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Abstract For the Neumann sinh-Gordon equation on the unit ball B ⊂ R
2

{
−�u = λ+

(
eu∫
B eu − 1

π

)
− λ−

(
e−u∫
B e−u − 1

π

)
in B

∂u
∂ν

= 0 on ∂B

we construct sequence of solutions which exhibit a multiple blow up at the origin, where λ±
are positive parameters. It answers partially an open problem formulated in Jost et al. [Calc
Var Partial Diff Equ 31(2):263–276].
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1 Introduction and statement of main results

In this paper, we consider the Neumann sinh-Gordon equation

{
−�u = λ+

(
eu∫
� eu − 1

|�|
)

− λ−
(

e−u∫
� e−u − 1

|�|
)

in �
∂u
∂ν

= 0 on ∂�
(1.1)
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on a smooth domain � ⊂ R
2, where ν denotes the unit outward normal to ∂� and λ± are

positive parameters.
The analysis of non compact solutions to (1.1) has recently attracted a lot of interest. Let

un be a sequence of solutions to (1.1) with uniformly bounded parameters λ±
n . We define the

positive/negative blow-up set of {un} as

S± =
⎧⎨
⎩x ∈ � : ∃ xn → � s.t. ln λ±

n ± un(xn)− ln
∫
�

e±un → +∞ as n → +∞
⎫⎬
⎭

and we can associate (up to a subsequence) to every p ∈ S± its positive/negative limiting
mass

m±(p) = lim
r→0

lim
n→+∞

λ±
n

∫
Br (p)

e±un∫
�

e±un
.

In particular, S± is a finite set and

λ±
n

e±un∫
B e±un

⇀
∑
p∈S±

m±(p)δp

weakly in the sense of measures, as n → +∞. In a recent paper [8], Jost, Wang, Ye and
Zhou proved that a quantization of the limiting masses holds: m±(p) are multiples of 8π . It
is the analogue of a result by Li and Shafrir [9] for the mean field equation.
In view of a relationship in [10]

(m+(p)− m−(p))2 = 8π (m+(p)+ m−(p)) ,

it follows that for any p ∈ S+ ∩ S− the couple (m+(p),m−(p)), up to the order, takes the
value

8π

(
k(k − 1)

2
,

k(k + 1)

2

)
, k ∈ N\{0}.

An open problem raised in [8] concerns whether or not in general k must be 1. (See Problem
1 of [8].) Let us stress that k = 1 corresponds to a simple blow up in p while k > 1 gives
rise to a non-simple (multiple) blow up.

In this paper, we will give a negative answer to this question. We consider the following
problem on the unit ball B:{−�u = ρ2

(
eu − 1

π

∫
B eu

)− ρ2
(
e−u − 1

π

∫
B e−u

)
in B

∂u
∂ν

= 0 on ∂B.
(1.2)

The result we have is:

Theorem 1.1 There exists ρ0 > 0 small such that for any 0 < ρ ≤ ρ0 problem (1.2) has a
solution uρ such that as ρ → 0

ρ2euρ ⇀ 8πδ0, ρ2e−uρ ⇀ 24πδ0 (1.3)

weakly in the sense of measure in B.

The solution uρ is constructed by superposing a positive bubble centered at the origin and

3 negative bubbles centered at la j , where a j = e
2π i j

3 , j = 0, 1, 2, are the 3-roots of unity
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and l = l(ρ) → 0 as ρ → 0. Setting λ±
ρ = ρ2

∫
B e±uρ , by (1.3) we have that

λ+
ρ

euρ∫
B euρ

⇀ 8πδ0, λ−
ρ

e−uρ∫
B e−uρ

⇀ 24πδ0

weakly in the sense of measure in B, as ρ → 0. In this way, uρ is a sequence of solutions to
(1.1) with parameters λ±

ρ for which 0 ∈ S+∩S− and the limiting masses satisfy m+(0) = 8π ,
m−(0) = 24π . Hence, in general k = 1 does not hold.

We can recover an example of non simple blow up for the Dirichlet sinh-Gordon equation
too (see also [2] for the case of simple blow up points). Let u0

ρ be the solution of{
�u0

ρ = ρ2

π

∫
B(e

uρ − e−uρ ) in B
u0
ρ = uρ on ∂B.

The function vρ = uρ − u0
ρ satisfies{−�v = ρ2(V +

ρ ev − V −
ρ e−v) in B

vρ = 0 on ∂B,
(1.4)

where the potentials V ±
ρ = e±u0

ρ → V ± uniformly as ρ → 0 for some explicit functions
V ±. In fact, V + has a local minimum at the origin while V − has a local maximum at the
origin. This suggests that the existence of non-simple blow-up solutions depends very much
on the local structure of V ±. Our computations also suggest that when V ±

ρ = 1, problem
(1.4) has only simple blow-ups.

For ε, δ and l > 0, let us define

U+(x) = ln
8δ2

(δ2ρ2 + |x |2)2 , U−
j = ln

8ε2

(ε2ρ2 + |x − la j |2)2 , j = 0, 1, 2,

which are solutions of −�U = ρ2eU in R
2. Let us introduce the projection operator

P : C2,α(�) → C2,α(�), α ∈ (0, 1): given u ∈ C2,α(�), let Pu be the solution of⎧⎨
⎩
�Pu = �u − 1

π

∫
B �u in B

∂Pu
∂ν

= 0 on ∂B∫
B Pu = 0.

For a suitable choice of ε, δ and l, PU := PU+ − PU− is a good approximating solution
to (1.2), where U− = ∑2

j=0 U−
j . Our solution uρ will be in the form PU + φ, where φ is

a remainder term small in L∞(�)−norm and l = l(ρ) satisfies l(ρ) → 0 as ρ → 0. The
existence of l(ρ) will follow by means of a Lyapunov–Schmidt finite dimensional reduction
and crucial will be the property that 0 is a critical point of the related Green’s function. This
procedure has been used in many other papers. See [1,2,4–7,11] and the references therein.
The main difficulties here are the estimates of the distance between bubbles.

Theorem 1.1 is the first nontrivial example of non-simple blow up solutions for
sinh-Gordon equations. Previous known examples of non-simple blow up solutions are for
Liouville equation on a disk in [3] (without boundary condition) or Liouville equation with
anisotropic coefficients in [11].

The paper is organized as follows. In Sect. 2 we describe exactly the ansatz for the solu-
tion we are looking for and we rewrite the problem in term of a linear operator L (for
which a solvability theory is performed in Appendix B). In Sect. 3 we solve an auxiliary
non linear problem and reduce (1.2) to find critical points of a function Ẽρ(l). In Sect. 4 we
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prove Theorem 1.1 and an aymptotic expansion of Ẽρ(l) for l small has to be performed.
A coefficient in the expansion is given in integral form and its sign is crucial to have critical
points of Ẽρ(l) for l small: Appendix A is devoted to the exact computation of such an
integral.

2 Approximating solutions

First of all, let us introduce the Neumann Green’s function G(x, y) on B, i.e. the solution of
the problem ⎧⎨

⎩
−�x G(x, y) = δy − 1

π
in B

∂G
∂ν
(x, y) = ∇x G(x, y) · x = 0 on ∂B∫

B G(x, y)dx = 0.

On B the regular part H(x, y) of G(x, y), defined as H(x, y) = G(x, y) + 1
2π ln |x − y|,

turns out to be:

H(x, y) = − 1

4π
ln
(|x |2|y|2 − 2x · y + 1

)+ 1

4π
|x |2 + c(y),

where c(y) is chosen to have
∫

B G(x, y)dx = 0. Here and in the sequel, the expression x · y

will denote both the inner product in R
2, x · y = ∑2

j=1 x j y j and the inner product in C,

x · y = Re (x ȳ), depending on whether x, y are considered as points in R
2 or C.

For y = 0 it is easy to compute c(0) = − 3
8π . Since G(x, y) is a symmetric function, we

can deduce that

c(y) = H(0, y) = H(y, 0) = |y|2
4π

+ c(0) = |y|2
4π

− 3

8π
.

Hence, the expression of H(x, y) becomes

H(x, y) = − 1

4π
ln
(|x |2|y|2 − 2x · y + 1

)+ |x |2 + |y|2
4π

− 3

8π
.

Given a j = e
2π i j

3 , j = 0, 1, 2, the 3-roots of unity, define

δ = 1√
8

e4πH(0,0)−4π
∑2

j=0 G(0,la j )

ε j = 1√
8

e4πH(la j ,la j )+ 4π
∑

m 
= j G(lam ,la j )−4πG(la j ,0), j = 0, 1, 2.

Since for symmetry ε j does not depend on j = 0, 1, 2, we will refer to it simply as ε. Since
a j · am = − 1

2 for j 
= m, we get that

δ = 1√
8

e3(1−l2)l6, ε = e5l2−3

9
√

8
(1 − l6)−2l−2.

We describe asymptotically the action of P on U± in the following Lemma:

Lemma 2.1 Let j = 0, 1, 2. There hold

PU+ = U+ − ln(8δ2)+ 8πH(x, 0)+ O(δ2ρ2| ln δρ|)
PU−

j = U−
j − ln(8ε2)+ 8πH(x, la j )+ O(ε2ρ2| ln ερ|)
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uniformly in �, as δρ, ερ → 0. In particular, there hold

PU+ = 8πG(x, 0)+ O(δ2ρ2| ln δρ| + δ2ρ2|x |−2)

PU−
j = 8πG(x, la j )+ O(ε2ρ2| ln ερ| + ε2ρ2|x − la j |−2).

Proof First, let us observe that

−
∫
B

�U+ = ρ2
∫
B

eU+ =
∫

|x |≤1/δρ

8dx

(1 + |x |2)2 = 8π + O(δ2ρ2) (2.1)

−
∫
B

�U−
j = ρ2

∫
B

eU−
j = ρ2

∫
|x−la j |≤1/2

eU−
j + O(ε2ρ2) (2.2)

= 8π + O(ε2ρ2).

Let us justify the validity of the expansion for PU+. Since

∂U+

∂ν
= − 4

δ2ρ2 + 1
= 8π

∂

∂ν

(
− 1

2π
ln |x |

)
+ O(δ2ρ2) on ∂B,

the function ϕ = PU+ − U+ + ln(8δ2)− 8πH(x, 0) satisfies

�ϕ = O(δ2ρ2) in B,
∂ϕ

∂ν
= −8π

∂G(x, 0)

∂ν
+ O(δ2ρ2) = O(δ2ρ2) on ∂B

in view of (2.1). Since
∫

B ln( δ
2ρ2

|x |2 + 1) = O(δ2ρ2| ln δρ|), we easily get that

∫
B

ϕ =
∫
B

(PU+ − 8πG(x, 0))+ 2
∫
B

ln

(
δ2ρ2

|x |2 + 1

)
= O(δ2ρ2| ln δρ|).

