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SUMMARY

It is shown that the equations R, = 0 in first approximation admit non-
singular solutions which are flat at spatial and temporal infinity.

An exact non-singular solution with eylindrical symmetry is obtained. A
physical interpretation of this solution is given and it is shown to represent a
gravitational wave which comes in from r = ® at{ = — o, grows in intensity
near r = 0, reaching a maximum at about { = 0, and then declines and finally
disappears to 7 = « at ¢ = . Space-time is non-singular everywhere, and flat
atr = o« and at { = =, but not at 2 = o, It is possible that the infinite

extension of the field in the z-direction may indicate the presence of material
sources at 2 = o,

1. Introduction. All published non-trivial solutions of the field equations of
general relativity

Ry =0 (1.1

contain singularities. It was shown by EinstEiN & PauLi [3] that there are
no static non-singular solutions which represent mass, and the question has
remained whether there exist any non-singular solutions at all.

The interest in non-singular solutions is due to the following considerations.
In the fields known at present, the sources of gravitation are, so to speak, put
into the theory from outside. They appear either as singularities, as in the
Schwarzschild solution, or as an energy tensor, as in cosmology. In either case,
the precise nature of the sources cannot be treated by general relativity alone.
This is what one would expect, since all ordinary sources involve forces which
are not gravitational, and so are outside the scope of general relativity.

It is therefore natural to ask whether the gravitational field, and therefore
the nature of space-time, is always completely determined by the matter (or
energy) present. If this is so, then, in the absence of matter, one would expect
space-time to be completely flat. The only non-singular solution would be that
referring to the empty world of special relativity.
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It would perhaps not be surprising if there were to exist solutions corresponding
to isolated wave-packets of gravitational radiation. These would presumably be
non-singular because the presence of gravitational radiation does not violate the
field equations (1.1). One cannot be sure, however, that the theory will yield a
model for an isolated packet of this kind; it may be that the solution will include
also the sources of the packet, which will turn up as singularities. An isolated
wave-packet, devoid of sources, is perhaps an artificial concept; but then, so
is a single particle in an otherwise empty universe, and we know that the theory
gives a solution in this case.

The energy of the gravitational field is not included in the energy tensor,
and has, in fact, no covariant meaning. Hence if non-singular solutions of the
field equations exist, we shall not be able to regard them as being “caused” by
matter or energy. They will represent “pure” fields, that is to say, fields which
contain their own sources, and in which the duality of field and particle does
not arise. EINSTEIN spent many years trying to construct a more general field
theory of this type, and it would be interesting if general relativity itself were
found to admit such fields.

For these reasons it seems worth while to investigate further whether there
are non-singular solutions of (1.1) and this paper is a contribution to this end.
The main results of it are, first, in §2, to show that there exist non-singular
solutions of the equations in first approximation; and secondly, in §3, to produce
an exact solution which is non-singular in a sense which is made precise in §4.
Later in the paper (§5) the exact solution, which has a certain interest in its
own right, is considered in more detail, and the work ends with a brief summary
in §6. To avoid raising false hopes, I should perhaps state at once that the exact
solution which I give does not unambiguously answer the questions raised
above, because one cannot be sure that the field which it represents is free from
sources at infinity. However, the work described here seems, at least to me, to
suggest that there may well be gravitational fields completely free of matter.

2. Non-singular solutions of the approximate equations. Let us consider
the first approximation to the field equations (1.1) and see whether this admits
non-singular solutions. Let us use an imaginary time coordinate (z, = icf)
and put

gir = i + Vix
where the v,; are small, so that products of the v;, and of their derivatives may
be neglected. The equations (1.1) then become
'Yilc.au + ’Yaa.z'k — Yia,ak Yka,ai — O' (2'1)
It is convenient to introduce the small quantities v3% by
’Yﬁc = Yix — %5ik74a ’

and if we do this, the field equations (1.1) give

’Y:‘kk.aa - 'Y:‘ka.ak - ’Yl’cka.a'i - %aikva*a.bb =0 (2'2)
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If we make an infinitesimal transformation of coordinates,

xl =z, + Ei(xi), 2.3)

where the £; are small functions, we find that we can choose the coordinate
system so that

v¥.. =0, (2.4)

The condition (2.4) does not completely determine the system of coordinates.
If the v,, satisfy (2.4), then v/, obtained from them by a transformation of
type (2.3), viz.

