
Non-Separable Extensions of Quadrature 
Mirror Filters to Multiple Dimensions 

Quadrature Mirror Filter (QMF) banks have been used in a variety 
of one-dimensional signal processing applications, and have been 
applied separably in two dimensions. As with most one-dimen- 
sional filters, separable extension to multiple dimensions pro- 
duces a transform in which the orientation selectivity of some of 
the high-pass filters is poor. We describe generalized non-separa- 
ble extensions of QMF banks to two and three dimensions, in 
which the orientation specificity of the high-pass filters is greatly 
improved. In particular, we discuss extensions to two dimensions 
with hexagonal symmetry, and three dimensional spatio-temporal 
extensions with rhombic-dodecahedral symmetry. Although these 
filters are conceived and designed on non-standard sampling lat- 
tices, they may be applied to rectangularly sampled images. As in 
one dimension, these transformations may be hierarchically cas- 
caded to form a multi-scale “pyramid” representation. We design 
a set of example filters and apply them to the problems of image 
compression, progressive transmission, orientation analysis, and 
motion analysis. 

INTRODUCTION 

Sub-band transforms have been successfully employed 

in many areas of signal processing. For many applications, 

especially in image processing, researchers have advocated 

the use of sub-band transforms that divide the frequency 

spectrum into octave bandwidth pieces [I]-[4]. In such a 

transform the basis functions represent information at spa- 

tial scales which are related by powers of two. 

A particularly useful one-dimensional orthogonal sub- 

band transform i s  the Quadrature Mirror Filter (QMF) bank, 

which was introduced by Croisier et al. [SI, [6]. These filters 

are used in an analysis/synthesis system which decomposes 

a signal into high-pass and low-pass frequency sub-bands. 

They are also well-suited for octave band splitting, since 

they can be applied recursively to split the low-pass sub- 

band. Vaidyanathan developed a more general theory of 
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perfect reconstruction filter banks based on a polyphase 

matrix decomposition in the frequency domain [7]. Vetterli 

was the first to propose the use of QMFs for image decom- 

position [8]. He showed examples of both separable and 

non-separable non-oriented QMF decompositions in two 

dimensions. Vaidyanathan established criteria for perfect 

reconstruction QMF banks for two-dimensional applica- 

tions [9]. Viscito and Allebach developed perfect recon- 

struction multi-dimensional filter banks with arbitrarydeci- 

mation patterns [IO]. Woods and O’Neil used separable 

QMFs for image data compression [ I l l .  Several other 

authors have used QMF pyramid transforms for data 

compression [12]-[14]. Mallat [3] related QMF pyramids to 

wavelet theory and proposed their use in machine vision. 

In a parallel development, there has been a great deal of 

interest in image representations that are tuned for ori- 

entation as well as scale. This i s  equivalent to requiring that 

the frequency spectra of the basis functions of the repre- 

sentation exhibit angular localization. A variety of argu- 

ments have been advanced in favor of such transforms, 

based on properties of the human visual system and the 

statistics of images [15]-[18]. Daugman, and Porat etal. have 

explored two-dimensional Gabor transforms, in which the 

basis functions are Gaussian windows modulated by si- 

nusoidal gratings [18], [19]. A related transform has been 

described by Watson [16]. 

Most applications of QMFs to two or more dimensions 

have involved separable filters. A two-dimensional example 

i s  illustrated in Fig. 1: The frequency spectrum i s  split into 

low-pass, horizontal high-pass, vertical high-pass, and diag- 

onal high-pass sub-bands. The diagonal band contains 

mixed orientations. 

