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Abstract: Models of radiative Majorana neutrino masses require new scalars and/or

fermions to induce lepton-number-violating interactions. We show that these new parti-

cles also generate observable neutrino non-standard interactions (NSI) with matter. We

classify radiative models as type-I or II, with type-I models containing at least one Stan-

dard Model (SM) particle inside the loop diagram generating neutrino mass, and type-

II models having no SM particle inside the loop. While type-II radiative models do

not generate NSI at tree-level, popular models which fall under the type-I category are

shown, somewhat surprisingly, to generate observable NSI at tree-level, while being con-

sistent with direct and indirect constraints from colliders, electroweak precision data and

charged-lepton flavor violation (cLFV). We survey such models where neutrino masses

arise at one, two and three loops. In the prototypical Zee model which generates neutrino

masses via one-loop diagrams involving charged scalars, we find that diagonal NSI can

be as large as (8%, 3.8%, 9.3%) for (εee, εµµ, εττ ), while off-diagonal NSI can be at most

(10−3%, 0.56%, 0.34%) for (εeµ, εeτ , εµτ ). In one-loop neutrino mass models using lepto-

quarks (LQs), (εµµ, εττ ) can be as large as (21.6%, 51.7%), while εee and (εeµ, εeτ , εµτ )

can at most be 0.6%. Other two- and three-loop LQ models are found to give NSI of

similar strength. The most stringent constraints on the diagonal NSI are found to come

from neutrino oscillation and scattering experiments, while the off-diagonal NSI are mostly

constrained by low-energy processes, such as atomic parity violation and cLFV. We also

comment on the future sensitivity of these radiative models in long-baseline neutrino ex-

periments, such as DUNE. While our analysis is focused on radiative neutrino mass models,

it essentially covers all NSI possibilities with heavy mediators.
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1 Introduction

The origin of tiny neutrino masses needed to explain the observed neutrino oscillation data

is of fundamental importance in particle physics. Most attempts that explain the smallness

of these masses assume the neutrinos to be Majorana particles, in which case their masses

could arise from effective higher dimensional operators, suppressed by a high energy scale

that characterizes lepton number violation. This is the case with the seesaw mechanism,

where the dimension-five operator [1]

O1 = LiLjHkH lǫikǫjl (1.1)

suppressed by an inverse mass scale Λ is induced by integrating out Standard Model (SM)

singlet fermions [2–6], SU(2)L triplet scalars [7–10], or SU(2)L triplet fermions [11] with

mass of order Λ.1 In eq. (1.1), L stands for the lepton doublet, and H for the Higgs doublet,

with i, j, k, l denoting SU(2)L indices, and ǫik is the SU(2)L antisymmetric tensor. Once

the vacuum expectation value (VEV) of the Higgs field, 〈H0〉 ≃ 246GeV is inserted in

eq. (1.1), Majorana masses for the neutrinos given by mν = v2/Λ will be induced. For

light neutrino masses in the observed range, mν ∼ (10−3 − 10−1) eV, the scale Λ should

be around 1014GeV. The mass of the new particle that is integrated out need not be Λ,

since it is parametrically different, involving a combination of Yukawa couplings and Λ.

For example, in the type-I seesaw model the heavy right-handed neutrino mass goes as

MR ∼ y2DΛ, which can be near the TeV scale, if the Dirac Yukawa coupling yD ∼ 10−6.

However, it is also possible that yD ∼ O(1), in which case the new physics involved in

neutrino mass generation could not be probed directly in experiments.2

An alternative explanation for small neutrino masses is that they arise only as quantum

corrections [14–16] (for a review, see ref. [17]). In these radiative neutrino mass models,

the tree-level Lagrangian does not generate O1 of eq. (1.1), owing to the particle content or

symmetries present in the model. If such a model has lepton number violation, then small

Majorana masses for neutrinos will be induced at the loop level. The leading diagram may

arise at one, two, or three loop level, depending on the model details, which will have an

appropriate loop suppression factor, and typically a chiral suppression factor involving a

1For a clear discussion of the classification of seesaw types see ref. [12].
2This is strictly true for one generation case. For more than one generation, the scale could be lower [13].
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light fermion mass as well.3 For example, in the two-loop neutrino mass model of refs. [15,

16], small and calculable mν arises from the diagram shown in figure 43, which is estimated

to be of order

mν ≈ f2h

(16π2)2
m2
µ

M
, (1.2)

assuming normal ordering of neutrino masses and requiring large µ− τ mixing. Here f, h

are Yukawa couplings involving new charged scalars with mass of order M . Even with

f ∼ h ∼ 1, to obtain mν ∼ 0.1 eV, one would require the scalar mass M ∼TeV. This

type of new physics can be directly probed at colliders, enabling direct tests of the origin

of neutrino mass.

When the mediators of neutrino mass generation have masses around or below the

TeV scale, they can also induce other non-standard processes. The focus of this paper

is neutrino non-standard interactions (NSI) [18] induced by these mediators. These NSI

are of great phenomenological interest, as their presence would modify the standard three-

neutrino oscillation picture. The NSI will modify scattering experiments, as the production

and detection vertices are corrected; they would also modify neutrino oscillations, primarily

through new contributions to matter effects. There have been a variety of phenomenological

studies of NSI in the context of oscillations, but relatively lesser effort has gone into the

ultraviolet (UV) completion of models that yield such NSI (for a recent update, see ref. [19]).

A major challenge in generating observable NSI in any UV-complete model is that there are

severe constraints arising from charged-lepton flavor violation (cLFV) [20]. One possible

way to avoid such constraints is to have light mediators for NSI [21–23]. In contrast to

these attempts, in this paper we focus on heavy mediators, and study the range of NSI

allowed in a class of radiative neutrino mass models.4 Apart from being consistent with

cLFV constraints, these models should also be consistent with direct collider searches for

new particles and precision electroweak constraints. We find, somewhat surprisingly, that

the strengths of the diagonal NSI can be (20–50)% of the weak interaction strength for the

flavor diagonal components in a class of popular models that we term as type-I radiative

neutrino mass models, while they are absent at tree-level in another class, termed type-II

radiative models.

1.1 Type-I and type-II radiative neutrino mass models

We propose a nomenclature that greatly helps the classification of various radiative models

of neutrino mass generation. One class of models can be described by lepton number vio-

lating effective higher dimensional operators, similar to eq. (1.1). A prototypical example is

the Zee model [14] which introduces a second Higgs doublet and a charged SU(2)L-singlet

scalar to the SM. Interactions of these fields violate lepton number, and would lead to the

effective lepton number violating (∆L = 2) dimension 7 operator

O2 = LiLjLkecH lǫijǫkl (1.3)

3The magnitude of mν would be too small if it is induced at four or higher loops, assuming that the

diagrams have chiral suppression factors proportional to the SM charged fermion masses; see section 7.4.
4Analysis of ref. [24, 25] of neutrino NSI in a model with charged singlet and/or doublet scalars, although

not in the context of a neutrino mass model, is analogous to one model we analyze.
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with indices i, j, . . . referring to SU(2)L, and e
c standing for the SU(2)L singlet let-handed

positron state. Neutrino masses arise via the one-loop diagram shown in figure 4. The

induced neutrino mass has an explicit chiral suppression factor, proportional to the charged

lepton mass inside the loop. Operator O2 can be obtained by cutting the diagram of

figure 4. We call radiative neutrino mass models of this type, having a loop suppression

and a chirality suppression proportional to a light charged fermion mass, and expressible

in terms of an effective higher dimensional operator as in eq. (1.3) as type-I radiative

models. A classification of low dimensional operators that violate lepton number by two

units has been worked out in ref. [26]. Each of these operators can generate a finite set of

type-I radiative neutrino mass models in a well-defined manner. Lepton number violating

phenomenology of these operators has been studied in ref. [27].

Another well known example in this category is the two-loop neutrino mass model of

refs. [15, 16], which induces an effective d = 9 operator

O9 = LiLjLkecLlecǫijǫkl . (1.4)

Neutrino masses arise in this model via the two-loop diagrams shown in figure 43, which

has a chiral suppression factor proportional to m2
ℓ , with ℓ standing for the charged leptons

of the SM.

This category of type-I radiative neutrino mass models is populated by one-loop, two-

loop, and three-loop models. Popular one-loop type-I models include the Zee model [14]

(cf. section 4), and its variant with LQs replacing the charged scalars (cf. section 5). This

variant is realized in supersymmetric models with R-parity violation [28]. Other one-loop

models include SU(2)L-triplet LQ models (cf. section 7.1.6) wherein the neutrino mass is

proportional to the up-type quark masses [29, 30]. Ref. [31] has classified simple realizations

of all models leading to d = 7 lepton number violating operators, which is summarized in

section 2. Popular type-I two-loop models include the Zee-Babu model [15, 16] (cf. sec-

tion 7.2.1), a variant of it using LQs and a diquark (DQ) [32] (cf. section 7.2.2), a pure LQ

extension [33] (cf. section 7.2.3), a model with LQs and vector-like fermions [34] (cf. sec-

tion 7.2.4), and the Angelic model [35] (cf. section 7.2.5). We also present here a new

two-loop model (cf. section 7.2.9) with LQs wherein the neutrino masses are proportional

to the up-type quark masses. Type-I three-loop models include the KNT model [36] (cf. sec-

tion 7.3.1), an LQ variant of the KNT model [37] (cf. section 7.3.4), the AKS model [38]

(cf. section 7.3.2), and the cocktail model [39] (cf. section 7.3.3). For a review of this class

of models, see ref. [17].