’Y£Ia =g — &ir — &k (2-5)1
are also solutions of (2.4) provided that the §; satisfy the conditions
Ei.aa = 0'

If one can make the field of v,, vanish by the addition of terms like those in
(2.5) (that is to say, by an infinitesimal coordinate transformation) then the
field is only an apparent one and has no physical significance.

From (2.2) and (2.4) it follows that the field equations in first approximation
for empty space may be written

’Yfk.aa = 0; (2.6)
v%.. = 0. 2.9

This result is well-known. (See, for example Eppinaron [2] page 128.) Let us
now see whether there are non-singular solutions of these equations.

Equation (2.6) is the ordinary wave equation (with imaginary time coordinate)
for three-dimensional space, and it is known from the work of Syner [8] that it
has non-singular solutions. Consider the equation in the form

% . & E¥ 1 9"

and the elementary solution

where
S8 =(z—2)"+ @ —9)+ € —2) — (¢t~ 1)
2o, Yo , %0 , Lo being constants. Now let the constants be complex, and put.
S = A — B,
where A and B are real. Then

A . B
¢—A2+B2+1A2+B2

= U+ V.
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Now U and V both satisfy (2.8) and it is easy to choose the constants so that
A and B do not vanish together. By this means Syxe® obtains solutions which
are regular throughout space-time, and which have also regular derivatives.
As an example one may take

U= Rz _ Cztz + 62
- 2 . 2,2 242 2
(R* — &t + B + (2BcY) 2.9
V = —28ct

(B* — &'t + B + (2Bct)* ?
where 8 is a real constant, and R*> = 2° + 3 + 2%

We can now show that there exist regular solutions of (2.6) and (2.7). Put
T =2,y = T3, 2 = z,,and take as the only non-zero v3%

voh = U,aa ’ vih = U,22 ’ ’72"3: = “‘U,sz y (2-10)

where U is given by (2.9). Then (2.6) and (2.7) are satisfied, and since U and
its derivatives are nowhere infinite (2.10) represents a solution of the approzimate
equations which 1s regular throughout space-time. It is easy to show also that this
represents a real physical field since it cannot be reduced to zero by infinitesimal
transformations in the way described previously. In terms of the g, , the solution
{2.10) becomes

gu=1—3Uss + U.z) = gus,
g2 = 1+ 3(U s — U 29),

gss = 1 = 3(U,ss — U 2),

gz = —U 35 .

One may check that all first and second derivatives of these g, vanish at spatial
and temporal infinity, so that the field is flat there.

Solutions of this type (which depend on three distinct v7%) are the simplest
which can give non-singular fields which vanish at spatial infinity. Consider
for example the simpler solutions which have only one non-zero v% . Then
from (2.7) these must either be static (e.g. v&& += 0) or depend on less than
three of the spatial coordinates (e.g. v =+ 0). In the former case the v# has to
satisfy Laplace’s equation and is singular if plausible conditions at spatial
infinity are assumed, and in the latter the field does not tend to zero in all
directions at spatial infinity. Similar considerations apply if only two of the
v are non-zero.

Instead of (2.10) one may take for the only non-zero v3%

Mi=Uu, vd=Uun, vi=-Uu.
(In this case one must replace ¢f by —ixz, in (2.9).) This leads to the metric
gn =14+ 3U.u— U,
g2 =1—3U,ua + U = gas,
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Jia = - %‘(U,u - U,u):

Jua = "'U,41 .
Once again, this field is flat at spatial and temporal infinity. Since z, and z;
occur only in the expression z; -+ 23 this suggests that there may be exact

non-singular solutions with axial symmetry, and this expectation seems reason-
able also on physical grounds.