Adelson er a/ .  [I21 demonstrated that one could develop 

a non-separable decomposition based on hexagonally sym- 

metric QMFs, thereby achieving an orthogonal transform 

in which the all of the basis functions are localized in space, 

spatial frequency, and orientation. This approach to pyr- 

amid construction allows smooth spatial overlap between 

basis functions, and produces much better frequency tun- 

ing than does the blocked non-overlapping construction 

employed by Crettez and Simon [20] or Watson and Ahu- 

mada [21]. In the present paper we extend the Adelson et 

a/ .  concepts; we describe methods for designing hexagonal 

QMFs, and we apply them to a variety of problems. We also 
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Fig. 1. Idealized partition of the frequency domain by sep- 
arable application of two-band one-dimensional Q M F s .  

describe three-dimensional generalizations with rhombic- 

dodecahedral symmetry. 

REVIEW OF ONE DIMENSIONAL QMF CONCEPTS 

In this section, we give a brief review of Quadrature Mir- 

ror Filters in one dimension. A more thorough review may 

be found in [22], or more recently, [23] or [24]. The original 

QMF problem was formulated as a two-band critically Sam- 

pled analysislsynthesis filter bank problem, as illustrated 

in the schematic diagram in Fig. 2. The purpose of the anal- 

ysis section of the filter bank i s  to decompose the input 

sequence x[n] into two half-density representation 

sequences yo[n] and y1 [n]. The synthesis section then 

recombines these sequences to form an approximation 

i [ n ]  to the original sequence. The system is called "critically 

sampled" because the sample input rate is equal tothe total 

sample rate of the intermediate sequences. The notation in 

the diagram i s  standard for digital signal processing. The 

boxes indicate convolution of an input sequence 

with a filter with impulse response f i [n ]  and discrete time 

Fourier transform (DTFT) 

Fi(w) = fl[n]e-'"" 
n 

Analysis section 

A 

The boxes indicate thatthe sequence i s  subsampled 

by a factor of 2, and the boxes indicate that the 

sequence should be upsampled by insertingazero between 

each sample. 

Using the definition of the DTFT and some well known 

facts about the effects of upsampling and downsampling 

in the frequency domain, one can derive equations for the 

DTFT of the representation sequences y,[n]: 

Y;(w) = ; [F,( ; )x( ; )  + F,(;  + .)x(; + .)I (1) 

and the AIS system output i s  

R(w) = Y0(2w)Go(w) + Y , ( 2 W ) G 7 ( W ) .  

Combining these equations gives the overall system 

response of the filter bank: 

fb) = ; [ F o b )  Go(w) + F1 (U) Cl (w)lX(w) 

+ i [ F o ( ~  + *)Go(w) + F l ( W  + T ) C ~ ( W ) ] X ( W  + *). 

(2) 

The first term is a linear shift-invariant (LSI) system response, 

and the second is the system aliasing. 

The term QMF refers to a clever choice of filters that are 

related by spatial shifting and frequency modulation. We 

define 

F&w) = Go(-w) = H(w) 

Fl(w) = Gl(-w) = e/"H(-w + T )  (3) 

for H(w) an arbitrary function of 0. This definition, which 

was proposed in [25], corresponds to the linear algebraic 

notion of an orthogonal transform, and is a more general 

definition than that originally provided by Croisier et al. In 

particular, the original definition does not contain an 

explicit spatial (temporal) shift factor and is therefore valid 

onlyfor even-length filters. The definition given above con- 

tains the original as a subcase, and is also valid for odd- 

length filters. 

With thechoiceof filtersgiven in (3), equation (2) becomes 

Synthesis section 

2 . 1  

2 . 1  

Fig. 2. A two-band analysis/synthesis filter bank in one dimension. 
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Fig. 3. A non-uniformly cascaded analysislsynthesis filter bank. 

The second (aliasing) term cancels, and the remaining LSI 

system response i s  

2 ( w )  = i [ H ( w )  H(-w) + H( -w  + K) H(w + 7r)l X(w). (5) 

Note that the aliasing cancellation is exact, independent of 

the choice of the function /+(U). We should emphasize, 

however, that it i s  the overall system aliasing that cancels- 

the individual sub-bands do contain aliasing. 

