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Abstract: This paper presents a novel stochastic optimisation approach to determining the feasible
optimal solution of the economic dispatch (ED) problem considering various generator constraints.
Many practical constraints of generators, such as ramp rate limits, prohibited operating zones and
the valve point effect, are considered. These constraints make the ED problem a non-smooth/non-
convex minimisation problem with constraints. The proposed optimisation algorithm is called self-
tuning hybrid differential evolution (self-tuning HDE). The self-tuning HDE utilises the concept of
the 1/5 success rule of evolution strategies (ESs) in the original HDE to accelerate the search for
the global optimum. Three test power systems, including 3-, 13- and 40-unit power systems, are
applied to compare the performance of the proposed algorithm with genetic algorithms, the differ-
ential evolution algorithm and the HDE algorithm. Numerical results indicate that the entire per-
formance of the proposed self-tuning HDE algorithm outperforms the other three algorithms.
1 Introduction

Economic dispatch (ED) is an important optimisation task
in power system operation for allocating generation
among the committed units. Its objective is to minimise
the total generation cost of units, while satisfying the
various physical constraints. Because of physical limitations
of the power generators, a generating unit may have prohib-
ited operating zones between the minimum and maximum
power outputs. Generators that operate in these zones may
experience amplification of vibrations in their shaft bear-
ings, which should be avoided in practical application. On
the other hand, due to the fact that unit generation output
cannot be changed instantaneously, the unit in the actual
operating processes is restricted by its ramp rate limit
[1, 2]. Moreover, the units of real input–output character-
istics include higher order nonlinearities and discontinuities
owing to the valve point effect, which has been modelled as
a circulating commutated sinusoidal function in [3, 4]. The
ED problem with the above considerations is usually a non-
smooth/non-convex optimisation problem [1]. This kind of
optimisation problem is very hard, if not impossible, to
solve using traditionally deterministic optimisation algor-
ithms. Therefore we propose a stochastic optimisation
approach. A brief survey of proposed algorithms for the
ED problem in the open literature is given as follows, but
it is far from complete.
The Lagrangian multiplier method [5], which is generally

used in the ED problem, is no longer directly applicable. To
solve such a non-smooth/non-convex ED problem, Lee and
Breipohi [1] decomposed the non-convex decision space
into a number of convex sub-regions and then used the
Lagrangian multiplier method to solve the problem.
Nevertheless, this may require a large computational
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burden to obtain an optimal solution when a system has
several units with prohibited zones. Fan and McDonald
[6] proposed an algorithm based on conventional l–d itera-
tive dispatch to obtain the solution. Su and Chiou [7]
applied the Hopfield network approach to solve the ED
with prohibited operating zones, but the Hopfield network
method requires two-phase computations and cannot
consider power loss. Lin et al. [8] presented integrated evol-
utionary programming, tabu search (TS) and quadratic pro-
gramming (QP) methods to solve non-convex ED problems.
This integrated artificial intelligence method also requires
two-phase computations. Lin et al. [9] developed an
improved TS algorithm for ED with non-continuous and
non-smooth cost functions, but the prohibited zones and
system spinning reserve are relaxed in this work.
Sewtohul et al. [10] proposed genetic algorithms (GAs) to
solve the ED problem in light of the valve point effect.
Wong and Fung [11] developed a simulated annealing-
based ED algorithm to solve ED considering the
transmission loss. Sinha et al. [12] used an evolutionary
programming (EP) method to solve ED problems.
However, the last two studies did not consider the prohib-
ited zones. Gaing [13, 14] proposed a particle swarm
optimisation (PSO) method for solving the ED problems
in power systems.
Hybrid differential evolution (HDE) [15, 16] is a stochas-

tic optimisation method. The fittest of an offspring competes
one by one with that of the corresponding parent, which is
different from the other evolutionary algorithms (EAs).
This competition implies that the parent is replaced by its
offspring if the fitness of the offspring is better than that
of its parent. On the other hand, the parent is retained in
the next generation if the fitness of the offspring is worse
than that of its parent. This one by one competition gives
rise to a faster convergence rate. However, this faster con-
vergence also leads to a higher probability of obtaining a
local optimum because the diversity of the population des-
cends faster during the solution process. To overcome this
drawback, the migrating operator and the accelerated oper-
ator act as trade-off operators for the diversity of population
and convergence properties in HDE. The migrating operator
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maintains the diversity of the population, which guarantees
a high probability of obtaining the global optimum. The
accelerated operator is used to accelerate convergence.
However, a fixed scaling factor is used in HDE. Using a
smaller scaling factor, HDE becomes increasingly robust,
but much computational time must be expanded to evaluate
the objective function. HDE with a larger scaling factor
generally produces a local solution or divergence. Lin
et al. [17] used a random number with a value between
zero and one as a scaling factor. However, a random
scaling factor could not guarantee the fast convergence.
In this study, the self-tuning HDE for solving the non-

smooth/non-convex ED problems considering the various
physical constraints is proposed. Different from the HDE,
Np scaling factors based on the 1/5 success rule of evolution
strategies (ESs) [18, 19] are used in the self-tuning HDE
method to accelerate the search for the global solution.
That is, every individual has a corresponding scaling factor.
According to the convergence property of every individual,
the corresponding scaling factor is adjusted based on the
1/5 success rule of ESs to accelerate the search for the
global solution. The 3-, 13-, and 40-unit ED systems from
the literature are used to compare the performance of the pro-
posed method with other stochastic optimisation methods,
such as GAs, differential evolution (DE) and HDE.