By the representation formula

ϕ(x) = 1

π

∫
B

ϕ −
∫
B

G(x, y)�ϕ(y)dy +
∫
∂B

G(x, y)
∂ϕ

∂ν
(y)dσ(y)

for every x ∈ B, finally we get that ϕ = O(δ2ρ2| ln δρ|) uniformly in �, as δρ → 0.
Similarly, the expansion of PU− follows and the proof is done. ��

In order to find solutions we will need a-posteriori that l4 has to behave like ρ, as ρ → 0.
In order to simplify the estimates and make the argument more clear, in the sequel we will
assume that

∃ C > 1 : C−1ρ ≤ l4 ≤ Cρ. (2.3)

Let

W (x) =
⎛
⎝ (δρ)

1
4

(δ2ρ2 + |x |2) 9
8

+
2∑

j=0

(ερ)
1
4

(ε2ρ2 + |x − la j |2) 9
8

⎞
⎠

−1

.

For any h ∈ L∞(�), introduce the weighted norm

‖h‖∗ = sup
x∈�

∣∣W (x)h(x)
∣∣.

Let us stress that there are many choices for the exponents in the weight function W (x) and
ours turns out to be satisfactory.
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With Lemma 2.1 in hands, we can evaluate how good is the approximating solution PU
in ‖ · ‖∗:

Proposition 2.2 Assume (2.3). There holds

‖�PU + ρ2

⎛
⎝ePU − 1

π

∫
B

ePU

⎞
⎠− ρ2

⎛
⎝e−PU − 1

π

∫
B

e−PU

⎞
⎠ ‖∗ = O(l

3
2 | ln l|)

as ρ, l → 0.

Proof We have that

R := �PU + ρ2

⎛
⎝ePU − 1

π

∫
B

ePU

⎞
⎠− ρ2

⎛
⎝e−PU − 1

π

∫
B

e−PU

⎞
⎠

= ρ2(ePU − eU+
)− ρ2

⎛
⎝e−PU −

2∑
j=0

eU−
j

⎞
⎠

− ρ2

π

∫
B

(ePU − eU+
)+ ρ2

π

∫
B

⎛
⎝e−PU −

2∑
j=0

eU−
j

⎞
⎠ .

Let R+ = ρ2(ePU − eU+
) and R− = ρ2(e−PU − ∑2

j=0 eU−
j ) in order to get

R = R+ − R− − 1
π

∫
B(R

+ − R−).

Estimate on R+. By the choice of δ and Lemma 2.1 we get that

PU − U+ = (PU+ − U+)− PU−

= 8π (H(x, 0)− H(0, 0))− 8π
2∑

j=0

(H(x, la j )− H(0, la j ))

+ 2
2∑

j=0

ln(ε2l−2ρ2 + |l−1x − a j |2)+ O(ε2ρ2| ln ερ|)

uniformly in �. By
∑2

j=0 a j = 0 note that the expansions

2∑
j=0

ln(ε2l−2ρ2 + |l−1x − a j |2) = 2
2∑

j=0

ln |l−1x − a j | + O

(
l2

|l−1x − a j |2
)

= −2

⎛
⎝ 2∑

j=0

a j

⎞
⎠ · x

l
+ O

( |x |2
l2 + l2

)
= O

( |x |2
l2 + l2

)
, (2.4)
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in Bl/2(0), and

H(x, 0)− H(0, 0)−
2∑

j=0

(
H(x, la j )− H(0, la j )

)

= −|x |2
2π

+ 1

4π

2∑
j=0

ln(l2|x |2 − 2lx · a j + 1)

= −|x |2
2π

− l

2π

⎛
⎝ 2∑

j=0

a j

⎞
⎠ · x + O(l2|x |2) = O(|x |2) (2.5)

in � hold. Hence, we get that

ρ2ePU = ρ2
2∏

j=0

(ε2l−2ρ2 + |l−1x − a j |2)2eU+ (
1 + O(|x |2 + l4| ln l|)) (2.6)

uniformly in � and in particular, by (2.4) in Bl/2(0) there holds

ρ2ePU = ρ2eU+
(1 + O(l−2|x |2 + l2)). (2.7)

Then, there holds
∫

Bl/2(0)
|R+| = O(l2) and

|W (x)R+(x)| ≤ (δ2ρ2 + |x |2) 9
8

(δρ)
1
4

|R+(x)|

≤ C

(
δ2l−2ρ2 |y|2

(1 + |y|2) 7
8

+ l2

(1 + |y|2) 7
8

)
= O(l2)

in Bl/2(0), where y = x
δρ

∈ Bl/2δρ(0). Outside Bl/2(0), firstly we have that

ρ2W eU+ ≤ (δρ)
7
4

(δ2ρ2 + |x |2) 7
8

= O(δ
7
4 l−

7
4 ρ

7
4 ) = O(l

63
4 ) (2.8)

in B\Bl/2(0). Secondly, by (2.6) we deduce that

ePU = O

(∏2
j=0(ε

2ρ2 + |x − la j |2)2
(δ2ρ2 + |x |2)2

)

= O

(
(ε2ρ2 + |x |2 + l2)2

(δ2ρ2 + |x |2)2
)

= O((ε2l−2ρ2 + 1)2) = O(1) (2.9)

in B\Bl/2(0) and then

ρ2W ePU = O

(
ρ2 (ε

2ρ2 + |x − la0|2) 9
8

(ερ)
1
4

)
= O

(
ρ

7
4

ε
1
4

)
= O

(
l

15
2

)
(2.10)

in B\Bl/2(0). Hence, by (2.8) and (2.10) we get that |W R+| = O(l
15
2 ) in B\Bl/2(0). By

(2.9) it is easily seen that

∫
B\Bl/2(0)

|R+| ≤ ρ2

⎛
⎜⎝ ∫

B\Bl/2(0)

ePU +
∫

B\Bl/2(0)

eU+

⎞
⎟⎠ = O(l8).

123



P. Esposito, J. Wei

Finally, combining the estimates in Bl/2(0) and in B\Bl/2(0) we get that

‖R+‖∗ +
∫
B

|R+| = O(l2). (2.11)

Estimate on R−. Fix j = 0, 1, 2. On Bl/2(la j ) we have that

R− = ρ2

(
e−PU −

2∑
m=0

eU−
m

)
=
(
ρ2e−PU − ρ2eU−

j

)
−
∑
m 
= j

8ε2ρ2

(ε2ρ2 + |x − lam |2)2 .

As for R+, we can write in �:

−PU − U−
j = (PU−

j − U−
j )+

∑
m 
= j

PU−
m − PU+ = 8π

2∑
m=0

(
H(x, lam)− H(la j , lam)

)
− 8π

(
H(x, 0)− H(la j , 0)

)+ 2 ln(δ2l−2ρ2 + |l−1x |2)

− 2
∑
m 
= j

ln
ε2l−2ρ2 + |l−1x − am |2

|a j − am |2 + O(ε2ρ2| ln ερ|),

by means of by the choice of ε and Lemma 2.1. We compute now the Taylor expansion of

2∑
m=0

(
H(x, lam)− H(la j , lam)

)− (H(x, 0)− H(la j , 0)
)

= |x |2 − l2

2π
+ O(l|x − la j |) = O(l|x − la j | + |x − la j |2). (2.12)

Hence, we get that

ρ2e−PU = ρ2eU−
j (δ2l−2ρ2 + |l−1x |2)2

∏
m 
= j

|a j − am |4
(ε2l−2ρ2 + |l−1x − am |2)2

× (1 + O(l4| ln l| + l|x − la j | + |x − la j |2)
)

(2.13)

uniformly in �, for any j = 0, 1, 2. Note that on Bl/2(la j )

ln(δ2l−2ρ2 + |l−1x |2)−
∑
m 
= j

ln
ε2l−2ρ2 + |l−1x − am |2

|a j − am |2

= 2 ln |l−1x | − 2
∑
m 
= j

ln
|l−1x − am |
|a j − am | + O(l2)

= 2
a j

l
· (x − la j )− 2

∑
m 
= j

a j − am

3l
· (x − la j )+ O(l2 + l−2|x − la j |2)

= O(l2 + l−2|x − la j |2)
because ∑

m 
= j

a j − am

3
= 2

3
a j − 1

3

∑
m 
= j

am = a j .
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Hence, we deduce that

ρ2e−PU = ρ2eU−
j
(
1 + O(l2 + l|x − la j | + l−2|x − la j |2)

)
(2.14)

in Bl/2(la j ), j = 0, 1, 2, and then

|R−| ≤ Cρ2eU−
j
(
l−2|x − la j |2 + l|x − la j | + l2)+ O

⎛
⎝∑

m 
= j

ε2ρ2

(ε2ρ2 + |x − lam |2)2

⎞
⎠ .

In turn, we get that
∫

Bl/2(la j )
|R−| = O(l2| ln l|) and the estimate

|W (x)R−(x)| ≤ 1

(1 + |y|2) 7
8

(
ε2l−2ρ2|y|2 + εlρ|y| + l2)

+ C
∑
m 
= j

(ερ)
7
4

(ε2ρ2 + |x − lam |2) 7
8

= O(l
7
4 )

does hold in Bl/2(la j ), where y = x−la j
ερ

∈ Bl/2ερ(0).

Setting B̃ := B\⋃2
j=0 Bl/2(la j ), we have that

ρ2W eU−
j ≤ (ερ)

7
4

(ε2ρ2 + |x − la j |2) 7
8

= O(ε
7
4 l−

7
4 ρ

7
4 ) = O(l

7
4 ) (2.15)

in B̃. Since by Lemma 2.1

e−PU = (δ2ρ2 + |x |2)2∏2
j=0(ε

2ρ2 + |x − la j |2)2
e−8πH(x,0)+8π

∑2
j=0 H(x,la j )

(
1 + O(l4| ln l|))

= O

(
(δ2ρ2 + |x |2)2∏2

j=0(ε
2ρ2 + |x − la j |2)2

)
, (2.16)

we get that in B̃

ρ2W e−PU ≤ C
ρ2

(ερ)
1
4

(δ2ρ2 + |x − la1|2 + l2)2

(ε2ρ2 + |x − la0|2) 7
8
∏2

j=1(ε
2ρ2 + |x − la j |2)2

≤ C
′ ρ2

(ερ)
1
4

l−
23
4

(
1 + l4

(ε2ρ2 + |x − la1|2)2
)

= O
(

l
7
4

)
(2.17)

in view of δ ≤ ε. Then, by (2.15) and (2.17) we get that |W R−| = O(l
7
4 ) in B̃ and by (2.16)

it follows easily that

∫
B̃

|R−| = O

⎛
⎜⎝ρ2

∫
B̃

∏
j 
=0

(ε2ρ2 + |x − la j |2)−2 + l2

⎞
⎟⎠ = O

⎛
⎜⎝l4

∫
B̃

|x − la2|−4 + l2

⎞
⎟⎠

= O

⎛
⎜⎝l2

∫
l−1 B̃

|y − a2|−4 + l2

⎞
⎟⎠ = O(l2).
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The estimates on each Bl/2(la j ) and in B̃ yield to

