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Abstract  For the Neumann sinh-Gordon equation on the unit ball B C R?

u 1 _ —u 1 .
[_Auzﬁ(f,feu‘ﬂ)‘A (7= —%) inB

%:0 on dB

we construct sequence of solutions which exhibit a multiple blow up at the origin, where A*
are positive parameters. It answers partially an open problem formulated in Jost et al. [Calc
Var Partial Diff Equ 31(2):263-276].
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1 Introduction and statement of main results

In this paper, we consider the Neumann sinh-Gordon equation

[—Au=,\+ (f;%_ﬁ)_r (f;_eu*" ) @ (1.1)
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on a smooth domain  C R2, where v denotes the unit outward normal to 92 and AT are
positive parameters.

The analysis of non compact solutions to (1.1) has recently attracted a lot of interest. Let
u, be a sequence of solutions to (1.1) with uniformly bounded parameters )\}. We define the
positive/negative blow-up set of {u,} as

St =13xe€Q: 3Jx, > Qs.t. ln)\,ﬂfj:u,,(xn)—ln/ei“” — 4oo0asn — 400
Q
and we can associate (up to a subsequence) to every p € Sy its positive/negative limiting
mass

+u,

+
my(p) = lim lim . fB’(p) ¢
r—0n—+o0 fQ etin

In particular, Sy is a finite set and

eiu,,

T > mi(p)sy

PES+

ki

weakly in the sense of measures, as n — 4-00. In a recent paper [8], Jost, Wang, Ye and
Zhou proved that a quantization of the limiting masses holds: m (p) are multiples of 8. It
is the analogue of a result by Li and Shafrir [9] for the mean field equation.

In view of a relationship in [10]

(m4(p) —m_(p))* =87 (m4(p) +m_(p)),

it follows that for any p € Sy N S_ the couple (m(p), m_(p)), up to the order, takes the
value

(k(k —1) k(k+1)
8

T > ) , ke N\{0}.

An open problem raised in [8] concerns whether or not in general k must be 1. (See Problem
1 of [8].) Let us stress that k = 1 corresponds to a simple blow up in p while k > 1 gives
rise to a non-simple (multiple) blow up.

In this paper, we will give a negative answer to this question. We consider the following
problem on the unit ball B:

—Au :p2 (e” — %fBe”) —,o2 (e*” — %fBe*") in B (1.2)
g—l'f=0 on dB. ’

The result we have is:

Theorem 1.1 There exists py > O small such that for any 0 < p < pg problem (1.2) has a
solution u,, such that as p — 0

pze"ﬂ — 876, ,oze_”/’ — 2478 (1.3)
weakly in the sense of measure in B.
The solution u, is constructed by superposing a posmve bubble centered at the origin and

3 negative bubbles centered at la;, where a; = e = , j = 0,1,2, are the 3-roots of unity
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and [ =1(p) — Oas p — 0. Setting A7 = p* [ =", by (1.3) we have that
—u,

u
Loer _ e
P —u
Jge

P fB elp

weakly in the sense of measure in B, as p — 0. In this way, u p 18 a sequence of solutions to
(1.1) with parameters Af for which 0 € S;NS_ and the limiting masses satisfy m 4 (0) = 8w,
m_(0) = 24m. Hence, in general k = 1 does not hold.

We can recover an example of non simple blow up for the Dirichlet sinh-Gordon equation
too (see also [2] for the case of simple blow up points). Let ug be the solution of

A — 8mdy, A — 2478

P

u® =u, on dB.

( Aud =2 [ (e — ™) inB
0

The function v, = u, — ug satisfies

[ —Av=p*(VFe' -V e™") inB (14)

v, =0 on 0B,
Hup V* uniformly as p — 0 for some explicit functions
V=, In fact, V1 has a local minimum at the origin while V~ has a local maximum at the
origin. This suggests that the existence of non-simple blow-up solutions depends very much
on the local structure of V*. Our computations also suggest that when Vf = 1, problem
(1.4) has only simple blow-ups.

For e, § and [ > 0, let us define

where the potentials Vpi =e

UT(x) =1 7882 U: =1 B¢ i =0,1,2
X n , . n , , 1,2,
(8202 + |x|?)? J (€2p? + |x — laj|?)? /
which are solutions of —AU = p?e" in R2. Let us introduce the projection operator

P:C>(Q) — C*>*(Q),a € (0, 1): given u € C>*(RQ), let Pu be the solution of

APu=Au—1 [ Au inB
iPu — on dB
Jp Pu=0.

For a suitable choice of €, 8 and [, PU := PU" — PU™ is a good approximating solution
to (1.2), where U~ = Z?:O Uj_. Our solution u, will be in the form PU + ¢, where ¢ is
a remainder term small in L°°(2)—norm and [ = [(p) satisfies [(p) — 0 as p — 0. The
existence of /(p) will follow by means of a Lyapunov—Schmidt finite dimensional reduction
and crucial will be the property that O is a critical point of the related Green’s function. This
procedure has been used in many other papers. See [1,2,4-7,11] and the references therein.
The main difficulties here are the estimates of the distance between bubbles.

Theorem 1.1 is the first nontrivial example of non-simple blow up solutions for
sinh-Gordon equations. Previous known examples of non-simple blow up solutions are for
Liouville equation on a disk in [3] (without boundary condition) or Liouville equation with
anisotropic coefficients in [11].

The paper is organized as follows. In Sect. 2 we describe exactly the ansatz for the solu-
tion we are looking for and we rewrite the problem in term of a linear operator L (for
which a solvability theory is performed in Appendix B). In Sect. 3 we solve an auxiliary
non linear problem and reduce (1.2) to find critical points of a function E o(1). In Sect. 4 we
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prove Theorem 1.1 and an aymptotic expansion of E »(1) for [ small has to be performed.
A coefficient in the expansion is given in integral form and its sign is crucial to have critical
points of E,(I) for [ small: Appendix A is devoted to the exact computation of such an
integral.

2 Approximating solutions

First of all, let us introduce the Neumann Green’s function G (x, y) on B, i.e. the solution of
the problem

—AG(x,y) =8, — 1 in B
%(x,y):VxG(x,y)vc:O on 0B
Jp G(x, y)dx =0.

On B the regular part H(x, y) of G(x, y), defined as H(x,y) = G(x,y) + ﬁ In|x — y|,
turns out to be:

1 2,12 L
H(x,y)=—EIH(IXI |1 —2x~)’+1)+EIXI +cy),

where c(y) is chosen to have f 5 G(x, y)dx = 0. Here and in the sequel, the expression x - y
will denote both the inner product in R?, x - y = ij | x7yJ and the inner product in C,
x -y = Re (xy), depending on whether x, y are considered as points in R2 or C.
For y = 0 it is easy to compute c(0) = —%. Since G (x, y) is a symmetric function, we
can deduce that
lyI? ly> 3

c(y)=H(@0,y)=H(y,0) = E+c(0): e

Hence, the expression of H (x, y) becomes

2 2
x|”+ 3
L RPAP

1
H(x,y) == In (IxPlyP =20y +1)

47 8’
Givena; = e@, j =0,1,2, the 3-roots of unity, define
5= Le4nH(O,0)74n 32 G0daj)
NG
¢ - %e4nH(laj,laj)+4ﬂ Yz Gllan.lap—47Gaj0) 5 _( 1 2.

Since for symmetry €; does not depend on j = 0, 1, 2, we will refer to it simply as €. Since
aj-am = —% for j # m, we get that
5123
S= L AUPS 2S5

NG 98

We describe asymptotically the action of P on U4 in the following Lemma:

Lemma 2.1 Let j =0, 1, 2. There hold

PUT = U —In(88%) + 87 H(x,0) + O(82p>|In 8p))
PU; =U; - In(8¢%) + 8w H (x, la;) + O(e?p*|In epl)
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uniformly in @, as §p, €ep — 0. In particular, there hold

PUY =87G(x,0) + O(8%p%|In 8p| + 82p|x|7%)
PU; =87G(x,laj) + 0(2p*|1n ep| + €*p*|x — laj|72).

Proof First, let us observe that

8d
—/AU+ :p2/6U+ = / 0 8r 4 0(5%pY) 2.1

1+ |x[*)?
B B Ix|<1/6p
—/AU]._ =p2/eUf = p? / Ui + 0(2p?) 2.2)
B B [x—laj|<1/2

=87 + 0(%p?).