2 Problem formulation

The objective of the ED is to minimise the total generation
cost of a power system over some appropriate period while
satisfying various constraints. The power system balance of
conditions for system demand, power losses and entire gen-
erator power, as well as the generating power constraints,
including prohibited zones, ramp rate limit, spinning
reserve and valve point effect for all units, should be satis-
fied. In this paper, some unit of the maximum spinning
reserve capacity is set at 15–30% of the maximum power
[20]. The valve point constraint has been modelled on
either the piece-wise quadratic cost function [8] or a circu-
lating commutated sinusoidal function [4] to represent the
valve point loading in the cost function. Therefore the ED
problem considering generator constraints can be math-
ematically described as follows

min
Pi

X
i[C

Fi(Pi) ¼ min
Pi

X
i[C

(ai þ biPi þ ciP
2
i

þ jei sin ( fi(Pimin � Pi))j)

(1)

where i denotes index of units, Fi, fuel cost function of unit
i; Pi, power generation of unit i; Pi min, minimum generation
limit of unit i; C, set of all units; ai, bi, ci, ei, fi, fuel cost
coefficients of unit i.
Subject to the following constraints

(i) Power balance constraint

X
i[C

Pi ¼ PD þ PL (2)

PL ¼
X
i

X
j

PiBijPj þ
X
i

B0iPi þ B00 (3)

where PD denotes total load demand; PL, power losses; Bij,
power loss coefficient.
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(ii) System spinning reserve constraints

X
i[C

Si � SR (4)

Si ¼ min {(Pimax � Pi), Simax} 8i [ (C� c) (5)

Si ¼ 0 8i [ c (6)

where Si, spinning reserve of unit i; SR, system spinning
reserve requirement; Pimax, maximum generation limit of
unit i; Simax, maximum spinning reserve of unit i; c, set
of all units with prohibited zones. In a unit with prohibited
operating zones, these zones strictly limit the unit’s ability
to regulate system load because load regulation may result
in its falling into certain prohibited operating zones.
Therefore the system spinning reserve requirement must
be supplied by way of regulating the units without prohib-
ited zones.
(iii) Generation limits of units

Ramp rate limits constraints

max (Pimin, P0i � DRi) � Pi

� min (Pimax, P0i þ URi) (7)

Units with prohibited operating zones

Pimin � Pi � Pl
i,1

or Pu
i,j�1 � Pi � P

l
i,j, j ¼ 2, . . . , ni

or Pu
i,ni

� Pi � Pimax, 8i [ c

8><
>: (8)

Units without prohibited operating zones

Pimin � Pi � Pimax (9)

where P0i, previous output power of unit i; URi, up ramp
limit of unit i; DRi, down ramp limit of unit i; Pi,j

l , lower
bound of the jth prohibited zone of unit i; Pi,j

u ; upper
bound of the jth prohibited zone of unit i; ni, number of pro-
hibited zones in unit i.
In this study, the treatment of constraints is performed

with the penalty function methods. The penalty function
methods are among the most popular techniques used to
handle constraints, are easy to implement and are con-
sidered efficient. The penalty method is usually a close
degree to the nearest solution in a reasonable region, and
it can allow an objective function effort to arrive at the
optimum solution. The penalty method is implemented in
this paper as follows.
First, if the ED takes account of the prohibited zone con-

straints, the delimitation point divides the prohibited zone
into two sub-zones, that is the left and right prohibited sub-
zones. The delimitation point is set in the middle point of
each prohibited zone in this work. When a unit operates
in one of its prohibited zones, the strategy is to force the
unit to move either towards the lower bound of that zone
from the left sub-zone or towards the upper bound of that
zone from the right sub-zone. The unit power must
conform to the constraint of (8) when the unit does not
include prohibited zones. In addition to prohibited zone
constraints, the computation results also must conform to
ramp rate limits in (7), the system spinning reserve require-
ment in (4) and the power balance condition in (2). The fuel
cost function with these constrains is rewritten from (1) as
IET Gener. Transm. Distrib., Vol. 1, No. 5, September 2007
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follows

min
Pi

M ¼
X
i[C

Fi(Pi)þ q1j
X
i[C

Pi � PD � PLj

þ q2[max (0, SR �
X
i[C

Si)]

þ q3[max (0,max(Pimin, P0i � DRi)� Pi)

þmax (0,Pi �min (Pimax, P0i þ URi))]

(10)

where q1, q2 and q3 are penalty factors when these terms are
zero in (10), and no constraints are violated; otherwise,
these terms are positive values. To solve the above men-
tioned system, the self-tuning HDE is described as follows.