More complicated non-singular solutions may be constructed in a similar

way. One may easily verify that (2.6) and (2.7) are satisfied by each of the follow-
ing arrays:

Yii = 2U.2233 'Yl’; = “U,1233 'Yf‘:; = _U.wza
Y22 = 2U.1133 Yo = _U.1123
vah = 2U 1120

Y =k =y = vd = 0;

i o= 3U,223344 Y5 = '—U.123344 v = ‘U,122344 v = _‘U,122334
¥sh = 3U.113344 Yoi = "U.112344 vsi = "U,112334

v = 3U.112244 'Y:;i = —U.112234

v = 3U 110233 «

The task of finding an exact non-singular solution would be much simpler if
any existed which had spherical symmetry. This is known not to be the case from
Birkhoff’s theorem, which states that any time-dependent solution of (1.1)
with spherical symmetry may be transformed into Schwarzschild’s solution. It
is interesting to notice that the approximate equations do not suggest that there
should be any regular solutions with spherical symmetry. To prove this we start
from the fact that any spherically symmetric metric may be put in the form

ds* = A(dz® + dy* + d2°) + B dx}

where 4 and B are functions of B and z, (Kusraanaemo [5]). This is true
whether or not the field is weak. The weak-field equations in the form (2.1)
then give a set of equations of which the following are typical

26u=Au+A+Bu =0,

2G4, = (A + B),1» =0,

2G., = 24 14 = 0,

2G4 = B oo 4 34,44 — By = 0.
One finds without difficulty that

A=1+g%+ax4, B=1*?R@+ﬂx4,
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where m, «, and 8 are constants. This solution is obviously singular. The fact
that the approximate solutions do not mislead us in the spherically symmetric
case allows one to hope that they may not do so in the other cases, and that the
existence of non-singular solutions of the approximate equations may be an
indication that regular exact solutions also exist.

To find exact non-singular solutions which are flat at infinity is evidently very
difficult. Even supposing that non-singular fields with axial symmetry exist, the
g« must be functions of three variables, and the field equations become very
complicated. In the next section I undertake the simpler task of looking for
non-singular solutions in the case of cylindrical symmetry, in which the g,
depend only on r and ¢, where r is a radial coordinate measured from the axis
of symmetry. Of course, for such solutions one knows in advance that the field
cannot tend to zero as the axial coordinate (2) tends to infinity, since the g,
are independent of z. We shall have to bear in mind this fact when we discuss
the physical significance of the solution, and to consider whether it constitutes
a ‘“singularity”’ of the field.

3. An exact non-singular solution with cylindrical symmetry. Let 2z be the
coordinate measured along the axis of symmetry, r and 8 the radial and angular
coordinates, and ¢ the time. Then, for a field depending only on r and ¢, it was
shown by EiNsTEIN & RoseN [4] that the metrie is

ds’ = —e* de’ — & dr' — r’e* d§® + € dF, 3.1
where p = p(r, £), A = A(r, §), and that the field equations reduce to
prr + 170, = pie = 0, 3.2)
A+ p = (o} + 1), (3.3)
A+ pe =1pp. - (3.4)

Here a suffix r or £ means differentiation with respect to r or ¢.

Equation (3.2) is the equation for cylindrical waves in Euclidean space.
EinsteEIN & RoseN, and later Rosex [7], obtained solutions of it which lead
to particular cases of the metric (3.1) corresponding to progressive or stationary
gravitational waves; these solutions contain a singularity along the axis of 2,
presumably representing the source of the waves.