‖R−‖∗ = O(l
7
4 ),

∫
B

|R−| = O(l2| ln l|). (2.18)

Finally, by (2.11) and (2.18) we get that

‖R‖∗ ≤ ‖R+‖∗ + ‖R−‖∗ + 1

π

⎛
⎝∫

B

|R+| + |
∫
B

R−|
⎞
⎠ (sup

B
W ) = O(l

3
2 | ln l|)

because

sup
B

W ≤ C

(ερ)
1
4

= O(l−
1
2 ). (2.19)

��
Remark 2.3 Let us observe that (2.7) implies ρ2ePU ≤ Cρ2eU+

in Bl/2(0) and (2.9) yields
to

ρ2ePU ≤ C
′
ρ2 ≤ C

ρ2

(ε2ρ2 + |x − la2|2)2 ≤ C
ε2ρ2

(ε2ρ2 + |x − la2|2)2

in B\Bl/2(0). Similarly, (2.14) gives ρ2e−PU ≤ Cρ2eU−
j in Bl/2(la j ) and by (2.16) we

deduce that in B̃ there holds

ρ2e−PU ≤ C
′′
ρ2 (δ

2ρ2 + |x − la1|2 + l2)2∏2
j=0(ε

2ρ2 + |x − la j |2)2
≤ C

′ ρ2l−4

(ε2ρ2 + |x − la2|2)2

≤ C
ε2ρ2

(ε2ρ2 + |x − la2|2)2 .
In conclusion, the global estimate

ρ2(ePU + e−PU ) ≤ D0

⎛
⎝eU+ +

2∑
j=0

eU−
j

⎞
⎠ (2.20)

does hold in B, for some constant D0 > 0. Moreover, (2.7) and (2.14) give that

δ2ρ4(ePU + e−PU )(δρy) → 8
(1+|y|2)2

ε2ρ4(ePU + e−PU )(ερy + la j ) → 8
(1+|y|2)2

(2.21)

uniformly on compact set of R
2 as l → 0.

We will look for a solution u of problem (1.2) in the form u = PU +φ, with φ a remainder
term small in ‖ · ‖∗, which is 2π

3 −periodic (in the angular variable) and even in the second
variable. Identifying x = (x1, x2) ∈ R

2 and x1 + i x2 ∈ C, let us introduce

S = {u ∈ L1(B) : u(e
2π i

3 x) = u(x), u(x̄) = u(x) a.e. in B}
as the space of 2π

3 −periodic functions on B which are even in x2. We have that U± and∑2
j=0 eU−

j are in S. Then

−�PU = ρ2

⎛
⎝eU+ − 1

π

∫
B

eU+
⎞
⎠−

⎛
⎝ 2∑

j=0

eU−
j − 1

π

2∑
j=0

∫
B

eU−
j

⎞
⎠
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is invariant under 2π
3 −rotation and conjugation. Since G(e

2π i
3 x, y) = G(x, e− 2π i

3 y) and
G(x̄, y) = G(x, ȳ), by the representation formula for PU:

PU (x) =
∫
B

G(x, y)(−�PU )(y)dy, ∀ x ∈ B,

simple changes of variable yield to PU ∈ S.
We take the remainder term φ in W 2,2(B) ∩ S with

∫
B φ = 0. In terms of φ, equation

(1.2) becomes {
L(φ) = −[R + N (φ)] in B,
∂φ
∂ν

= 0 on ∂B,

where

L(φ) = �φ + ρ2(ePU + e−PU )φ − ρ2

π

∫
B

(ePU + e−PU )φ,

N (φ) = ρ2ePU (eφ − 1 − φ)− ρ2e−PU (e−φ − 1 + φ)

− ρ2

π

∫
B

ePU (eφ − 1 − φ)+ ρ2

π

∫
B

e−PU (e−φ − 1 + φ).

Recall that

R = �PU + ρ2(ePU − e−PU )− ρ2

π

∫
B

(ePU − e−PU ).

Let us stress that R, L(φ) and N (φ) are in S and there holds:∫
B

R =
∫
B

L(φ) =
∫
B

N (φ) = 0.

3 The finite dimensional reduction

Let us introduce the functions

Y0 = 2
|x |2 − δ2ρ2

δ2ρ2 + |x |2 , Z0, j = 2
|x − la j |2 − ε2ρ2

ε2ρ2 + |x − la j |2 j = 0, 1, 2

and

Y = 4
δρx

δ2ρ2 + |x |2 , Z j = 4
ερ(x − la j )

ε2ρ2 + |x − la j |2 j = 0, 1, 2.

Define

Z =
2∑

j=0

Z j · a j =
2∑

j=0

4
ερ(x − la j ) · a j

ε2ρ2 + |x − la j |2

and observe that Z ∈ S. Setting S0 = S∩{∫B u = 0}, we are interested in solving the follow-
ing linear problem associated to L: given h ∈ L∞(B)∩S0, find a function φ ∈ W 2,2(B)∩S0
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such that ⎧⎨
⎩

L(φ) = h + c�P Z in B
∂φ
∂ν

= 0 on ∂B∫
B �P Zφ = 0,

(3.1)

for some coefficient c ∈ R.
We will follow the approach in [4] as re-formulated in [6,7], developed there for a Dirichlet

linear problem (see also [5]). Asymptotically the kernel of L is composed by linear combi-
nations of Y0, Z0, j , Yk , (Z j )k for j = 0, 1, 2 and k = 1, 2. The elements 2π

3 −periodic in the

kernel of L are forced to be linear combinations of Y0,
∑2

j=0 Z0, j , Re
(∑2

j=0 Z j a2
j

)
and

Im
(∑2

j=0 Z j a2
j

)
, where a2

j is the complex square. Note that

⎛
⎝ 2∑

j=0

Z j a
2
j

⎞
⎠ (x̄) =

⎛
⎝ 2∑

j=0

Z j a2
j

⎞
⎠ (x),

and then the kernel of L in S is spanned by Y0,
∑2

j=0 Z0, j and

Z = Re

⎛
⎝ 2∑

j=0

Z j a
2
j

⎞
⎠ =

2∑
j=0

Z j · a j .

Among them, only Z has “asymptotically null average on B”, and then, we expect that
asymptotically the kernel of L in S0 should be generated simply by Z . In Appendix B we
will show that the picture above is correct:

Proposition 3.1 Assume (2.3). There exist l0>0 and C>0 such that, for any h ∈ L∞(B)∩ S0

and 0 < l ≤ l0, there is a unique solution φ ∈ W 2,2(B) ∩ S0 to (3.1) with

‖φ‖∞ ≤ C | ln l|‖h‖∗, ‖φ‖H1
0 (B)

≤ C (‖φ‖∞ + ‖h‖∗) . (3.2)

Based on it, we solve now the following nonlinear auxiliary problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�(PU + φ) = ρ2(ePU+φ − e−PU−φ) in B

− ρ2

π

∫
B(e

PU+φ − e−PU−φ)+ c�P Z

∂φ
∂ν

= 0 on ∂B∫
B �P Zφ = 0,

(3.3)

for some φ ∈ W 2,2(B) ∩ S0 and a coefficient c ∈ R. The following result holds:

Proposition 3.2 Assume (2.3). There exist C>0 and l0>0 such that for any 0< l ≤ l0 prob-

lem (3.3) has a unique solution φρ(l) ∈ W 2,2(B)∩S0 which satisfies ‖φρ(l)‖∞ ≤ Cl
3
2 ln2 l.

Furthermore, the function l → φρ(l) is a C1 function in L∞(B) and in H1(B).

Proof We can rewrite (3.3) in the following way

L(φ) = − (R + N (φ))− c�P Z .

Let us denote by L∗
0 the function space L0 := L∞(B) ∩ S0 endowed with the norm ‖ · ‖∗

instead of ‖·‖∞. Proposition 3.1 ensures that the unique solution φ = T (h) of (3.1) defines a
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Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

continuous linear map from the Banach space L∗
0 into L0, with a norm bounded by a multiple

of | ln l|. Then, problem (3.3) becomes

φ = A(φ) := −T [R + N (φ)] .

Let Br :=
{
φ ∈ L0 : ‖φ‖∞ ≤ rl

3
2 ln2 l

}
, for some r > 0. Since

|ρ2ePU (eφ1 − eφ2 − φ1 + φ2)| = |(ρ2eU+ + R+)(eφ1 − eφ2 − φ1 + φ2)|
≤ C

′
(max
i=1,2

‖φi‖∞)‖φ1 − φ2‖∞(ρ2eU+ + |R+|),

by (2.11) we get that

‖ρ2ePU (eφ1 − eφ2 − φ1 + φ2)‖∗ ≤ C(max
i=1,2

‖φi‖∞)‖φ1 − φ2‖∞

and ∥∥∥∥∥∥
ρ2

π

∫
B

ePU (eφ1 − eφ2 − φ1 + φ2)

∥∥∥∥∥∥
∗

≤ Cl−
1
2 (max

i=1,2
‖φi‖∞)‖φ1 − φ2‖∞,

in view of (2.19). Combining with the similar estimates for ρ2e−PU (e−φ1 −e−φ2 +φ1 −φ2),
we get that

‖N (φ1)− N (φ2)‖∗ ≤ Cl−
1
2 (max

i=1,2
‖φi‖∞)‖φ1 − φ2‖∞.

Since N (0) = 0, in particular we have that

‖N (φ)‖∗ ≤ Cl−
1
2 ‖φ‖2∞. (3.4)

Hence, by Propositions 2.2 and 3.1 we get that

‖A(φ)‖∞ ≤ C | ln l|(‖R‖∗ + ‖N (φ)‖∗) ≤ C
′
l

3
2 ln2 l + C

′′
l

5
2 | ln5 l| ≤ rl

3
2 ln2 l

‖A(φ1)− A(φ2)‖∞ ≤ C | ln l|‖N (φ1)− N (φ2)‖∗ ≤ l| ln3 l|‖φ1 − φ2‖∞
for all φ, φ1, φ2 ∈ Br , with r = 2C

′
and l small enough. Since A is a contraction mapping

of Br , a unique fixed point of A exists in Br . The regularity of the map l → φρ(l) follows
using standard arguments (see for example [6]). ��

After problem (3.3) has been solved, we find a solution to problem (1.2), if we are able
to find l > 0 small such that the coefficients c(l) in (3.3) vanish. Let us introduce the energy
functional Eρ : H0 → R given by

Eρ(u) := 1

2

∫
B

|∇u|2 − ρ2
∫
B

(eu + e−u),

where H0 = H1(B) ∩ S0. A critical point u of Eρ on H0 yields to a 2π
3 −periodic and

x2−even solution of {−�u = ρ2(eu − e−u)− λ in B
∂u
∂ν

= 0 on ∂B,

for some Lagrange multiplierλ. Integrating the equation on B, we get thatλ = 1
π

∫
B(e

u−e−u)

and we recover a solution to (1.2).
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We introduce the finite dimensional restriction Ẽρ : (0, l0) → R given by

Ẽρ(l) := Eρ
(
PU + φρ(l)

)
. (3.5)

Since the map l → φρ(l) is a C1 function in H1(B), we have that Ẽρ(l) is a C1−function
and the following result is standard:

Lemma 3.3 Assume (2.3). Let l be a critical point of Ẽρ. If l is small, then PU + φρ(l) is
a critical point of Eρ in H0, namely a solution to problem (1.2).

