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ABSTRACT

We carry out fully three-dimensional simulations of evolution from self-similar, spherically

symmetric linear perturbations of a cold dark matter (CDM)-dominated Einstein–de Sitter

universe. As a result of the radial orbit instability, the haloes which grow from such initial

conditions are triaxial with major-to-minor axial ratios of the order of 3:1. They nevertheless

grow approximately self-similarly in time. In all cases, they have power-law density profiles

and near-constant velocity anisotropy in their inner regions. Both the power-law index and the

value of the velocity anisotropy depend on the similarity index of the initial conditions, the

former as expected from simple scaling arguments. Halo structure is thus not ‘universal’ but

remembers the initial conditions. On larger scales the density and anisotropy profiles show two

characteristic scales, corresponding to particles at the first pericentre and at the first apocentre

after infall. They are well approximated by the Navarro–Frenk–White model only for one value

of the similarity index. In contrast, at all radii within the outer caustic the pseudo-phase-space

density can be fitted by a single power law with an index which depends only very weakly

on the similarity index of the initial conditions. This behaviour is very similar to that found

for haloes formed from �CDM initial conditions and so can be considered approximately

universal.

Key words: dark matter.

1 IN T RO D U C T I O N

Galaxies are believed to form from gas condensing at the centres

of massive dark matter haloes as these grow by collapse and ag-

gregation from weak density fluctuations emerging from the early

Universe (White & Rees 1978).

The earliest theoretical insights into the formation and evolution

of dark matter haloes were provided by the spherical infall model

of Gunn & Gott (1972) and Gott (1975). In this model, an isolated

overdensity in an otherwise unperturbed Einstein–de Sitter universe

first expands with the Hubble flow, then turns around and collapses.

Surrounding material continues to fall on to the object until its mass

greatly exceeds that of the originally perturbed region. Asymptoti-

cally, a power-law density profile is established with ρ ∝ r−2.25. The

late-time structure of this model is a similarity solution whose struc-

ture was worked out in detail by Bertschinger (1985). More general

similarity solutions where the initial mass perturbation scales with

enclosed mass as δM/M ∝ M−ǫ were presented by Fillmore &

Goldreich (1984) who showed that these produce haloes with ρ ∝

r−γ , where γ = 2 for 0 < ǫ ≤ 2/3 and γ = 9ǫ/(1 + 3ǫ) for ǫ ≥

2/3. The change in behaviour at ǫ = 2/3 reflects the fact that all

⋆E-mail: mvogelsberger@cfa.harvard.edu

orbits are purely radial in these models. No superposition of radial

orbits can self-consistently produce a power law shallower than r−2

at small r. Further generalizations to include randomly oriented

rosette orbits with a scale-free eccentricity distribution resulted in

spherically symmetric similarity solutions for which γ = 9ǫ/(1 +

3ǫ) for all ǫ > 0 (White & Zaritsky 1992; Sikivie, Tkachev & Wang

1995, 1997; Nusser 2001; MacMillan, Widrow & Henriksen 2006).

In such models, the inner density structure of the final haloes reflects

the scaling properties of the initial conditions.

In contrast, N-body simulations have shown for more than a

decade that dark matter haloes formed from fully three-dimensional,

cosmologically realistic initial conditions do not have pure power-

law density profiles. Rather, the logarithmic slope of simulated

profiles changes slowly but continuously with radius. In addition,

the shape of these profiles is almost independent of halo mass,

of cosmological parameters and of the power spectrum of initial

fluctuations (Navarro, Frenk & White 1997). The most popular

representation of this ‘universal’ shape is the Navarro–Frenk–White

(NFW) model which behaves as 1/r in the inner regions and as

1/r3 in the outskirts (Navarro et al. 1997). Even haloes formed by

monolithic collapse in the first non-linear phases of hot dark matter

(HDM) and warm dark matter models (WDM) are well represented

by NFW fits, showing that hierarchical growth is not required to

produce this universality (see e.g. Huss, Jain & Steinmetz 1999;
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Non-spherical similarity solutions 3045

Wang & White 2009). Recent N-body simulations with significantly

increased numerical resolution have found small but significant

deviations from the NFW shape which depend systematically on

halo mass (Hayashi & White 2008; Navarro et al. 2010). Thus,

halo density profiles are not truly universal. Nevertheless, these

variations are much smaller than those predicted by the similarity

solutions, and the profiles can be considered universal to a good

approximation.