3 Self-tuning HDE algorithm

The main idea of the self-tuning HDE is to use the variable
scaling factor based on the 1/5 success rule of the ESs [18,
19] to overcome the drawback of the fixed and random
scaling factor used in the HDE. Different from the HDE,
every individual has the corresponding scaling factor in
the self-tuning HDE. The rule of updating the scaling
factor based on the 1/5 success rule of ESs is used to
adjust the scaling factor. The 1/5 success rule emerged as
a conclusion of the process of optimising the convergence
rate of two functions (the so-called corridor mode and
sphere model [18, 19, 21]). The rule of updating the
scaling factor is as follows

SFtþ1
i ¼

cd � SF
t
i, if pti , 1=5

cj � SF
t
i, if pti . 1=5

SFti, if pti ¼ 1=5

8<
: i ¼ 1, . . . , Np (11)

where pi
t and Np are the frequency of successful mutations

measured of the ith individual and population size, respect-
ively. The successful mutation of the ith individual defines
that the fitness value of the ith individual is better than that
of its parent. The initial value of the scaling factor, SFi, is
set to 1.2 [22, 23]. The factors of cd ¼ 0.82 and
cj ¼ 1/0.82 [18, 19] are used for adjustment, which
should take place for every y iterations. The iteration
index y suggested by [19] is equal to 10 � b, where b is a
constant. When the migration operator is performed, the
value of the scaling factor is defined as follows.

SFi ¼ 1�
iter

itermax
i ¼ 1, . . . , Np (12)

Where iter and itermax are the numbers of the current
iteration and the maximum iteration, respectively. The
scaling factor can be reset as (12) when the scaling factor
is too small to find a better solution in the solution process.
Formally, the self-tuning HDE algorithm is briefly

described in the following.

Step 1: Initialisation

The system data is input and the initial population gener-
ated. The initial population is chosen randomly in order to
cover the entire parameter space uniformly. A uniform
probability distribution for all random variables is
assumed in the following

X
0
i ¼ X

min
i þ si � (Xmax

i � X
min
i ) i ¼ 1, . . . ,Np (13)

where si [ (0, 1] is a random number. The initial process
can produce NP individuals of Xi

0 randomly.
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Step 2: Mutation operation

Five strategies of mutation operator have been introduced
by [22]. The essential ingredient in the mutation operation
is the difference vector. Each individual pair in a population
at the gth generation defines a difference vector Djk as

Djk ¼ X
g
j � X

g
k (14)

The mutation process at the gth generation begins by ran-
domly selecting either two or four population individuals
X

g
j , X

g
k , X

g
l , and X

g
m for any j, k, l and m. These four individ-

uals are then combined to form a difference vector Djklm as

Djklm ¼ Djk þ Dlm ¼ X
g
j þ X

g
l � (X

g
k þ Xg

m) (15)

A mutant vector is then generated based on the present
individual in the mutation process by

�X
gþ1

i ¼ Xg
p þ Fi � Djklm i ¼ 1, . . . ,Np (16)

where the scaling factor, SFi, is a constant. In addition, j, k, l
and m are randomly selected.
The perturbed individual in (16) is essentially a noisy

replica of Xg
p . Herein, the parent individual Xg

p depends
on the circumstance in which the type of the mutation oper-
ation is employed.

Step 3: Crossover operation

In order to extend the diversity of further individuals at the
next generation, the perturbed individual of �X

gþ1

i and the
present individual of X

g
i are chosen by a binomial distri-

bution to progress the crossover operation to generate the
offspring. Each gene of i-th individual is reproduced from
the mutant vectors �X

gþ1

i ¼ [ �X
gþ1

1i , �X
gþ1

2i , . . . , �X
gþ1

ni ] and
the present individual X

g
i ¼ [X

g
1i,X

g
2i, . . . ,X

g
ni].

�X
gþ1

qi ¼
X

g
qi, if a random number . Cr

�X
gþ1

qi , otherwise

(
(17)

where i ¼ 1, . . . , NP; q ¼ 1, . . . , n; and the crossover factor
Cr [ [0,1] is assigned by the user.

Step 4: Estimation and selection

The evaluation function of a child is one-to-one competed to
that of its parent. This competition means that the parent is
replaced by its child if the fitness of the child is better than
that of its parent. On the other hand, the parent is retained in
the next generation if the fitness of the child is worse than
that of its parent, that is

X
gþ1
i ¼ argmin ( f (X

g
i ), (

�X
gþ1

i )) (18)

X
gþ1
b ¼ argmin ( f (X

g
i )) (19)

where ‘arg min’ means the argument of the minimum.

Step 5: Migrating operation if necessary

In order to effectively enhance the investigation of the
search space and reduce the choice pressure of a small
population, a migration phase is introduced to regenerate
a new diverse population of individuals. The new popu-
lation is yielded based on the best individual X

gþ1
b . The
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q-th gene of the ith individual is as follows

X
gþ1
qi ¼

X
gþ1
bq þ si

(Xqmin � X
gþ1
bq )

, if d ,
X

gþ1
bq � Xqmin

Xqmax � Xqmin

X
gþ1
bq þ si

(Xqmax � X
gþ1
bq )

, otherwise

8>>>>><
>>>>>:

(20)

where si and d are randomly generated numbers uniformly
distributed in the range of [0,1]; i ¼ 1, . . . , NP; and
q ¼ 1, . . . , n.
The migrating operation is executed only if a measure

fails to match the desired tolerance of population diversity.
The measure is defined as follows

1 ¼
XNp

i¼1
i=b

Xn
g¼1

hXqi

n(Np � 1)
, 11 (21)

where

hXqi ¼
0, if 12 �

X
gþ1
qi � X

gþ1
bi

X
gþ1
bi

�����
�����

1, otherwise

8><
>: (22)

Parameter 11, 12 [ [0, 1] expresses the desired tolerance
for the population diversity and the gene diversity with
respect to the best individual. The hX is the scale index.
From (21) and (22), it can be seen that the value 1 is in the
range of [0,1]. If 1 is smaller than 11, then the migrating oper-
ation is executed to generate a new population to escape the
local point; otherwise, the migrating operation is turned off.
The convergence rate of the proposed self-tuning HDE

can be improved by the use of the 1/5 success rule of ESs.
However, this faster descent typically results in a local
minimum or premature convergence. That is, the candidate
individuals gradually cluster around the best individual such
that the population diversity is quickly decreased. These
closely clustered individuals cannot reproduce to the next
better individuals via the mutation and crossover operations
as obtained from (15) and (17). Thus, the migration operation
in the self-tuning HDEmust be performed to regenerate a new
diversified population if a measure of population diversity
fails to satisfy the desired tolerance, (21) and (22).

