2
i

∂Φ
∂x

)
, x ∈ C2

}
=: ΛΦ (6.2)

holds true. Here the function Φ ∈ C∞(C2; R) is uniformly strictly plurisubhar-
monic, and is such that

Φ(x) = Φ0(x) + εg(x, ε),

with g(x, ε) ∈ C∞ in both arguments and with a uniformly compact support with
respect to x.

Associated to ΛεG we then introduce the corresponding Hilbert spaceH(ΛεG)
which agrees with L2(R2) as a space, and which we equip with the norm ||u || :=
||Tu ||L2

Φ
. Here L2

Φ = L2(C2; e−2Φ/hL(dx)), with L(dx) being the Lebesgue mea-
sure on C2.

Performing a contour deformation in the integral representation of Pε on the
FBI-Bargmann transform side, as in [20], [28], we see that

Pε = O(1) : H(ΛεG) → H(ΛεG), (6.3)

and the leading symbol on the FBI transform side is then pε ◦ κ−1
T

∣∣∣∣
ΛΦ

. Continuing

to work on the FBI-Bargmann transform side, as in Section 2 of [20], we introduce
a microlocally unitary semiclassical Fourier integral operator

eεG(x,hDx,ε)/h : L2(R2) → H(ΛεG), (6.4)
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microlocally defined near p−1(0) ∩ R4, and associated to the complex canonical
transformation exp (iεHG) : R4 → ΛεG. The operator in (6.3) is then microlocally
near p−1(0), unitarily equivalent to the operator

e−εG(x,hDx,ε)/hPεe
εG(x,hDx,ε)/h : L2 → L2,

with the principal symbol

p ◦ exp (iεHG) = p+ iε〈q〉 + O(ε2). (6.5)

This averaging procedure allows us therefore to reduce the further analysis to an
operator Pε, microlocally defined near p−1(0)∩R4, which has the principal symbol
(6.5), where 〈q〉, as well as the O(ε2)-term, are in involution with p. As explained in
Section 4, at this stage the operator Pε acts on single-valued functions in L2(R2).

In the first part of this section we shall concentrate on the torus case of
Section 4. We assume therefore that dp and dRe 〈q〉 are linearly independent on
the set

Λ0,0 : p = 0, Re 〈q〉 = 0. (6.6)

We recall also the assumption that T (0) is the minimal period of every closed Hp-
trajectory in the Lagrangian torus Λ0,0, and notice that in a neighborhood of Λ0,0,
p and Re 〈q〉 form a completely integrable system. Introduce a new Lagrangian
torus Λ̃0,0 ⊂ ΛεG defined by

Λ̃0,0 : p ◦ exp (−iεHG) = 0, Re 〈q〉 ◦ exp (−iεHG) = 0. (6.7)

In what follows we shall often identify the tori Λ0,0 and Λ̃0,0 by means of
exp (iεHG), and we shall continue to write Λ0,0 for Λ̃0,0 when there is no risk of
confusion. Combining exp (iεHG) with the canonical transformation κ, introduced
in (4.4), and given by the action-angle coordinates associated with p, Re 〈q〉, we
get a smooth canonical diffeomorphism

κε : neigh
(
ξ = 0, T ∗T2

)
→ neigh (Λ0,0,ΛεG) , (6.8)

so that κε = exp (iεHG) ◦ κ. As in (4.32), we set

Sj =
∫

αj

ξ dx, j = 1, 2,

where α1 and α2 are the fundamental cycles in Λ0,0, with α1 corresponding to
a closed Hp-trajectory of the minimal period T (0). Introduce also the “Maslov
indices” k0(αj) ∈ Z, j = 1, 2, of the cycles αj , defined as in Proposition 2.3. Let
L2
θ(T

2) be the subspace of L2
loc(R

2) consisting of Floquet periodic functions u(x),
satisfying

u(x− ν) = eiθ·νu(x), ν ∈ (2πZ)2 , where θ =
S

2πh
+
k0

4
. (6.9)
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Here S = (S1, S2) and k0 = (k0(α1), k0(α2)) ∈ Z2. An application of Theorem 2.4
allows us to conclude that there exists a microlocally unitary multi-valued Fourier
integral operator

U : L2
θ(T

2) → L2(R2), (6.10)

microlocally defined from a neighborhood of ξ = 0 in T ∗T2 to a neighborhood
of Λ0,0 in R4, and associated to κ in (4.4). Moreover, U satisfies the improved
Egorov property (2.3). The composition eεG(x,hDx,ε)/h ◦ U is then associated with
κε in (6.8), and we have a Egorov’s theorem, still with the improved property
(2.3). The operator Pε, acting in H(ΛεG) is therefore unitarily equivalent to an
h-pseudodifferential operator microlocally defined near ξ = 0, acting in L2

θ(T
2),

and which has the leading symbol

p(ξ1) + iε〈q〉(ξ) + O(ε2),

independent of x1. We shall continue to write Pε for the conjugated operator on T2.
From Section 4 we next recall that there exists an elliptic pseudodifferential oper-
ator of the form eiA/h, acting on L2

θ(T
2), such that after a conjugation by it, the

full symbol of Pε becomes independent of x1. Recall also that A is constructed as
a formal power series in ε and h, with coefficients holomorphic in a fixed complex
neighborhood of the zero section of T ∗T2. These formal power series are then
realized as C∞-symbols, in view of our basic assumption ε = O(hδ), δ > 0.

Summing up the discussion so far, we have now achieved that, microlocally
near Λ0,0, the operator

Pε : H(ΛεG) → H(ΛεG)

is equivalent to an operator of the form

P̃ε(x2, ξ, ε;h) ∼
∞∑

ν=0

hν p̃ν(x2, ξ, ε) (6.11)

acting on L2
θ(T

2). Here p̃ν(x2, ξ, ε) are holomorphic in a ν-independent complex
neighborhood of ξ = 0, and

p̃0 = p(ξ1) + iε〈q〉(ξ) + O(ε2).

Furthermore, P̃ε=0 is selfadjoint.
Remark. It follows from the construction together with Theorem 2.4 that if the
subprincipal symbol of Pε=0 vanishes, then p̃1(x2, ξ, 0) = 0.

We must now implement the final conjugation of P̃ε, which removes the x2-
dependence in the full symbol. In doing so, we shall first assume that we are in the
general case, so that the subprincipal symbol of Pε=0 does not necessarily vanish.
We shall work under the assumption

h

ε
≤ δ0 
 1. (6.12)
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As in Section 4, we write

P̃ε = p(ξ1) + ε

(
r0

(
x2, ξ, ε,

h

ε

)
+ hr1

(
x2, ξ, ε,

h

ε

)
+ · · ·

)
,

where

r0

(
x2, ξ, ε,

h

ε

)
= i〈q〉(ξ) + O(ε) +

h

ε
p̃1(x2, ξ, ε),

and rj = Oj(h/ε), j ≥ 1. Let us introduce a complexification of the standard
2-torus, T̃2 = T2 + iR2. From the constructions of Section 4 we know that there
exists a holomorphic canonical transformation

κ̃ : neigh
(
Im y = η = 0, T̃2 × C2

)
(6.13)

� (y, η) 
→ (x, ξ) ∈ neigh
(
Imx = ξ = 0, T̃2 × C2

)

with the generating function of the form

ψ

(
x, η, ε,

h

ε

)
= x · η + φper

(
x2, η, ε,

h

ε

)
, φper = O

(
ε+

h

ε

)
, (6.14)

and such that

(r0 ◦ κ̃) (y, η, ε, h/ε) = 〈r0(·, η, ε, h/ε)〉 + O
((

ε,
h

ε

)2
)

(6.15)

is independent of y – see (4.19). It follows from (6.14) that κ̃ is (ε+ h/ε)-close to
the identity, and has the expression

(y1, η1; y2, η2) 
−→ (x1(y2, η), η1;x2(y2, η), ξ2(y2, η)).

In particular it is true that

Imx = O
(
ε+

h

ε

)
, Im ξ2 = O

(
ε+

h

ε

)
, Im ξ1 = 0,

on the image of T ∗T2. We introduce now an IR-manifold Λ̃ ⊂ T̃2 × C2, which
is equal to κ̃

(
T ∗T2

)
in a complex neighborhood of the zero section of T ∗T2,

and outside another complex fixed neighborhood of ξ = 0, coincides with T ∗T2.
In the intermediate region, we shall construct Λ̃ in such a way that it remains
an (ε+ h/ε)-perturbation of T ∗T2, and such that everywhere on Λ̃ we have the
property

(x1, ξ1;x2, ξ2) ∈ Λ̃ =⇒ Im ξ1 = 0. (6.16)

When constructing Λ̃ and describing the conjugation of P̃ε by a Fourier integral
operator associated to κ̃, it is convenient to work on the FBI transform side. As
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in Section 3 of [20], we notice that the FBI-Bargmann transformation introduced
in (6.1) generates an operator from L2

θ(T
2) to the space of Floquet periodic holo-

morphic functions on C2. We continue to denote this operator by T . Then after
the application of the canonical transformation κT , associated to T , the cotangent
space T ∗T2 becomes an IR-manifold ΛΦ1 ⊂ T̃2 × C2 given by

ΛΦ1 : ξ =
2
i

∂Φ1

∂x
= −Imx, Φ1(x) =

(Imx)2

2
.

Since T is a convolution operator acting separately in y1 and y2, we see that

κT (Λ̃) = ΛΦ, ΛΦ : ξ =
2
i

∂Φ
∂x

,

where Φ is an (ε+ h/ε)-perturbation of Φ1 with the property that ξ1 = (2/i) ∂Φ
∂x1

is real. It follows that Φ = Φ(Imx1, x2) is independent of Rex1. Using a standard
cutoff function around Imx = 0, we modify Φ away from Imx = 0 to obtain a
strictly plurisubharmonic function Φ which coincides with Φ1 further away from
Imx = 0, in such a way that Φ remains an (ε + h/ε)-perturbation of Φ1 and
is still a function independent of Rex1. We then define the global IR-manifold
Λ̃ = κ−1

T (ΛΦ).
Associated to κ̃, there is a Fourier integral operator U−1 introduced in (4.20),

U−1 = O(1) : L2(T2) → H(Λ̃),

such that the action of P̃ε on H(Λ̃) is microlocally near ξ = 0 unitarily equivalent
to the operator

UP̃εU
−1 : L2(T2) → L2(T2),

whose Weyl symbol has the form

p(ξ1) + ε

(
r0

(
ξ, ε,

h

ε

)
+ hr1

(
x2, ξ, ε,

h

ε

)
+ · · ·

)
. (6.17)

Here

r0 = i〈q〉(ξ) + O
(
ε+

h

ε

)

is independent of x, and

rj = O
(
ε+

h

ε

)
, j ≥ 1.

The corresponding statement is also true when considering the action on L2
θ(T

2),
since U−1 preserves the Floquet property (6.9).

Associated to the IR-deformation Λ̃ on the torus side, there is an IR-manifold
Λ̂ε ⊂ C4 which is an (ε+h/ε)-perturbation of ΛεG near Λ0,0, obtained by replacing
exp (iεHG) ◦ κ(T ∗T2) there by

exp (iεHG) ◦ κ ◦ κ̃(T ∗T2) = exp (iεHG) ◦ κ(Λ̃).
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In such a way we get a globally defined IR-manifold Λ̂ε, which is (ε+h/ε)-close to
ΛεG and agrees with R4 outside a neighborhood of p−1(0) ∩ R4. Associated with
Λ̂ε we then have a Hilbert space H(Λ̂ε), defined similarly to H(ΛεG), and obtained
by modifying the standard weight Φ0(x) on the FBI-Bargmann transform side.
We also get a corresponding new Lagrangian torus Λ̂0,0 ⊂ Λ̂ε, with the property
that microlocally near Λ̂0,0, the original operator

Pε : H(Λ̂ε) → H(Λ̂ε)

is equivalent to an operator on L2
θ(T

2), whose complete symbol has the form (6.17).
Taking into account the conjugation by an elliptic operator eiB1/h on the torus
side, which was constructed in Section 4 and which eliminates the x2-dependence
also in the terms rj with j ≥ 1, we get the following result.