The differences in behaviour between similarity solutions and

numerical simulations reflect the fact that the former enforce spher-

ical symmetry and a potential which varies smoothly with time

according to the similarity scaling, while the latter involve strongly

time-dependent and fully three-dimensional potential fluctuations

which exchange energy and angular momentum between differ-

ent parts of the system through the classical ‘violent relaxation’

mechanism (Lynden-Bell 1967). Even though extensions of the

original similarity solutions allow non-radial orbits with a vari-

ety of eccentricity distributions (White & Zaritsky 1992; Sikivie

et al. 1995, 1997; Nusser 2001; MacMillan et al. 2006), they re-

tain both spherical symmetry and strict similarity scaling, and so

exclude violent relaxation and any possibility for it to drive con-

vergence towards a universal (i.e. ǫ-independent) non-linear struc-

ture. Large and time-dependent potential fluctuations are required to

produce such convergence. These occur naturally not only in hier-

archical assembly models but also in other situations, for example

during the monolithic, quasi-ellipsoidal collapse of the first gener-

ation of haloes in HDM or WDM cosmogonies (Zel’Dovich 1970;

Sheth, Mo & Tormen 2001; Wang & White 2009).

It has long been known that spherical equilibria dominated by

radial orbits are violently unstable and evolve on a few dynamical

times into strongly ellipsoidal bars with significant non-radial mo-

tions (Antonov 1973; Henon 1973; Polyachenko 1981; Polyachenko

& Shukhman 1981; Barnes 1985; Merritt & Aguilar 1985; Meza

& Zamorano 1997). The original similarity solutions of Fillmore &

Goldreich (1984) and Bertschinger (1985) are thus not viable mod-

els for the formation of real systems – the slightest non-spherical

perturbation of their quasi-equilibrium inner regions causes rapid

evolution to an entirely different non-linear structure. A number

of authors have noted situations where the radial orbit instability

gives rise to haloes with NFW-like density profiles (Henriksen &

Widrow 1999; Huss et al. 1999; Barnes et al. 2005; MacMillan

et al. 2006; Bellovary et al. 2008). There are thus (at least) two

possibilities for the long-term evolution of structure from (almost)

spherically symmetric, self-similar linear initial conditions. Either

it may approach a non-spherical self-similar solution, which would

then have a potential which changes smoothly in time and no violent

relaxation, or the strongly time-dependent behaviour may continue

indefinitely, allowing violent relaxation to rearrange material in the

inner regions. In the former case an NFW-like universal profile is

only consistent with similarity scaling for ǫ = 1/6, whereas in the

latter case an NFW-like profile could, in principle, be maintained at

all times.

In this paper, we investigate these issues by simulating evolution

from spherically symmetric, self-similar, linear initial conditions

for a variety of values of ǫ. As we showed in Vogelsberger et al.

(2009), particle noise leads to the rapid onset of the radial orbit

instability in such simulations, so that their later non-linear evo-

lution is strongly non-spherical. Here we show that while some

chaotic time dependence remains at late times, evolution is never-

theless approximately self-similar. The inner structure of the haloes

remembers the initial conditions from which they formed, depend-

ing on ǫ in the same way as in the spherical similarity solutions.

In Section 2, we present our simulations and study the formation

of ellipsoidal ‘bars’. In Section 3, we study how these bars affect

the velocity anisotropy and density profiles in the inner halo. The

transition between the infall and quasi-equilibrium regions, and the

inner and outer scales which define it is discussed in Section 4.