Let us justify the validity of the expansion for PU ™. Since

Ut 4 8 9 L Ix]) + 0©*p*) ondB
=— =8rt—({——1n on s
N 202+ 1 v\ 2 P
the function ¢ = PUT — U™ + In(88%) — 87 H (x, 0) satisfies
9 3G(x,0
Ag = 0(8%p?) in B, a—‘” = —871% +0(8%p%) = 0(8%p*) on 3B
V v

. . . 52,02 _ 2 2 .
in view of (2.1). Since fB ln(W + 1) = 0(67p~|In 8p]), we easily get that
2.2

/w = /(PU+ —87G(x,0)) +2/ln (a—p + 1) = 0(8*p?|1n 8p)).
B B

|x[2
B
By the representation formula

1 ¢
px) = ;/w—/G(x,y)Afp(y)der/G(x,y)a(y)do(y)
B B aB
for every x € B, finally we get that ¢ = O0(8%p?|1n 8p|) uniformly in €2, as §p — 0.
Similarly, the expansion of PU ™ follows and the proof is done. O

In order to find solutions we will need a-posteriori that I* has to behave like p, as p — 0.

In order to simplify the estimates and make the argument more clear, in the sequel we will
assume that

ic>=1: clp<i*<cp. (2.3)

Let

2 (ep)%

9
3@+ lx —la;)f

(8p)%

W) = 5
8202 + [x[2)F

+

For any h € L°°(2), introduce the weighted norm

2]l = sup |W(x)h(x)|.
xXeQ

Let us stress that there are many choices for the exponents in the weight function W (x) and
ours turns out to be satisfactory.
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With Lemma 2.1 in hands, we can evaluate how good is the approximating solution PU
in |- [l

Proposition 2.2 Assume (2.3). There holds

T
B B

1 1 :
IAPU + p? ePU——/ePU —p? e*PU—;/e*PU I« = 02| i)

as p,l — 0.

Proof We have that

1 1
R := APU + p> ePU_i/ePU e e—PU_i/e—PU
T T
B B
2 —
_ p2(€PU _eU+) _ pz e~ PU ZEU]
j=0
P’ PU _ U p’ PU > U
- — = —PU_ j
p- /(e e’ )+ T[/ e Ze
B B j=
Let Rt = p2PV — eU") and R— = p2(e PV — Z?ZOeUf_) in order to get
_ 1 _
R=R*"—R — L[ (R* - R).
Estimate on R™. By the choice of § and Lemma 2.1 we get that
PU-U"=(PUt-U") - PU~
2
=87 (H(x,0) — H(0,0)) — 87 »_(H(x.laj) — H(0.la)))
Jj=0

2
+2> In(e172p* + |I'x —aj*) + O(e%p?| In €p))
j=0
uniformly in Q. By Z%:o aj = 0 note that the expansions

2 2
12
D e+ x —aj) =2 " 'x —aj|+ 0 (7)
j=0

"1y _ .2
s = 'x —ajl
2 2 2
X X X
=-2 Eaj -7+0(|l—2|+12):0(|1—2|+12), (24)
Jj=0
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in B;2(0), and

2
H(x,0) — H(0,0) = > (H(x,laj) — H(0,la;))
j=0
RS
2
=t Z1n(12|x| —2x-a;j+1)
j=0

1< 2.2 2

=-S5 jzoaj “x + O0(%|x[%) = O(Ix[") (2.5)
in  hold. Hence, we get that
2
p?ePV = p? T (€720 + 117" x —a; )%V (1+ O + 1*|In1)) (2.6)

j=0

uniformly in €2 and in particular, by (2.4) in B;/>(0) there holds
p2etV = p2eUT (1 4+ 0172 1x 2 + 1)), @7

Then, there holds [, . o IRY] = O() and

12(0) |
9
(82p% + |x|?)3

(Bp)*
2 12
A+ 1y»Hs (A4 ]y>)s
in B;/2(0), where y = % € By /255 (0). Outside By>(0), firstly we have that

IW@RT (0] < |R* (x)]

7

5p) %
,02W€U+ < L
(820% + [x[H)3
in B\ B;2(0). Secondly, by (2.6) we deduce that

_ g (Hﬁ_o(esz +lx = la,,-|2)2)

7,11 6
= 0% 1p3) =0(1%) (2.8)

e

(8202 + Ix?)?
(€2p? + x> + 15?2
(8207 + [x2)?

0]

) =012+ 1) =0() 2.9)

in B\Bl/z(O) and then

2.2 .y 2\9 7
p2WePU:O(p2(€/0 + |x —lap|®)® _0 g :0(19) 2.10)

(ep)? e

in B\B;/2(0). Hence, by (2.8) and (2.10) we get that IWRT| = 0(1%) in B\B;2(0). By
(2.9) it is easily seen that

IRT| < p? / ePU 4 / U = 0ad).

B\Bj;2(0) B\B;2(0) B\B;2(0)
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Finally, combining the estimates in B;/2(0) and in B\ B;2(0) we get that

||R+||*+/|R+| — o). 211
B

Estimate on R™. Fix j =0, 1,2. On B;/2(la;) we have that

2( PU 22: U) 2 —PU 2 U Z 862,02
R =p°le " — e m =(pe pel)— 75 >
= S @t lx —lan )

As for R, we can write in Q:

2
—PU —U; =(PU; —=U;)+ Y PU, — PU" =87 > (H(x,la,) — H(laj,lay))
m#j m=0
— 87 (H(x, 0) - H(la,-, 0) +2In(8*2p* + |1 'x[%)
2417 — ay,
23 ¢ | i + 0(e?p[In epl),

2
am
m#j |

by means of by the choice of € and Lemma 2.1. We compute now the Taylor expansion of

2
> (H . lay) = Haj lay) = (H(x, 0) = H(la;,0))
m=0
|X|2 _12 )
=5, tOUlx—lajl) = Ollx —laj| + |x —la;]). (2.12)

Hence, we get that

|aj _am|4
2 + |l_1x _ am|2)2

2 —PU 2 —1.12,2
p’e 2.Y5 (8217202 4+ 17 1x D) H i
m
x (14+0@* | +1|x —laj| + |x —la; %)) (2.13)
uniformly in €2, for any j = 0, 1, 2. Note that on B;>(la;)

2 -2 .2 1 2
Z [T2p”+|I™
]n(82172p2 |171x|2) 1 p | X am|

i— 2
m#} j = aml
=2~ x|—2Zl Wx=anl o2
m#‘] ’nl
x—la,)—zz "f “’" —la;) + O +12x —laj )
m#j

=0 +17%x —la;?)

because

Zgzgaj—%z“am:aj.

m#j m#j

@ Springer



Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

Hence, we deduce that
p2e PV = p2ei (14 0% +11x —laj| +172|x —la;|%)) (2.14)

in Bj2(laj), j =0, 1,2, and then

2.2
- 2 U: (-2 2 2 €°p
IR™| < Cp*e"s (I72)x —laj* +1)x —laj| +1*) + O Z P T——
m#j
In turn, we get that fBI/Z(lllj) |[R~| = O(/?|1nl]) and the estimate
IWR™(x)] £ ———— (21720 |y* + elply| + %)
(1+y»)s
;
iy
+C G — o)

7
i (€02 + |x — Lay D)

x—laj

& € Bl/2ep(0)~
Setting B := B\ U?:o Byj2(laj), we have that

does hold in B;/>(laj), where y =

7
- 7
2wl < - (TP) o = 0@ Tphy = 0(1) (2.15)
€“p-+|x —laj|)3
in B. Since by Lemma 2.1
5202 212 _
o~PU _ ' ( 2,02 + [x]%) . 2€—8nH(x,0)+87r 32 Hxlaj) (14 0a* n1p)
szo(é pr+|x —laj|?)
_ &9 + 1x1»)?
=0l ). (2.16)
[Ti=o(e*p* + Ix —la;|*)
we get that in B
PWe U < ¢ pzl (8%p? + lx —lay|* +17)?
(€0)3 (€2p% + |x — lag2)¥ [[5=, (€202 + |x — la;|?)?
B a ) =o (i) @.17)
T ()t €p? +1x —la11»?) '

in view of § < €. Then, by (2.15) and (2.17) we get that [ WR™| = 0(1%) in B and by (2.16)
it follows easily that

/|R*| =0 pz/H(€2p2+|x_laj|2)72+lz =0 l4/|x—1612|74-|—l2

J T J
B B I7 B

=0 12/|y—a2|—4+12 = 0.
I-'B
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The estimates on each B/>(la;) and in B yield to

IR [l = 0%, /IR_I = 0(*|Inl]). (2.18)
B
Finally, by (2.11) and (2.18) we get that

1 3
IRl < IR s+ IR [« + - /|R+| +|/R7| (supW) = 02| Inl])
B
B B

because
1

supW < ¢ -=0("2). (2.19)
B (ep)*

m}

Remark 2.3 Let us observe that (2.7) implies p2ePl < szeU+ in B;/2(0) and (2.9) yields
to

2 2.2
2,PU ’ 2 p €ep

<C
(€202 + |x —laz|?)? — ~ (2p2 + |x — laz|?)?

in B\By;/>(0). Similarly, (2.14) gives ple FPU < C,ozeU; in Bjs2(laj) and by (2.16) we
deduce that in B there holds

2.2 _ 2 232 , 271—4
pze_PUEC” 2(Szp + |x — la1|” + 1) - - p-l -
[Ti—o(€?0? + |x —la;»)? (€7p” + |x —laz|?)
62/)2

(€2p% + Ix —la|)?