Proposition 6.1 We make all the assumptions of case I in the introduction, and
recall that we also take F0 = 0. Assume that ε = O(hδ), δ > 0 is such that h/ε ≤ δ0,
0 < δ0 
 1. There exists an IR-manifold Λ̂ε ⊂ C4, and a smooth Lagrangian torus
Λ̂0,0 ⊂ Λ̂ε, such that when ρ ∈ Λ̂ε is away from a small neighborhood of Λ̂0,0 in
Λ̂ε, we have

|RePε(ρ, h)| ≥ 1
|O(1)| or |ImPε(ρ, h)| ≥ ε

|O(1)| . (6.18)

The manifold Λ̂ε is an
(
ε+ h

ε

)
-perturbation of R4 in the natural sense, and it is

equal to R4 outside a neighborhood of p−1(0) ∩ R4. We have

Pε = O(1) : H(Λ̂ε) → H(Λ̂ε).

There exists a smooth canonical transformation

κε : neigh (Λ̂0,0, Λ̂ε) → neigh (ξ = 0, T ∗T2),

such that κε(Λ̂0,0) = T2×{0}. Associated to κε, there is a Fourier integral operator

U = O(1) : H(Λ̂ε) → L2
θ(T

2),

which has the following properties:

1) U is concentrated to the graph of κε in the sense that if χ1 ∈ C∞
0 (Λ̂ε), χ2 ∈

C∞
0 (T ∗T2), are such that

(suppχ2 × suppχ1) ∩ {(κε(y, η), y, η); (y, η) ∈ neigh(Λ̂0,0, Λ̂ε)} = ∅,

then
χ2(x, hDx) ◦ U ◦ χ1(x, hDx) = O(h∞) : H(Λ̂ε) → L2

θ(T
2).
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2) The operator U is microlocally invertible: there exists an operator V = O(1) :
L2
θ(T

2) → H(Λ̂ε) such that for every χ1 ∈ C∞
0 (neigh(Λ̂0,0, Λ̂ε)), we have

(V U − 1)χ1(x, hDx) = O(h∞) : H(Λ̂ε) → H(Λ̂ε).

For every χ2 ∈ C∞
0 (neigh(ξ = 0, T ∗T2)), we have

(UV − 1)χ2(x, hDx) = O(h∞) : L2
θ(T

2) → L2
θ(T

2).

3) We have Egorov’s theorem: Acting on L2
θ(T

2), there exists P̂
(
hDx, ε,

h
ε ;h

)

with the symbol

P̂

(
ξ, ε,

h

ε
;h
)

∼ p(ξ1) + ε

∞∑

j=0

hjrj

(
ξ, ε,

h

ε

)
, |ξ| ≤ 1

|O(1)| ,

with

r0 = i〈q〉(ξ) + O
(
ε+

h

ε

)
,

and

rj = Oj

(
ε+

h

ε

)
, j ≥ 1,

such that P̂U = UPε microlocally, i.e.,
(
P̂U − UPε

)
χ1(x, hDx) = O(h∞), χ2(x, hDx)

(
P̂U − UPε

)
= O(h∞),

for every χ1, χ2 as in 2).

Remark. The estimate (6.18) holds true thanks to the property (6.16) of the final
deformation, since then the term p(ξ1) does not contribute to the imaginary part
of the symbol on the torus side. The bound (6.18) will allow us to reduce the
spectral analysis of Pε to a small neighborhood of the Lagrangian torus Λ̂0,0.

Using Proposition 6.1, we shall now proceed to describe the spectrum of Pε in a
rectangle of the form

RC,ε =
{
z ∈ C; |Re z| < 1

C
, |Im z| < ε

C

}
, (6.19)

for a sufficiently large constant C > 0. We shall show that the eigenvalues in (6.19)
are given by the quasi-eigenvalues of Proposition 4.1, modulo O(h∞). In doing so,
let us consider the set of the quasi-eigenvalues, introduced in (4.35),

Σ(ε, h) =
{
P̂

(
h(k − θ), ε,

h

ε
;h
)

; k ∈ Z2

}⋂
RC,ε, θ =

S

2πh
+
k0

4
.
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Then the distance between 2 elements of Σ(ε, h) corresponding to k, l ∈ Z2, k �= l,
is ≥ εh |k − l| /|O(1)|. Introduce

δ := 1/4 inf
k �=l

dist (P̂ (h(k − θ), ε,
h

ε
;h), P̂ (h(l − θ), ε,

h

ε
;h)) > 0,

and consider the family of open discs

Ωk(h) :=
{
z ∈ RC,ε;

∣∣∣∣z − P̂ (h(k − θ), ε,
h

ε
;h)

∣∣∣∣ < δ

}
, k ∈ Z2.

The sets Ωk(h) are then disjoint, and dist (Ωk(h),Ωl(h)) ≥ εh |k − l| /|O(1)|. As a
warm-up exercise, we shall first show that Spec (Pε) in the set (6.19) is contained
in the union of the Ωk(h).

When z ∈ C is in the rectangle (6.19), let us consider the equation

(Pε − z)u = v, u ∈ H(Λ̂ε). (6.20)

We notice here that the symbol of

ImPε =
Pε − P ∗

ε

2i
,

taken in the operator sense in H(Λ̂ε), is O(ε), and from Proposition 6.1 we know
that away from any fixed neighborhood of Λ̂0,0 in Λ̂ε it is true that |ImPε(ρ, h)| >
ε/C, provided that |RePε(ρ, h)| ≤ 1/C, where C > 0 is sufficiently large. Here we
are using the same letters for the operators and the corresponding (Weyl) symbols,
and

RePε =
Pε + P ∗

ε

2
: H(Λ̂ε) → H(Λ̂ε).

We shall also write p to denote the leading symbol of Pε=0, acting on H(Λ̂ε).
Let us introduce a smooth partition of unity on the manifold Λ̂ε,

1 = χ+ ψ1,+ + ψ1,− + ψ2,+ + ψ2,−.

Here χ ∈ C∞
0 (Λ̂ε) is such that χ = 1 near Λ̂0,0, and suppχ is contained in a small

neighborhood of Λ̂0,0 where UPε = P̂U . The functions ψ1,± ∈ C∞
0 (Λ̂ε) are sup-

ported in regions, invariant under the Hp-flow, where ±ImPε > ε/C, respectively.
Finally ψ2,± ∈ C∞

b (Λ̂ε) are such that

suppψ2,± ⊂
{
ρ;±RePε(ρ, h) > 1/C

}
.

Moreover, we arrange so that the functions ψ1,± Poisson commute with p on Λ̂ε.
We shall prove that

|| (1 − χ)u || ≤ O
(

1
ε

)
|| v || + O(h∞)||u ||, (6.21)

where we let || · || stand for the norm in H(Λ̂ε). In doing so, we shall first derive
a priori estimates for ψ1,+u.
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When N ∈ N, let

ψ0 ≺ ψ1 ≺ · · · ≺ ψN , ψ0 := ψ1,+,

be cutoff functions in C∞
0 (Λ̂ε; [0, 1]), supported in an Hp-flow invariant region

where ImPε ∼ ε, and which are in involution with p. Here standard notation
f ≺ g means that supp f is contained in the interior of the set where g = 1. It is
then true that in the operator norm,

[Pε, ψj ] = [Pε=0, ψj ] + O(εh) = O(h2) + O(εh) = O(εh), 0 ≤ j ≤ N, (6.22)

since ε ≥ h. For future reference we notice that in the case when the subprincipal
symbol of Pε=0 vanishes, the Weyl calculus shows that [Pε=0, ψj ] = O(h3), and
since ε ≥ h2, we still get (6.22). Here we have also used that the subprincipal
symbol of ψj is 0, 0 ≤ j ≤ N .

Near the support of ψj it is true that ImPε ∼ ε, and an application of the
semiclassical G̊arding inequality allows us therefore to conclude that

(Im (Pε − z)ψju|ψju) ≥ ε

O(1)
||ψju ||2 −O(h∞)||u ||2.

Here the inner product is taken in H(Λ̂ε). On the other hand, we have

(Im (Pε − z)ψju|ψju) = Im
(

(ψj(Pε − z)u|ψju) + ([Pε, ψj ]u|ψju)
)
,

and since in the operator sense ψj(1 − ψj+1) = O(h∞), we see that the absolute
value of this expression does not exceed

O(1)|| (Pε − z)u || ||ψju || + O(εh)||ψj+1u ||2 + O(h∞)||u ||2.

We get

ε

C
||ψju ||2 ≤ O(1)|| (Pε − z)u || ||ψju || + O(εh)||ψj+1u ||2 + O(h∞)||u ||2

≤ ε

2C
||ψju ||2 +

O(1)
ε

|| (Pε − z)u ||2 + O(εh)||ψj+1u ||2 + O(h∞)||u ||2,

and hence,

||ψju ||2 ≤ O(1)
ε2

|| (Pε − z)u ||2 + O(h)||ψj+1u ||2 + O(h∞)||u ||2.

Combining these estimates for j = 0, 1, . . . , N , we get

||ψ0u ||2 ≤ O(1)
ε2

|| (Pε − z)u ||2 + ON (1)hN ||ψNu ||2 + O(h∞)||u ||2,
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and therefore

||ψ1,+u || ≤
O(1)
ε

|| v || + O(h∞)||u ||.

The same estimate can be obtained for ψ1,−u, microlocally concentrated in a flow
invariant region where ImPε ∼ −ε, and a fortiori such estimates also hold in
regions where RePε ∼ 1 and RePε ∼ −1. The bound (6.21) follows.

Write next
(Pε − z)χu = χv + w, w = [Pε, χ]u, (6.23)

where w satisfies

||w || ≤ O
(
h

ε

)
|| v || + O(h∞)||u ||.

Here we have used (6.21) with a cutoff closer to Λ̂0,0. Applying the operator U of
Proposition 6.1 to (6.23), we get

(
P̂ − z

)
Uχu = Uχv + Uw + T∞u,

where
T∞ = O(h∞) : H(Λ̂ε) → L2

θ(T
2).

Using an expansion in Fourier series (6.25) below, we see that the operator P̂ − z :
L2
θ(T

2) → L2
θ(T

2) is invertible, microlocally in |ξ| ≤ 1/|O(1)|, with a microlocal
inverse of the norm O(1/εh), provided that z ∈ RC,ε avoids the discs Ωk(h). Using
also the uniform boundedness of the microlocal inverse V of U , we get

||χu || ≤ O(1)
εh

|| v || + O(h∞)||u ||. (6.24)

Combining (6.21) and (6.24), we see that when z ∈ RC,ε is in the complement of
the union of the Ωk(h), the operator

Pε − z : H(Λ̂ε) → H(Λ̂ε)

is injective. Since the ellipticity assumption (1.6) implies that it is a Fredholm
operator of index zero, we know that Pε − z : H(Λ̂ε) → H(Λ̂ε) is bijective.

We shall now let z vary in the disc Ωk(h) ⊂ RC,ε, for some k ∈ Z2. We shall
show that z ∈ Ωk(h) is an eigenvalue of Pε if and only if z = P̂ (h(k−θ), ε, hε ;h)+r,
where r = O(h∞). In doing so, we shall study a globally well-posed Grushin
problem for the operator Pε − z in the space H(Λ̂ε).

As a preparation for that, we shall introduce an auxiliary Grushin problem
for the operator P̂ − z, defined microlocally near ξ = 0 in T ∗T2. From (4.34), let
us recall the functions

el(x) =
1
2π
ei(l−θ)x =

1
2π
e

i
h (h(l− k0

4 )− S
2π )x,
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which form an ON basis for the space L2
θ(T

2), so that when u ∈ L2
θ(T

2), we have
a Fourier series expansion,

u(x) =
∑

l∈Z2

û(l − θ)el(x). (6.25)

We also remark that el(x) are microlocally concentrated to the region of the phase
space where ξ ∼ h

(
l − k0

4

)
− S/2π.

Introduce rank one operators R̂+ : L2
θ(T

2) → C and R̂− : C → L2
θ(T

2), given
by R̂+u = (u|ek) and R̂−u− = u−ek. Here the inner product in the definition
of R̂+ is taken in the space L2

θ(T
2). Using (6.25), it is then easy to see that the

operator

P̂ :=

(
P̂ − z R̂−
R̂+ 0

)
: L2

θ(T
2) × C → L2

θ(T
2) × C, (6.26)

defined microlocally near ξ = 0, has a microlocal inverse there, which has the form

Ê =

(
Ê(z) Ê+

Ê− Ê−+(z)

)
. (6.27)

The following localization properties can be inferred from the construction of Ê :
if ψ ∈ C∞

b (T ∗T2) has its support disjoint from ξ = 0, then it is true that ψÊ+ =
O(h∞) : C → L2

θ, and Ê−ψ = O(h∞) : L2
θ → C. We also find that

Ê−+(z) = z − P̂

(
h(k − θ), ε,

h

ε
;h
)
. (6.28)

Using (6.25), we furthermore see that the following estimates hold true,

Ê =
O(1)
εh

: L2
θ(T

2) → L2
θ(T

2),

Ê+ = O(1) : C → L2
θ(T

2), Ê− = O(1) : L2
θ(T

2) → C,

Ê−+ = O(εh) : C → C,

so that
εh||u || + ||u− || ≤ O(1) (|| v || + εh|| v+ ||) , (6.29)

when

P̂
(

u
u−

)
=

(
v
v+

)
.