Finally in Section 5 we demonstrate that, in contrast to the velocity

anisotropy and density profiles, the profile of pseudo-phase-space

density is almost universal in these models.

2 R ADI AL O RBI T I NSTABI LI TY:

BA R FO R M AT I O N

The similarity solutions assume an Einstein–de Sitter universe in

which the linear mass perturbation δMi within a sphere containing

unperturbed mass Mi initially satisfies

δMi

Mi

= 1.0624

(

Mi

M0

)−ǫ

, (1)

where ǫ is a scaling index and M0 is a reference mass taken to be

the mass within the turnaround radius (rta) at the initial time. The

parameter ǫ is restricted to positive values in order to ensure that

more distant mass shells turn around and fall back later than inner

ones. The mass within the shell that is just turning around and the

physical radius of this shell at turnaround then scale with time as

Mta ∝ t2/3ǫ and rta ∝ t2/3+2/9ǫ so that the mean mass density contained

within the turnaround radius is always 5.5 times the cosmic mean

(the critical density) and so satisfies ρ ta ∝ t−2.

Since these initial conditions are spherically symmetric, the sys-

tem remains spherically symmetric at later times (if instabilities

are ignored/suppressed) and the particles on each spherical shell

all execute identical though differently oriented radial orbits. The

scale-free nature of the initial conditions ensures that the orbits exe-

cuted by different shells are identical when scaled to their individual

turnaround radii and times. Gunn & Gott (1972) showed that at radii

much smaller than rta this results in a stable halo with density profile

ρ ∝ r−9/4 when ǫ = 1, the only case they considered. Fillmore &

Goldreich (1984) generalized this to other values of ǫ, finding the

inner profile to vary with the initial scaling properties:

ρ(r) ∝

⎧

⎨

⎩

r−2, ǫ ≤ 2

3

r−9ǫ/(1+3ǫ), ǫ ≥ 2

3
.

(2)

The change of behaviour at ǫ = 2/3 is due to the fact that no self-

consistent spherical equilibrium system built from radial orbits can

have a power-law slope shallower than −2, because every particle is

constrained to pass through the centre of the system once per orbit.

The full structure of the similarity solution for the case ǫ = 1 was

worked out by Bertschinger (1985), who showed that the power-

law inner structure breaks in the transition to the infall regime and

that the confinement of non-zero phase-space density to a three-

dimensional sheet results in a series of sharp spherical caustics

which are superposed on the inner power-law density profile and

are located at any given time at the positions of particles currently

passing through apocentre.

In this paper, we simulate evolution from initial conditions which

obey the spherical similarity solutions, exactly as in Vogelsberger

et al. (2009), but for a variety of values of ǫ. We use a fully three-

dimensional N-body solver, a version of GADGET-2 (Springel 2005),

and we allow particle noise to drive the radial orbit instability. This

happens in the first few expansion factors so that the later stages

of the simulations all contain fully developed ellipsoidal ‘bars’.

All our simulations follow evolution over a factor of 1000 in time

C© 2011 The Authors, MNRAS 414, 3044–3051
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3046 M. Vogelsberger, R. Mohayaee and S. D. M. White

Figure 1. Projected density maps of the haloes formed for ǫ = 0.4 (left-hand panel) and ǫ = 0.8 (right-hand panel). In each case, the long axis of the bar is

horizontal, its short axis is vertical and the region plotted is a slice of thickness 2router caustic and side 4router caustic where router caustic is the radius of the outer

caustic (first apocentre after the turnaround) in the spherical similarity solution. The thick and thin green circles have radii of router caustic and 2router caustic,

respectively. In units of the outer-caustic radius, the bar length is approximately ‘universal’, although time-dependent features are still visible in these plots,

for example in the lack of left–right symmetry.

corresponding to expansion of the background cosmology from a =

0.01 and until a = 1. The softening length is kept fixed in comoving

coordinates at 0.000 25rta(a = 1). The final halo is represented by

about 2563/2 ∼ 8.4 × 106 particles within rta.