The design problem i s  now reduced to finding a filter with 

DTFT H(w) that satisfies the constraint 

~ [ H ( w ) H ( - w )  + H ( - w  + r ) H ( w  + *)I = 1 

or 

(H(w)I2 + IH(w + * ) I 2  = 2. (6) 

In general, lowpass solutions are desirable since the system 

then becomes a band-splitting system. Several authors have 

studied the design and implementation of these filters [25]- 

[29]. Once filters have been designed so that the overall sys- 

tem response i s  unity, the filter bank may be cascaded to 

form multiple-band systems.This may bedone in a uniform 

manner as in [ I l l ,  or in a non-uniform or “pyramid” fashion 

[12]. An exampleof this non-uniform cascading i s  illustrated 

in Fig. 3. Such a pyramid cascade produces an octave-width 

sub-band decomposition, as illustrated in the idealized fre- 

quency diagram in Fig. 4. 

TWO-DIMENSIONAL HEXAGONAL FILTERS 

As discussed in the introduction, separable application 

of one-dimensional QMFs produces a representation in 

which one of the sub-bands contains a mixture of two ori- 

entations. The problem is  inherent in the rectangular sam- 

pling scheme: The frequency response of any rectangularly 

sampled function has the same value at the points (K, K), 

(-K, K), (K, -K), and (-K, -K), so this frequency does not 

correspond to a pure orientation. Splitting the frequencies 

in the neighborhood of this point into different orientation 

........ ......... 
.................. ............. ............... x.x.:.:.:.:.: 

.................... 
......... ......... 
.......... ......... ........ ......... ........ .......... ........ ......... ......... ......... ........... > .......... 

L 
Fig. 4. Octave band splitting produced by a four-level pyr- 
amid cascade of a two-band A/S system. The top picture rep- 
resents the splitting of the two-band AIS system. Each suc- 
cessive picture shows the effect of reapplying the system to 
the lowpass sequence (indicate in grey) of the previous pic- 
ture. The bottom picture gives the final four-level partition 
ofthefrequencydomain.Al1 frequencyaxescoverthe range 
from 0 to K. 

bands requires the use of very large filters. In general, the 

high-frequency diagonal regions of the spectra of real 

images are relatively insignificant. But if the filter bank is 

cascaded to form apyramid,then the lowerfrequencydiag- 

onals (where there is significant power) will also be mixed. 

In this section, we will discuss the use of hexagonal sam- 

pling systems and filters. Hexagonal sampling lattices pro- 

vide the tightest packing of all regular two-dimensional lat- 

tices. In addition, we will show that the mixed orientation 

problem discussed above can be eliminated by using hex- 

agonally symmetric filters. 
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Figure5 showsa hexagonal sampling latticeand i ts  Fourier 

transform. The sampling lattice is defined by a pair of sam- 

pling vectors in the plane: 

The locations of the lattice points consist of all  linear com- 

binations of these vectors with integer coefficients. In the 

frequencydomain, theeffect of this sampling is toconvolve 

the original frequency spectrum of the image with a mod- 

ulation or reciprocal lattice which is the Fourier transform 

of the sampling lattice. The modulation lattice i s  defined by 

a pair of modulation vectors in the frequency plane: 

Fig. 5. Relationship between hex sampling lattices in the spatial and spatial frequency 
domains. On the left is the lattice defined by the sampling vectors. On the right is the 
Fourier transform of this lattice, defined by the modulation vectors. 

4 6 h  - 2 4 3  
t o  = ( ), t 1  = ( 2* ). 

Thus if H ( o )  is the Fourier transform of a hexagonally sam- 

pled signal (image) then it i s  invariant to translations by mul- 

tiples of the vectors ti: 

H ( o )  = H(w + noto + nit,) (7) 

for no and nl any two integers. 

In general, the relationship between the sampling vec- 

tors and modulation vectors i s  easily described in terms of 

matrices [30]-[31]. If we consider the sampling matrix V with 

columns containing the vectors v, and the modulation 

matrix Q with columns containing the vectors t,, then the 

two matrices are related by the equation 

Note that we know V is  invertible since we assume that the 

sampling vectors span the space and are therefore linearly 

independent. 