In (6.29), the norms of u and v are taken in L2
θ(T

2) and those of u− and v+ in C.

Passing to the case of Pε, we define R+ : H(Λ̂ε) → C and R− : C → H(Λ̂ε) by

R+u = R̂+Uχu = (Uχu|ek), R−u− = V R̂−u− = u−V ek. (6.30)
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It is then true that

χR− = R− + O(h∞) : C → H(Λ̂ε), (6.31)

decreasing the support of χ if necessary. We now claim that for z ∈ Ωk(h), the
Grushin problem

{
(Pε − z)u+R−u− = v,

R+u = v+
(6.32)

has a unique solution (u, u−) ∈ H(Λ̂ε)×C for every (v, v+) ∈ H(Λ̂ε)×C, with an
a priori estimate,

εh||u || + ||u− || ≤ O(1) (|| v || + εh|| v+ ||) . (6.33)

Here the norms of u and v are taken in H(Λ̂ε), and those of u− and v+ in C. To
verify the claim, we first see that as in (6.21), we have

|| (1 − χ)u || ≤ O
(

1
ε

)
|| v || + O(h∞) (||u || + ||u− ||) . (6.34)

Here we have also used (6.31).
Applying χ to the first equation in (6.32) we get

{
(Pε − z)χu+R−u− = χv + w +R−∞u−,

R+u = v+,
(6.35)

where w = [Pε, χ]u satisfies

||w || ≤ O
(
h

ε

)
|| v || + O(h∞) (||u || + ||u− ||) ,

and R−∞ = O(h∞) in the operator norm. Applying U to the first equation in
(6.35) and using (6.30), we get

{
(P̂ − z)Uχu+ R̂−u− = Uχv + Uw + w−

R̂+Uχu = v+.
(6.36)

where the L2
θ(T

2)-norm of w− is O(h∞) (||u ||+ ||u− ||). We therefore get a mi-
crolocally well-posed Grushin problem for P̂ in (6.26), and in view of (6.29) we
obtain,

εh||χu ||+ ||u− || ≤ O(1) (|| v || + εh|| v+ ||) + O(h∞) (||u || + ||u− ||) . (6.37)

Combining (6.34) and (6.37), we get (6.33). We have thus also proved that the
operator

P =
(
Pε − z R−
R+ 0

)
: H(Λ̂ε) × C → H(Λ̂ε) × C (6.38)
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is injective, for z ∈ Ωk(h). Now P is a finite rank perturbation of
(
Pε − z 0

0 0

)
,

which is a Fredholm operator of index zero. It follows that P is also Fredholm of
index 0 and hence bijective, since we already know that it is injective. The inverse
of P has the form

E =
(
E(z) E+

E− E−+(z)

)
, (6.39)

and we recall that the spectrum of Pε in Ωk(h) will be the set of values z for which
E−+(z) = 0.

We finally claim that the components E+ and E−+(z) in (6.39) are given by
E+ = V Ê+, and E−+(z) = Ê−+(z) = z− P̂

(
h(k − θ), ε, hε ;h

)
, modulo terms that

are O(h∞). Indeed, we need only to check that

R+V Ê+ ≡ 1, (Pε − z)V Ê+ +R−Ê−+ ≡ 0, (6.40)

modulo O(h∞), and at this stage the verification of (6.40) is identical to the
corresponding computation from Section 6 of [20]. In particular, we get

E−+(z) = z − P̂

(
h(k − θ), ε,

h

ε
;h
)

+ O(h∞), (6.41)

and we have now proved the first of our two main results.

Theorem 6.2 Let F0 be a regular value of Re 〈q〉 viewed as a function on p−1(0)∩
R4. Assume that the Lagrangian manifold

Λ0,F0 : p = 0,Re 〈q〉 = F0

is connected, and that T (0) is the minimal period of every closed Hp-trajectory
in Λ0,F0 . When α1 and α2 are the fundamental cycles in Λ0,F0 with α1 corre-
sponding to a closed Hp-trajectory of minimal period, we write S = (S1, S2) and
k0 = (k0(α1), k0(α2)) for the actions and Maslov indices of the cycles, respectively.
Assume furthermore that ε = O(hδ), δ > 0, is such that h/ε 
 1. Let C > 0 be
sufficiently large. Then the eigenvalues of Pε in the rectangle

|Re z| < 1
C
, |Im z − εF0| <

ε

C
(6.42)

are given by

zk = P̂

(
h

(
k − k0

4

)
− S

2π
, ε,

h

ε
;h
)
, k ∈ Z2,

modulo O(h∞). Here P̂
(
ξ, ε, hε ;h

)
is holomorphic in ξ ∈ neigh(0,C2), smooth in

ε, hε ∈ neigh(0,R) and has an asymptotic expansion in the space of such functions,

P̂

(
ξ, ε,

h

ε
;h
)

∼ p(ξ1) + ε

(
r0

(
ξ, ε,

h

ε

)
+ hr1

(
ξ, ε,

h

ε

)
+ · · ·

)
, h→ 0,
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with
r0 = i〈q〉 + O(ε+ h/ε),

and rν = O(ε+ h/ε), ν ≥ 1. We have exactly one eigenvalue for each k ∈ Z2 such
that the corresponding zk falls into the region (6.42).

Keeping all the general assumptions of the torus case and still taking F0 = 0,
we shall next consider the case when the subprincipal symbol of the unperturbed
operator Pε=0 vanishes. It follows then from the previous arguments, now making
use of the full strength of Theorem 2.4, that in this case, microlocally near Λ0,0,

Pε : H(ΛεG) → H(ΛεG) (6.43)

is equivalent to an operator of the form

P̃ε(x2, ξ, ε;h) ∼
∞∑

ν=0

hν p̃ν(x2, ξ, ε), (6.44)

acting on L2
θ(T

2), with

p̃0(x2, ξ, ε) = p(ξ1) + iε〈q〉(ξ) + O(ε2), p̃1(x2, ξ, ε) = εq1(x2, ξ, ε).

In what follows we shall discuss the range

Mh2 < ε = O(hδ) M � 1, δ > 0. (6.45)

Recalling the operators eεG(x,hDx,ε)/h and U from (6.4) and (6.10), respectively,
we see, as in the general case, that the symbol of ImPε on H(ΛεG) is O(ε), and
away from any fixed neighborhood of Λ0,0 in ΛεG, we have |ImPε(ρ, h)| ∼ ε, if
|RePε(ρ, h)| < 1/|O(1)|.

We write, as in Section 4,

P̃ (x2, ξ, ε, h) = p(ξ1) + ε

(
r0

(
x2, ξ, ε,

h2

ε

)
+ hr1

(
x2, ξ, ε,

h2

ε

)
+ · · ·

)
,

where

r0

(
x2, ξ, ε,

h2

ε

)
= i〈q〉 + O(ε) +

h2

ε
p̃2(x2, ξ, ε),

r1(x2, ξ, ε) = q1(x2, ξ, ε) +
h2

ε
p̃3(x2, ξ, ε), rj(x2, ξ, ε) = O

(
h2

ε

)
, j ≥ 2.

Using the canonical transformation κ, generated by the function

ψ

(
x, η, ε,

h2

ε

)
= x · η + φper

(
x2, η, ε,

h2

ε

)
,
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with φper = O(ε + h2

ε ), constructed in Section 4, we then argue similarly to the
general torus case. We thus introduce an IR-manifold Λ̃ ⊂ T̃2 × C2 which is an
(ε + h2/ε)-perturbation of T ∗T2, which agrees with κ(T ∗T2) near ξ = 0, and
further away from this set coincides with T ∗T2. When constructing Λ̃, we first
notice that κ(T ∗T2) has the form

Imx = G′
ξ(Re (x, ξ)), Im ξ = −G′

x(Re (x, ξ)),

where G = G(x2, ξ, ε,
h2

ε ) is such that

∂ξG, ∂x2G = O
(
ε+

h2

ε

)
.

As was observed in Section 4, the transformation κ conserves actions, and therefore
the smooth function G is single-valued. We may assume that

G = O
(
ε+

h2

ε

)
.

If we let χ(ξ) ∈ C∞
0 (R2; [0, 1]) be a cutoff function with a small support and such

that χ = 1 in a small neighborhood of 0, we define Λ̃ by

Imx = G̃′
ξ(Re (x, ξ)), Im ξ = −G̃′

x(Re (x, ξ)), G̃(Re (x, ξ)) = χ(Re ξ)G(Re (x, ξ)).

We then obtain the desired globally defined IR-manifold Λ̃ such that Im ξ1 = 0 on
Λ̃. When acting on H(Λ̃), P̃ε is microlocally near ξ = 0 unitarily equivalent to an
operator on L2(T2), which has the form

p(ξ1) + ε

(
r0

(
ξ, ε,

h2

ε

)
+ hr1

(
x2, ξ, ε,

h2

ε

)
+ · · ·

)
,

where

r0

(
ξ, ε,

h2

ε

)
= i〈q〉 + O

(
ε+

h2

ε

)

is independent of x.
It follows, as in the general torus case, that on the Bargmann transform

side, Λ̃ can be described by an FBI-weight Φ = Φ(Imx1, x2) which does not
depend on Rex1. Repeating the previous arguments, we obtain therefore a new
globally defined Hilbert space H(Λ̂), associated to an IR-manifold Λ̂ ⊂ C4, and a
Lagrangian torus Λ̂0,0 ⊂ Λ̂ such that microlocally near Λ̂0,0, Pε : H(Λ̂) → H(Λ̂) is
equivalent to an operator on L2

θ(T
2), described in (4.27), (4.28).

Proposition 6.3 Assume that the subprincipal symbol of Pε=0 vanishes, and con-
sider the range Mh2 < ε = O(hδ) for M � 1, δ > 0. There exists an IR-manifold
Λ̂ ⊂ C4 and a smooth Lagrangian torus Λ̂0,0 ⊂ Λ̂ such that when ρ ∈ Λ̂ is away
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from a small neighborhood of Λ̂0,0 in Λ̂ and |RePε(ρ, h)| < 1/C, for a sufficiently
large C > 0, it is true that

|ImPε(ρ, h)| ∼ ε.

The manifold Λ̂ is (ε+h2/ε)-close to R4 and it coincides with R4 outside a neigh-
borhood of p−1(0) ∩ R4. There exists a canonical transformation

κε : neigh(Λ̂0,0, Λ̂) → neigh(ξ = 0, T ∗T2),

mapping Λ̂0,0 onto T2, and an elliptic Fourier integral operator U : H(Λ̂) →
L2
θ(T

2) associated to κε, such that, microlocally near Λ̂0,0, UPε = P̂U . Here

P̂ = P̂ (hDx, ε,
h2

ε
;h)

has the Weyl symbol, depending smoothly on ε, h2/ε ∈ neigh(0,R),

P̂

(
ξ, ε,

h2

ε
;h
)
∼ p(ξ1) + ε

∞∑

j=0

hjrj

(
ξ, ε,

h2

ε

)
.

We have
r0 = i〈q〉(ξ) + O(1)(ε+ h2/ε), rj = O(1), j ≥ 1.

Repeating the arguments, leading to Theorem 6.2, and using Proposition 6.3
instead of Proposition 6.1, we then find first that the spectrum of Pε in a region of
the form (6.19) is contained in the union of disjoint discs of radii εh/|O(1)| around
the quasi-eigenvalues P̂

(
h(k − θ), ε, h2/ε;h

)
. Furthermore, when z varies in such

a disc corresponding to k ∈ Z2, such that the corresponding quasi-eigenvalue falls
into the region (6.19), an inspection of the previous arguments shows that the
Grushin operator

(
Pε − z R−
R+ 0

)
: H(Λ̂) × C → H(Λ̂) × C

is bijective with the inverse of the norm O((εh)−1) – see (6.33) for the precise a
priori estimate. Here R− : C → H(Λ̂) and R+ : H(Λ̂) → C are defined as in (6.30).
This leads to the following result.

Theorem 6.4 Keep all the assumptions and notation of Theorem 6.2, and in ad-
dition assume that the subprincipal symbol of Pε=0 vanishes. Let ε = O(1)hδ for
some fixed δ > 0 be such that h2 
 ε. Then the eigenvalues of Pε in the rectangle

(
− 1
C
,

1
C

)
+ iε

(
F0 −

1
C
,F0 +

1
C

)
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are given by

zk = P̂

(
h

(
k − k0

4

)
− S

2π
, ε,

h2

ε
;h
)

+ O(h∞), k ∈ Z2.