In conclusion, the global estimate
2 —
PPV + e Uy < Do [V + > el (2.20)
Jj=

does hold in B, for some constant Dy > 0. Moreover, (2.7) and (2.14) give that

8204 "V + e PN Gpy) = iy 221

62:04(6PU + E_PU)(GP}’ + la]) - (1+§,|2)2 .
uniformly on compact set of R? as [ — 0.

We will look for a solution u of problem (1.2) in the form u = PU + ¢, with ¢ a remainder
term small in || - ||, which is 2T”—periodic (in the angular variable) and even in the second
variable. Identifying x = (x1, x2) € R? and x; + ixy € C, let us introduce

S={ue Ll(B) : u(e%x) =u(x), u(x)=u(x) a.e.in B}

as the space of 2T’T—periodic functions on B which are even in x,. We have that U* and
Z?:o Vi are in S. Then

2 2
1 + U- 1 U~
—APU = 2 U+_7/U — /R / J
e - [e JZO > e
B =

j=03
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is invariant under %”—rotatlon and conjugation. Since G (e T x,y) = G(x,e 3 y) and

G(x,y) = G(x,y), by the representation formula for PU:

PU(x) =/G(x, Y)(=APU)(y)dy, VxE€B,
B

simple changes of variable yield to PU € S.
We take the remainder term ¢ in W22(B) N S with /] g ® = 0. In terms of ¢, equation
(1.2) becomes

L($) = ~[R+ N(@)] inB.
% 0 on 0B,

where
2
L) = Ap+p*(e" +e7"0)g — p; /(ePU +e "¢,
B

N@) = p*e"(? —1—¢) = p*e "V (e —1+¢)
P2 [ pu 0 P> [ _pu, ¢
—— [ e (e —1—¢)+; e (e —=1+9¢).

T
B B

Recall that

2
R=APU + p*fV —e PV — ‘i/(e”’ — e Uy,
T
B

Let us stress that R, L(¢) and N(¢) are in S and there holds:

B/RZB/L(¢>)=B/N(¢)=0-

3 The finite dimensional reduction

Let us introduce the functions

vo — |x|2—82,02 A_2|x_laj|2_€2p2 1_012
0 62p2+|x|2’ 0.j ezp2+|x—laj|2 v
and
Spx ep(x —laj) .
=4t z,=4 0 01,2
e R e PH
Define

2 2
ep(x —laj) - aj
Z: Z-~a': 4—
JZ=(:) J % jzzz,) 62p2+|x—la/’|2

and observe that Z € S. Setting Sp = SN{ f p 4 = 0}, we are interested in solving the follow-
ing linear problem associated to L: given h € L (B) NSy, find a function ¢ € W>2(B)NS,

@ Springer



P. Esposito, J. Wei

such that
L(¢)=h+cAPZ inB
¥ -0 on 9B 3.1)
[z APZ¢ =0,

for some coefficient ¢ € R.

We will follow the approach in [4] as re-formulated in [6, 7], developed there for a Dirichlet
linear problem (see also [5]). Asymptotically the kernel of L is composed by linear combi-
nations of Yo, Zo, j, Y, (Zj)x for j =0, 1,2 and k = 1, 2. The elements 2T’T—periodic in the

kernel of L are forced to be linear combinations of Yy, Z?:O Zy,j, Re (Z?:O Z; ajz.) and

Im (Z%:o zZ jajz.), where a? is the complex square. Note that

2 2
> 2| 0= (X 22 )
j=0 j=0

and then the kernel of L in S is spanned by Yy, Z%:o Zy,j and

2 2
2
Z =Re E Z.,-aj = E Zj-aj.
j=0 j=0

Among them, only Z has “asymptotically null average on B”, and then, we expect that
asymptotically the kernel of L in Sy should be generated simply by Z. In Appendix B we
will show that the picture above is correct:

Proposition 3.1 Assume (2.3). There existly >0 and C > 0 such that, forany h € L°°(B) NSy
and 0 < I < ly, there is a unique solution ¢ € W22(B) N Sy to (3.1) with

I@lloc = Clinl{li2ll, 1101l g1y = € (IPlloo + [1ll) - (3.2)
Based on it, we solve now the following nonlinear auxiliary problem:
—A(PU + ¢) = p2(ePU+¢ —e=PU=%) inB

2
— L [5(PUT — emPU=0) 4 cAPZ

) (3.3)
% =0 on B
[3 APZ$ =0,

for some ¢ € W22(B) N Sy and a coefficient ¢ € R. The following result holds:

Proposition 3.2 Assume (2.3). There exist C >0 and ly > 0 such that for any 0 <[ <ly prob-
lem (3.3) has a unique solution ¢, (1) € W>2(B) NSy which satisfies ||, (1) || oo < Cl3 1.
Furthermore, the functionl — ¢,(l) is a C! function in L*(B) and in H'(B).

Proof We can rewrite (3.3) in the following way
L(¢) =—(R+ N(¢)) —cAPZ.

Let us denote by L the function space Lo := L°°(B) N Sy endowed with the norm || - ||
instead of || - || 0. Proposition 3.1 ensures that the unique solution ¢ = T (h) of (3.1) defines a
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continuous linear map from the Banach space L into Lo, with a norm bounded by a multiple
of | In!/|. Then, problem (3.3) becomes

¢ =A@ :=—-T[R+ N()].

Let B, := {(1) e Ly [Plleo < rl% lnzl} , for some r > 0. Since

102"V (e — e — p1 + d)| = [(p%eV" + RT)(e? — e — ¢1 + ¢o)|
/ +
< C (max || lloo) 191 — Polloo(p?e”" +|RT)),

by (2.11) we get that

Ip%e™ (e — e — g1 + go)llx = C(max i pilloo) 91 = P2lloo

and

2
o 1
[ et — et — g1+ g| = 17 max sl = B2l
B *

in view of (2.19). Combining with the similar estimates for p2e =PV (e=# —e™%2 4+ ¢y — 2),
we get that

1
IN(#1) — N(@2) |l < Cl*f(g% 1#illcc) ld1 — P21l o-
Since N (0) = 0, in particular we have that

1
IN@)llx < CI72 |plI%. (3.4)
Hence, by Propositions 2.2 and 3.1 we get that
LA@) oo < CIINI(IR]x + IN@)Ie) < C'12 1021+ C"13 |15 1] < ri? In*]
IA@1) — A@)lloo < ClINIIN (1) — N(@2) 1 < 1110 1]llh1 — p2loo

for all ¢, ¢1, ¢ € By, with r = 2C  and [ small enough. Since A is a contraction mapping
of B,, a unique fixed point of A exists in B,. The regularity of the map [ — ¢, (/) follows
using standard arguments (see for example [6]). O

After problem (3.3) has been solved, we find a solution to problem (1.2), if we are able
to find / > 0 small such that the coefficients c(/) in (3.3) vanish. Let us introduce the energy
functional E, : Hy — R given by

1
Ep(u) = 5/|W|2 —pZ/(eu +e,
B B

where Hy = H'(B) N Sp. A critical point u of E, on Hy yields to a %”—periodic and
xp—even solution of

—Au=p3e" —e")—1 inB
g—‘v’ =0 on 4B,

for some Lagrange multiplier 1. Integrating the equation on B, we getthat A = % /, gle—e™)
and we recover a solution to (1.2).
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We introduce the finite dimensional restriction E o+ (0,1p) — R given by
E, () :=E, (PU +¢,()). (3.5)

Since the map / — ¢,(/) isa C! function in H!(B), we have that Ep(l) is a C'—function
and the following result is standard:

Lemma 3.3 Assume (2.3). Let | be a critical point of Ep. If L is small, then PU + ¢, (1) is
a critical point of E,, in Hy, namely a solution to problem (1.2).