Step 6: Accelerated operation if necessary

When the best individual at the present generation is not
improved any longer by the mutation and crossover oper-
ations, a decent method is then employed to push the
present best individual towards attaining a better point.
Thus, the accelerated phase is expressed as follows

X
gþ1
b ¼

X
gþ1
b , if J (X

gþ1
b ) , J (X

g
b )

X
gþ1
b � arJ , otherwise

(
(23)

where X
g
b denotes the best individual, as obtained from (19).

The gradient of the objective function, rJ , can be approxi-
mately calculated by finite difference. The step size
a [ (0, 1] in (23) is determined by the descent property.
Initially, a is set to one to obtain the new individual.

Step 7: Updating the scaling factor if necessary

The scaling factor should be updated as (11) in every y iter-
ations. When the migrating operation that is performed or
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the scaling factor is too small to find the better solution,
the scaling factor is reset as (12).

Step 8: Repeat step 2 to step 7 until the
maximum iteration quantity or the desired fitness is
accomplished

There are seven parameters employed in the proposed self-
tuning HDE method, including population size NP, cross-
over factor Cr, mutation operator strategy, iteration index
q, maximum iterations itermax, tolerance of population
diversity 11 and tolerance of gene diversity 12. The first
four parameters are easy to select, as these parameters do
not affect the computational results significantly.
According to the author’s experience, appropriate values
for these parameters are NP ¼ 5, Cr ¼ 0.5 or 0.8, mutation
operator strategy ¼ 2 and iteration index q ¼ 10 or 20.
However, slight changes to these four parameters do not
obviously affect the computational results. If the number
of decision parameters is smaller, then the maximum iter-
ation number should be given a smaller value. Otherwise,
the maximum iteration number is given a greater value.
The last two parameters, 11 and 12, are relatively hard to
handle. According to the author’s experience, if the objec-
tive function is sensitive to these two parameters, these par-
ameters are given smaller values. On the other hand, if the
objective function is not sensitive to these two parameters,
they are given greater values. Typically, both 11 and 12
are set to 0.1 and 0.01, respectively.
This computational process of the self-tuning HDE algor-

ithm for solving the optimal ED problem is stated using a
flowchart, shown in Fig. 1.

Fig. 1 Main calculation procedures of the proposed algorithm
IET Gener. Transm. Distrib., Vol. 1, No. 5, September 2007
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Table 1: Comparison of case study results for 13 and 40 unit systems presented in the literature

Algorithm 13-unit 40-unit

Best cost ($/h) average cost ($/h) Average time (s) Best cost ($/h) average cost ($/h) Average time (s)

PSO [24] 18 030.72 18 205.78 77.37 122 930.45 124 154.49 933.39

MPSO [25] – – – 122 252.27 – –

PSO-SQP [24] 17 969.93 18 029.99 33.97 122 094.67 122 245.25 733.97

IFEP [12] 17 994.07 18 127.06 157.43 122 624.35 123 382.00 1167.35

DEC-SQP [26],[27] 17 963.94 17 973.13 0.5 121 741.98 122 295.13 14.26

HDE 17 975.73 18 134.80 1.65 121 813.26 122 705.66 6.92

Self-tuning HDE 17 963.89 18 046.38 1.41 121 698.51 122 304.30 6.07
4 Numerical examples and results

This section presents the computation results on three test
systems which were performed to evaluate the performance
of the proposed algorithm. An ED problem including 3-,
13-, and 40-unit power systems from the literature have
been investigated. In order to simulate the valve point
effects of the generating units, a recurring sinusoid com-
ponent is added with the objective function of fuel cost.
However, many practical constraints of generators, such
as ramp rate limits, prohibited operating zones, spinning
reserve and power loss are also considered in the optimis-
ation process. To verify the performance of the proposed
algorithm, these three systems are repeatedly tested a
hundred times by the self-tuning HDE, HDE, DE and GA
methods. The software was written in Matlab and executed
on a Pentium 1.5 GHz with 768 MB of RAM. The results of
fuel costs and average CPU times are used to compare the
performance of the proposed self-tuning HDE method
with power balance constraints only for those obtained in
recent studies presented in the literature and with, as men-
tioned above, all constraints for that of the GA, DE and
HDE methods. The C code for the real-coded GA [21]
algorithm was built by Denis Cormier (North Carolina
State University) and modified by Sita S. Raghavan
(University of North Carolina at Charlotte). The GA
packages were rewritten in Matlab software. The Matlab
code of the DE algorithm was obtained from Kenneth
Price and Rainer Storn’s website in [22], and the HDE
algorithm, also written in Matlab code, was obtained from
[15].