Here C > 0 is large enough, P̂ (ξ, ε, h2/ε;h) is holomorphic in ξ ∈ neigh(0,C2),
smooth in ε and h2/ε ∈ neigh(0,R), and as h→ 0, there is an asymptotic expansion

P̂

(
ξ, ε,

h2

ε
;h
)

∼ p(ξ1) + ε

(
r0

(
ξ, ε,

h2

ε

)
+ hr1

(
ξ, ε,

h2

ε

)
+ · · ·

)
.

We have

r0

(
ξ, ε,

h2

ε

)
= i〈q〉(ξ) + O

(
ε+

h2

ε

)
, rj

(
ξ, ε,

h2

ε

)
= O(1), j ≥ 1.

We shall now turn to the case II from the introduction. Let us recall from
Section 1, that if z ∈ SpecPε is such that |Re z| ≤ δ → 0, then

Im z ∈ ε
[
inf
Σ

Re 〈q〉 − o(1), sup
Σ

Re 〈q〉 + o(1)
]
, h→ 0. (6.46)

Here, as in Section 1, we write Σ = p−1(0) ∩ R4/exp (RHp). Our purpose here is
to show that the quasi-eigenvalues of Propositions 5.4 and 5.5 give, up to O(h∞),
the actual eigenvalues in a set of the form

|Re z| ≤ 1
|O(1)| , |Im z − εF0| ≤

ε

|O(1)| ,

when F0 ∈ {infΣ Re 〈q〉, supΣ Re 〈q〉}. As we shall see, the analysis here will be
parallel to the torus case just treated, so that in what follows we shall concen-
trate on the new features of the problem, and some of the computations that are
essentially identical to the ones already performed, will not be repeated.

In order to fix the ideas, we shall discuss the case when

F0 = inf
Σ

Re 〈q〉,

and we shall take F0 = 0.
Recall from the beginning of this section that the original operator Pε acting

on H(ΛεG), is microlocally unitarily equivalent to the operator

Pε ∼
∞∑

j=0

hjpj(x, ξ, ε), (6.47)

acting on L2 and defined microlocally near p−1(0) ∩ R4, with

p0 = p+ iε〈q〉 + O(ε2),
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and the functions 〈q〉 and O(ε2)-term are in involution with p. Let γ1, . . . , γN ⊂
p−1(0) ∩ R4 be the finitely many trajectories such that Re 〈q〉 = 0 along γj , 1 ≤
j ≤ N . We know that T (0) is the minimal period of each γj , and if ρj ∈ Σ
is the corresponding point, then the Hessian of Re 〈q〉 at ρj is positive definite,
1 ≤ j ≤ N . Associated to γj , we have the quantities S = S(γj) and k0 = k0(γj),
the action along γj and the Maslov index, respectively, defined as in Section 2,
and we recall from [11] that these quantities do not depend on j.

In what follows we shall work microlocally near a fixed critical trajectory, say
γ1. We let L2

S(S1 × R) be the space of locally square integrable functions u(t, x)
on R × R such that ∫∫ 2π

0

|u(t, x)|2 dx dt <∞.

and
u(t− 2π, x) = eiS/h+ik0π/2u(t, x).

Applying Theorem 2.4 to the canonical transformation κ of Proposition 3.1, we
see that there exists an analytic microlocally unitary Fourier integral operator

U0 : L2
S(S1 × R) → L2(R2),

associated to κ, and defined microlocally from a neighborhood of {τ = x = ξ = 0}
in T ∗ (S1 × R

)
to a neighborhood of γ1 in R4, so that we have the two-term

Egorov property (2.3). Combining exp (iεHG) with κ, we get a smooth canonical
transformation

κε : neigh
(
τ = x = ξ = 0, T ∗ (S1 × R

))
→ neigh(γ1,ΛεG), (6.48)

where abusing the notation slightly, we write here γ1 ⊂ ΛεG also for the im-
age of γ1 under the complex canonical transformation exp (iεHG). The opera-
tor eεG(x,hDx,ε)/h ◦ U0 is then associated with κε in (6.48), and an application of
Egorov’s theorem shows that, microlocally near γ1, we get a unitary equivalence
between the operator Pε acting on H(ΛεG) and an h-pseudodifferential operator
microlocally defined near τ = x = ξ = 0 in T ∗ (S1 × R

)
, with the leading symbol

p̃0(τ, x, ξ, ε) = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2),

independent of t. Taking into account an additional conjugation by the elliptic
operator eiA/h, acting on L2

S(S1 × R), with

A ∼
∞∑

k=1

ak(t, τ, x, ξ, ε)hk,

constructed as a formal power series in ε, h in Proposition 3.2, we see that microlo-
cally near γ1, the operator Pε : H(ΛεG) → H(ΛεG) is equivalent to an operator of
the form

P̃ε(τ, x, ξ, ε) ∼
∞∑

k=0

hkp̃k(τ, x, ξ, ε), (6.49)
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acting on L2
S(S1 × R), whose full symbol is independent of t. We have

p̃0 = f(τ) + iε〈q〉(τ, x, ξ) + O(ε2), (6.50)

and
Re 〈q〉(0, x, ξ) ∼ x2 + ξ2

on the real domain.
We shall first consider the general case when the subprincipal symbol of the

unperturbed operator Pε=0 does not necessarily vanish, and in doing so, it will be
assumed that

h
 ε = O(1)hδ, δ > 0. (6.51)

As in Section 5, we write

P̃ε = f(τ) + ε

(
i〈q〉(τ, x, ξ) + O(ε) +

h

ε
p̃1 + h

h

ε
p̃2 + · · ·

)
.

According to Proposition 5.3, there exists a holomorphic canonical transformation

κσ,ε,hε
: neigh(0,C2) → neigh(0,C2),

depending analytically on σ ∈ neigh(0,C) and smoothly on ε, hε ∈ neigh(0,R),
such that

Imκσ,ε,hε
(y, η) = O

(
ε+

h

ε

)
,

when σ, y, η are real, and such that
(
p̃0 + ε

h

ε
p̃1

)(
σ, κσ,ε,hε

(y, η)
)

= f(σ) + iεgε,hε

(
σ,
y2 + η2

2

)
.

Here gε,hε (σ, q) is an analytic function, depending smoothly on ε, h/ε, for which

∂

∂q
Re gε,0(0, 0) > 0.

We now lift the family of locally defined canonical transformations κσ,ε,hε to a
canonical transformation

Ξε,hε : neigh
(
Im s = 0, σ = y = η = 0, T ∗

(
S̃1 × C

))
� (s, σ; y, η)


→ (t, τ ;x, ξ) ∈ neigh
(
Im t = 0, τ = x = ξ = 0, T ∗

(
S̃1 × C

))

given by

Ξε,hε (s, σ; y, η) = (t, τ ;x, ξ) = (s+ h(y, σ, η), σ;κσ,ε, hε (y, η)). (6.52)
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Here h(y, σ, η) is uniquely determined up to a function g = g(σ), and if
ϕσ,ε,hε

(x, y, θ) is an analytic family of non-degenerate phase functions (in the sense
of Hörmander) locally generating the family κσ,ε,hε , then

Φε,hε (t, x, s, y, θ, σ) := ϕσ,ε, hε
(x, y, θ) + (t− s)σ

is a non-degenerate phase function with θ, σ as fiber variables, such that Φε,hε
generates the graph of Ξε,hε .

Associated to Ξε,hε , we introduce an IR-manifold Λ̃ ⊂ T ∗
(
S̃1 × C

)
, which in

a complex neighborhood of τ = x = ξ = 0, is equal to Ξε,hε
(
T ∗ (S1 × R

))
, and

further away from this set agrees with T ∗ (S1 × R
)
. In the intermediate region, we

construct Λ̃ in such a way that it remains an (ε+ h
ε )-perturbation of T ∗ (S1 × R

)
,

and so that everywhere on Λ̃, it is true that

(t, τ ;x, ξ) ∈ Λ̃ =⇒ τ ∈ R. (6.53)

If we now use the standard FBI-Bargmann transformation, viewed as a mapping
on L2

S(S1×R), so that under the associated canonical transformation, T ∗(S1×R)
is mapped to {(t, τ ;x, ξ) ∈ T ∗(S̃1 × C); (τ, ξ) = −Im (t, x)}, then as before we see
that after an application of such a transformation, the manifold Λ̃ is described by
a weight function Φ = Φ(Im t, x) which does not depend on Re t. At this stage,
the situation is similar to the previously analyzed torus case, and, in particular,
we see again that the form of the weight Φ(Im t, x) implies that the term f(τ) in
(6.50) gives no contribution to the imaginary part of the operator. Summing up
the discussion so far, we arrive to the following result.

Proposition 6.5 Make the assumptions of case II in the introduction, and assume
that

F0 = inf
Σ

Re 〈q〉 = 0.

Assume that ε = O(hδ), for some δ > 0, is such that h
 ε. There exists a closed
IR-manifold Λ ⊂ C4 and finitely many simple closed disjoint curves γ1, . . . , γN ⊂
Λ, which are (ε + h/ε)-close to the closed Hp-trajectories ⊂ p−1(0) ∩ R4, along
which Re 〈q〉 = 0, such that when ρ is outside a small neighborhood of ∪Nj=1γj in
Λ, then

|RePε(ρ, h)| ≥ 1
|O(1)| or |ImPε(ρ, h)| ≥ ε

|O(1)| . (6.54)

This estimate is true away from an arbitrarily small neighborhood of ∪Nj=1γj, pro-
vided that the implicit constant in (6.54) is chosen sufficiently large. The manifold
Λ coincides with R4 away from a neighborhood of p−1(0) ∩ R4 and is (ε + h/ε)-
close to R4 everywhere. For each j with 1 ≤ j ≤ N , there exists a canonical
transformation

κε,j : neigh (γj ,Λ) → neigh
(
τ = x = ξ = 0, T ∗(S1 × R)

)
,
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whose domain of definition does not intersect the closure of the union of the do-
mains of the κε,k for k �= j, and an elliptic Fourier integral operator

Uj = O(1) : H(Λ) → L2
S(S1 × R),

associated to κε,j, such that, microlocally near γj,

UjPε = P̂jUj .

Here P̂j = P̂j(hDt, (1/2)(x2 + (hDx)2), ε, hε ;h) has the Weyl symbol

P̂j

(
τ, x, ξ, ε,

h

ε
;h
)

= f(τ) + iεGj

(
τ,
x2 + ξ2

2
, ε,

h

ε
;h
)
,

with

Gj

(
τ, q, ε,

h

ε
;h
)

∼
∞∑

l=0

hlGj,l

(
τ, q, ε,

h

ε

)
, h→ 0,

and Gj,l holomorphic in (τ, q) ∈ neigh(0,C2), smooth in ε, h/ε ∈ neigh(0,R).
Furthermore, ReGj,0(0, 0, 0, 0) = 0 and

∂

∂q
ReGj,0(0, 0, 0, 0) > 0.

Take now small open sets Ωj ⊂ Λ, 1 ≤ j ≤ N , such that γj ⊂ Ωj and

Ωj ∩ Ωk = ∅, j �= k.

Let χj ∈ C∞
0 (Ωj), 0 ≤ χj ≤ 1, be such that χj = 1 near γj , 1 ≤ j ≤ N . When

z ∈ C satisfies
|Re z| ≤ 1

C
, |Im z| ≤ ε

C
, (6.55)

and (Pε − z)u = v, it follows from (6.54) by repeating the arguments of the torus
case, that

||



1 −
N∑

j=1

χj



 u || ≤ O
(

1
ε

)
|| v || + O(h∞)||u ||. (6.56)

We shall now discuss the setup of the global Grushin problem. Associated with each
normal form P̂j , 1 ≤ j ≤ N , we have the quasi-eigenvalues given in Proposition
5.4,

z(j, k) := f

(
h(k1 −

k0

4
) − S

2π

)
+ iεGj

(
h(k1 −

k0

4
) − S

2π
, h

(
k2 +

1
2

)
, ε,

h

ε
;h
)
,

when 1 ≤ j ≤ N and k = (k1, k2) ∈ Z × N. We also introduce an ON system of
eigenfunctions of the (formally) commuting operators P̂j ,

ek(t, x) =
1√
2π
e

i
h(h(k1− k0

4 )− S
2π )tek2(x), k = (k1, k2) ∈ Z × N,

which forms an ON basis in L2
S(S1 × R). Here ek2(x), k2 ∈ N, are the normalized

eigenfunctions of 1/2(x2 + (hDx)2) with eigenvalues (k2 + 1/2)h.
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When 1 ≤ j ≤ N , let

Mj = #
{
z(j, k), |Re z(j, k)| < 1

|O(1)| , |Im z(j, k)| < ε

|O(1)|

}
.