I shall now obtain a non-singular solution of (3.2) by adapting the procedure
used by SynNGE in the case of the three-dimensional wave equation (2.10).
Consider the following function

4b
¥ — (t — i)’

where a, b are real constants. This satisfies (3.2), and on separating it into real
and imaginary parts (both of which satisfy (3.2)), we obtain

_ ) 2]} _ 2 2 3
2/3 b[u—w+u2”:vz+ v :I — 2%/3 b[———~————~—V u v ”] ,

w2 -|—1)2

(3.5
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where

u=r —t+d, v=2al (3.6)

In (3.5) positive square roots are to be taken throughout.
Let us now take for the function p in the metric (3.1) the real part of (3.5):

o =242 b[ﬂi@]*. 3.7

0 + e
From the values of u and v given in (3.6) it is clear that p in (3.7) is bounded
for all r and &.

To find M we have to integrate the equations (3.3) and (3.4), which are known
to be compatible as they come from the field equations (1.1). The result is

= lu4+ V& +0* 267w — oY)
= VR T | T e
(3.8)
b2 r2 - a2 — t2
+E2_[(u2+1)2); +1'
For the arbitrary constant which arises in the integration we have chosen the
value b*/a® for reasons which will become clear later.

The functions p and \ given by (3.7) and (3.8) give a non-singular metric (3.1),
as will be explained in §4.

4. The regularity of the solutions. Thereisin general relativity no accepted
definition of a physical singularity. One plausible definition of a non-singular
point is that it is one at which natural coordinates can be introduced by a coor-
dinate transformation. A natural coordinate system at a given point P is one in
which the g, take Galilean values at P, and in which the first derivatives of
the g;; vanish at P (EppiNgTow, [2], page 76). Physically, this definition means
that at a non-singular point it is possible for an observer to choose his coordinates
so that test particles in his immediate neighbourhood move in straight lines;
thus the effects of gravitation at the point may be removed by a coordinate
transformation.

Given a metrie g, , sufficient conditions for the introduction of natural
coordinates at P are

(i) ¢, the determinant of the ¢, , is non-zero;

(i) ¢, and their first derivatives are finite and continuous at P;  (4.1)

(iii) the second derivatives of g, are finite and continuous at P.
These conditions are not necessary; in fact the third condition could be dispensed
with completely as far as the introduction of natural coordinates is concerned;
I keep it here because the three conditions together ensure that the Riemann-
Christoffel tensor is finite and continuous, which is an additional safeguard
against singularity. Even the first two conditions are not necessary, as one can
readily appreciate if one recalls that the metric for flat space-time in polar
coordinates does not satisfy them at all points.
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To verify the regularity of the solution in §3 let us transform to pseudo-
Cartesian coordinates by putting
z =1 cos 0, y = rein 6, 2=z, t =t
The result is
ds® = —¢" d’ — r7’[da’ ("¢ + y'e ) + dyf’ (e + 2e )
+ 2xy dx dy(@ — €°)] + € d,

where p and A are given by (3.7) and (3.8). Then one can check by straight-
forward calculation that the conditions (4.1) are satisfied for all points of space-
time, that is to say, throughout the region bounded by

(4.2)

r = 4o, Yy= koo, 2 = +4o, t=+tow,

Therefore the metric (4.2) s a solution of the field equations which is everywhere
regular in the foregoing sense.

One also finds that the components of the Riemann-Christoffel tensor for
the metric (4.2) tend to zero as z, y, and ¢ tend to infinity, together or separately.
As z tends to infinity, these components do not all tend to zero. This is, of course,
due to the nature of the symmetry which was assumed at the start. The solution
is the same on any hyperplane z = constant. I shall return to this point in the
next section.

It will be convenient to distinguish between those non-singular fields which
tend to flatness as the four coordinates tend to infinity and those which do not.
By a non-singular (or regular) field I shall mean one in which every point is non-
singular (encluding points at spatial and femporal infinity). By a localized non-
singular field will be meant a non-singular one which has the additional property
that the metric tends to flatness (B, tends to zero) as any one or more of the four
coordinates tends to infinity.