Next, we need to consider the analysislsynthesis filter 

bank in multiple dimensions. A four-band AIS filter bank 

in two dimensions is illustrated in Fig. 6.  It i s  similar to its 

one-dimensional counterpart in Fig. 2, but the filtering and 

subsampling i s  done in two dimensions: w i s  now a two- 

dimensional vector, and the subsampling i s  parameterized 

by a non-singular two-by-two subsampling matrix, K, with 

integer entries. 

Figure 7 illustrates two-dimensional subsampling in both 

thespatial and frequencydomains. Wecan think of the sub- 

sampling operation as sampling the original continuous 
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Fig. 7. Illustration of subsampling on a hexagonal lattice. The points in the diagram on 
the left represent the original sampling lattice and the circles represent the subsampled 
lattice points. The picture on the right shows the Fourier transform of the lattice (points) 
and the Fourier transform of the subsampled lattice (circles). 

image on a lattice defined by two vectors U, which are linear 

combinationsof the sampling vectors v,.Then the new sam- 

pling matrix i s  written as 

U = VK. 

In order to write a general expression for the output of 

a multi-dimensional analysiskynthesis system, we need an 

equation analogous to that given in (1) relating the sub- 

sampled signal to the sample signal in the frequency 

domain. For rectangular sampling lattices in d dimensions, 

the relationship i s  simple. The sampling matrix K generates 

a sublattice defined by 

{ n : n  = Km, m E Zd}, 

whereZdis the set of all d-dimensional vectors with integer 

components. The sublattice has I K( distinct cosets, each 

coset being acopyof the sublattice translated by an integer 

vector, and the union of the cosets is the original sampling 

lattice [IO]. Consider two signals related by subsampling: 

s[n] = r[Kn]. Then their Fourier transforms are related by 

the expression 

1 I K I - 1  

S(W) = - C R((K-')'(w - 2 ~ k , ) )  
J K J  I = O  

where S(o) and R(w)  are the Fourier transforms of s[n] and 

r[n] respectively, and the k, are a set of polyphase shift vec- 

tors corresponding to each of the I K I sublattice cosets [IO]. 
A simple example of a set of shift vectors is  the following: 

{k:(K-')'k E [0, k E Zd}. 

The corresponding expression for non-rectangular sam- 

pling lattices i s  obtained by mapping from the rectangular 

case. The result of subsampling in the analysiskynthesis 

system may then bewritten as a convolution of the sampled 

spectrum with a set of subsampling modulation vectors 

4: 
1 I K I - 1  

Y,(o) = - c F,((K-')'w - K,)X((K-')'w + K]), (9) 
I K I  / = o  

where the K/ are defined as 

{K/:/ = 0, 1, * .  * , I K I  - I }  

= { V ( K - Y ~ : ( K - ~ ) ~ ~  E [o, qd, n E zd}. (IO) 

The effect of upsampling in the frequency domain is the 

same as for the rectangular case [31]. Combining equation 

(9) with the frequency domain upsampling relationship 

gives an expression for the overall filter bank response: 

As in equation (2), one term of the sum corresponds to the 

LSI system response, and the remaining terms are the sys- 

tem aliasing. 

Returning now to the specific case of the hexagonal sam- 

pling lattice, we wish to select a sampling matrix K. Since 

we want to be able to apply our transform recursively, we 

choose a subsampling scheme which preserves the geom- 

etry of the original sampling lattice: 

K = [: :]. 
On the hexagonal sampling lattice with this subsampling 

scheme, the definition given in (IO) produces the following 

modulatiqp vectors: 

2 4 3  
i i o  = (;), Kl  = ( 

)#  

K, = (y), K3 = ( - 7r/& ~ ). 
Figure 8 offers an idealized picture of this modulation. 

Now we are ready to define a set of hexagonal QMFs. 