In Fig. 1 we show images of the bar in the final state of two of our

simulations, ǫ = 0.4 on the left and ǫ = 0.8 on the right. In each case

the bars extend slightly beyond the position of the outer caustic of the

corresponding spherical similarity solution, which we indicate with

a green circle. The location of the actual outer caustic corresponds

to the transition in colour from blue to red. In all our simulations,

we find bars with semimajor axes (delineated by the outer caustics)

which are about 1.2 times the radius of the spherical caustic. Thus

measured in units of the latter, our bar lengths appear universal. In

both the cases shown, there are clear left–right asymmetries in the

inner structure of the bars (the yellow regions). Such asymmetry is

a clear indicator of the time-dependent behaviour – any exact non-

spherical similarity solution is expected to be left–right symmetric.

We show the axial ratios of equidensity surfaces of our final bars

as a function of the semimajor axis in the left-hand panel of Fig. 2.

These ratios were obtained by calculating the moment of inertia of

all particles within an ellipsoidal surface, deriving the eigenvalues

and principal axes, and then iterating until the shape and orienta-

tion of the bounding ellipsoid are consistent with the orientation

and relative axis lengths inferred from the moment of inertia. These

ratios are thus cumulative, referring to all material interior to the

quoted radius rather to an ellipsoidal shell at this radius. The axial

ratios take their most extreme values just inside the outer caustic,

with all simulations giving minor-to-major values close to 0.2 and

intermediate-to-major values close to 0.35. They approach unity

rapidly at larger radii and also rise steadily though more slowly

towards smaller radii. There is no clear trend as a function of ǫ, sug-

gesting that the exact values may be stochastically determined and

perhaps also time-dependent. We test this in the right-hand panel

by replotting the curves using a thick linestyle and comparing them

with results at a = 0.5, represented by thin lines. The overall pattern

is very similar at the two times. There is some indication that the de-

viation of individual models from the mean is coherent between the

two times, but there are also substantial variations. Time-dependent

effects appear to be influencing the measurements significantly, and

these plausibly have a relatively long time coherence. In conse-

quence, it is not possible to decide whether the apparent trends with

ǫ are real or just reflect unrelated time-dependent variations. The

overall similarity of all the curves at both times suggests that the

shape behaviour is approximately both self-similar and ‘universal’.

3 D ENSI TY AND VELOCI TY ANI SOTRO PY

PROFILES

The central bar torques infalling particles, inducing non-radial mo-

tions which transform the purely radial orbits of the original simi-

larity solution into fully three-dimensional orbits. This alters both

the density and the velocity dispersion structure of the non-linear

regions, as we now illustrate. A velocity anisotropy parameter is

conventionally defined as

β(r) = 1 − σ 2
t /σ 2

r , (3)

where σ r(r) and σ t(r) are one-dimensional radial and transverse

velocity dispersions, respectively, averaged over spherical shells of

radius r. The left-hand panel of Fig. 3 shows β(r) at two different

times, a = 0.5 (dashed lines) and a = 1 (solid lines). The right-

hand panel shows (r/rta)
2ρ(r)/ρb at the same two times. The two

quantities are evaluated using the same set of logarithmically spaced

spherical shells. Neither profile changes systematically with time

when plotted against r/rta, consistent with the expectations of self-

similar evolution.

The spherically averaged density profiles in the right-hand panel

of Fig. 3 show three distinct regimes. At radii larger than the outer

caustic, only one (infalling) matter stream is present. Here, there is

essentially perfect agreement between a = 0.5 and 1 in all cases,

and the effective power-law index of the profile is significantly

C© 2011 The Authors, MNRAS 414, 3044–3051
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Non-spherical similarity solutions 3047

Figure 2. Left-hand panel: halo axial ratios as a function of radius for a variety of similarity scaling parameters. Different colours correspond to different

values of the scaling parameter ǫ. For each r, axial ratios are estimated from the principal values of an inertia tensor calculated for all particles within an

ellipsoid of mean radius r. Dashed lines denote minor-to-major axial ratios while solid lines denote intermediate-to-major ratios. For each simulation, radii are

normalized by that of the outer caustic in the corresponding similarity solution. This panel shows results for the final time a = 1. Right-hand panel: axial ratios

replotted as thick lines and compared with results for a = 0.5 (thin lines).