Proof If l > 0 is a critical point of Ẽρ , we have that∫
B

∇(PU + φρ)∇(∂l PU + ∂lφρ)− ρ2
∫
B

(ePU+φρ − e−PU−φρ )(∂l PU + ∂lφρ) = 0.

Since ∂l PU and ∂lφρ have zero average on B, by (3.3) we can rewrite this condition as

c(l)
∫
B

�P Z(∂l PU + ∂lφρ) = c(l)
∫
B

�Z(∂l PU + ∂lφρ) = 0.

Differentiating
∫

B �P Zφρ = ∫B �Zφρ = 0 in l, we get that

∫
B

�Z∂lφρ = −
∫
B

∂l(�Z)φρ = ρ2
2∑

j=0

∫
B

eU−
j

(
Z j∂lU

−
j + ∂l Z j

)
· a jφρ.

Since

∂lU
+ = Y0

∂lδ

δ
, ∂lU

−
i = Z0,i

∂lε

ε
+ 1

ερ
Zi · ai , (3.6)

we get easily that

Z j∂lU
−
j + ∂l Z j = O(

1

ερ
).

Hence, by Proposition 3.2 we have that∣∣∣∣∣∣
∫
B

�P Z∂lφρ

∣∣∣∣∣∣ = O

(‖φρ‖∞
ερ

)
= O

(
l

3
2 ln2 l

ερ

)
. (3.7)

By (3.6) we deduce the expression for ∂lU :

∂lU = Y0
∂lδ

δ
−

2∑
j=0

Z0, j
∂lε

ε
− 1

ερ
Z .

Arguing as in Lemma 2.1, it is easy to establish the following expansions:

PY0 = Y0 + 2 + O(δρ), P Z0, j = Z0, j + 2 + O(ερ), P Z = Z + O(ερl) (3.8)

uniformly in � as l → 0. As far as (3.8), let us simply observe that

∂Z

∂ν
= ερ

∂

ν

⎛
⎝x ·

2∑
j=0

a j

⎞
⎠+ O(ερl) = O(ερl) on ∂B

∫
B

Z = 3ερ
∫
B

x − la0

|x − la0|2 · a0 + O(ερl) = O(ερl)
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because
∑2

j=0 a j = 0. Then, we get that

∂l PU = P(∂lU ) = − 1

ερ
Z + O

(
1

l

)

uniformly in � as l → 0. First, let us compute the following expansion:

∫
B

(�P Z)(P Z) =
∫
B

(�Z)(P Z) =
∫
B

(�Z)Z + O

⎛
⎝ερl

∫
B

|�Z |
⎞
⎠

= −ρ2
2∑

j,m=0

∫
B

eU−
j (Z j · a j )(Zm · am)+ O(ερl)

= −
2∑

j=0

∫
|y|≤1/ερ

128(y · a j )
2

(1 + |y|2)4

−
∑
j 
=m

∫
|y|≤1/ερ

128(y · a j )

(1 + |y|2)3
(y + lε−1ρ−1(a j − am)) · am

1 + |y + lε−1ρ−1(a j − am)|2 + O(ερl)

= −3
∫
R2

128y2
1

(1 + |y|2)4 + o(1) (3.9)

as l → 0, by means of the Lebesgue’s theorem. By the expansion of ∂l PU and (3.9) we
deduce that ∫

B

(�P Z)(∂l PU ) =
∫
B

(�Z)(∂l PU )

= − 1

ερ

∫
B

(�Z)Z + O

⎛
⎝1

l

∫
B

|�Z |
⎞
⎠

= 3

ερ

⎛
⎜⎝∫

R2

128y2
1

(1 + |y|2)4 + o(1)

⎞
⎟⎠ (3.10)

as l → 0. Combining (3.7) and (3.10), finally we get that

0 = c(l)
∫
B

�P Z(∂l PU + ∂lφρ) = 3c(l)

ερ

⎛
⎜⎝∫

R2

128y2
1

(1 + |y|2)4 + o(1)

⎞
⎟⎠

as l → 0. It implies that c(l) = 0 for l small enough. ��

4 Energy expansion

In view of Lemma 3.3, it is crucial to write down the expansion of Ẽρ as ρ, l → 0. We have
that
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Theorem 4.1 Assume (2.3). It holds

Ẽρ(l) = −64π ln ρ + D2 − 96πl2 − 32πε2l−2ρ2 + o(l2)

as l → 0, where D2 = 96π ln 2 − 16π + 48π ln 3.

Since ε = e5l2−3

9
√

8
(1 − l6)−2l−2, by (2.3) we can further write the expansion of Ẽρ(l) as

Ẽρ(l) = −64π ln ρ + D2 − 96πl2 − 4π

81e6 l−6ρ2 + o(l2)

as l → 0. The non-constant main order term Pρ(l) = −96πl2 − 4π
81e6 l−6ρ2 has a strict

maximum point at (648e6)− 1
8 ρ

1
4 . It is now easy to see that

Pρ((647e6)−
1
8 ρ

1
4 ), P((649e6)−

1
8 ρ

1
4 ) < P((648e6)−

1
8 ρ

1
4 ).

Since at these points the values of Pρ are of order
√
ρ and o(l2) = o(

√
ρ), we get that for ρ

small the above inequalities still hold true for Ẽρ :

Ẽρ((647e6)−
1
8 ρ

1
4 ), Ẽρ((649e6)−

1
8 ρ

1
4 ) < Ẽρ((648e6)−

1
8 ρ

1
4 ).

Hence, Ẽρ has a maximum point lρ ∈ ((647e6)− 1
8 ρ

1
4 , (649e6)− 1

8 ρ
1
4 ) (which is consistent

with the assumption (2.3) for C > 0 large). Lemma 3.3 now yields to the existence part in
Theorem 1.1. The verification of (1.3) follows by construction of the approximating solutions
PU and (2.3).

Proof of Theorem 4.1 The function φ = φρ(l) satisfies

L(φ) = − (R + N (φ))− c(l)�P Z

as observed in the proof of Proposition 3.2. Multiply it by φ and integrate on B in order to
get ∫

B

|∇φ|2 = ρ2
∫
B

(ePU + e−PU )φ2 +
∫
B

(R + N (φ))φ.

Recall that
∫

B φ = ∫B �P Zφ = 0. By (2.20), (3.4) and Propositions 2.2, 3.2, we get that∫
B

|∇φ|2 ≤ C‖φ‖2∞ + (‖R‖∗ + ‖N (φ)‖∗)‖φ‖∞ ≤ C
′
l3 ln4 l. (4.1)

Since

∫
B

∇ PU∇φ =
∫
B

⎛
⎝−�U + 1

π

∫
B

�U

⎞
⎠φ = ρ2

∫
B

⎛
⎝eU+ −

2∑
j=0

eU−
j

⎞
⎠φ

in view of
∫

B φ = 0, we get that∫
B

∇ PU∇φ − ρ2
∫
B

(ePU − e−PU )φ = −
∫
B

(R+ − R−)φ.
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In view of (2.20) we can write now Ẽρ(l) in the form:

Ẽρ(l) = E(l)−
∫
B

(R+ − R−)φ + 1

2

∫
B

|∇φ|2 + O

⎛
⎝ρ2

∫
B

(ePU + e−PU )φ2

⎞
⎠

= E(l)+ O

⎛
⎝‖φ‖∞

∫
B

(|R+| + |R−|)+
∫
B

|∇φ|2 + ‖φ‖2∞

⎞
⎠ ,

where

E(l) = 1

2

∫
B

|∇ PU |2 − ρ2
∫
B

(ePU + e−PU ).

By (2.11), (2.18), (4.1) and Proposition 3.2 finally we get:

Ẽρ(l) = E(l)+ o(l2) (4.2)

as l → 0.
We are led now to expand the functional E(l). First, we consider the gradient term:

∫
B

|∇ PU |2 = ρ2
∫
B

⎛
⎝eU+ −

2∑
j=0

eU−
j

⎞
⎠ PU

= ρ2
∫
B

eU+
⎡
⎣U++8π (H(x, 0)−H(0, 0))−8π

2∑
j=0

(
H(x, la j )−H(0, la j )

)+O(l4| ln l|)
⎤
⎦

+ ρ2
2∑

j=0

∫
B

eU−
j

[
U−

j − 8π
(
H(x, 0)− H(la j , 0)

)+ 8π
2∑

m=0

(H(x, lam)

− H(la j , lam))+ O(l4| ln l|)
⎤
⎦+ 2ρ2

2∑
j=0

∫
B

eU+
ln(ε2l−2ρ2 + |l−1x − a j |2)

− 2ρ2
2∑

j=0

∫
B

eU−
j

⎛
⎝−2 ln 3 +

∑
m 
= j

ln(ε2l−2ρ2 + |l−1x − am |2)− ln(δ2l−2ρ2 + |l−1x |2)
⎞
⎠

= I + I I + I I I + I V

by means of Lemma 2.1.
As far as I , by (2.5) we get that

I =
∫

B1/δρ(0)

8

(1 + |y|2)2
(

−4 ln ρ − ln
δ2

8
− 2 ln(1 + |y|2)

)
+ O(l4| ln l|)

= −32π ln ρ − 96π ln l + (48π ln 2 − 64π)+ 48πl2 + O(l4| ln l|)
in view of δ = 1√

8
e3(1−l2)l6, where

∫
R2

ln(1 + |y|2)
(1 + |y|2)2 = π

+∞∫
0

ln(1 + s)

(1 + s)2
= −π ln(1 + s)

1 + s
|+∞
0 +π

+∞∫
0

1

(1 + s)2
= π.
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Similarly, by (2.12) we deduce that

I I =
2∑

j=0

∫
B1/2(la j )

8ε2ρ2

(ε2ρ2 + |x − la j |2)2 ln
8ε2

(ε2ρ2 + |x − la j |2)2 + O(l3)

=
2∑

j=0

∫
B1/2ερ (0)

8

(1 + |y|2)2
(

−4 ln ρ − ln
ε2

8
− 2 ln(1 + |y|2)

)
+ O(l3)

= −96π ln ρ + 96π ln l + 3(48π ln 2 + 32π + 32π ln 3)− 240πl2 + O(l3)

in view of ε = e5l2−3

9
√

8
(1 − l6)−2l−2. As far as I I I , let us expand the following integrals:

∫
Bl/2(la j )

8δ2ρ2

(δ2ρ2 + |x |2)2 ln(ε2l−2ρ2 + |l−1x − a j |2)

=
∫

B1/2(a j )

8δ2l−2ρ2

(δ2l−2ρ2 + |y|2)2 ln(ε2l−2ρ2 + |y − a j |2)