Analogous to the one-dimensional case, we can choose the 

filters to eliminate the aliasing terms in equation (11): 

(12) 
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Fig. 8. Illustration of the modulating effect of subsampling 
in the frequency domain. Assume that the sampled image 
has a spectrum bandlimited to the gray region in the upper 
left frequency diagram. Subsampling will modulate the 
spectrum to the gray regions in the other three diagrams. 
The resulting spectrum will be the sum of the four spectra. 

where H is a function that i s  invariant under negation of its 

argument, and the expressions 0's; indicates an inner 

product of the two vectors. As in equation (3), the filters are 

related by spatial shifting and frequency modulation. For 

the subsampling matrix we are using here, there are four 

sublattice cosets and therefore four distinct shifting vectors 

(including the zero vector). Two assignments of the si lead 

to system aliasing cancellation, and these two assignments 

are related by reflection through the origin. So without loss 

of generality, we choose the shifting vectors to be 

&I2 - 6 1 2  
s1 = ). s2 = (3. s3 = ( ) 

To see that the choice of filters in (12) forces cancellation 

of the aliasing terms, consider the aliasing response (the 

bracketed expression) in the second term ( j  = 1) of equa- 

tion (11): 

3 

r = o  
G , ( o ) F , ( o  + A,) 

= H ( - o ) H ( o  + iil) 

+ e-JW S 1 ~ ( o  + iil) . e/(o+cl).slH(o + 2it1) 

+ e - / O ' S Z H ( - "  + k,) . e/'"''" H ( o  + iil + K2) 

+ e-/W'S"(-o + k3) . e/ ' "+ i? l " 'S1 H ( o  + K1 + K3) 

+ e/cl'SIH(-w + t , ) ~ ( w )  

+ e/21'SZ/i(-o + K,)H(W + K ~ )  

+ e / " 1 ' S 3 ~ ( - ~  + i i , ) ~ ( w  + ic2) 

= H ( - o ) H ( w  + Kl) 

= 0. 

We have made use of the assumed symmetry of H ( o )  and 

the translation invariancedefined in equation (7).Theterms 

for j = 2 and j = 3 cancel in a similar manner. 

After cancelling all of the aliasing terms in equation (II), 

the remaining LSI system response i s  

1 

4 r = O  

1 

4 r = o  

1 

4 r = O  

3 

R(o) = - X ( 0 )  c C,(w)Fr(o)  

3 

= - X ( w )  c H ( - o  + K,)H(w + K,) 

= - X(0 )  c 1 H ( o  + K,)I2. 

3 

(13) 

As in onedimension,thealiasingcancellation isexact, inde- 

pendent of the choice of H(o), and the design problem is  

reduced to finding a filter with DTFT H ( o )  satisfying the 

constraint 

3 

c ( H ( o  + k,)I2 = 4. (14) 

This is analogous to the one-dimensional equation (6). 

Again, a low-pass solution will producea band-splitting sys- 

tem which may be cascaded hierarchically to produce an 

octave bandwidth decomposition in two dimensions. An 

idealized illustration of this isgiven in Fig.9. Figureloshows 

the results of applying a hexagonal QMF bank to an image 

of a disk. 

r = O  

Hexagonal Filter Design 

A "good" filter i s  one that satisfies the constraint given 

in equation (14). In addition, many applications require that 

the sub-band images have a minimal amount of aliasing (as 

in the one-dimensional case, the individual subbands con- 

tain aliasing, although the overall system aliasing cancels). 

Our objective was to design filters with small regions of 

support that satisfy both of theseconstraints. In onedimen- 

sion, we found that a simple frequency-sampling design 

method produced high quality QMFs with small regions of 

support [25]. We have found that this method is suitable for 

multi-dimensional designs as well. 

We begin by fixing the size of the hexagonal filter kernel 

and the sampling density in thefrequencydomain.The size 

of the kernel is measured in terms of the number of hex- 

agonal "rings" it contains. For example, a zero-ring filter 

containsonlyasingle impulse, and aone-ring filtercontains 
acenter impulse surrounded bya hexagonal ring of six more 

impulses. Due to the hexagonal symmetry, the free param- 

eters of the filter compriseawedge-shaped region covering 

approximately one twelfth of the kernel. These parameters 

completely specify the kernel. 