Table 2: Best result obtained by self-tuning HDE for the
13-unit system with power balance constrain only

Unit power, MW Generation

P1 628.3172

P2 149.5986

P3 222.7987

P4 109.8673

P5 109.8418

P6 60.0000

P7 109.8641

P8 109.8547

P9 109.8576

P10 40.0000

P11 40.0000

P12 55.0000

P13 55.0000
IET Gener. Transm. Distrib., Vol. 1, No. 5, September 2007
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4.1 ED problem with power balance constraint
only

In the study, the power loss, ramp rate limit and prohibited
zones are disregarded to conform to the system conditions
in the literature [12]. Therefore the penalty factors in (10)
are set at 20 for q1, and zero for q2 and q3. The 3-, 13-
and 40-unit power systems, which have respective load
demands of 850, 1800 and 10 500 MW, are computed by
both self-tuning HDE and HDE methods. The common
setting factors used in the self-tuning HDE to solve the
three systems are as follows. The crossover factor (Cr), is
set at 0.8, and population size (NP) is 5. The scaling
factor is updated as (11) and (12) in every 20 iterations.
The second mutation operator is used in the self-tuning
HDE. Two tolerances, 11 and 12, used in the migrating oper-
ation are set to 0.1 and 0.01, respectively. These initial
setting factors for the HDE method are the same as that of
the self-tuning HDE, except that the HDE uses a scaling
factor fixed at 0.5, according to the author’s suggestion
[16]. For the 3-unit system, the maximum iteration is set
at 50, and the best fuel costs of computation results with
self-tuning HDE and HDE methods are all the same,

Table 3: Best result obtained by self-tuning HDE for the
40-unit system with power balance constrain only

Unit power, MW Generation Unit power, MW Generation

P1 113.3515 P21 522.7598

P2 110.6763 P22 523.4137

P3 120.0000 P23 523.2754

P4 180.5395 P24 522.6744

P5 95.47723 P25 523.3112

P6 140.0000 P26 524.1180

P7 300.0000 P27 10.00000

P8 284.1949 P28 10.00000

P9 297.0010 P29 10.00000

P10 130.0030 P30 97.00000

P11 168.5498 P31 189.9364

P12 94.00000 P32 189.9161

P13 125.0000 P33 189.9226

P14 394.1231 P34 200.0000

P15 304.6147 P35 198.0817

P16 394.3282 P36 165.7141

P17 495.4328 P37 109.3638

P18 489.7258 P38 109.8876

P19 511.2027 P39 110.0000

P20 511.1898 P40 511.2148
797
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Table 4: Comparison of the four methods for the Example 1 system

Unit power GA DE HDE Self-tuning HDE

P1 (MW) 402.4026 399.1984 399.1993 399.1993

P2 (MW) 324.5534 324.4048 324.3994 324.3995

P3 (MW) 110.0535 113.4125 113.4171 113.4170

Power loss (MW) 2.0097 2.0158 2.0159 2.0159

Total generation (MW) 837.0097 837.0158 837.0159 837.0159

Best cost ($/h) 8197.87 8189.29 8189.26 8189.26

Average cost ($/h) 8438.18 8232.15 8208.10 8201.78

Worst cost ($/h) 8802.65 8405.68 8353.38 8262.20

Average CPU time (s) 0.03959 0.04356 0.11706 0.11826
3234.07 $/h, and the average CPU times are 0.053 and
0.056, respectively. The results show that self-tuning HDE
and HDE methods are both able to quickly search out the
global solution. For the 13- and 40-unit power systems,
the maximum iterations are set at 2500 and 8500, respect-
ively, by the self-tuning HDE and HDE algorithms. The
computational results of the self-tuning HDE and HDE
methods are compared with particle swarm optimisation
(PSO) [24], modified particle swarm optimisation (MPSO)
[25], hybrid particle swarm optimisation and sequential
quadratic programming (PSO-SQP) [24], improved fast
evolutionary programming (IFEP) [12] and a combination
of chaotic differential evolution and sequential quadratic
programming (DEC-SQP) [26, 27] in Table 1. The best
results obtained for units solution by the self-tuning HDE
method with a minimum fuel cost of 17 963.89 $/h and
121 698.50$/h for 13- and 40-unit are displayed in
Tables 2 and 3, respectively. Nevertheless, the results of
17 963.89$/h and 121 698.50 $/h attained by the self-
tuning HDE method reported here are comparatively

Fig. 2 Distribution of fuel cost for four algorithms in Example 1
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lower than those obtained in recent studies presented in
the literature.
In (11), the comparison is made with different factor

values of cd and cj for observation of the convergence situ-
ation of the self-tuning HDE algorithm. These values of
[0.5, 0.6, 0.7, 0.8, 0.82, 0.9] are individually substituted
for cd, and the cj is designated as the inverse of the cd, as
suggested by Schwefel [19], for solving ED problems in
the case of 40-unit power system. The computational
results of best fuel costs by different cd and cj values
are [121 986.95, 121 895.46, 121 874.20, 121 793.63,
121 698.51, 121 829.11]$/h, respectively. However, these
computational results indicate that cd ¼ 0.82 can obtain
the best result, 121 698.51$/h.

4.2 ED problem with all constraints

In this work, the penalty factors q1 and q3 in (10) are set at
20 and 10 000, respectively, and q2 is set at 10 000 when the
test system has a system spinning reserve constraint; other-
wise, q2 is set at zero. The fuel cost function is solved in the
3-, 13- and 40-unit power systems by the self-tuning HDE,
HDE, DE and GA methods.