A systematic approach to identify type-I radiative models is to start from a given

∆L = 2 effective operators of the type O2 of eq. (1.3), open the operator in all possible

ways, and identify the mediators that would be needed to generate the operator. Such a

study was initiated in ref. [26], and further developed in refs. [31, 40]. We shall rely on these

techniques. In particular, the many models suggested in ref. [31] have been elaborated on

in section 7, and their implications for NSI have been identified. This method has been

applied to uncover new models in ref. [41].

In all these models there are new scalar bosons, which are almost always necessary

for neutrino mass generation in type-I radiative models using effective higher dimensional

– 3 –
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Particle Content Lagrangian term

η+(1,1, 1) or h+(1,1, 1) fαβLαLβ η
+ or fαβLαLβ h

+

Φ
(
1,2, 12

)
=
(
φ+, φ0

)
YαβLαℓ

c
βΦ̃

Ω
(
3,2, 16

)
=
(
ω2/3, ω−1/3

)
λαβLαd

c
βΩ

χ
(
3,1,− 1

3

)
λ′αβLαQβχ

⋆

ρ̄
(
3̄,3, 13

)
=
(
ρ̄4/3, ρ̄1/3, ρ̄−2/3

)
λ′′αβLαQβ ρ̄

δ
(
3,2, 76

)
=
(
δ5/3, δ2/3

)
λ′′′αβLαu

c
βδ

∆(1,3, 1) =
(
∆++,∆+,∆0

)
f ′αβLαLβ∆

Table 1. Summary of new particles, their SU(3)c × SU(2)L × U(1)Y quantum numbers (with

the non-Abelian charges in boldface), field components and electric charges (in superscript), and

corresponding Lagrangian terms responsible for NSI in various type-I radiative neutrino mass models

discussed in sections 4, 5 and 7. Here Φ̃ = iτ2Φ
⋆, with τ2 being the second Pauli matrix. For a

singly charged scalar, η+ and h+ are used interchangeably, to be consistent with literature.

operators. For future reference, we list in table 1 all possible new scalar mediators in type-I

radiative models that can couple to neutrinos, along with their SU(3)c × SU(2)L × U(1)Y
quantum numbers, field components and electric charges (in superscript), and correspond-

ing Lagrangian terms responsible for NSI. We will discuss them in detail in 4, 5 and 7.

The models discussed in section 7 contain other particles as well, which are however not

relevant for the NSI discussion, so are not shown in table 1. Note that the scalar triplet

∆(1,3, 1) could induce neutrino mass at tree-level via type-II seesaw mechanism [7–10],

which makes radiative models involving ∆ field somewhat unattractive, and therefore, is

not included in our subsequent discussion.

There is one exception to the need for having new scalars for type-I radiative models

(see section 7.1.1). The Higgs boson and the W,Z bosons of the SM can be the mediators

for radiative neutrino mass generation, with the new particles being fermions. In this case,

however, there would be tree-level neutrino mass á la type-I seesaw mechanism [2–6], which

should be suppressed by some mechanism or symmetry. Such a model has been analyzed

in refs. [42, 43], which leads to interesting phenomenology, see section 7.1.

From the perspective of neutrino NSI, these type-I radiative models are the most

interesting, as the neutrino couples to a SM fermion and a new scalar directly, with the

scalar mass near the TeV scale. We have analyzed the ranges of NSI possible in all these

type-I radiative models. Our results are summarized in figure 59 and table 20.

A second class of radiative neutrino mass models has entirely new (i.e., non-SM) par-

ticles inside the loop diagrams generating the mass. These models cannot be derived from

effective ∆L = 2 higher-dimensional operators, as there is no way to cut the loop diagram

and generate such operators. We term this class of models type-II radiative neutrino mass

models (cf. section 8). The induced neutrino mass may have a chiral suppression, but this

is not proportional to any light fermion mass. Effectively, these models generate operator

O1 of eq. (1.1), but with some loop suppression. From a purely neutrino mass perspective,

– 4 –
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the scale of new physics could be of order 1010GeV in these models. However, there are

often other considerations which make the scale near a TeV, a prime example being the

identification of a WIMP dark matter with a particle that circulates in the loop diagram

generating neutrino mass.

A well-known example of the type-II radiative neutrino mass model is the scotogenic

model [44] which assumes a second Higgs doublet and right-handed neutrinos N beyond

the SM. A discrete Z2 symmetry is assumed under which N and the second Higgs doublet

are odd. If this Z2 remains unbroken, the lightest of the Z2-odd particles can serve as a

dark matter candidate. Neutrino mass arises through the diagram of figure 57. Note that

this diagram cannot be cut in any way to generate an effective higher dimensional operator

of the SM. While the neutrino mass is chirally suppressed by MN , this need not be small,

except for the desire for it (or the neutral component of the scalar) to be TeV-scale dark

matter. There are a variety of other models that fall into the type-II category [45–50].

The type-II radiative neutrino mass models will have negligible neutrino NSI, as the

neutrino always couples to non-SM fermions and scalars. Any NSI would be induced at

the loop level, which would be too small to be observable in experiments. As a result, in

our comprehensive analysis of radiative neutrino mass models for NSI, we can safely ignore

type-II models.

One remark is warranted here. Consider an effective operator of the type

O′
1 = LiLjHkH lǫikǫjl(u

cuc)(ucuc)⋆. (1.5)

Such an operator would lead to neutrino masses at the two-loop level, as can be seen in

an explicit model shown in figure 58. Although this model can be described as arising

from an effective ∆L = 2 operator, the neutrino mass has no chiral suppression here. The

mass scale of the new scalars could be as large as 1010GeV. Such models do belong to

type-I radiative models; however, they are more like type-II models due to the lack of

a chiral suppression. In any case, the NSI induced by the LQs that go inside the loop

diagram for neutrino masses is already covered in other type-I radiative models that we

have analyzed. Another example of this type of operator is LiLjHkH lǫikǫjl(H
†H), which

is realized for instance in the minimal radiative inverse seesaw model (MRISM) of ref. [43]

(see section 7.1.1). Such effective operators, which appear as products of lower operators,

were treated as trivial in the classification of ref. [26].

1.2 Summary of results

We have mapped out in this paper the allowed ranges for the neutrino NSI parameters εαβ
(cf. section 3) in radiative neutrino mass models. We present a detailed analysis of the

Zee model [14] with light charged scalar bosons (cf. section 4). To map out the allowed

values of εαβ , we have analyzed constraints arising from the following experimental and

theoretical considerations: i) Contact interaction limits from LEP (cf. section 4.6); ii)

Monophoton constraints from LEP (cf. section 4.11); iii) Direct searches for charged scalar

pair and single production at LEP (cf. section 4.7.1); iv) Pair production of charged scalars

at LHC (cf. section 4.7.2); v) Higgs physics constraints from LHC (cf. section 4.10); vi)

– 5 –
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Lepton universality in W± decays (cf. section 4.8); vii) Lepton universality in τ decays

(cf. section 4.9); viii) Electroweak precision data (cf. section 4.4); ix) charged-lepton flavor

violation (cf. section 4.5); x) Perturbative unitarity of Yukawa and quartic couplings; and

xi) charge-breaking minima of the Higgs potential (cf. section 4.3).

Imposing these constraints, we find that light charged scalars, arising either from the

SU(2)L-singlet or doublet field or an admixture, can have a mass near 100GeV. Neu-

trino NSI obtained from the pure SU(2)L-singlet component turns out to be unobservably

small. However, the SU(2)L-doublet component in the light scalar can have significant

Yukawa couplings to the electron and the neutrinos, thus inducing potentially large NSI.

The maximum allowed NSI in this model is summarized below (cf. table 9):

Zee εmax
ee = 8% , εmax

µµ = 3.8% , εmax
ττ = 9.3% ,

model: εmax
eµ = 0.0015% , εmax

eτ = 0.56% , εmax
µτ = 0.34% .

These values are significantly larger than the ones obtained in ref. [51], where the contri-

butions from the doublet Yukawa couplings of the light charged Higgs were ignored.

We have also analyzed in detail LQ models of radiative neutrino mass generation. As

the base model we analyze the LQ version of the Zee model (cf. section 5), the results of

which can also be applied to other LQ models with minimal modifications. This analysis

took into account the following experimental constraints: i) Direct searches for LQ pair and

single production at LHC (cf. section 5.3); ii) APV (cf. section 5.1.1); iii) charged-lepton

flavor violation (cf. sections 5.1.4 and 5.1.5); and iv) rare meson decays (cf. section 5.1.6).

Including all these constraints we found the maximum possible NSI induced by the singlet

and doublet LQ components, as given below (cf. table 17):

SU(2)L-singlet εmax
ee = 0.69%, εmax

µµ = 0.17%, εmax
ττ = 34.3%,

LQ model: εmax
eµ = 1.5× 10−5%, εmax

eτ = 0.36%, εmax
µτ = 0.43%.

SU(2)L-doublet εmax
ee = 0.4%, εmax

µµ = 21.6%, εmax
ττ = 34.3%,

LQ model: εmax
eµ = 1.5× 10−5%, εmax

eτ = 0.36%, εmax
µτ = 0.43%.

Our results yield somewhat larger NSI compared to the results of ref. [52] which analyzed,

in part, effective interactions obtained by integrating out the LQ fields.