= 8δ2l−2ρ2
∫

B1/2(a j )

|y|−4 ln(ε2l−2ρ2 + |y − a j |2)+ O(δ4l−4ρ4)

= 8δ2l−2ρ2
∫

B1/2(a j )

|y|−4 ln |y − a j |2 + o(δ2l−2ρ2)

=
∫

Bl/2(la j )

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−1x − a j |2 + o(δ2l−2ρ2)

because of 2 ln |y − a j | ≤ ln(ε2l−2ρ2 + |y − a j |2) ≤ 0, (δ2l−2ρ2 + |y|2)−2 = |y|−4 +
O(δ2l−2ρ2) in B1/2(a j ) and the Lebesgue’s theorem;∫

B\Bl/2(la j )

8δ2ρ2

(δ2ρ2 + |x |2)2 ln(ε2l−2ρ2 + |l−1x − a j |2)

=
∫

B\Bl/2(la j )

8δ2ρ2

(δ2ρ2 + |x |2)2
(

ln |l−1x − a j |2 + ε2l−2ρ2

|l−1x − a j |2 + O(ε4l−4ρ4)

)

=
∫

B\Bl/2(la j )

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−1x − a j |2 + ε2l−2ρ2

∫
B1/δρ\Bl/2δρ (l/δρ a j )

8

(1 + |y|2)2 |δl−1ρy − a j |−2 + O(ε4l−4ρ4)

=
∫

B\Bl/2(la j )

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−1x − a j |2 + 8πε2l−2ρ2 + o(ε2l−2ρ2)

because of |δl−1ρy − a j |−2 ≤ 4 in B1/δρ\Bl/2δρ(l/δρ a j ) → R
2 as δl−1ρ → 0 and the

Lebesgue’ theorem.
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Summing up the previous expansions, we get that∫
B

8δ2ρ2

(δ2ρ2 + |x |2)2 ln(ε2l−2ρ2 + |l−1x − a j |2)

=
∫
B

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−1x − a j |2 + 8πε2l−2ρ2 + o(δ2l−2ρ2 + ε2l−2ρ2). (4.3)

Let us note that (4.3) holds whenever δl−1ρ, εl−1ρ → 0. Then, by (4.3) we get for I I I and
I V :

I I I = 2ρ2
2∑

j=0

∫
B

eU+
ln(ε2l−2ρ2 + |l−1x − a j |2)

= 2
∫
B

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−3x3 − 1|2 + 48πε2l−2ρ2 + o(l2)

and

I V = 96π ln 3 − 2
2∑

j=0

∫
B

8ε2ρ2

(ε2ρ2 + |x − la j |2)2
(

ln

∏
m 
= j (ε

2l−2ρ2 + |l−1x − am |2)
δ2l−2ρ2 + |l−1x |2

)

+ O(l4)

= 96π ln 3 + 2
2∑

j=0

∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2
(

ln
δ2l−2ρ2 + |l−1x + a j |2∏

m 
= j (ε
2l−2ρ2 + |l−1x + a j − am |2)

)

+ O(l4| ln l|)
= 96π ln 3 + 2

∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2 ln |l−3x3 + 1|2

− 2
2∑

j=0

∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2 ln |l−2x2 + 3l−1xa j + 3a2
j |2 − 96πε2l−2ρ2 + o(l2)

= 96π ln 3 + 2
∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2 ln |l−3x3 + 1|2

− 2
∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2 ln |l−6x6 + 27|2 − 96πε2l−2ρ2 + o(l2),

where x2, x3and x6 denote powers of a complex number x ∈ C. By the change of variable
t = l−3r3, we compute now

2
∫
B

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−3x3 − 1|2 = 32

1∫
0

δ2ρ2rdr

(δ2ρ2 + r2)2

2π∫
0

ln |l−3r3e3iθ − 1|dθ

= 32δ2l−2ρ2

3

1/ l3∫
0

dt

t
1
3 (δ2l−2ρ2 + t

2
3 )2

2π∫
0

ln |te3iθ − 1|dθ
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= 32δ2l−2ρ2

3

1/ l3∫
0

t−
5
3 dt

2π∫
0

ln |teiθ − 1|dθ + o(δ2l−2ρ2)

= 24δ2l−2ρ2

1/ l3∫
0

�(t
−2
3 )tdt

2π∫
0

ln |teiθ − 1|dθ + o(δ2l−2ρ2)

= 24δ2l−2ρ2
∫

B1/ l3

�(|x | −2
3 ) ln |x − 1| + o(δ2l−2ρ2)

because
∫ 2π

0 ln |teiθ − 1|dθ = O(t) as t → 0 and the Lebesgue’s theorem. Since∫
�

�u0 ln |x − 1| =
∫
∂�

(
∂u0

∂ν
ln |x − 1| − u0

x − 1

|x − 1|2 · ν
)

+ 2πu0(1)

for any domain � containing the singularity 1, we get

2
∫
B

8δ2ρ2

(δ2ρ2 + |x |2)2 ln |l−3x3 − 1|2 = 48πδ2l−2ρ2 + o(δ2l−2ρ2). (4.4)

Similarly, it is straightforward to see that

2
∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2 ln |l−3x3 + 1|2 = 48πε2l−2ρ2 + o(ε2l−2ρ2)

2
∫
B

8ε2ρ2

(ε2ρ2 + |x |2)2 ln |l−6x6 + 27|2 = 96π ln 3 + 32πε2l−2ρ2 + o(ε2l−2ρ2).

(4.5)

By (4.4)–(4.5) we get the expansions for I I I and I V :

I I I = 48πε2l−2ρ2 + o(l2), I V = −80πε2l−2ρ2 + o(l2).

By the estimates on I , I I , I I I and I V finally we get for the gradient term:

1

2

∫
B

|∇ PU |2 = −64π ln ρ + D1 − 96πl2 − 16πε2l−2ρ2 + o(l2) (4.6)

where D1 = 96π ln 2 + 16π + 48π ln 3.
To conclude the asymptotic expansion of E(l), we need to consider the nonlinear term

ρ2
∫

B(e
PU + e−PU ). By (2.6) we can write

ρ2
∫
B

ePU

= ρ2
∫
B

2∏
j=0

(ε2l−2ρ2 + |l−1x − a j |2)2eU+ (
1 + O(|x |2 + l4| ln l|))

= ρ2
∫
B

(
|l−3x3 − 1|4 + 2ε2l−2ρ2

2∑
m=0

|l−3x3 − 1|2|l−2x2 + aml−1x + a2
m |2
)

eU+
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+ ε4l−4ρ4 O

⎛
⎝ρ2

∫
B

eU+
(1 + | x

l
|8)
⎞
⎠+ O

⎛
⎝ρ2

∫
B

eU+
(1 + | x

l
|12)(|x |2 + l4| ln l|)

⎞
⎠

= ρ2
∫
B

(
1 + 6ε2l−2ρ2 + O(| x

l
|3 + | x

l
|12 + ε2l−2ρ2| x

l
| + ε2l−2ρ2| x

l
|10)
)

eU+

+ O(l4| ln l|) = 8π + 48πε2l−2ρ2 + o(l2). (4.7)

Splitting the integral on each Bl/2(la j ) and B̃, by (2.13) and (2.16) we can write

ρ2
∫
B

e−PU = 81
2∑

j=0

∫
B1/2(a j )

8ε2l−2ρ2

(ε2l−2ρ2 + |y − a j |2)2 (δ
2l−2ρ2 + |y|2)2

×
∏
m 
= j

(ε2l−2ρ2 + |y − am |2)−2 (1 + O(l4| ln l| + l2|y − a j | + l2|y − a j |2)
)

+ ρ2
∫
B̃

(δ2ρ2 + |x |2)2∏2
m=0(ε

2ρ2 + |x − lam |2)2 e−8πH(x,0)+8π
∑2

m=0 H(x,lam )
(
1 + O(l4| ln l|))

= 81
2∑

j=0

∫
B1/2(a j )

8ε2l−2ρ2

(ε2l−2ρ2 + |y − a j |2)2 |y|4|y2 + a j y + a2
j |−4

− 324ε2l−2ρ2
2∑

j=0

∫
B1/2(a j )

8ε2l−2ρ2

(ε2l−2ρ2 + |y − a j |2)2 |y|4(|y|2+a j · y+1)|y2+a j y+a2
j |−6

+ ρ2l−6
∫

l−1 B̃

(δ2l−2ρ2 + |y|2)2∏2
j=0(ε

2l−2ρ2 + |y − a j |2)2
e−8πH(ly,0)+8π

∑2
m=0 H(ly,lam ) + O(l3)

= 81
2∑

j=0

∫
B1/2(0)

8ε2l−2ρ2

(ε2l−2ρ2 + |y|2)2 |y + a j |4|y2 + 3a j y + 3a2
j |−4

− 32πε2l−2ρ2 + 648ε2l−2ρ2
∫
R̃

|y|4
|y3 − 1|4 + o(l2), (4.8)

where R̃ = R
2\ ∪2

j=0 B1/2(a j ), because

e−8πH(0,0)+8π
∑2

m=0 H(0,lam )l−4 = 648ε2(1 + o(1))

as l → 0.
Adding (4.7) and (4.8) we obtain the expansion:

ρ2
∫
B

(ePU + e−PU ) = 8π + 16πε2l−2ρ2 + 648ε2l−2ρ2
∫
R̃

|y|4
|y3 − 1|4

+ 81
∫

B1/2(0)

8ε2l−2ρ2

(ε2l−2ρ2 + |y|2)2

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4

⎞
⎠+ o(l2). (4.9)
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In polar coordinates with respect to 0, letting α = εl−1ρ the following term rewrites as

∫
B1/2(0)

8ε2l−2ρ2

(ε2l−2ρ2 + |y|2)2

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4

⎞
⎠

=
1/2α∫
0

8rdr

(1 + r2)2

2π∫
0

⎛
⎝ 2∑

j=0

|αreiθ + a j |4|α2r2e2iθ + 3αra j e
iθ + 3a2

j |−4

⎞
⎠ dθ

=
2π∫

0

2∑
j=0

⎡
⎣− 4

1 + r2 |αreiθ + a j |4|α2r2e2iθ + 3αra j e
iθ + 3a2

j |−4 |1/2α0

+
1/2α∫
0

4α

1 + r2 f j (αr, θ)dr

⎤
⎦ dθ

=
2π∫

0

⎡
⎣− 16α2

1 + 4α2

2∑
j=0

(
|1

2
eiθ + a j |4|1

4
e2iθ + 3

2
a j e

iθ + 3a2
j |−4

)
+ 4

27

+
1/2∫
0

4α2

α2 + r2

⎛
⎝ 2∑

j=0

f j (r, θ)

⎞
⎠ dr

⎤
⎦ dθ,

where

f j (r, θ)= 4|reiθ + a j |2|r2e2iθ + 3ra j e
iθ + 3a2

j |−4(reiθ + a j ) · eiθ

− 4|reiθ+aj |4|r2e2iθ+3raj e
iθ+3a2

j |−6(r2e2iθ+3ra j e
iθ+3a2

j )·(2re2iθ+3a j e
iθ ).