Example 1: The data of the test system is obtained from [4],
which includes three generating units cost function and loss
coefficients B matrix, with modification in the fuel cost
functions to incorporate the prohibited zones and ramp
rate limits. The total load demand of the system is
835 MW. The input data including prohibited zones and
ramp rate limits of the three units are listed in the
Appendix, except for the fuel cost coefficients of the units
in [4]. To verify the performance of the proposed self-tuning
HDE method, the GA and DE methods are also applied to
solve this system. These initial setting factors for the
HDE and self-tuning HDE methods are the same as those
mentioned in the above section, and the maximum iteration
is set at 50. The GA and DE methods seem to be sensitive to
Table 5: Computational results of the 3-unit system for different maximum iteration and fixed population size

Algorithm itermax Best cost ($/h) Average

cost ($/h)

Worst

cost ($/h)

Average

CPU time (s)

Standard

deviation ($/h)

GA 100 8197.48 8405.34 8727.39 0.07775 113.7490

150 8194.35 8378.73 8622.57 0.11717 99.8292

DE 100 8189.26 8218.84 8432.13 0.08591 37.6564

150 8189.26 8214.38 8372.17 0.12688 30.2567

HDE 50 8189.26 8206.93 8353.38 0.11706 22.6934

Self-tuning HDE 50 8189.26 8201.77 8262.20 0.11526 13.8948
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Table 6: Comparison of the four methods for the Example 2 system

Unit power GA DE HDE Self-tuning HDE

P1 (MW) 628.4311 628.0117 628.3290 628.3185

P2 (MW) 305.0000 300.2498 299.3286 299.2092

P3 (MW) 302.6497 348.2995 304.5139 299.2018

P4 (MW) 158.9094 159.0591 159.7930 159.7416

P5 (MW) 160.4743 159.7318 159.8114 159.7433

P6 (MW) 159.7312 159.7324 159.8572 159.7335

P7 (MW) 160.1004 159.7330 159.9505 159.7384

P8 (MW) 159.6400 147.6877 109.8658 159.7331

P9 (MW) 109.6715 160.7340 159.7405 159.7338

P10 (MW) 114.5156 77.29379 114.8171 114.8027

P11 (MW) 116.2229 115.6040 115.7702 116.7061

P12 (MW) 92.08722 55.01118 94.97113 55.25513

P13 (MW) 92.43267 91.19282 92.40933 92.41379

Power loss (MW) 39.8664 42.3412 39.15823 44.3314

Total generation (MW) 2559.87 2562.34 2559.16 2564.33

Total reserve (MW) 198.3218 198.3218 190.8761 186.5761

Best cost ($/h) 24 632.42 24 819.32 24 591.76 24 560.08

Average cost ($/h) 24 874.93 25 217.64 24 739.53 24 706.63

Worst cost ($/h) 25 188.59 25 656.40 25 074.90 24 872.44

Average CPU time (s) 2.25174 2.58151 3.57327 2.97826
tuning of some parameters; thus, these parameters are set
according to the experiences of many experiments con-
ducted on these three ED problems. The GA parameters
could be selected as follows. The crossover ratio is 0.5,
the population size is 5, the maximum iteration is 50 and
the mutation ratio is 0.01. The DE parameters were selected
as follows. The crossover factor is 0.6, the population size is

Fig. 3 Convergence characteristics for four algorithms in
Example 2
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5, the maximum iteration is 50 and the mutation operation is
2. These two methods obtain the best solution under these
conditions. The computational results of the best, average,
and the worst fuel costs, unit generations, power loss and
average CPU time among the 100 runs of solutions which
satisfy the system constraints are listed in Table 4. In
Table 4, the best solution of the Example 1 system is dis-
played in boldface. From the computation results shown
in Table 1, we find that all four algorithms have the potential
to find the global solution. Among these approaches, the
self-tuning HDE algorithm results in the longest average
CPU time, but the average fuel cost is the minimum.
Fig. 2 displays the computed fuel cost of the first 50 of
the 100 runs. As shown in Fig. 2, the self-tuning HDE algor-
ithm has the most stable and minimum fuel cost. Thus, the
self-tuning HDE algorithm is more reliable to find out the
global minimum fuel cost in this example. For the sake of
further comparison with the approach of GA and DE algor-
ithms, the maximum iteration for GA and DE is set to be
100 and 150 to run the Example 1 system 100 times
again. The results of the best, average and the worst fuel
costs and average CPU time from this experiment are
listed in Table 5. It is observed that fuel costs obtained by
the GA, DE and HDE approaches are slightly higher than
or equal to that of the self-tuning HDE approach. Under
the condition of itermax ¼ 150, the average fuel cost for
Table 7: Computational results of the 13-unit system for different population size and fixed maximum iteration

Algorithm Np Best cost ($/h) Average

cost ($/h)

Worst

cost ($/h)

Average

CPU time (s)

Standard

deviation ($/h)

GA 10 24 610.75 24 786.99 25 108.45 4.34874 110.8468

15 24 597.23 24 750.97 25 070.53 6.54261 95.6446

DE 10 24 592.75 24 826.03 25 178.27 5.77439 119.7034

15 24 560.10 24 710.30 24 965.41 7.88623 77.3527

HDE 5 24 591.76 24 739.53 25 074.90 3.57327 86.4049

Self-tuning HDE 5 24560.08 24706.63 24 872.44 2.97826 58.0620
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GA and DE is closer to the computation result of the self-
tuning HDE with itermax ¼ 50 and the average CPU time
for GA and DE is slightly greater than that of the self-tuning
HDE; the maximum iteration of GA and DE is three times
that of self-tuning HDE.