With this terminology we may say that the solutions of §2 are localized non-
singular solutions of the approximate equations; and that the exact solution
of §3 is non-singular but not localized.

5. The physical significance of the exact solution. It is clear that the solution
given in §3 does not correspond to a field of ordinary matter. The static material
field with the same spatial symmetry is that of a line-mass placed along the axis
of z, and the metric corresponding to it is (LevIi-CiviTa, [6]):

2m3=2m 2m 2m
ds* = ~(T—> 2 + &) — r2<@> de® + <"—> a,
To r To
where 7, and m are constants. To compare our solution with this, we may put
¢ = constant in the g,; ; for example, if we put = 0 in (3.6), (3.7), and (3.8),
we find

4b

R/
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_ 4b 2b%r*
A= - 7'2 + az + a2(r2 + a2)2'

Then, for large r, we have

4b 1
g = —[1 +22+ 0(;2-)],

5.1
gs4 = constant X |:1 - 47b + 0(;15)]
Evidently these values of ¢.; do not represent the field of a line-mass.

Since the function p in the metric (3.1) satisfies the wave equation (3.2),
one is naturally tempted to refer to the solution of §3 as a gravitational wave.
I shall allow myself to yield to this temptation in spite of the fact that the
equation (3.2) depends on the coordinate system so that this classification is
not a covariant one.

As r tends to infinity, the components of the Riemann-Christoffe! tensor (for
the metric in the form (4.2)) tend to zero like r~°, provided ¢ is finite. Similarly
if r is finite and ¢ tends to == =, these components tend to zero like £~°. On the
surface » = =£f, however, the components tend to zero like r* (or £°%). (For
the convenience of anyone who may wish to study solutions of the metric (3.1)
I give in an Appendix the non-zero components of the Riemann-Christoffel
tensor in terms of p and \.)

Let us study the history of the field on the axis of symmetry r = 0. We find
there

4ba .
az x tz
Thus the difference of the ¢, from Galilean values is greatest when ¢ = 0. If

we make a large, we prolong the time during which |p| and [A| are approximately
equal to their maximum values:

p= —\= (5.2)

ol ~ 4 |2

Thus we may speak of ¢ as giving a measure of the “lifetime” of the wave, in
the sense that for a period of about a, the field is near its maximum intensity
as measured, for example, by the invariant B referred to below. The constant
b, on the other hand, is related to the intensity of the field since it determines
the field for large r, from (5.1).

Instead of considering the values of the g, , it would be better to study the
history of an invariant of the field. The simplest one available is

i %1
B = BI:lmBi m’

which is extremely complicated for this solution. If one calculates Bonr = 0
one finds that the conclusions of the previous paragraph are confirmed in a
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general way, although the situation is rather more complex than that suggested
by the simple function (5.2). Briefly, the graph of B as a function of ¢ (on r = 0)
shows a finite number of maxima and minima, one of which occurs at £ = 0.
Naturally, B tends to zero (like £%) as ¢ tends to == .

We are now in a position to give a rough picture of the history of the solution.
It represents a cylindrical wave which comes in from r = o at{ = — o, grows
in intensity near r = 0, reaching its greatest intensity there at about time
t = 0. It then declines and finally disappears tor = o at{ = -4 «. The values
of g1, and g4, for large r are given, for all finite ¢, by (5.1).

The solution represents a non-localized regular field, in the sense of §4, and
we have still to decide on the physieal significance of the fact that it extends to
infinity in the z-direction. In particular we should like to know whether this
represents material sources of the wave at # = o4 . If this is not the case, then
we have a solution without material sources, since there are none in the finite
region of the field, or at r = o orf{ = 4=,

Unfortunately I have not been able to find any clear answer to this question.
In another known solution of general relativity in which there are sources at
infinity—the uniform gravitational field—there are singularities in the metric
which correspond in an identifiable way to the mass particles which give rise
to the field (BonxNor [1]). This might suggest that a source at infinity, like a
source anywhere else, appears as a singularity. On the other hand, it is possible
that the most natural explanation of the field described here may be in terms of
oscillations of material particles at 2 = == «. The argument which suggests this
is as follows.