We define a filter bank error function as the maximal 

deviation of the overall filter bank response given in equa- 

tion (13) from its ideal value: 

where w ranges over the samples in the frequency spec- 

trum. The function fl (w) i s  a frequency weighting function 

roughly matched to the sensitivity of the human visual sys- 

tem and the statistics of images: 

fl(o) = Il(ol .  
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We also define an intra-band aliasing error function: 

€2 = max { f , (w’) IH(-w’)H(w’  + i i , ) l}  

where Ki is  any one of the non-zero subsampling modu- 

lation points and the function f 2 ( 0 ’ )  i s  defined as 

U’ 

f,(w’) = 111 O’l2. 

The frequency vector w‘ ranges over all of the samples in 

the frequency spectrum, except for those in a hexagonal 

boundary containing the point (0,7d2). Aliasing within sub- 

bands cannot be eliminated at the points in this boundary 

because the overall filter bank response at these points 

..... 
Fig. 9. Idealized diagram of the partition of the frequency plane resulting from a four- 
level pyramid cascade of hexagonal filters. The top plot represents the frequency spectrum 
of the original image. This is divided into four sub-bands at the next level. On each sub- 
sequent level, the lowpass sub-band (outlined in bold) i s  subdivided further. 

would then be forced to zero, violating the constraint in 

equation (14). 

Finally,wecombinethetwoerrorfunctionsasaweighted 

sum: 

E = aE1 + (1 - 4 E 2 ,  a E [O, 11. 

Given a set of values for the free parameters, we can con- 

struct a kernel and compute the value of the error €. To 

design filters, we used adownhill simplex method to search 

the spaceof free parameters for minima in E. The weighting 

factor a was adjusted to give a filter bank response error 

El less than a fixed threshold. The power spectra of an exam- 
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Fig. 10. Results of applying a hexagonal QMF bank to an image of a disk. On the left i s  
the original image. In  the center i s  the result after one application of the analysis section 
of the filter bank. The image has been decomposed into a low-pass and three oriented 
high-pass images at 1/4 density. O n  the right, we have applied the filter bank recursively 
to the low-pass image to produce a two-level pyramid decomposition. 

ple set of filters i s  plotted in Fig. 11. Several example filter 

kernels are given in the Appendix. 

Image Data Compression 

We compressed the standard “Lena” image using the 

“4-ring” hexagonal filter given in the Appendix. The orig- 

inal image is  shown in Fig. 12 and two compressed versions 

in Fig. 13 and Fig. 14. To hexagonally sample the image, we 

resampled vertically by a factor of 7/4 using sinc interpo- 
lation. We then multiplied by the function f[n] = 1 + 
( - l ) ( n x + n y ) .  This method, which i s  similar to one suggested 

by Mersereau [30], gives a reasonable geometric approxi- 

mation to a hexagonal sampling lattice. 

Afour-level pyramid transform was applied to the image. 

This transformation partitions the frequency domain into 

octave-spaced oriented sub-bands, as illustrated in the 

idealized frequency diagram of Fig. 9. An overall bit rate 

(entropy) R was fixed and the bit rates assigned to the coef- 

ficients of the transform were determined using the stan- 

dard optimal allocation formula [32]: 

where 4 is the variance of the k th coefficient in the trans- 

form. Negative values of i?k were set to zero and the other 

bit rates raised to maintain the correct overall bit rate R.  

Each sub-image was quantized with the bin size chosen to 

Fig. 11. Thepower specrraforthe”4-ring”setof hexagonal QMFfiItersThefilter kernels 
are given in  the appendix. 
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Fig. 12. The original "Lena" image at 256 x 256 pixels. 