We also analyzed a variant of the LQ model with SU(2)L-triplet LQs, which have

couplings to both up and down quarks simultaneously. The maximum NSI in this case are

found to be as follows (cf. eq. (6.15)):

SU(2)L-triplet εmax
ee = 0.59%, εmax

µµ = 2.49%, εmax
ττ = 51.7%,

LQ model: εmax
eµ = 1.9× 10−6%, εmax

eτ = 0.50%, εmax
µτ = 0.38%.

For completeness, we also list here the maximum possible tree-level NSI in the two-loop

Zee-Babu model (cf. eq. (7.10)):

Zee-Babu εmax
ee = 0%, εmax

µµ = 0.9%, εmax
ττ = 0.3% ,

model: εmax
eµ = 0%, εmax

eτ = 0%, εmax
µτ = 0.3%.
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The NSI predictions in all other models analyzed here will fall into one of the above

categories (except for the MRISM discussed in section 7.1.1). Our results for the base

models mentioned above are summarized in figure 59, and the results for all the models

analyzed in this paper are tabulated in table 20. We emphasize that while our analysis is

focused on radiative neutrino mass models, it essentially covers all NSI possibilities with

heavy mediators, and thus is more general.

The rest of the paper is structured as follows. In section 2, we discuss the classification

of low-dimensional lepton-number violating operators and their UV completions. In sec-

tion 3, we briefly review neutrino NSI and establish our notation. section 4 discusses the

Zee model of neutrino masses and derives the various experimental and theoretical con-

straints on the model. Applying these constraints, we derive the allowed range for the NSI

parameters. Here we also show how neutrino oscillation data may be consistently explained

with large NSI. In section 5 we turn to the one-loop radiative model for neutrino mass with

LQs. Here we delineate the collider and low energy constraints on the model and derive

the ranges for neutrino NSI. In section 6, we discuss a variant of the one-loop LQ model

with triplet LQ. In section 7 we discuss other type-I models of radiative neutrino mass and

obtain the allowed values of εαβ . We briefly discuss NSI in type-II models in section 8. In

section 9 we conclude. Our results are tabulated in table 20 and summarized in figure 59.

In appendix A, we present the analytic expressions for the charged-scalar production cross

sections in electron-positron collisions.

2 Classification of ∆L = 2 operators and their UV completions

It is instructive to write down low-dimensional effective operators that carry lepton number

of two units (∆L = 2), since all type-I radiative models can be constructed systematically

from these operators. Here we present a summary of such operators through d = 7 [26].

We use two component Weyl notation for SM fermions and denote them as

L

(
1,2,−1

2

)
, ec(1,1, 1), Q

(
3,2,

1

6

)
, dc

(
3,1,

1

3

)
, uc

(
3,1,−2

3

)
. (2.1)

The Higgs field of the SM is denoted as H
(
1,2, 12

)
. The ∆L = 2 operators in the SM are

all odd-dimensional. The full list of operators through d = 7 is given by [26]:

O1 = LiLjHkH lǫikǫjl , (2.2a)

O2 = LiLjLkecH lǫijǫkl , (2.2b)

O3 =
{
LiLjQkdcH lǫijǫkl, LiLjQkdcH lǫikǫjl

}
≡ {O3a, O3b} , (2.2c)

O4 =
{
LiLjQiu

cHkǫjk, LiLjQku
cHkǫij

}
≡ {O4a, O4b} , (2.2d)

O8 = Liec ucdcHjǫij . (2.2e)

Not listed here are products of lower-dimensional operators, such as O1 × HH, with the

SU(2)L contraction of HH being a singlet. Here O1 is the Weinberg operator [1], while the
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(a) (b)

Figure 1. Diagrams that generate operators of dimension 7 via (a) scalar and vectorlike fermion

exchange, and (b) by pure scalar exchange.

remaining operators are all d = 7.5 In this paper, we shall analyze all models of neutrino

mass arising from these d = 7 operators for their NSI, as well as the two-loop Zee-Babu

model arising from O9 of eq. (1.4). A few other models that have been proposed in the

literature with higher dimensional operators will also be studied. The full list of d = 9

models is expected to contain a large number, which has not been done to date.

Each of these d = 7 operators can lead to finite number of UV complete neutrino

mass models. The generic diagrams that induce all of the d = 7 operators are shown in

figure 1. Take for example the operator O2 in eq. (2.2b). There are two classes of models

that can generate this operator with the respective mediators obtained from the following

contractions (see table 2):

O1
2 = L(LL)(ecH) , O2

2 = H(LL)(Lec) . (2.3)

Here the pairing of fields suggests the mediator necessary. The (LL) contraction would

require a scalar that can be either an SU(2)L singlet, or a triplet. The (ecH) contraction

would require a new fermion, which is typically a vectorlike fermion.6 Thus, O1
2 has two

UV completions, with the addition of a vectorlike lepton ψ
(
1,2,−3

2

)
to the SM, along

with a scalar which is either a singlet η+(1,1, 1), or a triplet ∆(1,3, 1). The choice of

∆(1,3, 1) can lead to the generation of the lower d = 5 operator at tree level via type-II

seesaw, and therefore, is usually not employed in radiative models. The model realizing

O1
2 with ψ

(
1,2,−3

2

)
vectorlike lepton and η+(1,1, 1) scalar is discussed in section 7.1.2.

Similarly operator O2
2 has a unique UV completion, with two scalars added to the SM —

one η+(1,1, 1) and one Φ
(
1,2, 12

)
. This is the Zee model of neutrino mass, discussed at

length in section 4.

Operators O3a and O3b in eq. (2.2c) can be realized by the UV complete models given

in table. 3 [31]. Here all possible contraction among the fields are shown, along with the

required mediators to achieve these contractions. Fields denoted as φ and η are scalars,

5In the naming convention of ref. [26], operators were organized based on how many fermion fields are

in them. Operators O5 −O7, which are d = 9 operators, appeared ahead of the d = 7 operator O8.
6There is a third contraction allowed in principle, ec(LL)(LH). However, the mediator needed to realize

this would generate d = 5 operator LLLH either via type-I or type-II seesaw at tree-level, and hence this

contraction is not used in radiative neutrino mass models.
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O1
2

L(LL)(ecH)

φ (1,1, 1)

ψ (1,2,− 3
2 )

O2
2

H(LL)(Lec)

φ (1,1, 1)

η (1,2, 12 )

Table 2. Minimal UV completions of operator O2 [31]. Here φ and η generically denote scalars and

ψ is a generic vectorlike fermion. The SM quantum numbers of these new fields are as indicated.

O1
3 O2

3 O3
3 O4

3 O5
3 O6

3

Q(LL)(dcH) dc(LL)(QH) L(Ldc)(QH) L(LQ)(dcH) L(LQ)(dcH) L(Ldc)(QH)

φ (1,1, 1) (1,1, 1)
(
3,2, 16

) (
3,1,− 1

3

) (
3,3,− 1

3

) (
3,2, 16

)

ψ
(
3,2,− 5

6

) (
3,1, 23

) (
3,1, 23

) (
3,2,− 5

6

) (
3,2,− 5

6

) (
3,3, 23

)

O3a O3a O3a O3b O3a,O3b O3a,O3b

O7
3 O8

3 O9
3

H(LL)(Qdc) H(LQ)(Ldc) H(LQ)(Ldc)

φ (1,1,1)
(
3,1,− 1

3

) (
3,3,− 1

3

)

η
(
1,2, 12

) (
3,2, 16

) (
3,2, 16

)

O3a O3b O3a,O3b

Table 3. Minimal UV completions of operators O3a and O3b [31]. Here the models in the top

segment require a new scalar φ and a vectorlike fermion ψ, while those in the lower segment require

two scalar fields φ and η.

O1
4 O2

4

Q(LL)(ucH) uc(LL)(QH)

φ (1,1, 1) (1,1, 1)

ψ
(
3,2, 76

) (
3,1,− 1

3

)

O4b O4b

O3
4

H(LL)(Quc)

φ (1,1, 1)

η
(
1,2, 12

)

O4b

Table 4. Minimal UV completions of the operators O4a and O4b. Note that only the operator O4b

is generated. Fields φ and η are scalars, while the ψ fields are vectorlike fermions.

O1
8 O2

8 O3
8

L(ec uc)(dcH) uc(Ldc)(ecH) ec(Ldc)(ucH)

φ
(
3,1,− 1

3

) (
3,2, 16

) (
3,2, 16

)

ψ
(
3,2,− 5

6

) (
1,2,− 1

2

) (
3,2, 76

)

O4
8

(Ldc)(ucec)H

φ
(
3,1,− 1

3

)

η
(
3,2, 16

)

Table 5. Minimal UV completions of operator O8. Fields φ and η are scalars, while the ψ fields

are vectorlike fermions.
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Figure 2. Topologies of one-loop radiative neutrino mass diagrams.

while ψ is a vectorlike fermion. The SM quantum numbers for each field are also indicated

in the table. We shall analyze neutrino NSI arising from each of these models in section 7.

The UV completions of operators O4 and O8 are shown in tables 4 and 5 respec-

tively [31]. These models will all be analyzed in section 7 for neutrino NSI. Note that in

both O4 and O8, pairing of un-barred and barred fermion fields is not included, as the

mediators for such an UV completion will have to be vector bosons which would make

such models difficult to realize. As a result, only O4b can be realized with scalar and

fermionic exchange.