Figure 3. Left-hand panel: velocity anisotropy β(r) = 1 −σ 2
t /σ

2
r as a function of radius r, normalized by the turnaround radius rta(t). Here σ r(r) and σ t(r) are

the one-dimensional radial and transverse velocity dispersions averaged over spherical shells, respectively. Different colours denote simulations with different

values of ǫ as indicated. Solid lines are for a = 1 and dashed lines for a = 0.5. Beyond the outer caustic, all particles are falling in for the first time, but they

nevertheless have non-zero radial and tangential velocity dispersions because the quadrupole moment of the ellipsoidal inner regions induces variations in infall

velocity and infall direction at each r. Both dispersions jump dramatically as the outer caustic is crossed and the anisotropy is slowly varying and relatively

small in the inner quasi-equilibrium regions. The softening radius is too small to affect the velocity dispersions over the radial range plotted. Thin horizontal

lines show the asymptotic values of equation (5). Right-hand panel: mass density averaged in spherical shells as a function of radius, again normalized by rta.

Line colours and types correspond to those in the left-hand panel. The density is given in units of the current critical density and is multiplied by (r/rta)2 to

suppress the dominant dependence and to allow easier comparison of the curves. In both panels, the structure is very similar at the two times considered. The

dependence on ǫ is very clear in the density profiles and also appears significant in the anisotropy profiles.

C© 2011 The Authors, MNRAS 414, 3044–3051
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3048 M. Vogelsberger, R. Mohayaee and S. D. M. White

greater than −2 and similar for all ǫ. Only the position of the

outer caustic (in units of rta) varies significantly with ǫ. Between

this outer caustic and the typical radii of particles passing their

first pericentre after turnaround,1 the density profile has a mean

effective index which is similar for all ǫ and substantially less

than −2. The behaviour in this regime is quite irregular, however,

and there are substantial differences between a = 0.5 and 1 in

several cases. Examination of phase-space plots (see e.g. fig. 8

of Vogelsberger et al. 2009) suggests that this time dependence

is driven by large-scale irregularities which grow around the first

apocentre after turnaround but are washed out by phase-mixing

at later times. Inside the radius of the first pericentre, the profiles

become more regular and agree well between the two times shown.

To a good approximation, they are power laws that are well fitted

(as r → 0) by

ρ(r) ∝ r−9ǫ/(1+3ǫ), ǫ > 0. (4)

This is the value expected for a perfect similarity solution in the pres-

ence of non-radial motions (White & Zaritsky 1992; Sikivie et al.

1995, 1997; Nusser 2001; MacMillan et al. 2006), demonstrating

that the time-dependent behaviour seen at intermediate radii is not

sufficient to destroy the similarity scaling and enforce ‘universal’

structure. Note that both the steep slope over the decade immediately

inside the outer-caustic radius (which is roughly at the conventional

virial radius) and the break to a shallower slope at smaller radii are

qualitatively similar to the ‘universal’ behaviour encapsulated by

the NFW profile. However, the inner slope matches the NFW value

only for ǫ = 1/6, smaller than any of the values tested here.