Then Mj = O(h−2) and we let k(j, 1), . . . , k(j,Mj) ∈ Z × N be the corresponding
half-lattice points. We introduce the auxiliary operator

R+ : H(Λ) → CM1 × · · · × CMN ,

given by
R+u(j)(l) = (Ujχju|ek(j,l)), 1 ≤ j ≤ N, 1 ≤ l ≤Mj.

Here the inner product in the right-hand side is taken in L2
S(S1 × R). Define also

R− : CM1 × · · · × CMN → H(Λ),

by

R−u− =
N∑

j=1

Mj∑

l=1

u−(j)(l)Vjek(j,l).

Here Vj is a microlocal inverse of Uj . We then claim that for z ∈ C satisfying
(6.55), with a sufficiently large C > 0, the Grushin operator

P =
(
Pε − z R−
R+ 0

)
: H(Λ) ×

(
CM1 × · · · × CMN

)
→

H(Λ) ×
(
CM1 × · · · × CMN

)
(6.57)

is bijective. Indeed, when v ∈ H(Λ) and v+ ∈ CM1 × · · · × CMN , let us consider
{

(Pε − z)u+R−u− = v,

R+u = v+.
(6.58)

As in (6.56), we get

||



1 −
N∑

j=1

χj



 u || ≤ O
(

1
ε

)
|| v || + O(h∞) (||u || + ||u− ||) .

Applying χj and then Uj , 1 ≤ j ≤ N , to the first equation in (6.58), we get





(P̂j − z)Ujχju+
∑Mj

l=1 u−(j)(l)ek(j,l) =
Uj (χjv + [Pε, χj ]u) +R∞u+R−,∞(j)u−,

(Ujχju|ek(j,l)) = v+(j)(l), 1 ≤ l ≤Mj,

(6.59)
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and here R∞ = R∞(j) = O(h∞) and R−,∞(j) = O(h∞) in the corresponding
operator norms. For each j, 1 ≤ j ≤ N , we get a microlocally well-posed Grushin
problem for P̂j − z in L2

S(S1×R), with inverse of the norm O(1/ε), and the global
well-posedness of (6.58) follows. The inverse E of P in (6.57) has the form

E =
(
E(z) E+

E− E−+(z)

)
, (6.60)

and a straightforward computation shows that

E+ : CM1 × · · · × CMN → H(Λ)

modulo O(h∞), is given by

E+v+ ≡
N∑

j=1

Mj∑

l=1

v+(j)(l)Vjek(j,l) = R−v+,

and E−+(z) ∈ L
(
CM1 × · · · × CMN ,CM1 × · · · × CMN

)
is a block diagonal matrix

with the blocks E−+(z)(j) ∈ L(CMj ,CMj ), 1 ≤ j ≤ N , of the form

E−+(z)(j)(m,n) ≡ (z − z(j, k(j,m))) δmn, 1 ≤ m ≤ n ≤Mj,

modulo O(h∞). The computation of eigenvalues near the boundary of the band
has therefore been justified, and we get the second of our two main results.

Theorem 6.6 Assume that
F0 = inf

Σ
Re 〈q〉

is achieved along finitely many closed Hp-trajectories γ1, . . . , γN ⊂ p−1(0) ∩ R4 of
minimal period T (0), and that the Hessian of Re 〈q〉 at the corresponding points
ρj ∈ Σ, j = 1, . . . , N , is positive definite. Let us write S and k0 to denote the
common values of the action and the Maslov index of γj, j = 1, . . . , N , respectively.
Assume that ε = O(hδ) for a fixed δ > 0, is such that h 
 ε. Let C > 0 be
sufficiently large. Then the eigenvalues of Pε in the set

(
− 1
C
,

1
C

)
+ iε

(
F0 −

1
C
,F0 +

1
C

)
(6.61)

are given by

z(j, k) = f

(
h

(
k1 −

k0

4

)
− S

2π

)

+ iεGj

(
h

(
k1 −

k0

4

)
− S

2π
, h

(
1
2

+ k2

)
, ε,

h

ε
;h
)
,
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modulo O(h∞), when 1 ≤ j ≤ N and (k1, k2) ∈ Z×N. Here f(τ) is real-valued with
f(0) = 0 and f ′(0) > 0. The function Gj(τ, q, ε, h/ε;h), 1 ≤ j ≤ N , is analytic in
τ and q in a neighborhood of (0, 0) ∈ C2, and smooth in ε, h/ε ∈ neigh(0,R), and
has an asymptotic expansion in the space of such functions, as h→ 0,

Gj

(
τ, q, ε,

h

ε
;h
)

∼
∞∑

l=0

Gj,l

(
τ, q, ε,

h

ε
,

)
hl.

We have ReGj,0(0, 0, 0, 0) = F0 and

∂

∂q
ReGj,0(0, 0, 0, 0) > 0, 1 ≤ j ≤ N.

Remark. With obvious modifications, Theorem 6.6 describes the eigenvalues in
the region (6.61), when F0 = supΣ Re 〈q〉, if we assume that F0 is attained along
finitely many trajectories of minimal period T (0), such that the transversal Hessian
of Re 〈q〉 along the trajectories is negative definite.
The treatment of the remaining case of the eigenvalues near the boundary of
the band (6.61), when the subprincipal symbol of Pε=0 vanishes proceeds in full
analogy with the previously analyzed torus case. Thus, restricting attention to the
region

Mh2 < ε = O(hδ), M � 1,

we find that the symbol of ImPε, acting on H(ΛεG) is O(ε), and away from an
arbitrarily small but fixed neighborhood of ∪Nj=1γj we have that |ImPε(ρ)| ≥ ε/C
when we restrict the attention to the region |RePε(ρ)| ≤ 1/C.

When working microlocally near τ = x = ξ = 0 in T ∗(S1×R) and simplifying
the operator (6.49) further, we use Proposition 5.3 to find a holomorphic canonical
transformation

κ
σ,ε,h

2
ε

: neigh(0,C2) → neigh(0,C2)

depending analytically on σ ∈ neigh(0,C) and smoothly on ε, h2/ε ∈ neigh(0,R),
such that

(
p̃0 + ε

h2

ε
p̃2

)(
σ, κ

σ,ε, h
2
ε

(y, η)
)

= f(σ) + iεg
ε,h

2
ε

(
σ,
y2 + η2

2

)
.

As before, associated to κ
σ,ε,h

2
ε

, we construct an IR-submanifold of T ∗(S̃1 × C)

which is (ε+ h2/ε)-close to T ∗(S1 ×R), and which has the property that τ is real
along this submanifold. This leads to a new IR-manifold Λ ⊂ C4 such that on Λ,
ImPε has a symbol of modulus ∼ ε in the region |RePε| < 1/C, when away from
the union of small neighborhoods Ωj of γj ⊂ Λ, 1 ≤ j ≤ N . In Ωj , Pε is equivalent
to an operator constructed in Section 5, which has the form

f(hDt) + iεGj

(
hDt,

x2 + (hDx)2

2
, ε,

h2

ε
;h
)
,
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with

Gj

(
τ, q, ε,

h2

ε
;h
)

∼
∞∑

l=1

Gj,l

(
τ, q, ε,

h2

ε

)
hl.

Again we see that we have a globally well-posed Grushin problem for Pε− z in the
h-dependent Hilbert space H(Λ). The following result complements Theorem 6.6.

Theorem 6.7 Make the assumptions of Theorem 6.6, and assume in addition that
the subprincipal symbol of Pε=0 vanishes. Then for ε in the range

h2 
 ε < hδ, δ > 0,

the eigenvalues of Pε in the set of the form
(
− 1
C
,

1
C

)
+ iε

(
F0 −

1
C
,F0 +

1
C

)
, C � 1,

are given by

f

(
h

(
k1 −

k0

4

)
− S

2π

)
+ iεGj

(
h

(
k1 −

k0

4

)
− S

2π
, h

(
1
2

+ k2

)
, ε,

h2

ε
;h
)
,

modulo O(h∞), when 1 ≤ j ≤ N and (k1, k2) ∈ Z×N. Here f(τ) is real-valued with
f(0) = 0 and f ′(0) > 0. The function Gj(τ, q, ε, h2/ε;h) for 1 ≤ j ≤ N , is analytic
in τ and q in a neighborhood of (0, 0) ∈ C2, and smooth in ε, h2/ε ∈ neigh(0,R),
and has an asymptotic expansion in the space of such functions, as h→ 0,

Gj

(
τ, q, ε,

h2

ε
;h
)

∼
∞∑

l=0

Gj,l

(
τ, q, ε,

h2

ε

)
hl,

where ReGj,0(0, 0, 0, 0) = F0 and

∂

∂q
ReGj,0(0, 0, 0, 0) > 0.

7 Barrier top resonances in the resonant case

Consider
P = −h2∆ + V (x), p(x, ξ) = ξ2 + V (x), x, ξ ∈ R2, (7.1)

and let us assume that V (x) is real-valued, and that it extends holomorphically to
a set {x ∈ C2; |Imx| ≤ 〈Rex〉/C}, for some C > 0, and tends to 0 when x→ ∞ in
that set. The resonances of P can be defined in an angle {z ∈ C;−2θ0 < arg z < 0}

for some fixed small θ0 > 0, as the eigenvalues of P
∣∣∣∣
eiθ0R2

in the same region.
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We shall assume that V (0) = E0 > 0, ∇V (0) = 0, and V ′′(0) is a negative
definite quadratic form. Assume also that the union of trapped Hp-trajectories in
p−1(E0) ∩ R4 is reduced to (0, 0) ∈ R4. (We recall that a trapped trajectory is a
maximal integral curve of the Hamilton vector field Hp, contained in a bounded
set.) We are then interested in resonances of P near E0, created by the critical
point of V . After a linear symplectic change of coordinates, and a conjugation of
P by means of the corresponding metaplectic operator, we may assume that as
(x, ξ) → 0,

p(x, ξ) − E0 =
2∑

j=1

λj
2
(
ξ2j − x2

j

)
+ p3(x) + p4(x) + · · · , λj > 0. (7.2)

Here pj(x) is a homogeneous polynomial of degree j ≥ 3.

For future reference we recall that according to the theory of resonances developed
in [12], the resonances of P in a fixed h-independent neighborhood of E0 can also
be viewed as the eigenvalues of P : H(ΛtG, 1) → H(ΛtG, 1), equipped with the
domain H(ΛtG, 〈ξ〉2). Here G ∈ C∞(R2; R) is an escape function in the sense of
[12], t > 0 is sufficiently small and fixed, and ΛtG is a suitable IR-deformation
of R4, associated with the function G. The Hilbert space H(ΛtG, 1) consists of
all tempered distributions u such that a suitable FBI transform Tu belongs to a
certain exponentially weighted L2-space. We refer to [12] for the original presen-
tation of the microlocal theory of resonances, and to [18] for a simplified version
of the theory, which is applicable in the present setting of operators with globally
analytic coefficients, converging to the Laplacian at infinity. Here we shall only
remark that as in [17], the escape function G can be chosen such that G = x · ξ in
a neighborhood of (0, 0), and such that HpG > 0 on p−1(E0) \ {(0, 0)}.

Under the assumptions above, but without any restriction on the dimension
and without any assumption on the signature of V ′′(0), all resonances in a disc
around E0 of radius Ch were determined in [23]. Here C > 0 is arbitrarily large
and fixed. (See also [7].) Specializing the result of [23] to the present barrier top
case, we may recall that in this disc, the resonances are of the form

E0 − i

(
k1 +

1
2

)
λ1h− i

(
k2 +

1
2

)
λ2h+ O(h3/2), h→ 0, k = (k1, k2) ∈ N2.