Fig. 13. Data compression using the 4-ring hexagonal fil- 
ter bank. The entropy of the quantized pyramid was 1.0 bits 
per pixel for a total of 65 536 bits. 

give a first order entropy equal to the optimal bit rate Rk for 

that sub-image. 

Upon re-synthesizing the image, we interpolated the 

zero-valued pixels and vertically resampled by a factor of 

417. We feel that the compression results are superior to 

comparable results using a block DCT. The results also 

comparefavorablywith similar results using separable QMF 

pyramids: the aliasing errors are less disturbing visuallythan 

those of separable QMFs. 

Progressive Transmission 

Another useful application of pyramid sub-band repre- 

sentations i s  progressive transmission. This involves send- 

ing an image through a low-capacity channel in such a way 

that a low resolution version of the image becomes avail- 

able quickly, and higher resolution information i s  added in 

Fig. 14. Datacompression using the4-ring hexagonal filter 
bank. The entropy of the quantized pyramid was 0.25 bits 
per pixel for a total of 16 384 bits. 

a gradual manner. In the case of a sub-band pyramid, this 

i s  easily accomplished by sending the information in order 

from lowest to highest resolution. Figure 15 shows a 

sequence of intermediate progressive transmission images 

for a four-level pyramid transform using hexagonal filters. 

Fig. 15. Progressive transmission images using a four-level 
pyramid transform constructed with hexagonal filters. The 
first image is produced by reconstructing only the low-pass 
signal at the fourth pyramid level. The next image results 
from reconstructing the entire fourth level, or equivalently, 
the low-pass image on the third level. The final image i s  not 
shown. 

Orientation Analysis 

To demonstrate the orientation selectivity of the filters, 

we use a technique developed by Freeman and Adelson 

[33]. Using a set of three second-order polynomial filters, 
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they extract the local orientation of the image at each pixel 

position.Although the hexagonal filters developed here are 

not second-order polynomials, they have similar frequency 

spectra and thus have approximately the same behavior 

when used in this fashion. Figure 17 shows a line drawing 

representationof the resultof applyingthetechniquetothe 

image of Einstein given in Figure 16. The line orientation 

corresponds to the local image orientation, and the line 

length corresponds to the degree of local anisotropy: 

Longer lines indicate that the image i s  strongly oriented. 

Fig. 16. Original image of Einstein. 

c 

Ill' 

Fig. 17. An oriented line drawing of Albert Einstein, pro- 
duced by using linear combinations of the oriented hex- 
agonal filter outputs to measure the strength and orienta- 
tion of the local image anisotropy. 

RHOMBIC DODECAHEDRAL FILTERS IN THREE DIMENSIONS 

The extension of the concepts developed in the previous 

section to three dimensions i s  fairly straightforward. Anal- 

ogous to the two-dimensional hexagonal case, we choose 

a periodic sampling lattice which corresponds to the 

densest packing of spheres in three dimensions. This i s  the 

Fig. 18. A rhombic dodecahedron. This is the shape of the 
repeating frequency region for the "garnet" filter. 

crystal structure of garnet, and therefore we have given 

these filters the nickname "garnet" QMFs. We choose as 

a band-limiting region the Voronoi region of this lattice (a 

rhombic dodecahedron) which is  illustrated in Fig. 18. The 

sampling matrix for the lattice i s  

v =  [2 0 1 1. 
0 0 II& 

Using equation (8), the modulation matrix i s  then 

0 0  

2* 0 1. 
-&* 0 2 a *  

To preserve the geometry of the original sampling lattice, 

we choose an eight-band AIS system with subsampling 

matrix 

K =  0 2 0 .  [: : :1 
This produces the following subsampling modulation 

points, as determined by equation (IO): 
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These modulation vectors correspond to a decomposi- 

-low-pass 

-stationary vertical 

-stationary horizontal 

-motion uplright 

-motion uplleft 

-motion dowdright 

-motion downlleft 

-combined stationary diagonals and full-field flicker. 