Classification based on topology of diagrams Rather than classifying radiative neu-

trino mass models in terms of effective ∆L = 2 operators, one could also organize them in

terms of the topology of the loop diagrams [12, 53, 54]. Possible one-loop topologies are

shown in figure 2 [12, 53], and the two-loop topologies are shown in figure 3 [54]. Note

that in the two-loop diagrams, two Higgs particles that are connected to two internal lines

in possible ways are not shown. Recently the three-loop topologies that generate operator

O1 has been classified in ref. [55].

For the purpose of NSI, we find the classification based on type-I and type-II suggested

here more convenient. The classification based on the diagram topology does not specify

whether the internal particles are SM fermions or not, and the NSI effects arise only when

neutrino couples to the SM fermions. Let us also note that the first diagram of figure 2 and

the first two diagrams of figure 3 are the ones that appear most frequently in the explicit

type-I radiative models that we discuss in subsequent sections.

3 Neutrino non-standard interactions

Neutrino NSI can be of two types: Neutral Current (NC) and Charged Current (CC). The

CC NSI of neutrinos with the matter fields in general affects the production and detection
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Figure 3. Topologies of two-loop neutrino mass diagrams. Two Higgs bosons should be attached

to internal lines in all possible ways.

of neutrinos, while the NC NSI affects the neutrino propagation in matter. In the low-

energy regime, neutrino NSI with matter fields can be formulated in terms of an effective

four-fermion Lagrangian as follows [18]:

LNC
NSI = −2

√
2GF

∑

f,X,α,β

εfXαβ (ν̄αγ
µPLνβ)

(
f̄γµPXf

)
, (3.1)

LCC
NSI = −2

√
2GF

∑

f,f ′,X,α,β

εff
′X

αβ (ν̄αγ
µPLℓβ)

(
f̄ ′γµPXf

)
, (3.2)

whereGF is the Fermi coupling constant, and PX (withX = L,R) denotes the chirality pro-

jection operators PL,R = (1∓γ5)/2. These projection operators can also be reparametrized

into vector and axial components of the interaction. The dimensionless coefficients εαβ are

the NSI parameters that quantify the strength of the NSI between neutrinos of flavors α

and β and the matter fields f, f ′ ∈ {e, u, d}. If εαβ 6= 0 for α 6= β, the NSI violates lepton

flavor, while for εαα 6= εββ , it violates lepton flavor universality.

The vector component of NSI, εfVαβ = εfLαβ+ε
fR
αβ , affects neutrino oscillations by provid-

ing a new flavor-dependent matter effect.7 The effective Hamiltonian for the matter effect

is given by

H =
1

2E
UPMNS



0 0 0

0 ∆m2
21 0

0 0 ∆m2
31


U †

PMNS +
√
2GFNe(x)



1 + εee εeµ εeτ
ε⋆eµ εµµ εµτ
ε⋆eτ ε⋆µτ εττ


 , (3.3)

where UPMNS is the standard 3× 3 lepton mixing matrix, E is the neutrino energy, Ne(x)

is the electron number density as a function of the distance x traveled by the neutrino in

matter, and the 1 in the 1 + εee term is due to the standard CC matter potential. The

Hamiltonian level NSI in eq. (3.3) is related to the Lagrangian level NSI in eq. (3.1) as

7The axial-vector part of the weak interaction gives a nuclear spin-dependent contribution that averages

to zero in the non-relativistic limit for the nucleus.
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follows:

εαβ =
∑

f∈{e,u,d}

〈
Nf (x)

Ne(x)

〉
εfVαβ

= εeVαβ +

〈
Np(x)

Ne(x)

〉
(2εuVαβ + εdVαβ ) +

〈
Nn(x)

Ne(x)

〉
(εuVαβ + 2εdVαβ ) , (3.4)

where Nf (x) is the number density of fermion f at position x, and 〈Np(n)/Ne〉 is the average
ratio of the density of protons (neutrons) to the density of electrons along the neutrino

propagation path. Note that the coherent forward scattering of neutrinos with nucleons

can be thought of as the incoherent sum of the neutrino scattering with the constituent

quarks, because the nucleon form factors are equal to one in the limit of zero momentum

transfer. Assuming electric charge neutrality of the medium, we can set 〈Np(x)/Ne(x)〉 = 1

and define the ratio Yn(x) ≡ 〈Nn(x)/Ne(x)〉 to rewrite eq. (3.4) as

εαβ = εeVαβ + [2 + Yn(x)] ε
uV
αβ + [1 + 2Yn(x)] ε

dV
αβ . (3.5)

In the Earth, the ratio Yn which characterizes the matter chemical composition can be

taken to be constant to very good approximation. According to the Preliminary Reference

Earth Model (PREM) [56], Yn = 1.012 in the mantle and 1.137 in the core, with an average

value Yn = 1.051 all over the Earth. On the other hand, for solar neutrinos, Yn(x) depends

on the distance to the center of the Sun and drops from about 1/2 in the center to about

1/6 at the border of the solar core [57, 58].

In the following sections, we will derive the predictions for the NSI parameters εαβ
in various radiative neutrino mass models, which should then be compared with the ex-

perimental and/or global-fit constraints [59–62] on εαβ using eq. (3.5). We would like to

emphasize two points in this connection:

(i) Depending on the model, we might have NSI induced only in the neutrino-electron or

neutrino-nucleon interactions, or involving only left- or right-chirality of the matter

fields. In such cases, only the relevant terms in eq. (3.5) should be considered, while

comparing with the experimental or global-fit constraints.

(ii) Most of the experimental constraints [60] are derived assuming only one NSI parame-

ter at a time, whereas within the framework of a given model, there might exist some

non-trivial correlation between NSI involving different neutrino flavors, as we will see

below. On the other hand, the global-fits [61, 62] usually perform a scan over all NSI

parameters switched on at the same time in their analyses, whereas for a given model,

the cLFV constraints usually force the NSI involving some flavor combinations to be

small, in order to allow for those involving some other flavor combination to be siz-

able. To make a conservative comparison with our model predictions, we will quote

the most stringent values from the set of experimental and global-fit constraints both,

as well as the future DUNE sensitivities [63–66] (cf. tables 9 and 17).
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4 Observable NSI in the Zee model

One of the simplest extensions of the SM that can generate neutrino mass radiatively is

the Zee Model [14], wherein small Majorana masses arise through one-loop diagrams. This

is a type-I radiative model, as it can be realized by opening up the ∆L = 2 effective

d = 7 operator O2 = LiLjLkecH lǫijǫkl, and since the induced neutrino mass has a chiral

suppression factor proportional to the charged lepton mass. Due to the loop and the chiral

suppression factors, the new physics scale responsible for neutrino mass can be at the TeV

scale. The model belongs to the classification O2
2 of table 2.

The model assumes the SM gauge symmetry SU(3)c×SU(2)L×U(1)Y , with an extended

scalar sector. Two Higgs doublets Φ1,2(1,2, 1/2), and a charged scalar singlet η+(1,1, 1)

are introduced to facilitate lepton number violating interactions and thus nonzero neutrino

mass. The leptonic Yukawa Lagrangian of the model is given by:

−LY ⊃ fαβL
i
αL

j
βǫijη

+ + (y1)αβΦ̃
i
1L

j
αℓ
c
βǫij + (y2)αβΦ̃

i
2L

j
αℓ
c
βǫij +H.c. , (4.1)

where {α, β} are generation indices, {i, j} are SU(2)L indices, Φ̃a ≡ iτ2Φ
⋆
a (a = 1, 2) and

ℓc denotes the left-handed antilepton fields. Here and in what follows, a transposition and

charge conjugation between two fermion fields is to be understood. Note that due to Fermi

statistics, fαβ = −fβα. Expanding the first term of the Lagrangian eq. (4.1) leads to the

following couplings of η+:

− LY ⊃ 2η+ [feµ(νeµ− νµe) + feτ (νeτ − ντe) + fµτ (νµτ − ντµ)] + H.c. (4.2)

The presence of two Higgs doublets Φ1,2 allows for a cubic coupling in the Higgs

potential,

V ⊃ µΦi1Φ
j
2ǫij η

− +H.c. , (4.3)

which, along with the Yukawa couplings of eq. (4.1), would lead to lepton number violation.

The magnitude of the parameter µ in eq. (4.3) will determine the range of NSI allowed in

the model. Interestingly, µ cannot be arbitrarily large, as it would lead to charge-breaking

minima of the Higgs potential which are deeper than the charge conserving minimum [67,

68] (see section 4.3).

4.1 Scalar sector

We can start with a general basis, where both Φ1 and Φ2 acquire vacuum expectation

values (VEVs):

〈Φ1〉 =
1√
2

(
0

v1

)
, 〈Φ2〉 =

1√
2

(
0

v2e
iξ

)
. (4.4)

However, without loss of generality, we can choose to work in the Higgs basis [69] where

only one of the doublet fields gets a VEV v given by v =
√
v21 + v22 ≃ 246GeV. The

transformation to the new basis {H1, H2} is given by:

(
H1

H2

)
=

(
cβ e−iξsβ

−eiξsβ cβ

)(
Φ1

Φ2

)
, (4.5)
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where sβ ≡ sinβ and cβ ≡ cosβ, with tan β = v2/v1. In this new basis, we can parametrize

the two doublets as

H1 =

(
G+

1√
2
(v +H0

1 + iG0)

)
, H2 =

(
H+

2
1√
2
(H0

2 + iA)

)
, (4.6)

where (G+, G0) are the Goldstone bosons, (H0
1 , H

0
2 ), A, and H

+
2 are the neutral CP-even

and odd, and charged scalar fields, respectively. We shall work in the CP conserving limit,

since phases such as ξ in eq. (4.4) will not have a significant impact on NSI phenomenology

which is our main focus here.