Proof If I > 0 is a critical point of E 0> we have that

/ V(PU + ¢,)V (3 PU + d1¢,) — p* / (VP — e PU=00) (3 PU + 91¢) = 0.
B B
Since d; PU and 9;¢, have zero average on B, by (3.3) we can rewrite this condition as

c(l)/APZ(alPU + 0¢p) = c(l)/AZ(alPU +0;¢,) =0.
B B

Differentiating [, APZ¢, = [, AZ¢, = 0in, we get that

2
/Aza,¢>p - —/ N(AZ)p, = p> /eUf (z,a,uj‘ + a,zj) -a;dp.
B B Jj=0p
Since
+ 00 _ 07€ 1
U =Yo—, U, =Z2oi— +—Z; - aj, (3.6)
1) € €p

we get easily that
_ 1
Zja,Uj +0Zj= 0(;)
Hence, by Proposition 3.2 we have that

3.2
/Apzal¢p :O(H(pp”w)zo(lzln l). 3.7)
€p €p

B

By (3.6) we deduce the expression for d;U:

I R de 1
U =Yy— — Zy,j— — —Z.
$ = € €p

Arguing as in Lemma 2.1, it is easy to establish the following expansions:
PYo=Yo+2+0@p), PZoj=2Zo;+2+0(p), PZ=Z+ O(epl) (3.8)

uniformly in  as [ — 0. As far as (3.8), let us simply observe that

97z 9 2
=< x~z(‘;aj + O(epl) = O(epl) ondB
J:

—1
/Z = 3ep/ Ao ~ag + O(epl) = O(epl)
|x —lag|?
B B

@ Springer



Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

because Z§=0 aj = 0. Then, we get that

1 1
o4PU =P U)=—-2Z+ 0 (f)
€p l

uniformly in 2 as [ — 0. First, let us compute the following expansion:

/(APZ)(PZ) :/(AZ)(PZ):/(AZ)Z+O epl/|AZ|
B B B B

2
=—p? z /er (Zj-aj)(Zp - am) + O(epl)
jm=OB

__Z/ 128(y - a,)z
B (I+1yP*

I=0y|<1/ep
128 a; —i—le‘1 Ya:—a
-2 / ( +(y|y|2§2 §y+ |Y—|—le_1(_ll(a m—)iz e oD
#my1<1ep st
1 8yl
= + o(1 3.9
/(1+| DR G2

as [ — 0, by means of the Lebesgue’s theorem. By the expansion of 9; PU and (3.9) we
deduce that

/(APZ)(E)[PU)

B

/(AZ)(?)IPU)
B

1 1
——/(AZ)Z+O 7/|AZ|
€p l
B B

3 128y?

= = ———— +o(1) (3.10)
0\ A+ y»?
as [ — 0. Combining (3.7) and (3.10), finally we get that
3e(l 128y?
0= c(l)/APZ(a,PU + dpp) = <) T o)

e \J I+ ly[2)*

as [ — 0. It implies that ¢(/) = 0 for [ small enough. ]

4 Energy expansion

In view of Lemma 3.3, it is crucial to write down the expansion of E pasp,l — 0. We have
that
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Theorem 4.1 Assume (2.3). It holds
E,(l) = =647 Inp 4 Dy — 9671*> — 327172 p* + 0(1%)

as | — 0, where Dy = 96 In2 — 16 + 487 In 3.

2_ ~
Since € = e;:/; (1 — 1972172, by (2.3) we can further write the expansion of E, (/) as
= 2 4T 69 2
Ey(l) =—64mInp + Dy — 9671 — 81—61 p-+o(l%)
e
as [ — 0. The non-constant main order term P,(I) = —96mi? — %1_6,02 has a strict

maximum point at (6486‘6)_% p%. It is now easy to see that
6n—1 1 6n—1 1 ov—1 1
P,((647¢°)"3p%), P((649¢”) 8 p%) < P((648¢”) 8p?).

Since at these points the values of P, are of orcler /P and o(l 3y = o(/p), we get that for p
small the above inequalities still hold true for E:

E,((647¢%) 7% p3), E,((649¢%) % p3) < E,((648¢5) 75 p4).

Hence, Ep has a maximum point /, € ((647e6)_%p%, (64966)_%p4l) (which is consistent
with the assumption (2.3) for C > 0 large). Lemma 3.3 now yields to the existence part in
Theorem 1.1. The verification of (1.3) follows by construction of the approximating solutions
PU and (2.3).

Proof of Theorem 4.1 The function ¢ = ¢, (/) satisfies
L(¢) =—(R+ N(¢p)) —c()APZ

as observed in the proof of Proposition 3.2. Multiply it by ¢ and integrate on B in order to
get

/ VP = p2/<e”U +e Pl 4 /(R + N @),
B B B

Recall that [, ¢ = [, APZ¢ = 0. By (2.20), (3.4) and Propositions 2.2, 3.2, we get that

/|V¢|2 < Clol% + (IRl + IN@ ) 1Bl < C 1P In* 1. (4.1)
B

Since

2
1 _
/VPUV¢>:/ —AU+—/AU ¢>=p2/ U= ) ¢
T
B B B j=0

B

in view of [, ¢ = 0, we get that

/VPUV¢—p2/(ePU —e*PU)¢:—/(R+—R*)¢.
B B

B
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Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

In view of (2.20) we can write now Ep (D) in the form:

Ey() = EM) - /(R+ — R+ %/WW +0 p2/<ePU +ePUyg?
B

B B
=ED+0 ||¢||oo/(|R+|+|R7|)+/IV¢|2+II¢>II§O ;
B B

where

1
E(l) = E/|VPU|2—;)2/(e“’U+e—“’U).
B B

By (2.11), (2.18), (4.1) and Proposition 3.2 finally we get:
E,() = E(l) 4 o(I%) (4.2)

as! — 0.
We are led now to expand the functional E (/). First, we consider the gradient term:

2
/|VPU|2 =p2/ Ut —ZeU.f PU
B B j=0

2

=p2/eU+ Ut +8r (H(x,0)—H(0, 0))—8nZ(H(x,laj)—H(0, laj))+0@*nl))
B j=0
2 ~ 2
+,022/6Uf |:Uj_ — 87 (H(x,0) — H(la;,0)) + 87 > (H(x,lay)
j:OB m=0

2
— H(laj,lay) + 0* i) | + 2p22/eu+ (21720 + I7'x —a;?)
./:OB

2
—2p? Z/eUf —2In3 4 D" In(eX2p* + 17" x — aw|?) — In(8*1 7% p* + I~ x[?)
./=OB m#j
=1+I1I+1I1+1V

by means of Lemma 2.1.
As far as I, by (2.5) we get that

8 82

I = — —({—-4Inp—-—In— —2In(1 + 2)+014lnl

| e (Fame - < 2ma k) + odt iy
Bi/sp(0)

= —327Inp — 967 Inl + (487 In2 — 647) + 4871> + O(*|1nl))

in view of § = %63(1712)16, where
+00 +oo
In(1 + [y*) In(l+s)  _In(l+s) B
TxnDE =" ) a2 = "7 o=+ | G =T
(I+1y1%) (I+s) +s (1+s)
R2 0 0
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Similarly, by (2.12) we deduce that

2p? g2 X

11 = In o

> | e mr et OO
J=0B, 5 la ;)
1/2(a;

2

_Z / m(41np ln§—21n(l+|y|))+0(l)

J=0p 1/2¢p(0)
= —-96rInp +967Inl 4+ 3487 In2 + 327 + 327 In3) — 24071 + 0(13)