Unfortunately, there seems to be no way to avoid the last 

filter which contains mixed orientation. The overall system 

response of the filter bank i s  

tion into the following sub-bands: 

7 

1 R(w) = X(w + K,) c G,(w) F,(w + ii,) . (15) 

where the first term i s  the LSI system response, and the 

remaining terms are aliasing terms. 

Once again, we can choose filters related by shifts and 

modulations that will cancel the system aliasing terms: 

/ = 0  Lo 

Fo(w) = Go(-w) = H(w)  = H ( - w )  

F,(w) = G,(-w) = e/o'si H(w + K,), i E {I, 2, 

where the shift vectors s, are defined as 

so = (i), s1 = ( 
s2 = (i). s3 = ( 
s4 = ( 

s5 = (i), 

. . .  
7) 

Note that as in the hexagonal case, this choice i s  not unique. 

With the choice of filters given above, the aliasing terms 

in equation (15) cancel and the remaining LSI system 

response is  

7 

i ( u )  = Q X(0)  c 1 H(w + k,)I*, 
,=o 

independent of thechoiceof the function H(w).The design 

constraint equation is  now 

7 

IH(w + KJI2  = 8. 
,=o 

We designed a garnet filter using the same method 

described in the previous section. To demonstrate its use, 

we have applied it to an image sequence of a sinusoidal 

pinwheel rotating in a counterclockwise direction. One 

frame of the sequence i s  shown in Fig. 19(a). The squared 

responses of the four different motion-selective filters (fil- 

ters F3(w) through F,(w)) are shown in Fig. 19(b)-(e). As 

expected, the filters extract information within spatio-tem- 

poral frequency bands corresponding to motion in the 

Fig. 19 At  the top i s  one image from a rotating pinwheel 
image sequence. The four lower images are the squared 
result of convolving the sequence with four of the "garnet" 
filters described in the text. Each filter responds preferen- 
tially to one direction of motion. 

directions downlleft, uplleft, downlright, and uplright. We 

believe that the garnet filters will be useful for motion anal- 

ysis and for data compression of three-dimensional images 

such as medical imagery and motion sequences. 

CONCLUSIONS 

In this paper, we have demonstrated that one-dimen- 

sional QMF transforms can be extended to multiple dimen- 

sions in an orientation-selective manner. The resulting 

multi-dimensional transform can be applied recursively to 

create a multi-scale oriented pyramid representation. The 

filters are relatively compact and computationally efficient, 

assuming one takes advantage of symmetry. We have dem- 

onstrated the usefulness of the transform in the areas of 

data compression, progressive transmission, orientation 

analysis, and motion extraction. We believe the transform 

will be extremely useful for many other machine vision 

tasks. 
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APPENDIX: EXAMPLE HEXAGONAL FILTERS 

Table 1 A Hexagonal Filter* 
~ 

j k l l k j  
k g h i h g k  

l h e f f e h l  
l i f c d c f i l  

k h f d b b d f h k  

j g e c b a b c e g j  
k h f d b b d f h k  

l i f c d c f i l  
l h e f f e h l  

k g h i h g k  
j k l l k j  

*The letters refer to the free parameters (see text). Only the low-pass filter 

is shown. The three highpass filters are formed by modulating and shifting 

the low-pass. 

Table 2 Some Example Hexagonal Filter Coefficient 
Values 

Parameter 3-ring filter 4-ring filter 5-ring filter 

a 
b 

d 
e 
f 

g 
h 

i 
k 
I 

C 

I 

0.59290695 0.6066799 
0.32242984 0.31 62482 

- 0.01 6686682 
-0.061579883 -0.0016289932 
-0.0020203826 -0.02741341 
-0.0038235565 -0.038143888 

- 0.005958891 
0.019682134 
0.01 6045252 

- 0.02801 9974 

0.60879886 
0.31689283 

-0.027267352 
- 0.01 2790751 
-0.03874194 
-0.02383056 

0.0008673751 
0.01 55541 02 
0.0080001 475 

- 0.0009099232 
- 0.0022140248 
-0.001 0486352 
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