The most general renormalizable scalar potential involving the doublet fields H1, H2

and the singlet field η+ can be written as

V (H1, H2, η) = − µ21H
†
1H1 + µ22H

†
2H2 − (µ23H

†
2H1 +H.c.)

+
1

2
λ1(H

†
1H1)

2 +
1

2
λ2(H

†
2H2)

2 + λ3(H
†
1H1)(H

†
2H2) + λ4(H

†
1H2)(H

†
2H1)

+

[
1

2
λ5(H

†
1H2)

2 +
{
λ6(H

†
1H1) + λ7(H

†
2H2)

}
H†

1H2 +H.c.

]

+ µ2η|η|2 + λη|η|4 + λ8|η|2H†
1H1 + λ9|η|2H†

2H2

+ (λ10|η|2H†
1H2 +H.c.) + (µ ǫijH

i
1H

j
2η

− +H.c.) (4.7)

Differentiating V with respect to H1 and H2, we obtain the following minimization condi-

tions:

µ21 =
1

2
λ1v

2, µ23 =
1

2
λ6v

2, (4.8)

where, for simplicity, we have chosen µ23 to be real. The mass matrix for the charged scalars

in the basis {H+
2 , η

+} becomes

M2
charged =

(
M2

2 −µv/
√
2

−µv/
√
2 M2

3

)
, (4.9)

where

M2
2 = µ22 +

1

2
λ3v

2, M2
3 = µ2η +

1

2
λ8v

2 . (4.10)

The physical masses of the charged scalars {h+, H+} are given by:

m2
h+,H+ =

1

2

{
M2

2 +M2
3 ∓

√
(M2

2 −M2
3 )

2 + 2 v2µ2
}
, (4.11)

where

h+ = cosϕη+ + sinϕH+
2 ,

H+ = − sinϕη+ + cosϕH+
2 , (4.12)
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with the mixing angle ϕ given by

sin 2ϕ =
−
√
2 vµ

m2
H+ −m2

h+
. (4.13)

As we shall see later, this mixing parameter ϕ, which is proportional to µ will play a crucial

role in the NSI phenomenology of the model.

Similarly, the matrix for the CP-even and odd neutral scalars in the basis {H0
1 , H

0
2 , A}

can written as [70]:

M2
neutral =




λ1v
2 Re(λ6)v

2 −Im(λ6)v
2

λ6v
2 M2

2 + 1
2v

2(Re(λ5) + λ4) −1
2 Im(λ5)v

2

−Im(λ6)v
2 −1

2 Im(λ5)v
2 M2

2 + 1
2v

2(−Re(λ5) + λ4)


 . (4.14)

In the CP-conserving limit where Im(λ5,6) = 0, the CP-odd state will decouple from the

CP-even states. One can then rotate the CP-even states into a physical basis {h,H} which

would have masses given by [70]:

m2
h,H =

1

2

[
m2
A + (λ1 + λ5)v

2 ±
√
{m2

A + (λ5 − λ1)v2}2 + 4λ26v
4

]
, (4.15)

whereas the CP-odd scalar mass is given by

m2
A =M2

2 − 1

2
(λ5 − λ4)v

2 . (4.16)

The mixing angle between the CP-even eigenstates {H0
1 , H

0
2}, defined as

h = cos(α− β)H0
1 + sin(α− β)H0

2 ,

H = − sin(α− β)H0
1 + cos(α− β)H0

2 , (4.17)

is given by

sin 2(α− β) =
2λ6v

2

m2
H −m2

h

. (4.18)

We will identify the lightest CP-even eigenstate h as the observed 125GeV SM-like Higgs

and use the LHC Higgs data to obtain constraints on the heavy Higgs sector (see sec-

tion 4.10). We will work in the alignment/decoupling limit, where β − α → 0 [71–74], as

suggested by the LHC Higgs data [75, 76].

4.2 Neutrino mass

In the Higgs basis where only the neutral component of H1 gets a VEV, the Yukawa

interaction terms in eq. (4.1) of fermions with the scalar doublets H1 and H2 become

− LY ⊃ ỸαβH̃
i
1L

j
αℓ
c
βǫij + YαβH̃

i
2L

j
αℓ
c
βǫij +H.c. , (4.19)

– 15 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

⟨H0
1⟩

H
+
2η+

να ℓγ ℓcγ νβ

Figure 4. Neutrino mass generation at one-loop level in the Zee model [14]. The dot (•) on the

SM fermion line indicates mass insertion due to the SM Higgs VEV.

where Y and Ỹ are the redefined couplings in terms of the original Yukawa couplings y1
and y2 given in eq. (4.1) and where H̃a = iτ2H

⋆
a (a = 1, 2) with τ2 being the second Pauli

matrix. After electroweak symmetry breaking, the charged lepton mass matrix reads as

Mℓ = Ỹ 〈H0
1 〉 = Ỹ

v√
2
. (4.20)

Without loss of generality, one can work in a basis where Mℓ is diagonal, i.e., Mℓ =

diag (me, mµ, mτ ). The Yukawa coupling matrix f involving the η+ field in eq. (4.1) is

taken to be defined in this basis.

The Yukawa couplings in eq. (4.1), together with the trilinear term in the scalar poten-

tial eq. (4.3), generate neutrino mass at the one-loop level, as shown in figure 4. Here the

dot (•) on the SM fermion line indicates mass insertion due to the SM Higgs VEV. There

is a second diagram obtained by reversing the arrows on the internal particles. Thus, we

have a symmetric neutrino mass matrix given by

Mν = κ (fMℓY + Y TMℓf
T ) , (4.21)

where κ is the one-loop factor given by

κ =
1

16π2
sin 2ϕ log

(
m2
h+

m2
H+

)
, (4.22)

with ϕ given in eq. (4.13). From eq. (4.21) it is clear that only the product of the Yukawa

couplings f and Y is constrained by the neutrino oscillation data. Therefore, by taking

some of the Y couplings to be of ∼ O(1) and all f couplings very small in the neutrino

mass matrix of eq. (4.21), we can correctly reproduce the neutrino oscillation parameters

(see section 4.13). This choice maximizes the neutrino NSI in the model. We shall adopt

this choice. With the other possibility, namely, Y ≪ 1, the stringent cLFV constraints

on f couplings (cf. table 19) restrict the maximum NSI to . 10−8 [51], well below any

foreseeable future experimental sensitivity.

The matrix f that couples the left-handed lepton doublets to the charged scalar η+

can be made real by a phase redefinition P̂ fP̂ , where P̂ is a diagonal phase matrix, while
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the Yukawa coupling Y in eq. (4.19) is in general a complex asymmetric matrix:

f =




0 feµ feτ
−feµ 0 fµτ
−feτ −fµτ 0


 , Y =



Yee Yeµ Yeτ
Yµe Yµµ Yµτ
Yτe Yτµ Yττ


 . (4.23)

Here the matrix Y is multiplied by (ν̄e, ν̄µ, ν̄τ ) from the left and (eR, µR, τR)
T from the

right, in the interaction with the charged scalar H+. Thus the neutrino NSI will be

governed by the matrix elements (Yee, Yµe, Yτe), which parametrize the couplings of να
with electrons in matter.

Since the model has two Higgs doublets, in general both doublets will couple to up

and down quarks. If some of the leptonic Yukawa couplings Yαe of eq. (4.23) are of order

unity, so that significant neutrino NSI can be generated, then the quark Yukawa couplings

of the second Higgs doublet H2 will have to be small. Otherwise chirality enhanced meson

decays, such as π+ → e+ν will occur with unacceptably large rates. Therefore, we assume

that the second Higgs doublet H2 is leptophilic in our analysis.

Note that in the limit Y ∝ Ml, as was suggested by Wolfenstein [77] by imposing

a discrete Z2 symmetry to forbid the tree-level flavor changing neutral currents (FCNC)

mediated by the neutral Higgs bosons, the diagonal elements of Mν would vanish, yielding

neutrino mixing angles that are not compatible with observations [78, 79]. For a variant of

the Zee-Wolfenstein model with a family-dependent Z4 symmetry which is consistent with

neutrino oscillation data, see ref. [80].

4.3 Charge-breaking minima

To have sizable NSI, we need a large mixing ϕ between the singlet and doublet charged

scalar fields η+ and H+
2 . From eq. (4.13), this means that we need a large trilinear µ-term.

But µ cannot be arbitrarily large, as it leads to charge-breaking minima (CBM) of the

potential [67, 68]. We numerically analyze the scalar potential given by eq. (4.7) to ensure

that it does not develop any CBM deeper than the charge-conserving minimum (CCM).

We take µ22, µ
2
η > 0. The field H1 is identified approximately as the SM Higgs doublet,

and therefore, the value of λ1 is fixed by the Higgs mass (cf. eq. (4.8)), and the corresponding

mass-squared term is chosen to be negative to facilitate electroweak symmetry breaking

(µ21 > 0 in eq. (4.7)). Note that the cubic scalar coupling µ can be made real as any phase

in it can be absorbed in η− by a field redefinition.