(7.3)
Furthermore, in the non-resonant case, i.e., when

λ · k �= 0, 0 �= k ∈ Z2, (7.4)

a result of Kaidi and Kerdelhué [17] extended [23] to obtain all resonances in a disc
around E0 of radius hδ, for each fixed δ > 0 and h > 0 small enough depending
on δ. In this case, the resonances are given by asymptotic expansions in integer
powers of h, with the leading term as in (7.3).
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Throughout this section we shall work under the following resonant assump-
tion,

λ · k = 0, for some 0 �= k ∈ Z2. (7.5)

In this case we shall show how to obtain a description of all the resonances in an
energy shell of the form

h4/5 
 |E − E0| < O(1)hδ, δ > 0,

provided that we avoid an arbitrarily small half-cubic neighborhood of E0−i[0,∞).
The starting point is a reduction to an eigenvalue problem for a scaled operator,
as in [17], [20], [24]. In these works it was shown how to adapt the theory of [12]
so that P can be realized as an operator acting on a suitable H(Λ)-space, where
Λ ⊂ C4 is an IR-manifold which coincides with T ∗ (eiπ/4R2

)
near (0, 0), and

further away from a neighborhood of this point, it agrees with ΛtG. Furthermore,
Λ has the property that on this manifold, p − E0 is elliptic away from a small
neighborhood of (0, 0), and this neighborhood can be chosen arbitrarily small,
provided that the constant in the elliptic estimate is taken sufficiently large. Using
a Grushin reduction exactly as in [20], we may and will therefore reduce the study
of resonances of P near E0 to an eigenvalue problem for P after the complex
scaling, which near (0, 0) is given by x = eiπ/4x̃, ξ = e−iπ/4ξ̃, x̃, ξ̃ ∈ R.

Using (7.2) and dropping the tildes from the notation, we see that the prin-
cipal symbol of the scaled operator has the form

E0 − i
(
p2(x, ξ) + ie3πi/4p3(x) + ie4iπ/4p4(x) + · · ·

)
, (x, ξ) → 0, (7.6)

where

p2(x, ξ) =
2∑

j=1

λj
2
(
ξ2j + x2

j

)
(7.7)

is the harmonic oscillator. In what follows we shall therefore consider an h-pseudo-
differential operator P on R2, microlocally defined near (0, 0), with the leading
symbol

p(x, ξ) = p2(x, ξ) + ie3πi/4p3(x) + · · · , (x, ξ) → 0, (7.8)

and with the vanishing subprincipal symbol. We extend P to be globally defined
as a symbol of class S0(R4) = C∞

b (R4), with the asymptotic expansion

P (x, ξ;h) ∼ p(x, ξ) + h2p(2)(x, ξ) + · · · ,

in this space, and so that

|p(x, ξ)| ≥ 1
C
, C > 0,

outside a small neighborhood of (0, 0).
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We shall be interested in eigenvalues E of P with |E| ∼ ε2, 0 < ε 
 1.
It follows from [26] that the corresponding eigenfunctions are concentrated in a
region where |(x, ξ)| ∼ ε, and so we introduce the change of variables x = εy,
hδ ≤ ε ≤ 1, 0 < δ < 1/2. Then

1
ε2
P (x, hDx;h) =

1
ε2
P (ε(y, h̃Dy);h), h̃ =

h

ε2

 1.

The corresponding new symbol is

1
ε2
P (ε(y, η);h) ∼ 1

ε2
p(ε(y, η)) + ε2h̃2p(2)(ε(y, η)) + · · · ,

to be considered in the region where |(y, η)| ∼ 1. The leading symbol becomes

1
ε2
p(ε(y, η)) = p2(y, η) + iεe3πi/4p3(y) + O(ε2),

for (y, η) in a fixed neighborhood of (0, 0).
Now the resonant assumption (7.5) implies that the Hp2 -flow is periodic on

p−1
2 (E), for E ∈ neigh(1,R), with period T > 0 which does not depend on E. For
z ∈ neigh(1,C), we shall then discuss the invertibility of

1/ε2P (x, hDx;h) − z

in the range of ε, dictated by Theorem 6.4, and using h̃ as the new semiclassical
parameter. Indeed, all the assumptions of that theorem are satisfied in a fixed
neighborhood of (0, 0), and outside such a neighborhood, we have ellipticity which
guarantees the invertibility there.

Proposition 7.1 Assume that (7.5) holds. When p3 is a homogeneous polynomial
of degree 3 on R2, we let 〈p3〉 denote the average of p3 along the trajectories of the
Hamilton vector field of p2 in (7.7), and assume that 〈p3〉 is not identically zero.
Let F0 ∈ R be a regular value of cos(3π/4)〈p3〉 restricted to p−1

2 (1), and assume
that T is the minimal period of the Hp2-trajectories in the manifold Λ1,F0 given by

Λ1,F0 : p2 = 1, cos
(

3π
4

)
〈p3〉 = F0.

Assume that Λ1,F0 is connected. Let ε satisfy

h2/5 
 ε = O(1)hδ, δ > 0. (7.9)

Then for z in the set
[
1 − 1

|O(1)| , 1 +
1

|O(1)|

]
+ iε

[
F0 −

1
|O(1)| , F0 +

1
|O(1)|

]
, (7.10)
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the operator ε−2P (x, hDx;h)−z : L2 → L2 is non-invertible precisely when z = zk
for some k ∈ Z2, where the numbers zk satisfy

zk = P̂

(
h̃(k − α

4
) − S

2π
, ε,

h̃2

ε
; h̃

)
+ O(h∞), h̃ =

h

ε2
.

Here P̂
(
ξ, ε, h̃

2

ε ; h̃
)

has an expansion as h̃→ 0,

P̂

(
ξ, ε,

h̃2

ε
; h̃

)
∼ p2(ξ1) + ε

∞∑

j=0

h̃jrj

(
ξ, ε,

h̃2

ε

)
,

where

r0 = ie3πi/4〈p3〉(ξ) + O
(
ε+

h̃2

ε

)
.

The coordinates ξ1 = ξ1(E) and ξ2 = ξ2(E,F ) are the normalized actions of

ΛE,F : p2 = E, cos
(

3π
4

)
〈p3〉 = F,

for E ∈ neigh(1,R), F ∈ neigh(F0,R), given by

ξj =
1
2π

(∫

γj(E,F )

η dy −
∫

γj(1,F0)

η dy

)
, j = 1, 2, (7.11)

with γj(E,F ) being fundamental cycles in ΛE,F , such that γ1(E,F ) corresponds
to a closed Hp2-trajectory of minimal period T . Furthermore,

Sj =
∫

γj(1,F0)

η dy, j = 1, 2, S = (S1, S2), (7.12)

and α ∈ Z2 is fixed.

Remark. In the case when the compact manifold Λ1,F0 has finitely many connected
components Λj , 1 ≤ j ≤ M , with each Λj being diffeomorphic to a torus, the set
of z in (7.10) for which the operator ε−2P (x, hDx;h) − z is non-invertible agrees
with the union of the quasi-eigenvalues constructed for each component, up to an
error which is O(h∞). In the following discussion, for simplicity it will be tacitly
assumed that Λ1,F0 is connected.

The reduction by complex scaling together with the scaling argument above
and Proposition 7.1 allows us to describe the resonances E of the operator (7.1)
in the set

h4/5 
 |E − E0| = O(1)hδ, δ > 0, (7.13)
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by

E = E0 − iε2P̂

(
h̃
(
k − α

4

)
− S

2π
, ε,

h̃2

ε
; h̃

)
+ O(h∞), (7.14)

where we choose ε > 0 with |E − E0| /ε2 ∼ 1. The description (7.14) is valid
provided that we exclude sets of the form

E ∈ C,
∣∣∣ReE − E0 − F0 |ImE|3/2

∣∣∣ <
1

|O(1)| |ImE|3/2 , (7.15)

from the domain (7.13). Here F0 varies over the set of critical values of cos(3π/4)
〈p3〉 restricted to p−1

2 (1). Indeed, writing E = E0 − iε2z, we see that the set (7.15)
in the E-plane corresponds to the set |Im z − εF0| < ε/|O(1)| in the z-plane. It
is also clear that when F0 ∈ {infp−1

2 (1) cos(3π/4)〈p3〉, supp−1
2 (1) cos(3π/4)〈p3〉}, an

application of Theorem 6.7 will allow us to extend a description of the resonances
to a set of the form (7.15), provided that the assumptions of that theorem are
satisfied. In what follows, we shall content ourselves by discussing an explicit ex-
ample.

Our starting point will be deriving an expression for 〈p3〉. Consider

p2(x, ξ) =
2∑

j=1

λj
2

(xj + ξ2j ), λj > 0,

where the λj satisfy (7.5). In order to describe the Hp2 -flow, it is convenient to
introduce the action-angle variables Ij ≥ 0, τj ∈ R/2πZ for p2, given by

xj =
√

2Ij cos τj , ξj = −
√

2Ij sin τj . (7.16)

Then p2 =
∑
λjIj and the Hamilton flow is given by R � t 
→ (I(t), τ(t)), with

I(t) = I(0), τ(t) = τ(0) + tλ, λ = (λ1, λ2). In the original coordinates, this gives
{
xj(t) =

√
2Ij(0) cos(τj(0) + λjt)

ξj(t) = −
√

2Ij(0) sin(τj(0) + λjt),
(7.17)

and we get a combination of two rotations in (xj , ξj), j = 1, 2, with minimal
periods 2π/λj (except in the degenerate cases when one of the (xj , ξj) vanishes).
Avoiding the totally degenerate case when I = 0, we get trajectories with

• minimal period 2π/λ2 when I1(0) = 0,

• minimal period 2π/λ1 when I2(0) = 0,

• minimal period T = −k0
22π/λ1 = k0

12π/λ2, when both I1(0) and I2(0) are
�= 0.
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Here we let k0 = (k0
1 , k

0
2) be the point satisfying (7.5), which has minimal norm

and positive first component. The integers k in (7.5) are equally spaced on the
straight line λ⊥, and it will be convenient to represent them in the form nk0,
n ∈ Z \ {0}.

We shall now compute the averages 〈xα〉 along the Hp2 -trajectories of a
monomial xα = xα1

1 xα2
2 . Using (7.17), we get

〈xα〉 = I(0)
α
2 2

|α|
2

1
T

∫ T

0

(cos(τ1(0) + λ1t))α1 (cos(τ2(0) + λ2t))α2dt (7.18)

=
I(0)

α
2

2
|α|
2

1
T

∫ T

0

(ei(τ1(0)+λ1t) + e−i(τ1(0)+λ1t))α1(ei(τ2(0)+λ2t) + e−i(τ2(0)+λ2t))α2dt.

Here the integrand can be developed with the binomial theorem,

α1∑

k1=0

α2∑

k2=0

(
α1

k1

)(
α2

k2

)
ei((2k1−α1)τ1(0)+(2k2−α2)τ2(0))ei((2k1−α1)λ1+(2k2−α2)λ2)t,

and only the terms with (2k1 −α1)λ1 +(2k2 −α2)λ2 = 0 can give a non-vanishing
contribution to the integral. This means that 2k − α = nk0 for some n ∈ Z, i.e.,
α+ nk0 = 2k with 0 ≤ k ≤ α componentwise. We get

〈xα〉 =
I(0)α/2

2|α|/2
∑

α+nk0=2k
0≤k≤α

(
α1

k1

)(
α2

k2

)
cos((2k1 − α1)τ1(0) + (2k2 − α2)τ2(0)),

(7.19)
where it is understood that n ∈ Z, k ∈ N2, and where we notice that if α+nk0 =
2k, 0 ≤ k ≤ α, then k̃ := α − k also participates in the sum, since 0 ≤ k̃ ≤ α and
α − nk0 = 2k̃. Also notice that the cosine in (7.19) can be written in the form
cos(nk0 · τ(0)). In order to find the non-vanishing terms in (7.19), we consider
the “line” Z � n 
→ α + nk0 ∈ Z2. The points on this line in the rectangle
([0, 2α1]× [0, 2α2]) ∩N2 with even coordinates correspond to the terms in (7.19).

Example 1. Let k0 = (1,−1), corresponding for instance to λ = (1, 1). In this case
the two components of α must have the same parity.
For α = (2, 0) we have only one term with n = 0, k = (1, 0), and 〈x2

1〉 = I1(0).
For α = (0, 2) we get similarly 〈x2

2〉 = I2(0).
For α = (1, 1) we get two terms with n = 1, k = (1, 0) and n = −1, k = (0, 1)
respectively, and 〈x1x2〉 =

√
I1(0)I2(0) cos(τ1(0) − τ2(0)).

For |α| = 3 we get no non-vanishing terms.
For α = (4, 0) we have one term with n = 0, k = (2, 0) and we get 〈x4

1〉 = 3
2I1(0)2.