If we regard the constant b in the solution as small we may take as the first
approximation to (4.2)

gu = —1—p,
P22 = Gas = —fgas = —1 + p, (5.3
Gre = 0 (7' * 3)7

since these differ from the exact g.; by terms of order b°. Returning now to the
approximate equations of §2, we see that the field (5.3) can be represented by
the single function 7%, which satisfies

’Y;kl,l = O;

in accordance with the symmetry of the solution.
Let us suppose for the moment that in the approximate equations we have an
energy tensor T, , so that equations (2.6) and (2.7) become

'Y:'kk,aa = _167rTik ] (5'4)

’Y?a.a = 0' (5'5)
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The solution of (5.4) is given by the retarded potential:

vi=4f %’fldv. 5.6)

Suppose that the sources of the field consist of matter of density p oscillating
with velocity w parallel to the z-axis. Then we have T, = pw’, and we obtain
v*% in terms of this from (5.6). This function v will depend on 2z, and there
will be other non-zero components of v3% in accordance with (5.5). However, it
might be possible, by taking an appropriate function for w(¢), by allowing it to
be large, and by making the oscillating particles tend to 2 = =, to generate
a field which becomes, in the limit, similar to (5.3).

This argument is, of course, extremely tentative; but it does perhaps suggest
that it would be unsafe without further investigation to regard the exact solution
of §3 as representing a field without material sources.

6. Conclusion. Although it is not possible to draw from this work any
definite conclusion about the existence of localized non-singular solutions of
equations (1.1), the fact that such solutions exist in the first approximation is
interesting. Further, it may be possible to find the nature of the second approxi-
mation for solutions of this type, in the following way.

Let us consider a solution of the field equations (1.1) in a series of terms of
decreasing order of magnitude:

Gir = 0 + ki A+ oha 4 o
Take

than = N 1Yik »

where ,v:; is one of the localized non-singular solutions given in §2, and A is a
constant. We know that ;v;, is bounded throughout space-time and that its
derivatives are bounded. Then, using the field equations, we can solve for .h,;
in terms of the retarded potentials corresponding to a source function which
depends on the products of the ,v,; and their derivatives. This will give

2hik = >\2 2Yik

where the v, are, like the yv; , independent of A. If we can prove that v,
and their derivatives are bounded, and that they vanish appropriately at in-
finity, this will give a solution which is non-singular and localized as far as the
second approximation. By continuing this process it might even be possible to
prove the existence of rigorous localized non-singular solutions, since if all the
«¥ir are bounded, A can be chosen to make the series converge at all points in
space-time.

The exact solution of §3 is certainly non-singular. It is not localized, but this,
of course, is a necessary result of the eylindrical symmetry assumed at the start.
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The fact that one obtains a non-singular solution in this case suggests that one
might find exact localized non-singular solutions if one relaxed the symmetry
conditions, in agreement with the results of the theory in the first approximation.

APPENDIX

The Riemann-Christoffel tensor for the metric (3.1). If one takes the Rie-
mann-Christoffel tensor in the form

B = _I‘;l[iky a] + I‘?k['ﬂy al + %(gu,,-k + Givior — Givik — gc‘k,il):

it has twenty independent components. In the case of the metric (3.1) the
following eight of these do not vaunish:

Bz = “7'_292p33434 = 1°(2p,, + Pz — NP — Nepy),
Bigis = —723_2XB2424 == %Tze-x(zr_lpr - Pr‘: + Pzt);
By = """'_232')32323 = %ep(2pu -+ P? — PN — Pr)\r):

By = 7"—262‘,32334 = 3’p,; + prpe — Nope — Aeps).
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