In order to calculate the most general minima of the potential, we assign the following

VEVs to the scalar fields:

〈H1〉 =
(

0

v1

)
, 〈H2〉 = v2

(
sin γ eiδ

cos γ eiδ
′

)
, 〈η−〉 = vη , (4.24)

where vη and v1 can be made real and positive by SU(2)L × U(1)Y rotations. A non-

vanishing VEV vη would break electric charge conservation, as does a nonzero value of

sin γ. Thus, we must ensure that the CBM of the potential lie above the CCM. The Higgs
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potential, after inserting eq. (4.24) in eq. (4.7), reads as

V = −µ21v21 +
λ1v

4
1

2
+ (µ22 + λ3)v

2
2 +

λ2v
4
2

2
+ (µ2η + λ8v

2
1 + λ9v

2
2)v

2
η + ληv

4
η

+v1v2{2 cos γ[−µ23 cos δ′+λ6v21 cos (θ2 + δ′)+λ7v
3
2 cos (θ3 + δ′)+λ10v

2
η cos (θ4 + δ′)]

+v1v2 cos γ
2[λ4 + λ5 cos (θ1 + 2δ′)]− 2µvη cos δ sin γ}. (4.25)

Here θ1, θ2, θ3, and θ4 are respectively the phases of the quartic couplings λ5, λ6, λ7, and

λ10. For simplicity, we choose these quartic couplings, as well as λ9 to be small. This

choice does not lead to any run-away behavior of the potential. We keep all diagonal

quartic couplings to be nonzero, so that the potential remains bounded. (All boundedness

conditions are satisfied if we choose, as we do for the most part, all the quartic couplings to

be positive.) We also keep the off-diagonal couplings λ3 and λ8 nonzero, as these couplings

help in satisfying constraints from the SM Higgs boson properties from the LHC.

Eq. (4.25) yields five minimization conditions from which {v1, v2, vη, δ, γ} can be solved

numerically for any given set of masses and quartic couplings. The mass parameters are

derived from the physical masses of h+, H+ and h in the CCM. We vary mh+ from 50 to

500GeV and choose three benchmark points for mH+ : {0.7, 1.6, 2.0}TeV. To get an upper

limit on the mixing angle ϕ (cf. eq. (4.13)] for our subsequent analysis, we keep λ3 = λ8 fixed

at two benchmark values (3.0 and 2.0) and vary the remaining nonzero quartic couplings

λ2 and λη in the range [0.0, 3.0]. Our results on the maximum sinϕ are shown in figure 5.

We do not consider values of the quartic couplings exceeding 3.0 to be consistent with

perturbativity considerations [81]. Each choice of mixing angle ϕ, and the parameters λ2,

λη, mh+ , and mH+ yields different minimization conditions deploying different solutions to

the VEVs. We compare the values of the potential for all cases of CBM and CCM. If any

one of the CBM is deeper than CCM, we reject the solution and rerun the algorithm with

different initial conditions until we meet the requirement of electroweak minimum being

deeper than all CBM.

For values of the mixing angle sinϕ above the curves shown in figure 5 for a given

mH+, the potential develops CBM that are deeper than the electroweak minimum, which

is unacceptable. This is mainly due to the fact that for these values of ϕ, the trilinear

coupling µ becomes too large, which drives the potential to a deeper CBM [67], even

for positive µ2η. From figure 5 it is found that sinϕ < 0.23 for mH+ = 2 TeV, while

sinϕ = 0.707 is allowed when mH+ = 0.7TeV. In all cases the maximum value of |µ| is
found to be about 4.1 times the heavier mass mH+ . Note that we have taken the maximum

value of the mixing ϕmax = π/4 here, because for ϕ > π/4, the roles of h+ and H+ will be

simply reversed, i.e., H+ (h+) will become the lighter (heavier) charged Higgs field. The

CBM limits from figure 5 will be applied when computing neutrino NSI in the model.

4.4 Electroweak precision constraints

The oblique parameters S, T and U can describe a variety of new physics in the electroweak

sector parametrized arising through shifts in the gauge boson self-energies [82, 83] and

impose important constraints from precision data. These parameters have been calculated
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Figure 5. Maximum allowed value of the mixing parameter sinϕ from charge-breaking minima

constraints as a function of the light charged Higgs mass mh+ , for different values of the heavy

charged Higgs mass mH+ = 2TeV, 1.6TeV and 0.7TeV, shown by red, green and blue curves,

respectively. We set the quartic couplings λ3 = λ8 = 3.0 (left) and λ3 = λ8 = 2.0 (right), and vary

λ2, λη in the range [0.0, 3.0]. For a given mH+ , the region above the corresponding curve leads to

charge-breaking minima.

in the context of the Zee model in ref. [84]. We find that the T parameter imposes the

most stringent constraint, compared to the other oblique parameters. The T parameter in

the Zee model can be expressed as [84]:

T =
1

16π2αemv2
{
cos2ϕ

[
sin2(β−α)F(m2

h+ ,m
2
h)+cos2(β−α)F(m2

h+ ,m
2
H)+F(m2

h+ ,m
2
A)
]

+ sin2ϕ
[
sin2(β − α)F(m2

H+ ,m
2
h) + cos2(β − α)F(m2

H+ ,m
2
H) + F(m2

H+ ,m
2
A)
]

− 2 sin2ϕcos2ϕF(m2
h+ ,m

2
H+)− sin2(β − α)F(m2

h,m
2
A)− cos2(β − α)F(m2

H ,m
2
A)

+ 3sin2(β − α)
[
F(m2

Z ,m
2
H)−F(m2

W ,m
2
H)−F(m2

Z ,m
2
h) + F(m2

W ,m
2
h)
]}

, (4.26)

where the symmetric function F is given by

F(m2
1,m

2
2) = F(m2

2,m
2
1) ≡

1

2
(m2

1 +m2
2)−

m2
1m

2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
. (4.27)

In order to generate large NSI effects in the Zee model, the mixing between the singlet

and the doublet charged scalar, parametrized by the angle ϕ, should be significant. This

mixing contributes to the gauge boson self-energies and will therefore be bounded from the

experimental value of the T parameter: T = 0.01 ± 0.12 [85]. For simplicity, we assume

no mixing between the neutral CP-even scalars h and H. Furthermore, we take the heavy

neutral CP-even (H) and odd (A) scalars to be degenerate in mass. In figure 6, we have

shown our results from the T parameter constraint, allowing for two standard deviation

error bar, in the heavy neutral and charged Higgs mass plane. Here we have fixed the light

charged scalar mass mh+ = 100GeV. As shown in the figure, when the masses mH and

mH± are nearly equal (along the diagonal), the T parameter constraint is easily satisfied.
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Figure 6. T -parameter constraint at the 2σ confidence level in the heavy charged and neutral

Higgs mass plane in the Zee model. Here we have set the light charged scalar mass mh+ = 100GeV.

Different colored regions correspond to different values of the mixing angle sin ϕ between the charged

Higgs bosons.

Figure 7. T -parameter constraint in the mixing and heavy charged scalar mass plane in the Zee

model for heavy neutral scalar masses mH = mA = 0.7TeV. The colored regions (both green and

red) are allowed by the T -parameter constraint, while in the red-shaded region, |λ4|, |λ5| > 3.0,

which we discard from perturbativity requirements.

From figure 6, we also find that for specific values of mH and mH± , there is an upper

limit on the mixing sinϕ. This is further illustrated in figure 7. Here, the colored regions

(both green and red) depict the allowed parameter space in m+
H − sinϕ plane resulting

from the T parameter constraint. For example, if we set mH = 0.7TeV, the maximum

mixing that is allowed by T parameter is (sinϕ)max = 0.63. The mass splitting between

the heavy neutral and the charged Higgs bosons is governed by the relation (cf. eqs. (4.11)
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ℓα νρ ℓβ

γ

h+/H+

ℓα ℓρ ℓρ ℓβ
γ

H0/A0

Figure 8. One-loop Feynman diagrams contributing to ℓα → ℓβ + γ process mediated by charged

scalar (left) and neutral scalar (right) in the Zee model.

and (4.15)):

m2
H± −m2

H =
1

2
(λ5 − λ4)v

2 . (4.28)

We choose λ5 = −λ4, which would maximize the mass splitting, as long as the quar-

tic couplings remain perturbative. The red region in figure 7 depicts the scenario where

|λ4|, |λ5| > 3.0, which we discard from perturbativity requirements in a conservative ap-

proach. Satisfying this additional requirement that these couplings be less than 3.0, we

get an upper limit on sinϕ < 0.59. For the degenerate case mH± = mH with λ4 = λ5, the

upper limit is stronger: sinϕ < 0.49.

4.5 Charged-lepton flavor violation constraints

Charged-lepton flavor violation is an integral feature of the Lagrangian eq. (4.1) of the

model. We can safely ignore cLFV processes involving the fαβ couplings which are assumed

to be of the order of 10−8 or so to satisfy the neutrino mass constraint, with Yαβ couplings

being order one. Thus, we focus on cLFV proportional to Yαβ . Furthermore, as noted

before, NSI arise proportional to (Yee, Yµe, Yτe), where the first index refers to the neutrino

flavor and the second to the charged-lepton flavor in the coupling of charged scalars h+ and

H+. After briefly discussing the cLFV constraints arising from other Yαβ , we shall focus

on the set (Yee, Yµe, Yτe) relevant for NSI. The neutral scalar bosons H and A will mediate

cLFV of the type µ → 3e and τ → µee at tree-level, while these neutral scalars and the

charged scalars (h+, H+) mediate processes of the type µ → eγ via one-loop diagrams.