For α = (0, 4) we get similarly, 〈x4
2〉 = 3

2I2(0)2.
For α = (2, 2) we get one term with n = 2, k = (2, 0) and one with n = −2, k =
(0, 2), We also have a term with n = 0, k = (1, 1), and this leads to 〈x2

1x
2
2〉 =

I1(0)I2(0)(1 + 1
2 cos 2(τ1(0) − τ2(0))).
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It follows from Example 1 that Proposition 7.1 does not apply when λ = Const.
(1, 1), since in this case 〈p3〉 ≡ 0. We shall therefore consider a different choice of
the resonant frequencies.
Example 2. Let us take k0 = (2,−1), corresponding for instance to λ = (1, 2), and
let |α| = 3. For α = (3, 0), (0, 3), (1, 2) it follows from (7.19) that 〈xα〉 = 0. For
α = (2, 1) we get two terms, one with n = 1, k = (2, 0) and one with n = −1, k =
(0, 1). It follows that

〈x2
1x2〉 = 2−1/2I1(0)I2(0)1/2 cos(2τ1(0) − τ2(0)). (7.20)

For future reference, we shall also describe how the averages 〈xα〉 can be com-
puted after a suitable complex linear change of symplectic coordinates. Introduce

{
y = 1√

2
(x− iξ)

η = 1
i
√

2
(x+ iξ)

,

{
x = 1√

2
(y + iη)

ξ = i√
2
(y − iη)

.

In these coordinates p =
∑2

j=1 iλjyjηj , and

exp (tHp)(y, η) = (eitλ1y1, e
itλ2y2, e

−itλ1η1, e
−itλ2η2),

so that

〈yαηβ〉 =
1
T

∫ T

0

eiλ·(α−β)tdtyαηβ =

{
yαηβ if λ · (α − β) = 0,
0 otherwise.

We apply this to

xα =
1

2|α|/2
∑

0≤k≤α

(
α
k

)
yk(iη)α−k,

and get

〈xα〉 = 2−|α|
∑

α+nk0=2k
0≤k≤α

(
α
k

)
(x− iξ)k(x+ iξ)α−k. (7.21)

As before we check that for each term present there is also the complex conjugate.
The computations of Examples 1 and 2 can be written like (7.21). We shall

only do it for the last example with k0 = (2,−1), α = (2, 1):

〈x2
1x2〉 =

1
4
Re ((x1 + iξ1)2(x2 − iξ2)) =

1
4
(x2

1x2 + 2x1ξ1ξ2 − x2ξ
2
1). (7.22)

We may assume that λ = (1, 2), so that

p2 =
1
2
(x2

1 + ξ21) + (x2
2 + ξ22), (7.23)

and we may then check directly that Hp2〈x2
1x2〉 = 0.



Vol. 5, 2004 Non-selfadjoint Perturbations of Selfadjoint Operators in 2 Dimensions I 63

From (7.22) and (7.23) it is clear that dp2 and d〈x2
1x2〉 are linearly inde-

pendent except on some set of measure 0. When computing the critical points of
〈x2

1x2〉 on p−1
2 (1), we shall first make use of the (I, τ)-coordinates. From (7.20) we

recall that
p2 = I1 + 2I2,

√
2〈x2

1x2〉 = I1I
1
2
2 cos(2τ1 − τ2). (7.24)

It follows from the Hamilton equations that θ := 2τ1 − τ2 is invariant under the
Hp2 -flow, and we can therefore work in the coordinates I1, I2, θ. We have

dp2 = dI1 + 2dI2,
√

2d〈x2
1x2〉 = (I

1
2
2 cos θ)dI1 +

1
2
I1I

− 1
2

2 (cos θ)dI2 − I1I
1
2
2 (sin θ)dθ.

(7.25)
If θ �∈ πZ, I1, I2 �= 0, we have ∂θ〈x2

1x2〉 �= 0, and hence the differentials are linearly
independent. Still with I1, I2 �= 0, let θ ∈ πZ, so that cos θ = ±1. Then the
differentials are linearly dependent iff

0 = det

(
1 2

I
1/2
2

1
2I1I

− 1
2

2

)
, i.e., iff I1 = 4I2.

This gives two closed trajectories inside the energy surface p2 = 1 and the corre-
sponding values for 〈x2

1x2〉:

I1 =
2
3
, I2 =

1
6
, 2τ1 − τ2 = 0; 〈x2

1x2〉 =
1

3
√

3
, (7.26)

and
I1 =

2
3
, I2 =

1
6
, 2τ1 − τ2 = π; 〈x2

1x2〉 =
−1
3
√

3
. (7.27)

When I1 = 0 or I2 = 0, the question of linear independence of the differentials
should be analyzed directly in the (x, ξ)-coordinates (or (y, η)-coordinates), and
here we shall use (7.22). On the plane I1 = 0, corresponding to x1 = ξ1 = 0,
we have d〈x2

1x2〉 = 0, so here we have linear dependence, with the corresponding
critical value 〈x2

1x2〉 = 0. On the plane I2 = 0, corresponding to x2 = ξ2 = 0, we
have {

d〈x2
1x2〉 = 1

4 (x2
1 − ξ21)dx2 + 1

2x1ξ1dξ2,

dp2 = x1dx1 + ξ1dξ1,

and these differentials are independent, since we avoid the point x = ξ = 0.
We shall now look at the nature of the critical points of 〈x2

1x2〉, when viewed as
a function on Σ := p−1

2 (1)/exp (RHp). For the trajectories found in (7.26) and
(7.27), we use θ and I2 as local coordinates on Σ, and using (7.24) together with
I1 = 1 − 2I2, we get for θ = kπ, k = 0, 1, I2 = 1/6 and f =

√
2〈x2

1x2〉,

∂θ∂I2f = 0, ∂2
θf = −(1 − 2I2)I

1
2
2 (−1)k, ∂2

I2f = −(−1)k
(

1
4
I
− 3

2
2 +

3
2
I
− 1

2
2

)
.

For k = 0 we therefore have a non-degenerate maximum and for k = 1 we get a
non-degenerate minimum.
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For the third trajectory, given by

x1 = ξ1 = 0, x2
2 + ξ22 = 1, (7.28)

we use that 〈x2
1x1〉 vanishes to the second order there, and hence that the transver-

sal Hessian in p−1
2 (1) can be identified with the free Hessian with respect to x1, ξ1,

which is given by the matrix

1
2

(
x2 ξ2
ξ2 −x2

)
.

The eigenvalues are 1
2 and − 1

2 . Thus we have a non-degenerate saddle point.
We summarize the discussion above in the following proposition.

Proposition 7.2 Let

p2(x, ξ) =
1
2
(
x2

1 + ξ21
)

+ (x2
2 + ξ22).

Then the Hp2-flow is periodic in p−1
2 (E), for E ∈ neigh(1,R), with period T = 2π.

If
p3(x) = a3,0x

3
1 + a1,2x1x

2
2 + x2

1x2 + a0,3x
3
2,

then we have
〈p3〉(x, ξ) =

1
4
(
x2

1x2 + 2x1ξ1ξ2 − x2ξ
2
1

)
.

The differential of 〈p3〉, restricted to p−1
2 (1), vanishes along three closed Hp2-

trajectories, given by (7.26), (7.27), and (7.28). These critical trajectories are non-
degenerate in the sense that the transversal Hessian of 〈p3〉 is non-degenerate. The
set of the critical values of 〈p3〉 is {±(3

√
3)−1, 0}, and the maximum and the mini-

mum of 〈p3〉 are attained along the trajectories (7.26) and (7.27), respectively. The
transversal Hessian of 〈p3〉 along (7.28) has the signature (1,−1). The minimal
period of the trajectories in (7.26) and (7.27) is equal to T = 2π, and the minimal
period in (7.28) is π. Let finally F0 be a regular value of 〈p3〉 restricted to p−1

2 (1).
Then the minimal period of every closed Hp2-trajectory in the Lagrangian manifold

Λ1,F0 : p2 = 1, 〈p3〉 = F0

is equal to T = 2π.

We now return to the operator P with principal symbol p in (7.1). Under the
general assumptions from the beginning of this section, we shall assume that as
(x, ξ) → 0, we have

p(x, ξ) − E0 =
1
2
(ξ21 − x2

1) + (ξ22 − x2
2) + p3(x) + O(x4),

where
p3(x) = a3,0x

3
1 + a1,2x1x

2
2 + x2

1x2 + a0,3x
3
2.

Let us write A1 = −(3
√

6)−1, A2 = (3
√

6)−1, and A3 = 0.
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Proposition 7.3 The resonances of P in the domain

{
z ∈ C; h4/5 
 |z − E0| = O(1)hδ

}
\

3⋃

j=1

{z;
∣∣∣Re z − E0 −Aj |Im z|3/2

∣∣∣

< η |Im z|3/2}, (7.29)

where δ, η > 0 are arbitrary but fixed, are given by

∼ E0 − i



h(k1 − α1/4) + ε3
∞∑

j=0

hjε−2jrj

(
h

ε2

(
k − α

4

)
− S

2π
, ε,

h2

ε5

)

 , (7.30)

with

r0

(
ξ, ε,

h2

ε5

)
= ie3πi/4〈p3〉(ξ) + O

(
ε+

h2

ε5

)
,

rj

(
ξ, ε,

h2

ε5

)
= O

(
ε+

h2

ε5

)
, j ≥ 1

analytic in ξ ∈ neigh(0,C2), and smooth in ε, h2/ε ∈ neigh(0,R). We have k =
(k1, k2) ∈ Z2, S = (S1, S2) with S1 = 2π, and α = (α1, α2) ∈ Z2 is fixed, and we
choose ε > 0 with |E − E0| ∼ ε2. The resonances in the set
{
z ∈ C,

∣∣∣Re z − E0 −A1 |Im z|3/2
∣∣∣ < η |Im z|3/2

}
and h4/5 
 |z − E0| = O(1)hδ,

(7.31)
are given by E0 plus

1
i



h
(
k1 −

α1

4

)
+ iε3

∞∑

j=0

hjε−2jGj

(
h

ε2

(
k1 −

α1

4

)
− 1,

h

ε2

(
k2 +

1
2

)
, ε,

h2

ε5

)

 ,

(7.32)
with (k1, k2) ∈ Z×N, α1 ∈ Z, and |E − E0| ∼ ε2. The function G0(τ, q, ε, h2/ε5) is
such that ReG(0, 0, 0, 0) = A1 and ∂

∂qReG0(0, 0, 0, 0) > 0. An analogous descrip-
tion of resonances is valid in the domain (7.31) with A1 replaced by A2.

Here in (7.30) we have also used that when expressed in terms of the action
coordinates from (7.11), it is true that p2(ξ1) = ξ1 + 1.
Remark. If we replace rj(ξ, ε, h2/ε5) in (7.30) by rj(ξ + S/2π, ε, h2/ε5), then we
get

∼ E0 − i



h(k1 − α1/4) + ε3
∞∑

j=0

hjε−2jrj

(
h

ε2

(
k − α

4

)
, ε,

h2

ε5

)

 .

Now let us notice that the choice of ε is not unique, and replacing ε by λε, with
λ ∼ 1, does not affect the resonances. It follows therefore that

rj(ξ, ε, τ) = λ3−2jrj

(
ξ

λ2
, λε,

τ

λ5

)
. (7.33)
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Using this, we define

rj(ξ, 1, τ) = ε3−2jrj

(
ξ

ε2
, ε,

τ

ε5

)
,

when |ξ| ∼ ε2 and |τ | ≤ O(ε5). Then (7.30) becomes

∼ E0 − i



h(k1 − α1/4) +
∞∑

j=0

hjrj

(
h
(
k − α

4

)
, 1, h2

)


 .

A Function spaces and FBI-transforms on manifolds

LetX be a compact analytic manifold of dimension n. In this section we first review
some parts of Section 1 in [27] about how to define global FBI-transforms onX , and
function spaces associated to certain IR-deformations of the real cotangent space.
After that we shall perform Bargmann type transforms which allow us to view the
above-mentioned function spaces, microlocally in a bounded frequency region, as
weighted spaces of holomorphic functions. The theory in [27] is an adaptation to
the case of compact manifolds of the one in [12] and this as well as the Bargmann
transform below are closely related to similar ideas and techniques, developed in
[6], [4], [28], [32], [10].

We equipX with some analytic Riemannian metric so that we have a distance
d and a volume density dy. Let φ(α, y) be an analytic function on {(α, y) ∈ T ∗X×
X ; d(αx, y) < 1/C} (using the notation α = (αx, αξ), αx ∈ X , αξ ∈ T ∗

αx
X) with

the following two properties (A) and (B):

(A) φ has a holomorphic extension to a domain of the form

{(α, y) ∈ T ∗X̃ × X̃; |Imαx|, |Im y| < 1
C
, |Reαx − Re y| < 1

C
, |Imαξ| <

1
C
|〈αξ〉|}

(A.1)
and satisfies |φ| ≤ O(1)|〈αξ〉| there.