2_
in view of € = e:\/; (1 — 197212, As far as 111, let us expand the following integrals:
85°p° 2,-2 2 —1 2
/ mln(él 1Y +|l X—aj|)
Bija(laj)
85212 p? 2;-2 2 2
= —————= In(e " p "+ |y —ajil)
/ (8217202 + |y[?)? !
Bia(aj)
=85%7%p? / ™ €720 + 1y —a;1) + 010"
Bia(aj)
=227 [ il = a4 0@ %)
By2(aj)
85%p° -1 2 2;-2 2
= / Wlnll x—aj|"+o( 1 "p°)
Bija(laj)

because of 2In|y — a;| < In(e2172p% + |y — aj|2) <0, (2202 + |y 2 = |y +
0(8%172p%) in Bj/2(aj) and the Lebesgue’s theorem;

85%p? 2,-2 2 —1 2
/ Wln(él P +|l x—aj|)
B\By2(laj)
882,02 : 2[ 2 2 44 4
= —————(In|l” 'x —— 4+ 0(e'l™
/ <52p2+|x|2>2( L T ))
B\Biz2(laj)
85%p* -1 2 2,-2 2
= / Wln |l x_aj| +€l 1Y
B\Biz(laj)
8 _ _ _
/ WW 1/0)’—61/| 2+ 0 Y

B1/5p\Bi2sp (1/8p aj)

85%p* -1 2 2;-2 2 2;-2 2
= Wlnﬂ x —ajl”+8mel " p~ +o(e”l""p7)
B\Biz2(laj)

because of |8/~ py — a;|7> < 4 in Bi5,\Bij2s,(1/5p aj) — R* as §I"'p — 0 and the
Lebesgue’ theorem.
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Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

Summing up the previous expansions, we get that
2.2
/ 85%p In(el2p? + I7'x — a;1?)
(82p2 + |x[2)?

882 2
/ o+ P 7' —aj* + 82172 p + 0(8H 2 p* + 417207, (4.3)
0

Let us note that (4.3) holds whenever 5/~ 0, el p — 0. Then, by (4.3) we get for /11 and
1V:

2
111 = 2,02 Z:/eu+ ln(ezlfzp2 + 17X = ajlz)
j=03

862 2
/(52 In|l73x3 — 112 + 487172 p% + 0(1?)

o+ 1x?)?
and
2 22 (€212 2+l—1x_a 2
IV:96711n3—ZZ/ — 8<%p LIz € 0 ml)
= (€292 + |x — laj|?)? 82172p% + |17 1x|?
—“B
+ 0%
8272p> + 17 'x +a;)?
=96 In3+2 / In {
Z (e2p? +|x|2)2( [T (€2172p2 + 117 x + aj — awl?)
+0(z4|1n1|)
967 1 3+2/ 8e2p® 173x3 4 1)
= 7T In — 5 55 1N X
(€2p? + |x[*)?
B
8¢*p? 2.2 1 2,2 2,-2 2 2
—2Z/ﬁln|l_ x* + 317 xa; + 3aj | — 96w’ p* + (%)
=07 (€7p= + |x]%)
8e2p? 3.3 2
=9%rIn3+2 | ———=In|l77x"+1
7ln3+ /(62p2+|x|2)2 nll77x” + 1]
B
862 2
) m In [176x6 2712 — 962 ~2p2 + 0(1?),
B
where x2, x3and x® denote powers of a complex number x € C. By the change of variable

t=173r3, we compute now

1 27
52 2 52 2 J -
/(52p 2 4 |x |2)21 nl73x—12=32 m/ln|li3r36319_1|d0
0 0

3 2

1/
3282172 p? dt ,
- P / : . /1n|te3l9 —1]d6
3 / 13 (82~2p2 +13)2 ,
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1/3 27
32521 2p? s 2,2 9
t3dt ln|te — 11dO0 + o(8°1"“p~)
0

—

/3 2
=248%17%p? / AT )rdt/1n|ze"9 —11d6 + 0(8*172p?)
0

= 2482172 p? / AT In|x — 1] + 0(82172p2)

Bl/l3
because fozn In|te!? —1|d0 = O(r) ast — 0 and the Lebesgue’s theorem. Since
dug x—1
Augln|x — 1] = —In|lx = 1| —ug————= -v ) +2wup(l)
v lx — 12
Q Q2

for any domain €2 containing the singularity 1, we get

852 2
/ @ m 173x3 — 117 = 48782172 p% + 082172 ). (4.4)

Similarly, it is straightforward to see that

2 8 In|173x3 + 12 = 487172 p% + 0(e217%p?)
(€297 + [k
B 8e2)? 4.5)
—6.6 2 _ 2;-2 2 2;-2 2

B

By (4.4)—(4.5) we get the expansions for /7] and I V:
I1T = 487172 p% + 0(1%), 1V = —80me*I™2p* + o(1).

By the estimates on I, I1, 111 and IV finally we get for the gradient term:

1
7/ [IVPU|? = —647 Inp+ Dy — 96m1* — 167‘[62172;)2 +o(l%) (4.6)

where D; = 967 In2 + 1677 + 487 In 3.
To conclude the asymptotic expansion of E(l), we need to consider the nonlinear term

p? I3 (€U + ¢PU), By (2.6) we can write

p2 / ePU

B

=p /H(ezl 2p2 + 117" x — ;)% (14 0(x? + 1% n1))

B /=0
2 +
=p? / (|l3x3 — 12621727 DI — 1P al T x + a31|2) eV
B m=0
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X
Lt pto pz/e‘“<1+|7|g) Lo pZ/ U (P 4 nd)

B B
X X X X
sz/(l+662172p2+0(|7|3+|7|12+62172p2|7|+62l72p2|7|10)) eU
B
+ 0% 1nl]) = 87 + 4872172 p? + o(1?). 4.7)

Splitting the integral on each B;/>(la;) and B, by (2.13) and (2.16) we can write

/ = 812 / @ 4 PP
(2172p2 + |y —a;|*)?

B j= OBl/z(a)
< [[@1720% + 1y —an»H 7> (1 + 0@ Il + Ply — aj| + Ply — aj]P))

m#j

2.2 252
/ 6“p” + |x|) oS8T H (0487 32 H(x,lan) (1+ 0@* 1))
[T (€20% + |x — lan|?)?

812 / By gy +
= ai a”
@22y a2t T
Bl/z(a,)

22,2 8e2l2p? 402 2 2,-6
—324€1” Z @y — o Pty D eyl

Bl/z(a,)

4020 / (822p% + |y]?)? o~ BTHUY. 087 35 Hily.daw) 4 0%
H]_ (e~ 2,0 + 1y _aj|2)2

: 8’12 p? 4.2 2,4

4
—327€2l 2 p? + 648622 p? / ﬁ + 0%, (4.8)

where R = Rz\ U%:o Bi/2(aj), because
o~ 8THO,0)+87 350 H(O.lan) =4 _ 648¢2(1 + o(1))

asl — 0.
Adding (4.7) and (4.8) we obtain the expansion:

4
P 2/ (" +e7Y) = 8 + 16me?1 72 p? + 648¢%172 p? / %
y f—

B R

8e21~2p? 2 4, 2 2,4 2
+81 | e (D et a3 +od®. @)
B1)2(0) =0
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In polar coordinates with respect to 0, letting @ = €/~! p the following term rewrites as

8e21~2 2 2 s -
/ (€21-2p2 + [y2)? Z|y+aj| ly“+3ajy + 3aj|
By2(0) Jj=0
1/2
8rdr i0 2.2 2if i0 2—4
/(1+r2)2/ ZWW +aj|*e?r?e?? 4 3araje +3a3|7 | do

1/20

2 5

i 2,2,2i0 b 2,—4
/Z s 2IOH’e +a; *la?r +3araje’” +3aj| ™" |y
0o J=

1/2a
4o
+/ 7 ——— filar,0)dr | do
0

2 2
162 L al 9ig 3 ) 4
:/ _l+4azjzo(|2€ +ajlt17e + Jaze’ +3a51 7 ) +
0 =
12

42 2
+/m > fi.0) | ar | de.
0 Jj=0

where
fi(r,0) =4|re'? +a(,-|2|r262i9 +3raje 0 4 3a2»|74(r i 4 aj) - oif
—4|"€i0+aj|4|V262’9+3ra,e’9+3a |0(r%e 2'9+3rajei0+3a%)-(2re2"9+3aje"9),

Set f(r,0) = Z?:o fj(r, 0). Recalling that Z =0 ajz = 0, it is tedious but straightforward
to show that