Both of these processes will be analyzed below. We derive limits on the couplings Yαβ as

functions of the scalar masses. These limits need to be satisfied in the neutrino oscillation

fit, see section 4.13 for details. The constraints derived here will also be used to set upper

limits of possible off-diagonal NSI. The various processes considered and the limits derived

are summarized in tables 6 and 7. We now turn to the derivation of these bounds.

4.5.1 ℓα → ℓβ + γ decays

The decay ℓα → ℓβ + γ arises from one-loop diagrams shown in figure 8. The general

expression for this decay rate can be found in ref. [86]. Let us focus on the special case where

the FCNC coupling matrix Y of eq. (4.23) has nonzero entries either in a single row, or in a

single column only. In this case, the chirality flip necessary for the radiative decay will occur
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on the external fermion leg. Suppose that only the right-handed component of fermion fα
has nonzero Yukawa couplings with a scalar boson B and fermion F , parametrized as

− LY ⊃ B
∑

α=1,2

YαβF βPRfα +H.c. (4.29)

The electric charges of fermions F and f are QF and Qf respectively, while that of the

boson B is QB, which obey the relation Qf = QF −QB. The decay rate for fα → fβ + γ

is then given by

Γ(fα → fβ + γ) =
α

4

|YαγY ⋆
βγ |2

(16π2)2
m5
α

m4
B

[QF fF (t) +QBfB(t)]
2 . (4.30)

Here α = e2/4π is the fine-structure constant, t = m2
F /m

2
B, and the function fF (t) and

fB(t) are given by

fF (t) =
t2 − 5t− 2

12(t− 1)3
+

t logt

2(t− 1)4
,

fB(t) =
2t2 + 5t− 1

12(t− 1)3
− t2 logt

2(t− 1)4
. (4.31)

These expressions are obtained in the approximation mβ ≪ mα.

Let us apply these results to ℓα → ℓβ + γ mediated by the charged scalars (h+, H+)

in the Zee model where the couplings have the form Yαβ ν̄αPRℓβh
+ sinϕ, etc. Here QF = 0,

while QB = +1. Eq. (4.30) then reduces to (with t≪ 1)

Γ(h+,H+)(ℓα → ℓβ + γ) =
α

4

|YγαY ⋆
γβ |2

(16π2)2
m5
α

144

(
sin2 ϕ

m2
h+

+
cos2 ϕ

m2
H+

)2

. (4.32)

If we set mh+ = 100GeV, mH+ = 700GeV and sinϕ = 0.7, then the experimental limit

BR(µ → eγ) ≤ 4.2× 10−13 [87] implies |YαeY ⋆
αµ| ≤ 6× 10−5. Similarly, the limit BR(τ →

eγ) ≤ 3.3 × 10−8 [88] implies |YατY ⋆
αe| ≤ 4 × 10−2, and the limit BR(τ → µγ) ≤ 4.4 ×

10−8 [88] implies |YατY ⋆
αµ| ≤ 4.6 × 10−2. These are rather stringent constraints, which

suggest that no more than one entry in a given row of Y can be large. Such a choice

does not however affect the maximum NSI, as the elements of Y that generate them are

in the first column of Y . Keeping only the entries (Yee, Yµe, Yτe) nonzero does not lead to

ℓα → ℓβ + γ decay mediated by the charged scalars (h+, H+).

However, nonzero values of (Yee, Yµe, Yτe), needed for NSI, would lead to ℓα → ℓβ + γ

mediated by the heavy neutral scalars. Taking H and A to be degenerate, the Yukawa

couplings are of the form ℓ̄αPRℓβH. Thus, QF = −1 and QB = 0 in this case, leading to

the decay width

Γ(H,A)(ℓα → ℓβ + γ) =
α

144

|YαγY ⋆
βγ |2

(16π2)2
m5
α

m4
H

. (4.33)

We show the constraints on these product of Yukawa couplings for a fixed mass of the

neutral Higgs mH in table 6. The severe constraint coming from µ→ eγ process prevents

the off-diagonal NSI parameter εeµ from being in the observable range. However, εeτ and

εµτ can be in the observable range, consistent with these constraints.
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Process Exp. bound Constraint

µ→ eγ BR < 4.2 ×10−13 [89] |Y ⋆
µeYee| < 1.05× 10−3

(
mH

700 GeV

)2

τ → eγ BR < 3.3 ×10−8 [88] |Y ⋆
τeYee| < 0.69

(
mH

700 GeV

)2

τ → µγ BR < 4.4 ×10−8 [88] |Y ⋆
τeYµe| < 0.79

(
mH

700 GeV

)2

Table 6. Constraints on Yukawa couplings as a function of heavy neutral scalar mass from ℓα →
ℓβ + γ processes.

ℓα

ℓβ

ℓγ

ℓδ

H0/A0

Figure 9. Feynman diagram contributing to tree-level cLFV trilepton decay mediated by CP-even

and odd neutral scalars in the Zee model. At least two of the final state leptons must be of electron

flavor to be relevant for NSI.

4.5.2 Electron anomalous magnetic moment

Another potential constraint comes from anomalous magnetic moment of leptons (g− 2)α,

which could get contributions from both charged and neutral scalars in the Zee model.

The heavy neutral scalar contribution can be ignored here. For the Yukawa couplings

relevant for NSI, the charged scalar contribution to muon g − 2 is also absent. The only

non-negligible contribution is to the electron g − 2, which can be written at one-loop level

as [90]

∆ae = −m2
e

96π
(Y †Y )ee

(
sin2 ϕ

m2
h+

+
cos2 ϕ

m2
H+

)
. (4.34)

Comparing this with ∆ae ≡ aexpe −aSMe = (−87±36)×10−14 (where ae ≡ (g−2)e/2), based

on the difference between the experimental measurements [91] and SM calculations [92]

with the updated value of the fine-structure constant [93], we find that the charged scalar

contribution (4.34) goes in the right direction. However, for the allowed parameter space

in mh+ − Yee sinϕ plane (see figure 18), it turns out to be too small to explain the 2.4σ

discrepancy in ∆ae. For example, with |Yτe| sinϕ = 0.75 and mh+ = 150GeV, which is a

consistent choice (cf. figure 18), we would get ∆ae = −2.2× 10−14, an order of magnitude

too small to be relevant for experiments.

4.5.3 ℓα → ℓ̄βℓγℓδ decays

The Yukawa coupling matrix Y of the second Higgs doublet (cf. eq. (4.23)) would lead to

trilepton decay of charged leptons mediated by the neutral scalars of the theory. The tree-

level Feynman diagrams for such decays are shown in figure 9. Partial rates for the trilepton
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Process Exp. bound Constraint

µ− → e+e−e− BR < 1.0 ×10−12 [94] |Y ⋆
µeYee| < 3.28× 10−5

(
mH

700 GeV

)2

τ− → e+e−e− BR < 1.4 ×10−8 [95] |Y ⋆
τeYee| < 9.05× 10−3

(
mH

700 GeV

)2

τ− → e+e−µ− BR < 1.1 ×10−8 [95] |Y ⋆
τeYµe| < 5.68× 10−3

(
mH

700 GeV

)2

Table 7. Constraints on Yukawa couplings as a function of heavy neutral scalar mass from ℓα →
ℓ̄βℓγℓδ decay (with at least two of the final state leptons of electron flavor to be relevant for NSI).

decays are obtained in the limit when the masses of the decay products are neglected. The

partial decay width for µ→ ēee is given as follows:

Γ(µ− → e+e−e−) =
1

6144π3
|Y ⋆
µe Yee|2

m5
µ

m4
H

. (4.35)

The partial decay width for τ → ℓ̄αℓβℓγ is given by

Γ
(
τ → ℓ̄αℓβℓγ

)
=

1

6144π3
S |Y ⋆

ταYβγ |2
m5
τ

m4
H

. (4.36)

Here S = 1 (2) for β = γ (β 6= γ) is a symmetry factor. Using the total muon and tau decay

widths, Γtot
µ = 3.00×10−19GeV and Γtot

τ = 2.27×10−12GeV respectively, we calculate the

cLFV branching ratios for the processes µ− → e+e−e−, τ− → e+e−e− and τ− → e+e−µ−

using eqs. (4.35) and (4.36). We summarize in table 7 the current experimental bounds

on these branching ratios and the constraints on the Yukawa couplings Yαβ as a function

of mass of neutral Higgs boson mH = mA. It is clear from table 7 that these trilepton

decays put more stringent bounds on product of Yukawa couplings compared to the bounds

arising from loop-level ℓα → ℓβγ decays. This also implies that off-diagonal NSI are severely

constrained.

As already noted, the light charged Higgs h+ would mediate ℓα → ℓβ + γ decay if

more than one entry in a given row of Y is large. The heavy neutral Higgs bosons mediate

trilepton decays of the leptons when there are more than one nonzero entry in the same

column (or same row) of Y . This last statement is however not valid for the third column

of Y . For example, nonzero Yττ and Yµτ will not lead to tree-level trilepton decay of τ .