Here X̃ is some complexification of X and T ∗X̃ denotes the cotangent space
in the sense of complex manifolds with pointwise fiber spanned by the pointwise
(1,0)-forms. We write 〈αξ〉 =

√
1 + α2

ξ with α2
ξ defined by means of the dual

metric, and as below, we shall often give statements in local coordinates whenever
convenient and leave to the reader to check that the statements make sense globally.
Notice that by the Cauchy inequalities,

∂kαx
∂�αξ

∂my φ = Ok,�,m(1)|〈αξ〉|1−|�|, (A.2)

in a set of the form (A.1), with a slightly increased constant C.
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The second assumption is

(B) φ(α, αx) = 0, (∂yφ)(α, αx) = −αξ, Im (∂2
yφ)(α, αx) ∼ |〈Reαξ〉|I.

By Taylor’s formula, we have

φ(α, y) = αξ · (αx − y) + O(1)〈αξ〉|αx − y|2, (A.3)

and on the real domain, for d(αx, y) ≤ 1/C, with C sufficiently large, we have:

Imφ(α, y) ∼ 〈αξ〉(αx − y)2. (A.4)

The following example was found in a joint discussion with M. Zworski: Let
exp x : TxX → X be the geodesic exponential map. Then we can take

φ(α, y) = −αξ · exp−1
αx

(y) +
i

2
〈αξ〉d(αx, y)2. (A.5)

Let Λ ⊂ T ∗X̃ be a closed I-Lagrangian manifold which is close to T ∗X in
the C∞-sense and which coincides with this set outside a compact set. Recall
that “I-Lagrangian” means Lagrangian for the real symplectic form −Imσ, where
σ =

∑
dαξj ∧dαxj is the standard complex symplectic form. This means that if we

choose (analytic) coordinates y in X and let (y, η) be the corresponding canonical
coordinates on T ∗X and T ∗X̃, then Λ is of the form {(y, η) + iHG(y, η); (y, η) ∈
T ∗X} for some real-valued smooth function G(y, η) which is close to 0 in the C∞-
sense and has compact support in η. Here HG denotes the Hamilton field of G.
Since Λ is close to T ∗X , it is also R-symplectic in the sense that the restriction to
Λ of Reσ is non-degenerate. (We say that Λ is an IR-manifold.) It follows that

dα|Λ = dαx1 ∧ · · · ∧ dαxn ∧ dαξ1 ∧ · · · ∧ dαξn |Λ
=

1
n!
σn|Λ

is a real non-vanishing 2n-form on Λ, that we view as a positive density.
We also need some symbol classes. A smooth function a(x, ξ;h), defined on

Λ or on a suitable neighborhood of T ∗X in T ∗X̃ is said to be of class Sm,k, if

∂px∂
q
ξa = O(1)h−m〈ξ〉k−q . (A.6)

A formal classical symbol a ∈ Sm,kcl is of the form a ∼ h−m(a0 + ha1 + · · · )
where aj ∈ S0,k−j is independent of h. Here and in the following, we let 0 < h ≤ h0

for some sufficiently small h0 > 0. When the domain of definition is real or equal
to Λ, we can find a realization of a in Sm,k (denoted by the same letter a) so that

a− h−m
N∑

0

hjaj ∈ S−(N+1)+m,k−(N+1).
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When the domain of definition is a complex domain, we say that a ∈ Sm,kcl is a
formal classical analytic symbol (a ∈ Sm,kcla ) if aj are holomorphic and satisfy

|aj | ≤ C0C
j(j!)|〈ξ〉|k−j . (A.7)

It is then standard, that we can find a realization a ∈ Sm,k (denoted by the same
letter a) such that

∂kx∂
�
ξ∂x,ξa = Ok,�(1)e−|〈ξ〉|/Ch, (A.8)

|a− h−m
∑

0≤j≤|〈ξ〉|/C0h

hjaj | ≤ O(1)e−|〈ξ|〉/C1h,

where in the last estimate C0 > 0 is sufficiently large and C,C1 > 0 depend on
C0. We will denote by Sm,kcl and Sm,kcla also the classes of realizations of classical
symbols. We say that a classical (analytic) symbol a ∼ h−m(a0 + ha1 + · · · ) is

elliptic, if a0 is elliptic, so that a−1
0 ∈ S0,−k. Take such an elliptic a(α, y;h) ∈ S

3n
4 ,

n
4

cla

and put

Tu(α;h) =
∫
e

i
hφ(α,y)a(α, y;h)χ(αx, y)u(y)dy, (A.9)

where χ is smooth with support close to the diagonal and equal to 1 in a neigh-
borhood of the same set.

According to [27] there exists b(α, x;h) ∈ S
3n
4 ,

n
4

cla , such that if

Sv(x) =
∫

T∗X
e−

i
hφ

∗(x,α)b(α, x;h)χ(αx, x)v(α)dα, (A.10)

then
STu = u+Ru, (A.11)

where R has a distribution kernel R(x, y;h) satisfying

|∂αx ∂�yR| ≤ Ck,�e
− 1

C0h . (A.12)

Here we denote in general by f∗, the holomorphic extension of the complex con-
jugate of f .

With Λ as above, we put

TΛu = Tu|Λ, (A.13)

and define SΛv by (A.10), but with T ∗X replaced by Λ. Then,

SΛTΛu = u+RΛu, (A.14)

where RΛ satisfies (A.12) (with a slightly larger C0 and under the assumption that
Λ is sufficiently close to T ∗X). In fact, using Stokes’ formula and the exponen-
tial decrease of ∂ of the symbols involved, we see that SΛTΛ coincides up to an
exponentially small error with ST .
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Since Λ is I-Lagrangian, we can find locally a real-valued smooth function
H(α) on Λ, such that

dH = −Im (αξ · dαx)|Λ. (A.15)

Indeed, −Im (αξ ·dαx) is a primitive of −Imσ and the latter vanishes on Λ, so the
right-hand side of (A.15) is closed.

We assume:

The equation (A.15) has a global solution H ∈ C∞(Λ;R). (A.16)

Notice that this property is equivalent to

Im
∫

γ

(αξ · dαx) = 0, for all closed curves γ ⊂ Λ. (A.17)

When (A.16) is fulfilled, H is well defined up to a constant, and we shall always
choose H to be zero for large αξ.

As in [27] we notice that (A.16) is fulfilled in the case of IR-manifolds gen-
erated by a weight G ∈ C∞(T ∗X̃ ;R) in the following way: Let HG = HIm σ

G

be the Hamilton field of G with respect to Imσ, and assume that G = 0 in the
region where |αξ| is large. Then for t real with |t| small enough, we can consider
the IR-manifold Λt = exp (tHG)(Λ0), where Λ0 = T ∗X . Then we get (A.16) with
H = Ht given by

Ht =
∫ t

0

(exp (s− t)HG)∗(G+ 〈HG, ω〉)ds, (A.18)

where ω = −Im (αξ · dαx)
The function H appears naturally in connection with TΛ. We have dαφ =

αξ · dαx + O(|αx − y|), so (dαφ)(α, αx) = αξ · dαx and

−Im (dαφ)(α, αx)|Λ = dαH. (A.19)

Definition. For m ∈ R, put

H(Λ; 〈αξ〉m) = {u ∈ D′(X); TΛu ∈ L2(Λ; e−2H/h|〈αξ〉|2mdα)}. (A.20)

When Λ = T ∗X we get the usual h-Sobolev spaces, and in particular the case
m = 0 just gives L2(X). For general Λ we get the same spaces, but the equivalence
of the norm

‖u‖H(Λ,〈αξ〉m) = ‖TΛu‖L2(Λ;e−2H/h|〈αξ〉|2mdα) (A.21)

with the h-m-Sobolev norm ‖u‖H(T∗X,〈αξ〉m) is no longer uniform with respect to
h, in general.

Recall from [27] that if we choose another FBI-transform T̃ of the same type
as T but with different phase φ̃ and amplitude ã, then for Λ close enough to T ∗X ,
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the definition (A.20) does not change if we replace T by T̃ , and we get a new norm
which is equivalent to the previous one, uniformly with respect to h. This follows
from a fairly explicit description of T̃ΛT

−1
Λ .

We also know that Tu = TT∗Xu and TΛu satisfy compatibility conditions
similar to the Cauchy-Riemann equations for holomorphic functions. For the anal-
ysis in the most interesting region where ξ is bounded, it will be convenient to
work with transforms which are holomorphic up to exponentially small errors, and
for that we make a different choice of T , and take an FBI-transform as in [28],
now with a global choice of phase (cf [4], [10], [32]).

The function d(x, y)2 is analytic in a neighborhood of the diagonal in X×X ,
so we can consider it as a holomorphic function in a region

{(x, y) ∈ X̃ × X̃; dist (x, y) <
1
C
, |Imx|, |Im y| < 1

C
}.

Put
φ(x, y) = iλd(x, y)2, (A.22)

where λ > 0 is a constant that we choose large enough, depending on the size of
the neighborhood of the zero section in T ∗X , that we wish to cover.

For x ∈ X̃, |Imx| < 1/C, put

T u(x;h) = h−
3n
4

∫
e

i
hφ(x,y)χ(x, y)u(y)dy, u ∈ D′(X), (A.23)

where χ is a smooth cut-off function with support in {(x, y) ∈ X̃ × X ; |Imx| <
1/C, d(y, y(x)) < 1/C}. Here y(x) ∈ X is the point close to x, where X � y 
→
−Imφ(x, y) attains its non-degenerate maximum. We have the following facts
([28]):

The function Φ0(x) = −Imφ(x, y(x)), x ∈ X̃, |Imx| < 1/C, is strictly
plurisubharmonic and is of the order of magnitude ∼ |Imx|2.

ΛΦ0 := {(x, 2
i ∂Φ0) ∈ T ∗X̃} is an IR-manifold given by ΛΦ0 = κT (T ∗X),

where κT is the complex canonical transform associated to T , given by
(y,−φ′y(x, y)) 
→ (x, φ′x(x, y)). Here and in the following, we identify X̃ with its
intersection with a tubular neighborhood of X which is independent of the choice
of λ in (A.22).

If L2
Φ0

= L2(X̃; e−2Φ0/hL(dx)), for L(dx) denoting a choice of Lebesgue mea-
sure (up to a non-vanishing continuous factor), then T = O(1) : L2(X) → L2

Φ0
,

∂xT = O(e−1/Ch) : L2(X) → L2
Φ0

. This means that up to an exponentially small
error T u is holomorphic for u ∈ L2(X) (and even for u ∈ D′(X)). A natural
choice of Lebesgue measure might be (n!)−1|π∗(σ|ΛΦ0

)n|, where π : ΛΦ0 → X̃ is
the natural projection.

Let HΦ0(X̃) ⊂ L2
Φ0

(X̃) be the subspace of holomorphic functions. Assuming,
as we may, that X̃ is a Stein (“pseudoconvex”) domain, we can apply the well-
known L2 results of Hörmander for the ∂-operator and replace T by T̃ = T +K,
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where K = O(e−1/(Ch)) : L2(X) → L2
Φ0

(X̃), so that T̃ : L2(X) → HΦ0(X̃). In the
main text we do not distinguish between T and T̃ .

Unitarity: Modulo exponentially small errors and microlocally, T is unitary
L2(X) → L2(X̃ ; a0e

−2Φ0/hL(dx)), where L(dx) is chosen as indicated above, and
a0(x;h) is a positive elliptic analytic symbol of order 0.

Let Λ ⊂ T ∗X̃ be an IR-manifold as before, satisfying (A.16) (or the equivalent
condition (A.17)). Then κT (Λ) = ΛΦ, where Φ = ΦΛ, can be normalized by the
requirement that Φ = Φ0 near the boundary of X̃. (Here is where we have to
choose λ large enough, depending on Λ. In the applications, for a given elliptic
operator, Λ and T ∗X will coincide outside a fixed compact neighborhood of the
zero section, and the whole study will be carried out with a fixed λ.)

Let Ω ⊂ T ∗X be the open neighborhood of the 0-section, given by πxκT Ω =
X̃ and view also Ω as a subset of Λ in the natural sense, assuming that T ∗X and Λ
coincide in a neighborhood of the closure of the complement of Ω. If χ ∈ C∞

0 (Ω),
then the norm ‖u‖H(Λ,〈αξ〉m) is equivalent to the norm

‖T u‖L2
Φ

+ ‖(1 − χ)TΛu‖L2(Λ;e−2H/h|〈αξ〉|2mdα)

uniformly with respect to h.
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