The left-hand panel of Fig. 3 shows that velocity anisotropy

profiles are similar for all values of ǫ, exhibiting distinct behaviour

in the same three regimes seen in the density profiles. At large radii,

particles are falling in for the first time on very nearly radial orbits,

gradually gaining angular momentum as they feel the quadrupole

moment of the central bar. As they cross the outer caustic they

are mixed with particles which have already passed pericentre, and

β(r) drops to much smaller values. Inside the radius of the first

pericentre, β(r) is almost constant in the quasi-equilibrium region,

declining slightly towards the centre. In this region there appears to

be a weak but significant dependence of anisotropy on the similarity

index, with larger values of ǫ giving rise to slightly more radially

biased velocity dispersions. This behaviour is a consequence of

the dependence of the inner density profile on ǫ. For larger ǫ, the

inner mass distribution is more strongly centrally concentrated, so

that its quadrupole moment becomes less significant relative to the

monopole and less angular momentum is induced in the orbits of

infalling particles.

The left-hand panel of Fig. 3 suggests that in the inner part of

the halo, the β parameter may approach an asymptotic value which

depends on the value of ǫ. Hansen & Moore (2006) have proposed

that the equation β(r) = −0.2(d ln ρ/d ln r + 0.8) relates velocity

anisotropy and density profile slope in the inner parts of dark matter

haloes (see also e.g. Navarro et al. 2010). Using equation (4) which

is indeed valid in the inner part of our haloes, the above relationship

reduces to

β = 0.2

[

9ǫ

(1 + 3ǫ)
− 0.8

]

, ǫ > 0, (5)

which gives β = {0.17, 0.2, 0.23, 0.25, 0.26} for ǫ = {0.4, 0.5,

0.6, 0.7, 0.8}. These values are in reasonable agreement with those

1 We investigate these scales in more detail below.

inferred from the left-hand panel of Fig. 3, even though our haloes

form in a quite different (and ‘non-universal’) manner from cold

dark matter (CDM) haloes.

4 INNER A ND OUTER SCALES: FI RST

PERI CENTRE AND OUTER-CAU STI C RADII

In the previous section, we found approximate similarity behaviour

for non-spherical haloes formed by infall from power law and almost

spherically symmetric initial conditions. As in the fully spherically

symmetric similarity solution of Bertschinger (1985), the resulting

non-linear density profile is a power law only at sufficiently small

radii, but in our case the transition between the infall and quasi-

equilibrium regimes is more complex than when the orbits are purely

radial. As we have seen, there appear to be two distinct scales: an

inner scale at around 0.01rta and an outer scale at around 0.1rta. In

the last section, we asserted that the former can be associated with

the first pericentric passage of infalling particles and the latter with

the following apocentric passage, which occurs at the outer caustic.

Here we support these assertions by a more careful study of the

radial position of these orbital turning points.

In the spherical similarity solution, the outer caustic is the border

between the one- and three-stream regions. Outside this radius all

particles are falling in for the first time, while within it many of them

have passed through the centre at least once. In Fig. 4, we show how

the radius of this outer caustic, evaluated directly from the similarity

solution, increases with ǫ. Comparison with the right-hand panel of

Fig. 3 shows that the sharp change in profile shape which delineates

the inner boundary of the infall regime in our simulations is indeed

very close to this radius and depends on ǫ exactly as predicted.

In Fig. 3, all radii are expressed in units of the turnaround ra-

dius. Although this is the natural scale for models with spherically

symmetric initial perturbations of the kind studied here, it turns out

that scaling to the outer-caustic radius (i.e. the position of the first

apocentre after turnaround) results in greater uniformity of the in-

ner non-linear structure of our haloes as a function of ǫ. We show

this in Fig. 5 which may be compared with Fig. 3. Note that in the

Figure 4. The radius of the first apocentre after turnaround (i.e. the outer-

caustic radius) in units of the current turnaround radius as a function of ǫ in

the spherically symmetric similarity solutions with radial orbits.