Set f (r, θ) = ∑2
j=0 f j (r, θ). Recalling that

∑2
j=0 a2

j = 0, it is tedious but straightforward
to show that

f (0, θ) =
2∑

j=0

(
4

81
a j · eiθ − 4

81
a j · eiθ

)
= 0

∂

∂r
f (0, θ) = − 8

243

⎛
⎝ 2∑

j=0

a2
j

⎞
⎠ · e2iθ = 0.

Since | f (r, θ)| ≤ Cr2 in (0, 1
2 )× [0, 2π ], we get that

∫
B1/2(0)

8ε2l−2ρ2

(ε2l−2ρ2 + |y|2)2

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4

⎞
⎠

= 8

27
π − 16α2

2π∫
0

2∑
j=0

(∣∣∣∣12 eiθ + a j

∣∣∣∣
4 ∣∣∣∣14 e2iθ + 3

2
a j e

iθ + 3a2
j

∣∣∣∣
−4
)

dθ

+ 4α2

2π∫
0

dθ

1/2∫
0

r−2 f (r, θ)dr + o(α2)
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as α → 0. Since

f (r, θ) = ∂

∂r

⎛
⎝ 2∑

j=0

|reiθ + a j |4|r2e2iθ + 3ra j e
iθ + 3a2

j |−4

⎞
⎠ ,

we can write

2π∫
0

dθ

1/2∫
0

4

r2 f (r, θ)

=
2π∫

0

⎡
⎣ 4

r2

⎛
⎝ 2∑

j=0

|reiθ + a j |4|r2e2iθ + 3ra j e
iθ + 3a2

j |−4 − 1

27

⎞
⎠ |1/20

+
1/2∫
0

8

r3

⎛
⎝ 2∑

j=0

|reiθ + a j |4|r2e2iθ + 3ra j e
iθ + 3a2

j |−4 − 1

27

⎞
⎠ dr

⎤
⎦ dθ

= 16

2π∫
0

⎛
⎝ 2∑

j=0

∣∣∣∣12 eiθ + a j

∣∣∣∣
4 ∣∣∣∣14 e2iθ + 3

2
a j e

iθ + 3a2
j

∣∣∣∣
−4
⎞
⎠ dθ − 32π

27

+
∫

B1/2

8

|y|4

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4 − 1

27

⎞
⎠ .

So, we get that

∫
B1/2(0)

8ε2l−2ρ2

(ε2l−2ρ2 + |y|2)2

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4

⎞
⎠ = 8

27
π − 32π

27
ε2l−2ρ2

+ ε2l−2ρ2
∫

B1/2

8

|y|4

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4 − 1

27

⎞
⎠+ o(l2).

Finally, by (4.9) the following expansion does hold:

ρ2
∫
B

(ePU + e−PU ) = 32π − 80πε2l−2ρ2 + 648ε2l−2ρ2
∫
R̃

|y|4
|y3 − 1|4

+ 81ε2l−2ρ2
∫

B1/2

8

|y|4

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4 − 1

27

⎞
⎠+ o(l2). (4.10)

Combining (4.6), (4.10) and the following Lemma

Lemma 4.2 There holds

∫
R̃

|y|4
|y3 − 1|4 +

∫
B1/2

1

|y|4

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4 − 1

27

⎞
⎠ = 4

27
π.
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we obtain that

E(l) = −64π ln ρ + D2 − 96πl2 − 32πε2l−2ρ2 + o(l2),

where D2 = 96π ln 2 − 16π + 48π ln 3. With the aid of (4.2), the proof is done. ��

5 Appendix A

In this Appendix we will establish the validity of Lemma 4.2. We need to compute the value
of

I0 :=
∫
R̃

|y|4
|y3 − 1|4 +

∫
B1/2

1

|y|4

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4 − 1

27

⎞
⎠ ,

where R̃ = R
2\ ∪2

j=0 B1/2(a j ). Since

∫
B1/2

1

|y|4

⎛
⎝ 2∑

j=0

|y + a j |4|y2 + 3a j y + 3a2
j |−4 − 1

27

⎞
⎠

=
2∑

j=0

∫
B1/2

(
|y + a j |4|y|−4|y2 + 3a j y + 3a2

j |−4 − |y|−4

81

)

=
2∑

j=0

∫
B1/2(a j )

(
|y|4|y − a j |−4|y2 + a j y + a2

j |−4 − |y − a j |−4

81

)

=
2∑

j=0

∫
B1/2(a j )

( |y|4
|y3 − 1|4 − |y − a j |−4

81

)
,

let us rewrite I0 in a more useful way:

I0 =
∫
R̃

|y|4
|y3 − 1|4 +

2∑
j=0

∫
B1/2(a j )\Cε, j

( |y|4
|y3 − 1|4 − |y − a j |−4

81

)
+ o(1)

=
∫

R2\∪2
j=0Cε, j

|y|4
|y3 − 1|4 − 1

81

2∑
j=0

∫
B1/2(a j )\Cε, j

|y − a j |−4 + o(1)

as ε → 0, where in complex notations Cε, j = a j (Bε(1))
1
3 and

(Bε(1))
1
3 = {y ∈ B1/2(1) : y3 ∈ Bε(1)}.
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Setting C = {y = ρeiθ ∈ C : ρ ≥ 0, θ ∈ [−π
3 ,

π
3 ]}, by the change of variable y → a j y

we get that

I0 =
2∑

j=0

∫
a j (C\Bε (1)

1
3 )

|y|4
|y3 − 1|4 − 1

81

2∑
j=0

∫
a j (B1/2(1)\Bε (1)

1
3 )

|y − a j |−4 + o(1)

= 3
∫

C\Bε (1)
1
3

|y|4
|y3 − 1|4 − 1

27

∫
B1/2(1)\Bε (1)

1
3

|y − 1|−4 + o(1).

Under the change of variable z = y3, the volume element is dz = 9|y|4dy and I0 becomes

I0 = 1

3

∫
R2\Bε (1)

dz

|z − 1|4 − 1

27

∫
B1/2(1)\Bε (1)

1
3

|y − 1|−4 + o(1)

as ε → 0.
It is crucial now to understand the asymptotic shape of Bε(1)

1
3 around 1 for ε small. In

polar coordinates let us remark that ρeiθ + 1 ∈ Bε(1)
1
3 is equivalent to:

|(ρeiθ + 1)3 − 1|2 = |3ρeiθ + 3ρ2e2iθ + ρ3e3iθ |2 = g(ρ, θ) ≤ ε2,

where

g(ρ, θ) = 9ρ2 + 18ρ3 cos θ + 3ρ4 (1 + 4 cos2 θ
)+ 6ρ5 cos θ + ρ6.

Observe that for δ0 small

∂g

∂ρ
= 18ρ + O(ρ2) > 0 ∀ 0 ≤ ρ ≤ δ0, θ ∈ [0, 2π].

Since g(0, θ) = 0 and gε(δ0, θ) ≥ δ2
0 for any θ ∈ [−π, π] and δ0 small, we get that for any

0 < ε < δ0 and θ ∈ [0, 2π ] there exists an unique ρε = ρε(θ) so that

{ρ ∈ [0, δ0] : gε(ρ, θ) ≤ ε2} = [0, ρε(θ)].
We need to identify the asymptotic of ρε as ε → 0. To this aim, introduce

ρ± = ρ±(θ) = ε

3

(
1 − ε

3
cos θ + 11 cos2 θ − 1

54
ε2 ± ε3

)

and compute

gε(ρ±, θ) = ε2 + ε5
(

±2 + 8

27
cos3 θ − 4

81
cos θ

)
+ O(ε6)

uniformly for θ ∈ [0, 2π ]. Since | 8
27 cos3 θ − 4

81 cos θ | ≤ 28
81 , we get that for ε small

±[gε(ρ±, θ) − ε2] > 0 for any θ ∈ [0, π ]. Therefore, for ε small ρ− < ρε < ρ+ or
equivalently

ρε(θ) = ε

3

(
1 − ε

3
cos θ + 11 cos2 θ − 1

54
ε2 + O(ε3)

)
(5.11)

does hold uniformly on θ ∈ [0, 2π ] as ε → 0.
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We are now in position to determine the value of I0:

I0 = 2π

3

∞∫
ε

r−3dr − 1

27

2π∫
0

dθ

1/2∫
ρε(θ)

r−3dr + o(1)

= π

3
ε−2 + 1

54

2π∫
0

(
4 − ρ−2

ε (θ)
)

dθ + o(1)

= 4π

27
+ π

3
ε−2 − 1

6
ε−2

2π∫
0

(
1 − ε

3
cos θ + 11 cos2 θ − 1

54
ε2 + O(ε3)

)−2

dθ + o(1)

= 4π

27
+ π

3
ε−2 − 1

6
ε−2

2π∫
0

(
1 + 2 cos θ

3
ε − 2 cos2 θ − 1

27
ε2 + O(ε3)

)
dθ + o(1)

= 4π

27
+ 1

162

2π∫
0

cos(2θ)dθ + o(1) = 4π

27
+ o(1) → 4π

27

as ε → 0, by means of (5.11). The validity of Lemma 4.2 is completely established.

6 Appendix B

Let us recall the definition of the operator L:

L(φ) = �φ + ρ2(ePU + e−PU )φ − ρ2

π

∫
B

(ePU + e−PU )φ,

which acts on φ ∈ S0. Our final aim is to show the validity of Proposition 3.1 and we will
follow the approach in [4,6,7]. It makes a crucial use of comparison arguments for the line-
arized operator and the first main difficulty is that L in general does not satisfy the Maximum
Principle. Indeed, L is the sum of a differential operator L̃ = � + ρ2(ePU + e−PU ) and

an integral term c(φ) = − ρ2

π

∫
B(e

PU + e−PU )φ. According to [4,6,7], the operator L̃ will
satisfy the Maximum Principle and by comparison some a-priori estimates will hold. The
main goal will be to get rid of the presence of the term c(φ).

Letting �R = BRδρ(0) ∪⋃2
j=0 BRερ(la j ), we have the following:

Proposition 6.1 Assume (2.3). There exist C > 0 and R > 0 large such that every solution
φ of L̃φ = h in B1/2\�R satisfies

‖φ‖∞,B1/2\�R ≤ C
(‖h‖∗ + ‖φ‖∞,∂B1/2∪∂�R

)
(6.12)

for l > 0 small.

