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As is well known, there is an intimate connection between geodesic 
flows and Hamiltonian systems. In fact, if g is a Riemannian, or 
pseudo-Riemannian metric on a manifold M (we think of M as q-space 
or the configuration space), we may deCine a smooth function T on the 

g 
cotangent bundle T*M (q-p-space, or the phase space). This function is 
the kinetic energy of q, and locally is given by 

1 n i j 
where q = (q , ••• , q ) and p = (p l' ... , p n) and g has components g • 

Using T as a Hamiltonian function, the associated flow (that is, the global 
g 

solution of Hamilton's equations) is exactly the geodesic flow; geodesics 
are obtained by projection to M. 

Conversely, Hamiltonian motion in a potential V and metric g, 
that is, H = T + v, may be thought of as geodesic motion using the 

g 

metric (e - V) g if e > V (q). This new metric is called the Jacobi metric. 

Traditionally, the theory of classical mechanics and Riemannian 
geometry always assumes g and V are smooth functions. However, 
the most elementary examples in fact are not smooth; see below. One of the 
main reasons for the smoothness assumption was to guarantee existence 
of the flow (geodesics). This objection has now been removed. 

The purpose of this note is to explain in an expository fashion what 
changes are necessary in the above theory to cover the non-smooth case. 
This new situation is quite different, although some interesting observations 
can be made. 

The main theorem in the non-smooth theory is that if H = T + V is 
g 

singular only on a set of measure zero (H is a distribution in general). 
then there exists a measurable flow F: T*M - T*M defined almost 

t 

everywhere which can be assigned to H. This flow is, in fact, the pointwise 
limit of smooth flows corresponding to smooth approximations of H. We 
shall denote the approximate quantities with a superscript k. Thus 

k 
F

t 
(m) - F

t 
(m) 

209 



for almost all t. m. Of course the smooth flows are obtained in the 
usual manne r. For the technical machinery needed to carry out this 
program. see (2). 

This theorem is an important result. It gives us. for the first time. 
a systematic method Cor investigating geodesics which are allowed to have 
sharp corners. 

The geodesic flow has a fWldamental property in common with the 
smooth case. That is, the length of the tangent to a geodesic (wherever 
the geodesic has one), is of constant length. This corresponds exactly 
to conservation of energy. and holds even when we cross over singularities. 
To clarify this and other properties below, we consider two examples: 

t. For q space take R 
2 

the Euc lidean plane so that q - p space 

is R 
4

. Employ the Euclidean metric for g. As a potential. let V be 

a delta "function" spread uniformly along the q2 -axis. Roughly, 
1 2 1 

V(q ,q ) = 6(q ). The corresponding motion in q-space (geodesics 
of the Jacobi "metric") is just the free motion of particles reflecting 

2 
(elastically) from a "wall" along the q axis. The flow is undefined along 

the q Z_axis. Note that the flow is continuous in t in the configuration 
component q. but not in the p component. This is a general phenomena 
proven below. 

2 
2. Again take M = Rand g the Euclidean metric. This time 

define V by 

1 Z __ (0 if 
V(q • q ) 

1 if 

1 
q < 0 

1 
q > 0 

The flow on M is now the refraction of particles according to Snell's 
2 

law as they cross the interface along the q -axis. 

These two examples illustrate how the variational theory of geodeSiCS 
can go astray. In the first example the method essentially fails. That is. 
a path undergoing reflection does not extremize, more specifically minimize. 
the Lagrangian or Jacobi metric integrated over the path. The Lagrangian 
is just L = T - V. For example. by pulling the reflection point slightly 

g 
away from the wall. decreases the quantity 

1 ! L ( q ( t) • p ( t » dt 
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while the opposite motion increases it. On the other hand. the second 
example. as is well known does have the extremal property. What is 
the difference? 

To answer this question. we make a definition which distinguishes 
the two cases. We say a flow F of H = T + Y is regular if and only 

t g 
if T and Yare (locally) bounded functions and each two points q. q 

g 

can be joined by a smooth geodesic c
k 

(t) from the approximating system 

Hk = T k + yk which (i) minimizes its Langrangian. and (ii) c k (t) conve rge 
g . 

as k .... co to the geodesic of H. We also assume L k - L boundedly. 

Clearly. example one is not regular. but the second is. Notice that 
k 

although the flows F converge. this does not imply that geodesics with 
t 

fixed endpoints converge. In fact. in example one. geodesics joining points 
on opposite sides of the wall diverge. and in the limit two such points 
cannot: be joined by a geodesic. Here is an important diffe rence with the 
smooth case. 

The basic fact is that in the regular case. we always retain the 

extremal property. This is quite easy to see. In fact. if ck(t} is an 
approximating geodesic and c (t) is any other curve, 

f k k f k_ L ( c (t» dt ~ L (c ( t» dt 

letting k .... co and employing the dominated convergence theorem gives 

f L(c(t»dt ~ J L(c(t» dt. 

The curve cIt) and L are not differentiable. but this still makes sense. 
although the usual variational techniques fail. Another distinction between 
the examples is that we can define curvature in the second (it is a distribution). 
but not in the first. Again see [2] for the tools needed. 

Intuition developed in classical mechanics and Riemannian geometry 
suggests that the paths in configuration space (geodeSiCS) should always be 
continuous. although the momentum p may be discontinuous. (The paths 
need not be continuous with respect to the initial conditions.) This is in 
fact true and is quite easy to see in this framework. We suppose 

H = T + Y where gij are (locally) bounded functions and Y may be 
g 

singular. (Both examples satisfy this.) From the equations for the 
approximating systems we have 

i k t .. k k 
q (t) = E f glJ(q(S) )k P.(s) ds 

j 0 J 
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where i, j refers to coordinates. Letting k - co gives, by dominated 
convergence, 

i 
q (t) 

t 
= !: I gij(q(s» Pj(s) de . 

The refore, q (t) is continuous in t, as to be shown. 

Further applications of these ideas may be found in [2 J. The smooth 
case is done in [11 and background for geodesics is contained in [31. 
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