2 (4 o 4 .
10.6) = Z(aaj el — ﬁaj ~e’9) =0

Jj=0
9 3 2
— £(0.0) = —— 2 2] .02 —
arf( ) ) 243 ,_OaJ e

Since | £(r,0)| < Cr?in (0, 3) x [0, 27], we get that

862172,02 2 o -
/ m Zly-irajl |y =+ 3a;y + 3aj]
B12(0) j=0
8 2&(1 ool
z—n—l6a2/ ‘fe“g—i-aj e’ + Zaje'’ + 345 do
27 ) i 2 4 2
2t 12
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as o — 0. Since
9 [ . .
f@r,0) = o E Irel® +a;*1r?e* + 3raje? + 3a]2<|_4 ,

we can write

27 1/24
[as [ Sroo
"
0 0
2 2

6 |1/2
27

Jj=

prs 27
21 > —4
1, sy 3 327
=16/ Zze’ +a; ‘4 ‘+2aj’+3a d9—7
0 \/=0
8 [< 1
+ o >y +ajl*ly* +3a;y + 3437 ~ 77
Bi)2 Jj=
So, we get that
8e2~2p? 2 i o S\ 8 3m,
| emainee 21y +ajlfly? o 3ajy +3aj1 7 | = opm — e
B1)2(0) J=0
+62r2p2/ 8 Zly-l-a 1*1y? + 3a;y + 3a3) s L +o(1?).
Iy / 27
By Jj=0

Finally, by (4.9) the following expansion does hold:

4
pz/(ePU e PVUy =307 — 80me22p? + 648621_2/02/ ]

ly3 =114
R
+8162r2p2/ 8 Z|y+a *1y? + 3a;y + 3a3) s L +0(1%)
Iy / 27 ’
Bi)2 j=0
Combining (4.6), (4.10) and the following Lemma
Lemma 4.2 There holds
y[* +/1 Z|+||+3 3 1 4
a = —7TT.
Iy — 1P yiF | & T Ty 7=
R By j=0

2
. . . 1
z Ire'? + aj|4|r262’9 + Sraje’e + 3a?|_4 — — | dr|do

122

(4.10)
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we obtain that
E(l) = —64m In p + Dy — 961> — 32?172 p% + 0(1?),

where Dy = 96 In2 — 167t + 487 In 3. With the aid of (4.2), the proof is done. O

5 Appendix A

In this Appendix we will establish the validity of Lemma 4.2. We need to compute the value
of

Iyl /2 L
Iy = —_— 3 3 ,
0 /|y3_1|4+ o §|y+a||y+ay+a| -5

R B2 j=0

where R = Rz\ U?:o By)2(aj). Since

1

1 _4
/ o Z|y+a]| |y* + 3a;y + 33| -5

B2 j=0

2 —4
i
Z/ (|y+a,| Y172+ Bajy + 341 - =
j:031/2
4 ly—al™?
-y / (|y| = a0 gy + et - P

7=08,5(a))

- / R e
[y3 — 14 81 '

Y O131/2(01)

()

let us rewrite Ip in a more useful way:

2

ly|* / ly|* ly —aj|™*
Io = - ~ 1
0 /|y 1|4+Z s 13 s )T

Bl/z(a/)\Ce j
2

/ 7|y|4 —LZ / ly —a;|~* 4 o(1)
ly3 — 14 81 4 /

R2\U_C..j 7=0B, p(a)\Ce

as € — 0, where in complex notations C, ; = a; (Be(l))% and

(B.(1))3 ={y € Bip(1) : y* € Bo(D)}.
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T

SettingC ={y =pel? eC: p>0, 0 ¢ -3, %]}, by the change of variable y — a;y
we get that

4
Io—z / 'y'14 Z / Iy —a; 1™ + o(1)

GJ(C\Be(1)3) 01(31/2(])\Be(])3)
|Y|4 1 / 4
=3 _— — — —1 +o(1).
/ S = 117+ o(1)
1
C\B:(1)3 Bi2(D\Bc(1)3

Under the change of variable z = y3, the volume element is dz = 9|y|*dy and Iy becomes

1 dZ 1 —4
Ip= = — - -1 1
0=3 / EETTaT / ly = 17" + o(1)

2 1
RAB(D) Bip(D\Be(D)3

ase — 0.
It is crucial now to understand the asymptotic shape of Be(l)% around 1 for € small. In

polar coordinates let us remark that pem +1e Be(l)% is equivalent to:

(pe’” +1)* =12 = 13pe’? +3p° + p?e¥ P = g(p. 0) < €,
where

8(p,0) =9p* + 18p° cos 6 + 3p* (1 +4cos?§) + 6p° cos 6 + p°.
Observe that for 8o small

3
a—g:18p+0(p2)>0 YO0 <p <y 6€l0,27].
0

Since g(0, 0) = 0 and g¢ (8o, 0) > 85 for any 6 € [—m, 7] and &p small, we get that for any
0 <€ < §pand @ € [0, 2] there exists an unique p = pe(0) so that

(o € 10,801 : ge(p,6) < €} =10, pe(®)].
We need to identify the asymptotic of p. as € — 0. To this aim, introduce
@=S(1-¢ 9+11c0526—1 2L
= — —cos ——————€“*e€
pe=pe=3 73 54

and compute

8 4
ge(px,0) = 4 (:|:2+ ﬁcos 0 — acos@) + 0(66)

uniformly for & € [0, 2x]. Since |27 cos® 6 — cos9| < ?f, we get that for € small
*(ge(p+,0) — €] > 0 for any 0 € [0, ] Therefore, for € small p_ < pe < py or
equivalently

€ 11cos?6 — 1 5
Pe(0) = 1——-cos + ——«¢

3
3 54 + O(e )) (5.11)

does hold uniformly on 6 € [0, 27r] as € — 0.
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We are now in position to determine the value of Ij:

5 00 1 2 1/2
Io=?n/r_3dr—ﬁ do / r3dr + o(1)
€ 0 Pe(6)
| 2
T _
= 3¢ 2+5—4/(4—p€2(9))d9+o(1)
0
2 2 )
4r T2 16*2/ 1= €coso+ 0= 1o 563 ao+ o)
= — — —_ = —_ = _— 0]
27 73 6 3 54
0
2
4n+n,2 1,2/ 1+20050 200529—12+0(3) 46+ o()
= ——+ =€ "—-¢€ € — € € 0
27 73 6 3 27
2
4r 1 20)d0 + o(1) = 2Z 4 o1y 2T
= — _— = — —_
27 " 1e2 ) © 27 ¢ 27
0

as € — 0, by means of (5.11). The validity of Lemma 4.2 is completely established.

6 Appendix B

Let us recall the definition of the operator L:
2
L@) = 8¢+ (" + e g — 2 /(e”” +e "),
B

which acts on ¢ € Sp. Our final aim is to show the validity of Proposition 3.1 and we will
follow the approach in [4,6,7]. It makes a crucial use of comparison arguments for the line-
arized operator and the first main difficulty is that L in general does not satisfy the Maximum
Principle. Indeed, L is the sum of a differential operator L = A + p%(ef'V 4+ ¢=FU) and
an integral term c(¢) = —%2 fB (ePU 4 e~ PU)yg. According to [4,6,7], the operator L will
satisfy the Maximum Principle and by comparison some a-priori estimates will hold. The
main goal will be to get rid of the presence of the term c(¢).
Letting X = Bgs,(0) U U?:O Brep(laj), we have the following:

Propgsition 6.1 Assume (2.3). There exist C > 0 and R > 0 large such that every solution
¢ of L = h in B1p\ X satisfies

I@llco.B1/\5r < C (11l + 1D lloo.a81 005k (6.12)
forl > 0 small.

Proof The proof is adapted from [6] and only minor changes take place. For reader’s con-
venience, we recall the basic steps and refer to [6] for all the details.

First step. The operator L satisfies the Maximum Principle in By/2\ X, for R large inde-
pendent on / small:

L(¥) <0 inBjp\Zg and ¢ >0 on 9B UdTg = ¢ >0 in B\ k.
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It is sufficient to construct a strictly positive super-solution M as a comparison function. The
function

e 2a2|x|2_52p2 ia2|x_laj|2_€2p2
X)=2F5—5—>
82p2 + a?|x|? = €2p? +a?|x —laj|?
satisfies
[E(M) <0 inBjp\Zg
% <M <8 inBjp\Xg
for0 <a < JZ;TO and R > g where Dy is the constant in (2.20).