Proof The proof is adapted from [6] and only minor changes take place. For reader’s con-
venience, we recall the basic steps and refer to [6] for all the details.
First step. The operator L̃ satisfies the Maximum Principle in B1/2\�R , for R large inde-
pendent on l small:

L̃(ψ) ≤ 0 in B1/2\�R and ψ ≥ 0 on ∂B1/2 ∪ ∂�R ⇒ ψ ≥ 0 in B1/2\�R .
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Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

It is sufficient to construct a strictly positive super-solution M as a comparison function. The
function

M(x) = 2
a2|x |2 − δ2ρ2

δ2ρ2 + a2|x |2 + 2
2∑

j=0

a2|x − la j |2 − ε2ρ2

ε2ρ2 + a2|x − la j |2

satisfies {
L̃(M) < 0 in B1/2\�R
8
3 ≤ M ≤ 8 in B1/2\�R

for 0 < a < 1√
27D0

and R >
√

2
a , where D0 is the constant in (2.20).

Second step. Let R > 0 be given and 0 < η < 3
4R . Letting

Aη = 32(
4η

3
)

1
4 , Bη =

(
32

R
1
4

− Aη

)
1

ln 4Rη
3

< 0,

define

ψη(x) = −32
η

1
4

|x | 1
4

+ Aη + Bη ln
4|x |

3
,

a solution of ⎧⎨
⎩−�ψη = 2 η

1
4

|x | 9
4

for Rη < |x | < 3
4

ψη = 0 for |x | = Rη and |x | = 3
4

so that 0 < ψη <
64

R
1
4
. The function

T (x) = ψδρ(x)+
2∑

j=0

ψερ(x − la j )

then satisfies

L̃(T ) ≤ −W −1 in B1/2\�R, 0 < T ≤ 256

R
1
4

for any R ≥ D4
0244.

Third step. Estimate (6.12) does hold for R > 0 large. Indeed, introduce the comparison
function 3

8‖φ‖∞,∂B1/2∪∂�R M + ‖h‖∗T . We have that

L̃

(
3

8
‖φ‖∞,∂B1/2∪∂�R M + ‖h‖∗T

)
≤ −‖h‖∗W −1 ≤ −|h| in B1/2\�R

3

8
‖φ‖∞,∂B1/2∪∂�R M + ‖h‖∗T ≥ |φ| on ∂B1/2 ∪ ∂�R

and, by the Maximum Principle,

|φ|(x) ≤ C(‖φ‖∞,∂B1/2∪∂�R + ‖h‖∗) in B1/2\�R

for R large, where C depends on R. ��
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We want to extend now (6.12) to solutions of L(φ) = h. Letting as before

c(φ) = − ρ2

π

∫
B(e

PU + e−PU )φ, the operator L rewrites as L = L̃ + c(·). We can introduce

the function φ̃ = φ + c(φ)
4 |x |2 in order to get that

L̃(φ̃) = h + c(φ)

4
|x |2ρ2(ePU + e−PU ).

We can apply (6.12) to φ̃ and, taking into account ρ2W (ePU + e−PU ) ≤ 8D0 in view of
(2.20), it follows:

Corollary 6.2 Assume (2.3). There exist C > 0 and R > 0 large such that every solution φ
of Lφ = h in B1/2\�R satisfies

‖φ‖∞,B1/2\�R ≤ C
(‖h‖∗ + ‖φ‖∞,∂B1/2∪∂�R + |c(φ)|) (6.13)

for l > 0 small.

We consider now the problem (3.1) when c = 0:⎧⎨
⎩

L(φ) = h in B
∂φ
∂ν

= 0 on ∂B∫
B �P Zφ = 0,

(6.14)

with h ∈ S0. We are now in position to show:

Proposition 6.3 Assume (2.3). There exists C > 0 such that for every solution φ ∈ S0 of
(6.14) there holds

‖φ‖∞ ≤ C | ln l|‖h‖∗ (6.15)

for l > 0 small.

Proof By contradiction, assume the existence of sequences ρn , ln , φn ∈ S0 and hn ∈ S0 so
thatφn is a solution of (6.14) associated toρn and hn , ‖φn‖∞ =1, ln →0 and | ln ln |‖hn‖∗ →0
as n → +∞. We will denote by εnρn , δnρn the concentration parameters associated to ln
and by Un = (Un)+ −∑2

j=0(Un)
j
− the corresponding approximating solution.

First claim. There hold

φn ⇀ 0 weakly in H1(B) and strongly in C1
loc (B̄\{0}) (6.16)

c(φn) = − 1

π
ρ2

n

∫
B

(ePUn + e−PUn )φn → 0 (6.17)

as n → +∞.
Multiply (6.14) by φn and integrate on B:∫

B

|∇φn |2 = ρ2
n

∫
B

(ePUn + e−PUn )φ2
n −

∫
B

hnφn

in view of
∫

B φn = 0. By (2.20) we get that

ρ2
n

∫
B

(ePUn + e−PUn )φ2
n ≤ D0ρ

2
n

∫
B

(e(Un)
+ +

2∑
j=0

e(Un)
−
j ) ≤ C.

123



Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

Since ∣∣∣∣∣∣
∫
B

hnφn

∣∣∣∣∣∣ ≤
∫
B

|hn | ≤ ‖hn‖∗
∫
B

W −1
n ≤ C‖hn‖∗,

we get that supn∈N

∫
B |∇φn |2 < +∞. Since

∫
B φn = 0, the sequence φn is bounded in

H1(B). Moreover, by elliptic regularity theory ‖φn‖∞ = 1 implies that φn is bounded in
C1,α

loc (B̄\{0}), α ∈ (0, 1).

By Ascoli–Arzelá Theorem, let us consider a subsequence of φn (still denoted by φn) so
that φn ⇀ φ0 weakly in H1(B), strongly in C1

loc (B̄\{0}) and c(φn) = − 1
π
ρ2

n

∫
B(e

PUn +
e−PUn )φn → c0 as n → +∞. Since hn − ρ2

n (e
PUn + e−PUn )φn → 0 in Cloc (B̄\{0}), we

get that φ0 ∈ H1(B) is a weak solution of

�φ0 = −c0 in B\{0}, ∂φ0

∂ν
= 0 on ∂B

so that ‖φ0‖ ≤ 1. Hence, the origin is a removable singularity and the equation holds in the
whole B. By −πc0 = ∫

B �φ0 = 0 we get that c0 = 0 and then, φ0 = 0. Since it holds
along any convergent subsequence of φn , it is true for all the sequence φn and the claim is
established.
Second claim. There exist R > 0 large and η > 0 so that

‖φn‖∞,�R ≥ η (6.18)

for n large.
Let us note that (6.16) implies

‖φn‖∞,B\B1/2 → 0 as n → +∞. (6.19)

Fix now R > 0 large. If ‖φn‖∞,�R → 0 as n → +∞ (up to a subsequence), we can use
(6.16), (6.17) and ‖hn‖∗ → 0 in (6.13) to get

‖φn‖∞,B1/2\�R → 0

as n → +∞. Hence, we get that ‖φn‖∞ → 0, in contradiction with ‖φn‖∞ = 1. Hence,
(6.18) holds and the claim is proved.

Introduce now�n(y) = φn(δnρn y) in Bn = B1/δnρn and� j,n(y) = φn(εnρn y + lna j ) in

B j,n = B1/εnρn

(
− ln
εnρn

a j

)
, j = 0, 1, 2. The function �n satisfies

��n + δ2
nρ

4
n (e

PUn + e−PUn )(δnρn y)�n − δ2
nρ

2
n c(φn) = δ2

nρ
2
n hn(δnρn y) in Bn .

Note that for every M > 0

‖δ2
nρ

2
n hn(δnρn y)‖∞,BM ≤ δ2

nρ
2
n‖hn‖∗‖W −1

n (δnρn y)‖∞,BM

≤
⎛
⎝1 + O(δ2

nρ
2
n
(εnρn)

1
4

l
9
4
n

⎞
⎠ ‖hn‖∗ ≤ 2‖hn‖∗ → 0

and Bn → R
2 as n → +∞ (to estimate ‖W −1

n (δnρn y)‖∞,BM we are using that the dis-
tance among 0, lna0, lna1, lna2 is of order ln and is much bigger than εnρn and δnρn). Since
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‖�n‖∞ ≤ 1, up to a subsequence and a diagonal process, by elliptic regularity theory
�n → � in Cloc (R

2), where � is a bounded solution of

��+ 8

(1 + |y|2)2� = 0, (6.20)

by means of (2.21). According to [1], the function � is a linear combination of

1 − |y|2
1 + |y|2 ,

y1

1 + |y|2 ,
y2

1 + |y|2 .

Since φn ∈ S, the function � is 2π
3 −periodic and then

�(y) = E
1 − |y|2
1 + |y|2 ,

for some coefficient E ∈ R. Similarly, the function � j,n → � j in Cloc (R
2), where � j is

a bounded solution of (6.20).
We use now the assumption

∫
B �P Znφn = 0, which rewrites by symmetries as (x → ā j x)

0 = ρ2
n

2∑
j=0

∫
B

e(Un)
−
j φn Z j,n · a j = 3ρ2

n

∫
B

e(Un)
−
0 φn Z0,n · a0

= 3
∫

B0,n

8

(1 + |y|2)2
4y · a0

1 + |y|2�0,n .

By Lebesgue’s Theorem, letting n → +∞ we get that∫
R2

y1

(1 + |y|2)3�0 = 0. (6.21)

Since φn(x) = φn(x̄), the function�0,n is also invariant by conjugation in B0,n . In the limit,
�0(y) = �0(ȳ) in R

2 and the following relation follows∫
R2

y2

(1 + |y|2)3�0 = 0. (6.22)

Since φn is 2π
3 −periodic, observe that

�0,n(y) = φn(εnρn y + lna0) = φn(εnρna j y + lna j ) = � j,n(a j y),

which gives in the limit�0(y) = � j (a j y) in R
2. Using this relation in (6.21)–(6.22), by the

change of variable y → a j y we get that∫
R2

y · a j

(1 + |y|2)3� j =
∫
R2

y · (ia j )

(1 + |y|2)3� j = 0.

These two relations are linearly independent and lead to∫
R2

y1

(1 + |y|2)3� j =
∫
R2

y2

(1 + |y|2)3� j = 0. (6.23)
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By (6.21)–(6.23) we get that � j = Fj
1−|y|2
1+|y|2 . Since �0(y) = � j (a j y), we have that

F0 = F1 = F2 and hence

� j (y) = F
1 − |y|2
1 + |y|2 ,

for some coefficient F ∈ R. By the second claim as stated in (6.18) we get that �, � j can’t
be both trivial and a contradiction would arise if E = F = 0. Based on the assumption
| ln ln |‖hn‖∗ → 0, this will be the content of next claim.
Third claim. E = F = 0

We will us an idea developed first in [5] and then exploited in [6,7]. We construct suitable
test functions to recover the additional orthogonality relation:∫

R2

1 − |y|2
(1 + |y|2)3� =

∫
R2

1 − |y|2
(1 + |y|2)3� j = 0,

which clearly would imply E = F = 0 as claimed.
Let us perform the following construction with respect to the origin. Define

wn(x) = 4

3
ln(δ2

nρ
2
n + |x |2) δ

2
nρ

2
n − |x |2

δ2
nρ

2
n + |x |2 + 8

3

δ2
nρ

2
n

δ2
nρ

2
n + |x |2

and tn(x) = −2 δ2
nρ

2
n

δ2
nρ

2
n +|x |2 . They solve −�wn − ρ2

n e(Un)
+
wn = ρ2

n e(Un)
+
(Y0,n) and

−�tn − ρ2
n e(Un)

+
tn = ρ2

n e(Un)
+

respectively.
The good test function in the origin will be Pzn , where zn = wn − 2tn . Observe that

∂

∂ν

(
Pzn − zn − 16π

3
H(·, 0)

)
= O(δ2

nρ
2
n ) on ∂B∫

B

(
Pzn − zn − 16π

3
H(·, 0)

)
= O

(
δ2

nρ
2
n ln2(δnρn)

)
.