C© 2011 The Authors, MNRAS 414, 3044–3051
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Non-spherical similarity solutions 3049

Figure 5. Using the radius of the outer caustic as a characteristic scale makes the non-linear structure of haloes appear almost independent of ǫ. The left-hand

and right-hand panels show the effect of using this scaling on the velocity anisotropy and density profiles, respectively. In the right-hand panel, the y-axis is

furthermore multiplied by an ǫ-dependent power law of radius chosen so that the inner profile appears flat and equal to unity (see equation 4). Solid lines show

the a = 1 profiles, whereas dashed lines show the profiles at time a = 0.5.

right-hand panel of Fig. 5, the outer transition occurs slightly beyond

the nominal outer-caustic radius. This is because we have rescaled

using the value for the spherically symmetric similarity solution, as

plotted in Fig. 4. This is slightly smaller than the caustic radius at

the end of our numerical bars, as is clearly visible in Fig. 1.

Next, we consider the inner scale at around 0.01 rta (see Fig. 3).

We follow the trajectories of all simulation particles and record the

radial position of their first pericentric passage. For all particles

which pass the first pericentre between a = 0.5 and 1, we follow

their radial position r along their orbit and record its first minimum

as well as the time when this minimum occurs. The latter allows

us to calculate the position of the outer caustic (according to the

spherical similarity solution) at the time of pericentric passage and

thus to measure the ratio of these two lengths. A histogram of

rperi/router caustic is presented in Fig. 6. There is considerable scatter

in this ratio because pericentric radius depends strongly on the

angle between the infall direction of a particle and the long axis

of the bar. It is very small for infall along one of the principal

axes, and it maximizes at angles well away from any of these axes.

Nevertheless, there is a well-defined ‘typical’ pericentric distance

which is ∼0.1router caustic for all values of ǫ. This agrees well with

the inner transition scale of the β and density profiles in Figs 3

and 5.

5 PSEUDO-PHASE-SPAC E D ENSITY PROFILES

A property of dark matter haloes with rather intriguing char-

acteristics is the pseudo-phase-space density. This is defined as

ρ/σ 3, where ρ(r) and σ (r) are the mass density and the (three-

dimensional) velocity dispersion averaged over a shell of radius r,

respectively. Even though neither ρ(r) nor σ (r) is itself close to a

power law, this particular combination is very close to a power law

for haloes formed from �CDM initial conditions, and, remarkably,

its power-law index is very similar to that found in the spherically

Figure 6. Histograms of the first pericentre distance, measured directly

from our simulations, in units of the fiducial current outer-caustic radius

given in Fig. 4. In these units, the distribution of the first pericentre distance

is almost independent of ǫ, peaking at about 0.1.

symmetric similarity solution of Bertschinger (1985). This curiosity

was first pointed out by Taylor & Navarro (2001), and since that

time it has been investigated by many authors who have found the

behaviour to be quite robust, to extend over more than three decades

in radius and to hold also for other kinds of initial conditions (see

e.g. Ludlow et al. 2010; Navarro et al. 2010).
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Figure 7. Left-hand panel: pseudo-phase-space density profiles for various ǫ evaluated at a = 0.5 (dashed) and a = 1 (solid). The radial coordinate is scaled

with rta and the pseudo-phase-space density with f ta ≡ ρbt3/r3
ta. With these scalings, the profiles do not change significantly with time and, remarkably, are

very similar and are close to a power law within the outer caustic for all ǫ, even though they differ in the infall region. There is no obvious feature at the radius

of the first pericentre. Right-hand panel: pseudo-phase-space density profiles of the inner parts of our haloes after rescaling the horizontal and vertical axes by

rta/router caustic and (router caustic/rta)3, respectively. This scaling brings the overall profiles into quite close agreement within the outer caustic, as can be seen in

the inset. The slope of the inner profile nevertheless depends weakly on ǫ. In the main panel, we have additionally scaled by r1.875 the inverse of the behaviour

expected theoretically for ǫ = 1. Dashed lines show the pseudo-phase-space density profiles at a = 0.5. The thin straight lines in the lower left indicate the

slopes of the analytic predictions of equation (6).