Second step. Let R > 0 be givenand 0 < n < %. Letting

A, =i p (32 A ) ! 0
= — , = _— —_— << .
! 3 ! R1 ") In 4—’;"

define
1
4 4|x
Yo = 321 a4 By
|x|4 3
a solution of
1
— Ay, =215 for Ry < |x| < 3
lx|%
Yy =0 for [x| = Rn and |x|=%
sothat 0 < ¢, < 6—‘}. The function
RE
2
T(x) = Yo (X) + D Yep(x — laj)
j=0
then satisfies
= -1 . 256
L(T)<-W~™' inBp\Zg, 0<T <=+
R7

for any R > D3244.
Third step. Estimate (6.12) does hold for R > 0 large. Indeed, introduce the comparison
function %||¢||oo,331/2uagRM + |||+ T. We have that

- (3 B .
L (§||¢|Ioo,331/2ua>:RM + IIhII*T) < —|hl«W~" < —|h| inBi;\Zk

3
§||¢||OO,BB|/2U82RM + |2]l+T > |¢p| ondByp UdXg
and, by the Maximum Principle,

191(x) < ClIPlloc,oBy puazg + I11lls) in Bipp\Eg

for R large, where C depends on R. O
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We want to extend now (6.12) to solutions of L(¢) = h. Letting as before
2 ~
c(p) = —% fB (ePU 4 ¢~ PU)¢, the operator L rewrites as L = L + c(-). We can introduce
the function ¢ = ¢ + % |x|? in order to get that
=~ c(®) _
L@) =h+ —=IxPPpE"V + ")

4
We can apply (6.12) to ¢~) and, taking into account ,OQW(ePU + e PUy < 8Dy in view of
(2.20), it follows:

Corollary 6.2 Assume (2.3). There exist C > 0 and R > 0 large such that every solution ¢
of Lg = hin B2\ X satisfies

[@lloc.Bi\5x < C (Il 4+ @ ll00.081 p095k + lc(@)]) (6.13)
forl > 0 small.

We consider now the problem (3.1) when ¢ = 0:

L(¢) = h in B
¥ -0 on 9B (6.14)
[z APZ¢ =0,

with 4 € Sp. We are now in position to show:

Proposition 6.3 Assume (2.3). There exists C > 0 such that for every solution ¢ € Sp of
(6.14) there holds
¢lloe = ClInl|||R]lx (6.15)

forl > 0 small.

Proof By contradiction, assume the existence of sequences p;, I, ¢, € Sp and h, € Sp so
that ¢, is a solution of (6.14) associated to p, and h,,, || |lco =1,1, — O0and | In I, ||| ay ||« — O
as n — +o00. We will denote by €nPns 8npn the concentration parameters associated to [,
and by U, = (Uy)+ — z%zO(Un)’_ the corresponding approximating solution.

First claim. There hold

¢, — 0 weakly in H! (B) and strongly in Clloc (B\{O}) (6.16)

c(¢n) = —%pﬁ/(e”" +e PUngp, >0 (6.17)
B

asn — +00.
Multiply (6.14) by ¢, and integrate on B:

/ Vgl = o2 / (ePUn 4 ¢ PUn)g2 _ / inhn
B B

B

in view of [, ¢, = 0. By (2.20) we get that

2
_ + U
or / (€"Ur + e PUng? < Dyp? / @@+ > i < c.
=0
B B
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Since

/hn¢n s/|hn| < ||hn||*/w,;l < Cllhnlls.
B

B B

we get that sup, .y fB |Vgn|? < 4o0. Since fB ¢, = 0, the sequence ¢, is bounded in
H'(B). Moreover, by elliptic regularity theory ||¢,|lcoc = 1 implies that ¢, is bounded in

cll(’)‘”é (B\{O}), & € (0, 1).

By Ascoli-Arzeld Theorem, let us consider a subsequence of ¢, (still denoted by ¢,) so
that ¢, — ¢o weakly in H'(B), strongly in C|_ . (B\{0}) and c(¢,) = — 1 p; [B(epun +
e PUnyg, — cgasn — +oo. Since hy, — p2(ePVn + e PUn)p, — 0in Cjpe (B\{0}), we
get that ¢ € H'(B) is a weak solution of

d
Ado = —co in B\{0}, % —0 ondB
v

so that ||¢o|| < 1. Hence, the origin is a removable singularity and the equation holds in the
whole B. By —mcp = fB A¢po = 0 we get that ¢cg = 0 and then, ¢g = 0. Since it holds
along any convergent subsequence of ¢y, it is true for all the sequence ¢, and the claim is
established.

Second claim. There exist R > 0 large and > 0 so that

lPnlloo, sz =1 (6.18)

for n large.
Let us note that (6.16) implies

||¢>n||0073\31/2 — 0 asn — +o0. (6.19)

Fix now R > 0 large. If ||¢,|lco,x, — 0 asn — +o0 (up to a subsequence), we can use
(6.16), (6.17) and ||h, ||« — 01in (6.13) to get

||¢l’l ”OO,B]/z\ER - 0

as n — +o00. Hence, we get that ||¢,||cc — 0, in contradiction with ||¢, | = 1. Hence,
(6.18) holds and the claim is proved.
Introduce now @, (y) = ¢n(8nny) in By = Biys,p, and @, (¥) = ¢u(€n0ny +Inaj) in

Bjn = Bije,pn (— I aj),j =0, 1, 2. The function ®,, satisfies

€nPn

A®, + 8,0, (" + 7PV (8,000) P — 8500 (Dn) = 85 py i (Bnpny) in By
Note that for every M > 0
2.2 2.2 -1
187 07 7n (8w o) oo, By < 8 a1 Bnll W, (8000 3) oo, By

1
(€npn)*
1+ 0600 —5— | lalls < 2llhnll« — O

b <
Iy

IA

and B, — R% asn — +o0o (to estimate IIWn_l(rSnp,,y)lloo,BM we are using that the dis-
tance among 0, [,ag, l,ay, [,as is of order [, and is much bigger than €, p,, and §, p,,). Since
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|®Pnllc < 1, up to a subsequence and a diagonal process, by elliptic regularity theory
®, — @ in Cjc (R?), where @ is a bounded solution of

8
+—" @
1+ [yl»?

by means of (2.21). According to [1], the function @ is a linear combination of

=0, (6.20)

1—|y]? yi )
L+ y2 14y 14y

Since ¢, € S, the function ® is 2= —periodic and then

1—|y?

O(y) =E——5,
L+ yf?

for some coefficient £ € R. Similarly, the function ®; , — ®; in Cjy¢ (R?%), where ® jis
a bounded solution of (6.20).
We use now the assumption f g AP Z,¢, = 0, which rewrites by symmetries as (x — d;x)

Uﬂ n7
0—10 Z/( T nZjn - aj_3p/(u)o¢nZ0,n'a0

J= OB
/ 4y - ag
22 2 Po.n-
(1+|y| )1+ 1yl
By Lebesgue’s Theorem, letting n — +o00 we get that

Y1
——®y = 0. 6.21
/<1+|y|2>3 0 621)
RZ

Since ¢, (x) = ¢, (X), the function g , is also invariant by conjugation in By ;. In the limit,
Dy(y) = Pg(y) in R2 and the following relation follows

y2
— _®y=0. 6.22
/(1+|y|2)3 0 (622)
]RZ

Since ¢, is ZT” —periodic, observe that

D0,n(y) = Pulenony + Ilnag) = ¢n(5npnajy + lnaj) = cbj,n(ajy)a

which gives in the limit ®o(y) = ®;(a;y) in R2. Using this relation in (6.21)—(6.22), by the
change of variable y — a;y we get that

/ y-aj q)}_/ A (lllj) <I> _0
(I+y»3 ™/ (1+ 1y[?)3
R2 R2

These two relations are linearly independent and lead to
=0. (6.23)
/ (1+|y|2)3 / ¢! +Iy|2)3
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Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

By (6.21)—(6.23) we get that ®; = F; :+}‘:2 Since ®o(y) = P;(a;y), we have that
Fo = F; = F> and hence

®;(y) = rl- lyI?
L+ Iy
for some coefficient F' € R. By the second claim as stated in (6.18) we get that ®, ®; can’t
be both trivial and a contradiction would arise if £ = F = 0. Based on the assumption
[Inl,|||hn|l« — O, this will be the content of next claim.
Third claim. £E = F =0