Since it holds

−�
(

Pzn − zn − 16π

3
H(·, 0)

)
= 1

π

∫
B

�zn + 16

3
= 1

π

∫
∂B

∂zn

∂ν
+ 16

3

= −16

3

∫
∂B

∂H(·, 0)

∂ν
+ 16

3
+ O(δ2

nρ
2
n ) = −16

3

∫
B

�H(·, 0)+ 16

3
+ O(δ2

nρ
2
n )

= O(δ2
nρ

2
n ),

by the representation’s formula we get that

Pzn − zn − 16π

3
H(·, 0) = O

(
δ2

nρ
2
n ln2(δnρn)

)
(6.24)

uniformly in �. Hence, we have that

�Pzn + ρ2
n e(Un)

+
Pzn = �zn + 16

3
+ ρ2

n e(Un)
+

Pzn + O
(
δ2

nρ
2
n ln2(δnρn)

)
= −ρ2

n e(Un)
+
(Y0,n + ρ2

n e(Un)
+
(Pzn − zn + 2)

+ 16

3
+ O

(
δ2

nρ
2
n ln2(δnρn)

)
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Since
∫

B Pzn = ∫B φn = 0, multiply (6.14) by Pzn and integrate on B to get:∫
B

hn Pzn =
∫
B

φn

(
�Pzn + ρ2

n e(Un)
+

Pzn

)
+ ρ2

n

∫
B

(
ePUn + e−PUn − e(Un)

+)
φn Pzn

= −ρ2
n

∫
B

e(Un)
+
φn(Y0,n + ρ2

n

∫
B

e(Un)
+
(Pzn − zn + 2) φn

+ ρ2
n

∫
B

(
ePUn + e−PUn − e(Un)

+)
φn Pzn + O

(
δ2

nρ
2
n ln2(δnρn)

)
(6.25)

As for the L.H.S., by (6.24) we get that Pzn = zn + O(1) = O(| ln δ2
nρ

2
n |) = O(| ln ln |) and

then ∣∣∣∣∣∣
∫
B

hn Pzn

∣∣∣∣∣∣ = O

⎛
⎝| ln ln |

∫
B

|hn |
⎞
⎠ = O(| ln ln |‖hn‖∗) → 0

as n → +∞, by our assumption by contradiction on hn . As for the first term in the R.H.S.,
we can write now

−ρ2
n

∫
B

e(Un)
+
φnY0,n = 2

∫
Bn

8

(1 + |y|2)2
1 − |y|2
1 + |y|2�n → 2E

∫
R2

8(1 − |y|2)2
(1 + |y|2)4

as n → +∞, by means of Lebesgue Theorem and �n → E 1−|y|2
1+|y|2 in Cloc (R

2). By (6.24)
the second term in the R.H.S. gives a contribution

ρ2
n

∫
B

e(Un)
+
(Pzn − zn + 2) φn = 16π

3
ρ2

n

∫
B

e(Un)
+
(H(x, 0)− H(0, 0)) φn

+O
(
δ2

nρ
2
n ln2(δnρn)

) = O(δnρn) → 0 as n → +∞.

Since Pzn = O(| ln ln |), for the third term in the R.H.S. by (2.11), (2.18) and (6.24) we get
that

ρ2
n

∫
B

(
ePUn + e−PUn − e(Un)

+)
φn Pzn = ρ2

n

2∑
j=0

∫
B

e(Un)
−
j φn Pzn + O(l2

n ln2 ln)

=
2∑

j=0

∫
B j,n

8

(1 + |y|2)2� j,nzn(εnρn y + lna j )

+ 16π

3

2∑
j=0

∫
B j,n

8

(1 + |y|2)2� j,n H(εnρn y + lna j , 0)+ O(l2
n ln2 ln)

= 8F ln ln

∫
R2

8(|y|2 − 1)

(1 + |y|2)3 − 6F H(0, 0)
∫
R2

8(1 − |y|2)
(1 + |y|2)3 + o(1) → 0

as n → +∞, by means of Lebesgue Theorem and � j,n → F 1−|y|2
1+|y|2 in Cloc (R

2). We have

used that
∫

R2
1−|y|2
(1+|y|2)3 = 0. In conclusion, (6.25) leads to E = 0.

123



Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation

A similar argument can be carried out by using the test function Pz j,n , where z j,n = w j,n +
16π

3 H(lna j , lna j )t j,n . Here, the functions w j,n and t j,n are defined as follows:

w j,n(x) = 4

3
ln(ε2

nρ
2
n + |x − lna j |2) ε

2
nρ

2
n − |x − lna j |2

ε2
nρ

2
n + |x − lna j |2 + 8

3

ε2
nρ

2
n

ε2
nρ

2
n + |x − lna j |2

and t j,n(x) = −2 ε2
nρ

2
n

ε2
nρ

2
n +|x−lna j |2 . ��

It is now easy to include a term c�P Z in the R.H.S. of L(φ) = h and obtain:

Corollary 6.4 Assume (2.3). There exists C > 0 such that for every solution φ ∈ S0 of (3.1)
there holds

‖φ‖∞ ≤ C | ln l|‖h‖∗ (6.26)

for l > 0 small.

Proof We need an estimate on the value of c. To this aim, multiply (3.1) by P Z and integrate
on B: ∫

B

h P Z + c
∫
B

�P Z P Z = ρ2
∫
B

(ePU + e−PU )φP Z , (6.27)

because
∫

B �φP Z = ∫B �P Zφ = 0 and
∫

B P Z = 0. By (3.8) we get that P Z = O(1) and∣∣∫
B h P Z

∣∣ = O
(∫

B |h|) = O(‖h‖∗). Moreover, by (2.11), (2.18) and (2.20) we deduce that

ρ2
∫
B

(ePU + e−PU )φP Z = ρ2
∫
B

(ePU + e−PU )φZ + O(ερl‖φ‖∞)

= ρ2
∫
B

⎛
⎝eU+ +

2∑
j=0

eU−
j

⎞
⎠φZ + O(l2| ln l|‖φ‖∞)

in view of (3.8). We have that for any j = 0, 1, 2

ρ2
∫
B

eU+
φZ j · a j = O

⎛
⎜⎝‖φ‖∞

∫
|y|≤1/δρ

8

(1 + |y|2)2
εδ−1|y − lδ−1ρ−1a j |

ε2δ−2 + |y − lδ−1ρ−1a j |2

⎞
⎟⎠

= O

⎛
⎜⎜⎝ερl−1‖φ‖∞

∫
|y|≤l

3
2 /δρ

8

(1 + |y|2)2

⎞
⎟⎟⎠+ O

⎛
⎜⎜⎝‖φ‖∞

∫
|y|≥l

3
2 /δρ

8

(1 + |y|2)2

⎞
⎟⎟⎠

= O (l‖φ‖∞)
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and for any k 
= j

ρ2
∫
B

eU−
j φZk · ak = O

⎛
⎜⎝‖φ‖∞

∫
|y|≤1/ερ

8

(1 + |y|2)2
|y + lε−1ρ−1(a j − ak)|

1 + |y + lε−1ρ−1(a j − ak)|2

⎞
⎟⎠

+ O(ε2ρ2‖φ‖∞) = O

⎛
⎜⎜⎝ερl−1‖φ‖∞

∫
|y|≤l

3
2 /ερ

8

(1 + |y|2)2

⎞
⎟⎟⎠

+ O(‖φ‖∞
∫

|y|≥l
3
2 /ερ

8

(1 + |y|2)2 )+ O(ε2ρ2‖φ‖∞) = O(l‖φ‖∞)

as l → 0, uniformly on φ. In conclusion, we have that

ρ2
∫
B

(ePU + e−PU )φP Z = ρ2
2∑

j=0

∫
B

eU−
j φZ j · a j + O(l‖φ‖∞)

= −
∫
B

�P Zφ + O(l‖φ‖∞) = O(l‖φ‖∞)

as l → 0. By (3.9) and (6.27) we deduce that

c
∫
R2

128y2
1

(1 + |y|2)4 + o(1)|c| = O(‖h‖∗ + l‖φ‖∞)

as l → 0. Then the following estimate on c does hold

|c| = O(‖h‖∗ + l‖φ‖∞),

as l → 0. By Proposition 6.3 and the estimate on c we get that

‖φ‖∞ ≤ C | ln l|‖h + c�P Z‖∗ ≤ C
′ | ln l|‖h‖∗ + O(l| ln l|‖φ‖∞)

and then, the validity of (6.26) easily follows because O(l| ln l|) is small independently on φ.
��

Corollary 6.4 now yields easily to the validity of Proposition 3.1. Indeed, let us introduce
the operator (�)−1 with Neumann boundary condition: given f ∈ L p(B) for some p > 1,
the function u = (�)−1( f ) ∈ H1(B) is the unique solution of⎧⎨

⎩
�u = f − 1

π

∫
B f in B

∂u
∂ν

= 0 on ∂B∫
B u = 0.

By uniqueness, observe that u ∈ S whenever f ∈ S. Thanks to (�)−1 we can rewrite
problem (3.1) as φ + K (φ) = (�)−1(h)+ cP Z , where by elliptic regularity

K (φ) = (�)−1
(
ρ2(ePU + e−PU )φ

)
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is a compact operator from H1(B) ∩ S0 into itself. In the space H1(B) ∩ S0, define � and
�⊥ = Id −� as the projection operators onto P Z and {P Z}⊥ respectively. Problem (3.1)
can be further rewritten in an equivalent way as

φ +�⊥K (φ) = �⊥(�)−1(h).

Observe that, by Corollary 6.4, Id +�⊥ ◦ K is injective in H1(B)∩ S0, where�⊥ ◦ K is a
compact operator. For any h ∈ L∞(B)∩S0, Fredholm alternative then provides the existence
of a unique solution φ ∈ H1(B)∩ S0 of (3.1) satisfying the bound ‖φ‖∞ ≤ C | ln l|‖h‖∗ for
l small. Moreover, by elliptic regularity theory φ ∈ W 2,2(B) and there holds:∫

B

|∇φ|2 = −
∫
B

hφ + ρ2
∫
B

(ePU + e−PU )φ2 ≤ C(‖φ‖∞ + ‖h‖∗)2,

by Young inequality and (2.20). Proposition 3.1 is completely established.
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