In the framework of a true similarity solution with non-radial

motions, the inner density profile must obey equation (4) for all

ǫ > 0 and β(r) must become constant at small radii. Since the

circular velocity and the velocity dispersions must have the same

scaling behaviour, the pseudo-phase-space density is also a power

law which is easily verified to be

ρ

σ 3
∝ r−3(2+3ǫ)/[2(1+3ǫ)] for all ǫ. (6)

For the original similarity solutions of Fillmore & Goldreich (1984)

which had purely radial orbits, this behaviour holds only for ǫ ≥

2/3. The specific case ǫ = 1 studied by Bertschinger (1985) gives

ρ/σ 3 ∝ r−15/8.

We have directly evaluated the pseudo-phase-space density pro-

files of our simulated haloes using logarithmic bins in radius and

subtracting the mean radial motion before evaluating the velocity

dispersion. We show the results in Fig. 7. In the left-hand panel,

the radial coordinate is normalized by the turnaround radius and

the pseudo-phase-space density by the characteristic value f ta ≡

ρbt3/r3
ta. The very good agreement between the curves for a = 0.5

and 1 demonstrates that the pseudo-phase-space density evolves

self-similarly in time. This is no surprise, given that we have al-

ready seen good scaling for the density and velocity anisotropy

profiles. More surprising is the fact that inside the outer-caustic ra-

dius, the profiles show very little dependence on ǫ, either in slope

or in amplitude. Furthermore, they are all good approximations to

a power law, and there is no obvious feature near the radius of the

first pericentre despite the very strong features seen at this radius in

Fig. 3. Once again scaling to the radius of the outer caustic gives an

even better overlap since it matches the break at large radii, as can

be seen in the inset in the right-hand panel.

We focus on the innermost part of our haloes (the regions inside

the first pericentre) in the main plot of the right-hand panel of Fig. 7.

We again use the outer-caustic radius to scale the radii and pseudo-

phase-space densities, and we additionally multiply the pseudo-

phase-space density by r15/8 to take out the dominant trend. The

power-law slopes expected for exact similarity scaling are indicated

by thin straight lines and are seen to be a good but not perfect fit to

the simulated behaviour. The differences are small enough that they

can probably be ascribed to residual time-dependent behaviour, an

interpretation which is supported by the differences between the

a = 0.5 and 1 curves for each ǫ.

Thus, unlike the velocity anisotropy and the density profiles, the

pseudo-phase-space density profile is close to a power law over

the full non-linear extent of our haloes and it depends only very

weakly on ǫ. Thus, to a good approximation it can be considered

‘universal’.

6 C O N C L U S I O N S

We have shown that although the classic spherically symmetric sim-

ilarity solutions of Fillmore & Goldreich (1984) and Bertschinger

(1985) are violently unstable to the radial orbit instability, evolution

from the initial conditions they presuppose gives rise to ellipsoidal,

bar-like haloes which nevertheless grow in an approximately self-

similar way.

The non-linear structure of these objects shows two characteristic

radii. The outer caustic separates the infall and multistream regions

and occurs at approximately the same position as in the original

spherically symmetric similarity solutions. The second characteris-

tic radius is about an order of magnitude smaller and occurs at the
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typical first pericentre distance of the infalling particle stream. It

can be considered the outer edge of the quasi-equilibrium region.

Relative to the turnaround radius, both radii increase with the value

of the similarity parameter ǫ.

Both the density and velocity anisotropy profiles show strong

features at the first pericentre radius. Within this radius, the density

profile is approximately a power law, ρ ∝ r−γ with γ = 9ǫ/(1 + 3ǫ),

and the velocity anisotropy is approximately constant, β = 0.2(γ

−0.8). At larger radii, the density profile becomes substantially

steeper and the velocity anisotropy rises steeply.

Despite the strong features in the density and velocity anisotropy

profiles at the first pericentre radius, the pseudo-phase-space density

profiles of all our haloes are close to power laws all the way out to

the outer-caustic radius. Furthermore, they depend only very weakly

on ǫ and are similar to the profiles of haloes formed from �CDM

initial conditions. Thus, this profile seems remarkably ‘universal’.
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