We will us an idea developed first in [5] and then exploited in [6,7]. We construct suitable
test functions to recover the additional orthogonality relation:

1—|y]? 1—|y)?
|yl @ — [yl

T+1y»3 ) d+1yP3
R2 R2

’

which clearly would imply £ = F = 0 as claimed.
Let us perform the following construction with respect to the origin. Define

Saon —IXI* 8 &ips
82p2 +Ix12  382p2 + |x|?

wy(x) = lﬂ(an[)n +| | )

Srpn 2,(Uy 2,(UD*
and 1,(x) = —25%“){‘2. They solve —Aw, — p2e@ w, = p2e@’(vy,) and

—At, — p,%e(U")th,, = ,oge(u")+ respectively.
The good test function in the origin will be Pz,, where z, = w, — 2t,. Observe that

9 167 5
oo (Pan—2 = - HC.0)) = 0G707) ondB

167
/ (Pzn —Zn— ?H(-,O)) = 0 (822 In*(8,0)) -
B

Since it holds

167 1 16 1 [dz, 16
— A PZn_Zn_iH(',O) Az + — = — - 4+
3 o
B

3 v 3
aB
16 [ 9H(,0) 2 2 / 16 2
—— — 4+ 0@ p)=——> [ AH(,00+ —+0(
S +3+< ) (.0) + 3 + 0G}p)
dB
= 06,00,
by the representation’s formula we get that
167
Pzp = zn = ——H(,0) =0 (507 10 (5 pn)) (6.24)

uniformly in 2. Hence, we have that

APz, +,02 GO Pz,

16
Azy+ 5+ pre " P2y + O (8707 0* ()
= — e Yo+ ppe ™" (Pzy = 20 +2)

16
+ ? + 0 (6;%/)3 1n2(5n;0n))
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Since [, Pz, = [ ¢» = 0, multiply (6.14) by Pz, and integrate on B to get:

/thZn :/¢11 APZ + p2 2 ,(Un)* Pz, )+03/(€PU” 4o PUn _ oWUn) )¢nPZn
B B

B

—Pn/E(Un)er’n(YO,n + 'Or%/ew”)+ (Pzn — 2n +2) ¢n
B B

+p3/(e”’” e (U )¢>an,, +0 (8202 10%(8,00)  (6.25)
B

As for the L.H.S., by (6.24) we get that Pz, =z, + O(1) = O(|In Bﬁpnzl) = O(|Inl,|) and
then

/thzn =0 Ilnlnl/lhnl = O(IInlylllAnllx) — O

B

as n — 400, by our assumption by contradiction on %,,. As for the first term in the R.H.S.,
we can write now

1=y 8(1 — |y[2)?
_pg/ (U”)¢Y0n=/ - Iyl2cI> —>2E/( |y|2)4
(l+|y|) 141yl AR

R

B

as n — +o0o, by means of Lebesgue Theorem and ®,, — E 1=|yl? in Cjpe (R?). By (6.24)

1+[y[?
the second term in the R.H.S. gives a contribution
+ 167 +
ox / O P2y =20+ 2) 0 = —=p; / U (H(x,0) — H(0,0)) ¢y
B B

+0 (820210 (8,p1)) = OBupn) = 0 asn — +oo.

Since Pz, = O(]Inl,]), for the third term in the R.H.S. by (2.11), (2.18) and (6.24) we get
that

pﬁ/ PUn+€_PUn — U )¢ Pz, _pgz/ U3 ¢ P2y + 0202 1y)

B j=0p

2
8
- / 5 e Dinen(€npny +aj)
Zzo A

1671 ,
Z/ W @ H(enpny + lnaj, 0) + O In* 1)

j.n

8y~ 1)

=8FInl, d+hR)?

R2

a2
—6FH(0,0)/M+0(1)—>0

(1 +[y[»)?
R2

as n — +00, by means of Lebesgue Theorem and @ ,, — Fi=bl ‘2 in Cjoc (R?). We have

1+I

1-y> _ _
used that fRZ D = 0. In conclusion, (6.25) leads to £ = 0.
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A similar argument can be carried out by using the test function Pz; ,, where z; , = w; , +
]%”H(lnaj, Inaj)t; . Here, the functions w; , and ¢; , are defined as follows:
nlon |x —lna; |2 § 6,2”03

+lx —lpaj>  3€lpr + |x — lyaj|?
npn X —pdj 7P X ndj

4
wj,(x) = 3ln(e p,, +x =1, ajl )

2.2
€nPn

andt; ,(x) = —2—5——20 |
-””( ) €2 patlx—lpa;l?

It is now easy to include a term cA P Z in the R.H.S. of L(¢) = h and obtain:

Corollary 6.4 Assume (2.3). There exists C > O such that for every solution ¢ € Sy of (3.1)
there holds
¢llcc < ClInl||IA] (6.26)

forl > 0 small.

Proof We need an estimate on the value of c. To this aim, multiply (3.1) by P Z and integrate
on B:

/hPZ+c/APZPZ = pZ/(ePU +e Peprz, (6.27)
B B

because [ A¢PZ Jp APZ$ =0and [, PZ =0.By (3.8) we get that PZ = O(1) and
|fB hPZ| fB |h|) O(||h]|+). Moreover, by (2.11), (2.18) and (2.20) we deduce that

0 / " 4 e PV)pPZ = / " 4 e PV)pZ + Oepllidlloe)
2 —
- pz/ VT 6z + 0@l

B Jj=0

in view of (3.8). We have that forany j =0, 1,2

—1 -1 -1
- 8 €|y =167 p " ajl
Z:i-a; =0
0 /e ®Z; - aj o lloo / A+ 1y 2+ [y —16-1p a2
B IyI=1/ép
=0 | ept gl / el R I / e
x L+ P2 - I+ 12

3 3
[vI=i2/ép [y[=12 /8p

=0 (l9lloo)
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and for any k # j

- 8 ly +1le ' p~l(a; —ap)l
2 U J
e ¢Zy-ar = 0
p/ Zi - a I¢lloo / TF DR T +le o T @ —anP
B [yI<1/ep

+ 0 0% 1¢llso) = O | epl il / 8

> * : (1+y?)?
[yI<IZ /ep
8
0 ————=) + 0(’p’ =0
+0(ll¢llso / (1+|y|2)2)+ €0 11dll0) = Ol ll0)

3
[y[=12 /ep

as [ — 0, uniformly on ¢. In conclusion, we have that
2 —
¢ [V e erz =2y [0z 0+ 0l
B j=0%

- —/APZ¢ + 0Ullplloe) = OUlIBln0)

B

as/ — 0. By (3.9) and (6.27) we deduce that

128y%
</ Tapr oWl = 0l +119lo)
R2

as [ — 0. Then the following estimate on ¢ does hold

lel = O(lAllx + H¢lloo),

as [ — 0. By Proposition 6.3 and the estimate on ¢ we get that

I$lloc < Clini[lh +cAPZ|x < C'[Inl|[h]lx + Ol 1| [[$]lo0)

and then, the validity of (6.26) easily follows because O (/| In/|) is small independently on ¢.
O

Corollary 6.4 now yields easily to the validity of Proposition 3.1. Indeed, let us introduce

the operator (A)~! with Neumann boundary condition: given f € L”(B) for some p > 1,
the function u = (A)~!(f) € H'(B) is the unique solution of

By uniqueness, observe that u € S whenever f € S. Thanks to (A)~! we can rewrite
problem (3.1) as ¢ + K (¢) = (A)~! (h) + c P Z, where by elliptic regularity

K@) = ()" (02" + "))
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is a compact operator from H L(B) N 8y into itself. In the space H L(B) N Sy, define IT and
I+ = Id — IT as the projection operators onto P Z and {P Z}* respectively. Problem (3.1)
can be further rewritten in an equivalent way as

¢+ K (¢) = TH(A) ' ().

Observe that, by Corollary 6.4, Id + T+ o K is injective in H'(B) NSy, where [T+ o K is a
compact operator. Forany 4 € L°°(B) NSy, Fredholm alternative then provides the existence
of a unique solution ¢ € H'(B) NSy of (3.1) satistying the bound ||¢|leo < C|Inl|||/ ]|« for

[ small. Moreover, by elliptic regularity theory ¢ € W>2(B) and there holds:

/ Vo = —/h¢> +p2/(e”U + e P2 < C(Idlloo + Nl
B B B

by Young inequality and (2.20). Proposition 3.1 is completely established.
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