Example 2: The data of the test system is obtained from
[28], which has 13 generating units, and the loss coefficients
800

Authorized licensed use limited to: National Taiwan University. Downloaded on March 9, 2
B matrix is obtained from [13, 14] with modification in the
fuel cost functions to incorporate the prohibited zones and
ramp rate limits. The spinning reserve constraint is also con-
sidered in this application system. Input data of the 13-unit
system are listed in the Appendix, except for the fuel cost
coefficients of units in [28]. In this system, five units have
prohibited operating zones, and the remaining eight units
contribute the required spinning reserve to the system.
Table 8: Comparison of the four methods for the Example 3 system

Unit power GA (NP ¼ 10) DE (NP ¼ 10) HDE (NP ¼ 5) Self-tuning HDE (NP ¼ 5)

P1 (MW) 111.7213 113.5764 113.9783 110.84697

P2 (MW) 110.6113 113.7926 114.0000 112.1565

P3 (MW) 99.16071 97.40588 98.53020 120.0000

P4 (MW) 179.7968 180.0051 182.8223 179.4657

P5 (MW) 90.21361 89.61925 91.99572 93.17119

P6 (MW) 139.7402 139.9999 139.1252 139.6558

P7 (MW) 261.0782 299.9999 299.2042 299.9904

P8 (MW) 285.7480 284.7046 285.6743 292.9315

P9 (MW) 285.4551 284.6111 296.1914 284.5741

P10 (MW) 130.0000 130.0000 200.0000 130.0000

P11 (MW) 169.3225 94.21490 94.66729 94.00994

P12 (MW) 169.8604 168.7940 169.3861 94.00000

P13 (MW) 300.0000 304.4362 125.0000 125.0000

P14 (MW) 392.8375 394.2793 394.5668 393.6505

P15 (MW) 305.4536 394.2793 484.7173 478.7679

P16 (MW) 383.7715 304.5195 304.5127 393.1025

P17 (MW) 489.5959 489.2794 491.3617 489.1105

P18 (MW) 489.1406 489.2793 489.4712 489.0735

P19 (MW) 510.4080 511.2793 511.4723 511.2153

P20 (MW) 511.4157 511.2982 511.5457 511.0469

P21 (MW) 524.1014 523.2794 524.4637 523.1869

P22 (MW) 523.6807 523.9855 526.8726 530.5903

P23 (MW) 522.6112 523.7207 524.7330 523.1463

P24 (MW) 526.8539 523.2843 523.2879 522.9946

P25 (MW) 522.9654 523.3065 524.1151 523.6739

P26 (MW) 522.9853 523.2793 523.2267 525.2442

P27 (MW) 10.62509 10.00001 10.17141 10.00000

P28 (MW) 10.58456 10.16713 10.00000 10.02717

P29 (MW) 11.36923 10.00006 10.63973 10.00000

P30 (MW) 88.39085 91.16536 91.94259 89.01253

P31 (MW) 189.9861 189.9883 190.0000 188.8546

P32 (MW) 189.0402 189.9996 187.2378 189.9981

P33 (MW) 185.8470 189.9956 190.0000 189.6139

P34 (MW) 166.8364 199.9996 165.6872 200.0000

P35 (MW) 199.7900 199.9997 200.0000 199.9993

P36 (MW) 199.9763 165.8468 174.8976 199.9172

P37 (MW) 92.01623 109.9999 110.0000 108.4430

P38 (MW) 107.1946 99.30869 109.9254 110.0000

P39 (MW) 99.50363 105.9249 109.8258 110.0000

P40 (MW) 511.3090 511.2793 512.1575 511.2681

Power loss (MW) 120.9994 119.9064 117.4074 117.74044

Total generation (MW) 10 621.00 10 619.90 10 617.40 10 617.74

Best cost ($/h) 123 652.24 125 074.40 123 598.76 123 496.02

Average cost ($/h) 124 076.43 127 399.36 124 210.34 124 007.10

Worst cost ($/h) 124 668.69 129 639.79 124 855.80 124 570.74

Average CPU time (s) 27.11811 29.31566 17.94273 16.86025
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The total load demand of the system is 2520 MW, and the
system provides a required spinning reserve of 180 MW
at least. These initial setting factors for the GA, DE, HDE
and self-tuning HDE methods are the same as those in
Example 1, except that the maximum iteration is set at
2500. The computation results are listed in Table 6.
Table 6 shows that both the best fuel cost and average
fuel cost obtained by GA, DE and HDE algorithms are rela-
tively higher than those obtained by the proposed self-
tuning HDE. In Table 6, the best solution of the Example
2 system is displayed in boldface. Fig. 3 represents the con-
vergence properties of the GA, DE, HDE and self-tuning
HDE in the process of searching for the minimum fuel
cost. The figure shows that the convergence property of
the self-tuning HDE algorithm is superior to that of the
other three algorithms. For the sake of further comparison
with the approach of GA and DE algorithms, the NP is set
to be 10 and 15 to run the Example 2 system 100 times
again. The results of computations from these experiments
are listed in Table 7. It is observed that fuel costs obtained
by the GA, DE and HDE algorithms are slightly higher than
or equal to that of the self-tuning HDE algorithm. In
addition, the average CPU times of the self-tuning HDE is
lower than those of the GA, DE and HDE methods.

Example 3: This test system consisting of a practical
40-unit Taiwan power (Taipower) system [2], with modifi-
cations to incorporate the valve point effect [12]. In this
system, the total load demand of the system is 10
500 MW. The input data of the system are given in the
Appendix, except for the fuel cost coefficients of units in
[12]. Generator constraints of prohibited zone and ramp
rate limit from number 10 to 14 units of prohibited zones
are listed in the Appendix. These prohibited zones result
in four disjoint feasible sub-regions for each of the units.
Hence, those zones result in a non-convex decision space
which consists of 1024 convex sub-spaces for the example
system. In order to obtain the minimum fuel cost, the
maximum iteration parameter setting for the four methods
is set to be 8500; the population size is modified to be 10
for the GA and DE methods. The remaining parameters
are the same as those of Example 1. The computational
results are shown in Table 8. In Table 8, the best solution
of the Example 3 system is displayed in boldface, and the
lowest of the best fuel cost among the four algorithms is
observed from the self-tuning HDE; it is 123 496.02 $/h.
The worst fuel cost of these 100 runs obtained by the self-
tuning HDE method is 124 570.74 $/h. The best and
worst fuel costs compared with the other three methods
are too close.

Fig. 4 Comparison of computation complexity
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From the computation results in the three test systems, it
appears that the self-tuning HDE could search for the
minimum fuel cost under various generator constraints via
the fixed population size. The comparison of computation
complexity of four algorithms is shown in Fig. 4, which
reveals the relation of the numbers of units against the
average CPU times. We find that the self-tuning HDE algor-
ithm has better computation complexity.

5 Conclusions

In this paper, we suggest employing the self-tuning HDE
algorithm to solve the non-smooth/non-convex ED
problem with the valve point effect and with/without con-
straints of the prohibited zones, ramp rate limit and spinning
reserve. Three stochastic optimisation algorithms, including
GA, DE and HDE, are also employed to solve the ED
problem for comparison with the self-tuning HDE. Three
test systems have been employed to illustrate the application
of the proposed method. Computational results show that the
proposed self-tuning HDE algorithm is superior to the other
three (GA, DE and HDE) algorithms in terms of computed
minimum fuel cost and computational complexity.
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7 Appendix

Three application systems, including 3-, 13- and 40-unit
parameters, are listed in Table 9.
Table 9: Units data of the three example systems

Unit Pimin (MW) Pimax (MW) P0i (MW) URi (MW) DRi (MW) Prohibited zones (MW) Simax (MW)

3-unit

1 100 600 350 280 320 [120,200][320,350] –

2 100 400 370 150 190 [120,170][250,320] –

3 50 200 144 100 150 [80,110] –

13-unit

1 0 680 420 335 360 [180,200][260,335][390,420] –

2 0 360 280 250 290 [30,45][185,225][305,335] –

3 0 360 280 250 290 [30,40][180,220][305,335] –

4 60 180 120 80 130 – 50

5 60 180 150 80 130 – 40

6 60 180 130 80 130 – 30

7 60 180 160 80 130 – 30

8 60 180 140 80 130 – 40

9 60 180 140 80 130 – 50

10 40 120 100 120 120 [45,55][65,75] –

11 40 120 80 120 120 [45,55][65,75] –

12 55 120 80 120 120 – 30

13 55 120 75 120 120 – 25

40-unit

1 36 114 100 114 114 – –

2 36 114 100 114 114 – –

3 60 120 90 120 120 – –

4 80 190 150 100 150 – –

5 47 97 80 97 97 – –

6 68 140 120 80 125 – –

7 110 300 280 165 200 – –

8 135 300 200 165 200 – –

9 135 300 230 165 200 – –

10 130 300 240 155 190 [130,150][200,230][270,299] –

11 94 375 210 150 185 [100,140][230,280][300,350] –

12 94 375 210 150 185 [100,140][230,280][300,350] –

13 125 500 230 206 235 [150,200][250,300][400,450] –

14 125 500 355 260 290 [200,250][300,350][450,490] –

15 125 500 350 186 215 – –

16 125 500 350 186 215 – –

17 220 500 460 240 270 – –

18 220 500 470 240 268 – –

(Table continued )
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Table 9: Continued

Unit Pimin (MW) Pimax (MW) P0i (MW) URi (MW) DRi (MW) Prohibited zones (MW) Simax (MW)

19 242 550 500 290 315 – –

20 242 550 500 290 315 – –

21 254 550 510 335 360 – –

22 254 550 520 335 360 – –

23 254 550 520 335 362 – –

24 254 550 450 350 378 – –

25 254 550 400 350 380 – –

26 254 550 520 350 380 – –

27 10 150 20 95 145 – –

28 10 150 20 95 145 – –

29 10 150 25 98 145 – –

30 47 97 90 97 97 – –

31 60 190 170 90 145 – –

32 60 190 150 90 145 – –

33 60 190 190 90 145 – –

34 90 200 190 105 150 – –

35 90 200 150 105 150 – –

36 90 200 180 105 150 – –

37 25 110 60 110 110 – –

38 25 110 40 110 110 – –

39 25 110 50 110 110 – –

40 242 550 512 290 315 – –
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