Apart from the first column of Y , we shall allow nonzero entries in the third column as

well. In particular, for diagonal NSI εαα, we need one Yαe entry for some α to be nonzero,

and to avoid the trilepton constraints, the only other entry that can be allowed to be large

is Yβτ with β 6= α. On the other hand, for off-diagonal NSI εαβ (with α 6= β), we must

allow for both Yαe and Yβe to be non-zero. In this case, however, the trilepton decay

ℓβ → ℓαee is unavoidable and severely restricts the NSI as we will see in section 4.12. Also,

the other entry that can be populated is Yγτ with γ 6= α, β. This will lead to τ → ℓ + γ

decays, which, however, do not set stringent limits on the couplings (cf. table 6). Some

benchmark Yukawa textures satisfying all cLFV constraints are considered in section 4.13

to show consistency with neutrino oscillation data.
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4.6 Collider constraints on neutral scalar mass

In this section, we discuss the collider constraints on the neutral scalars H and A in the

Zee model from various LEP and LHC searches.

4.6.1 LEP contact interaction

Electron-positron collisions at center-of-mass energies above the Z-boson mass performed

at LEP impose stringent constraints on contact interactions involving e+e− and a pair of

fermions [96]. Integrating out new particles in a theory one can express their effect via

higher-dimensional (generally dimension-6) operators. An effective Lagrangian, Leff , can

parametrize the contact interaction for the process e+e− → ff̄ with the form [97]

Leff =
g2

Λ2(1 + δef )

∑

i,j=L,R

ηfij(ēiγ
µei)(f̄jγµfj) , (4.37)

where δef is the Kronecker delta function, f refers to the final sate fermions, g is the

coupling strength, Λ is the new physics scale and ηfij = ±1 or 0, depending on the chirality

structure. LEP has put 95% confidence level (CL) lower limits on the scale of the contact

interaction Λ assuming the coupling g =
√
4π [96]. In the Zee model, the exchange of

new neutral scalars (H and A) emerging from the second Higgs doublet will affect the

process e+e− → ℓ+α ℓ
−
β (with ℓα,β = e, µ, τ), and therefore, the LEP constraints on Λ can

be interpreted as a lower limit on the mass of the heavy neutral scalar, for a given set

of Yukawa couplings. Here we assume that H and A are degenerate, and derive limits

obtained by integrating out both fields.

In general, for ℓ+α ℓ
−
β → ℓ+γ ℓ

−
δ via heavy neutral scalar exchange, the effective Lagrangian

in the Zee model can be written as

LZee
eff =

YαδY
⋆
βγ

m2
H

(ℓ̄αLℓδR)(ℓ̄βRℓγL) . (4.38)

By Fierz transformation, we can rewrite it in a form similar to eq. (4.37):

LZee
eff = −1

2

YαδY
⋆
βγ

m2
H

(ℓ̄αLγ
µℓγL)(ℓ̄βRγµℓγR) . (4.39)

Thus, the only relevant chirality structures in eq. (4.37) are LR and RL, and the relevant

process for deriving the LEP constraints is e+e− → ℓ+α ℓ
−
α :

Leff =
g2

Λ2(1 + δeα)

[
ηℓLR(ēLγ

µeL)(ℓ̄αRγµℓαR) + ηℓRL(ēRγ
µeR)(ℓ̄αLγµℓαL)

]
, (4.40)

with ηℓLR = ηℓRL = −1.

Now for e+e− → e+e−, eq. (4.39) becomes

LZee
eff (e+e− → e+e−) = −|Yee|2

2m2
H

(ēLγ
µeL)(ēRγµeR) . (4.41)
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Process LEP bound [96] Constraint

e+e− → e+e− Λ−
LR/RL > 10TeV mH

|Yee|
> 1.99TeV

e+e− → µ+µ− Λ−
LR/RL > 7.9TeV mH

|Yµe|
> 1.58TeV

e+e− → τ+τ− Λ−
LR/RL > 2.2TeV mH

|Yτe|
> 0.44TeV

Table 8. Constraints on the ratio of heavy neutral scalar mass and the Yukawa couplings from

LEP contact interaction bounds.

Comparing this with eq. (4.40), we obtain

mH

|Yee|
=

Λ−
LR/RL√
2g

, (4.42)

where Λ− corresponds to Λ with ηℓLR = ηℓRL = −1. The LEP constraints on Λ were derived

in ref. [96] for g =
√
4π, which can be translated into a lower limit on mH/|Yee| using

eq. (4.42), as shown in table 8. Similarly, for e+e− → µ+µ−, eq. (4.39) is

LZee
eff (e+e− → µ+µ−) = − 1

2m2
H

[
|Yeµ|2(ēLγµeL)(µ̄RγµµR) + |Yµe|2(ēRγµeR)(µ̄LγµµL)

]
.

(4.43)

Since for NSI, only Yµe (neutrino interaction with electron) is relevant, we can set Yeµ → 0,

and compare eq. (4.43) with eq. (4.40) to get a constraint on mH/|Yµe|, as shown in table 8.

Similarly, for e+e− → τ+τ−, we can set Yeτ → 0 and translate the LEP limit on Λ− into

a bound on mH/|Yτe|, as shown in table 8.

The LEP constraints from the processes involving qq̄ final states, such as e+e− → cc̄

and e+e− → bb̄, are not relevant in our case, since the neutral scalars are leptophilic. We

will use the limits quoted in table 8 while deriving the maximum NSI predictions in the

Zee model.

4.6.2 LEP constraints on light neutral scalar

The LEP contact interaction constraints discussed in section 4.6 are not applicable if the

neutral scalars H and A are light. In this case, however, the cross section of e+e− → ℓ+α ℓ
−
α

can still be modified, due to the t-channel contribution of H/A, which interferes with the

SM processes. We implement our model file in FeynRules package [98] and compute the

e+e− → ℓ+α ℓ
−
α cross-sections in the Zee model at the parton-level using MadGraph5 event

generator [99]. These numbers are then compared with the measured cross sections [96, 100]

to derive limits on mH/A as a function of the Yukawa couplings Yαe (for α = e, µ, τ ). For a

benchmark value of mH = mA = 130GeV, we find the following constraints on the Yukawa

couplings Yαe relevant for NSI:

Yee < 0.80 , Yµe < 0.74 , Yτe < 0.73 . (4.44)

This implies that the second charged scalar H+ can also be light, as long as it is allowed by

other constraints (see figure 11). We will use this finding to maximize the NSI prediction

for the Zee model (see section 4.12.2).
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Figure 10. Feynman diagrams for pair- and single-production of singly-charged scalars h± at e+e−

collider.

4.6.3 LHC constraints

Most of the LHC searches for heavy neutral scalars are done in the context of either

MSSM or 2HDM, which are not directly applicable in our case because H and A do not

couple to quarks, and therefore, cannot be produced via gluon fusion. The dominant

channel to produce the neutral scalars in our case at the LHC is via an off-shell Z boson:

pp → Z⋆ → HA → ℓ+ℓ−ℓ+ℓ−.8 Most of the LHC multilepton searches assume a heavy

ZZ(⋆) resonance [102, 103], which is not applicable in this case. The cross section limits

from inclusive multilepton searches, mostly performed in the SUSY context with large

missing transverse energy [104, 105], turn out to be weaker than the LEP constraints

derived above.

4.7 Collider constraints on light charged scalar

In this section, we discuss the collider constraints on the light charged scalar h± in the Zee

model from various LEP and LHC searches.

4.7.1 Constraints from LEP searches

At LEP, h± can be pair-produced through the s-channel Drell-Yan process mediated by

either γ or Z boson (see figure 10(a)). It can also be pair-produced through the t-channel

processes mediated by a light neutrino (see figure 10(b)). In addition, it can be singly-

produced either in association with a W boson (see figure 10(c)) or via the Drell-Yan

channel in association with leptons (see figure 10(d)). The analytic expressions for the

8Only the (H
↔

∂ µA)Zµ coupling is nonzero, while the (H
↔

∂ µH)Zµ and (A
↔

∂ µA)Zµ couplings vanish due

to parity [101].
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relevant cross sections can be found in appendix A. For our numerical study, we imple-

ment our model file in FeynRules package [98] and compute all the cross-sections at the

parton-level using MadGraph5 event generator [99]. We find good agreement between the

numerically computed values and the analytic results presented in appendix A.

Once produced on-shell, the charged scalar will decay into the leptonic final states ναℓβ
through the Yukawa coupling Yαβ . Since we are interested in potentially large NSI effects,

the charged scalar must couple to the electron. Due to stringent constraints from cLFV

processes, especially the trilepton cLFV decays (see table 7), which is equally applicable for

the product of two Yukawa entries either along a row or column, both Yαe and Yαµ (or Yαe
and Yβe) cannot be large simultaneously. So we consider the case where BReν + BRτν =

100% and BRµν is negligible, in order to avoid more stringent limits from muon decay.9

Electron channel: for a given charged scalar decay branching ratio to electrons, BReν ,

we can reinterpret the LEP selectron searches [106] to put a constraint on the charged

scalar mass as a function of BReν . In particular, the right-handed selectron pair-production

e+e− → ẽRẽR, followed by the decay of each selectron to electron and neutralino, ẽR →
eR + χ̃0, will mimic the e+e−νν̄ final state of our case in the massless neutralino limit. So

we use the 95% CL observed upper limits on the ẽRẽR production cross section [106] for

mχ̃ = 0 as an experimental upper limit on the quantity

σ̃ee ≡ σ(e+e− → h+h−)BR2
eν + σ(e+e− → h±W∓)BReνBRW→eν , (4.45)

and derive the LEP exclusion region in the plane of charged scalar mass and BReν , as

shown in figure 11(a) by the orange-shaded region. Here we have chosen Yee sinϕ = 0.1

and varied Yτα (with α = µ or τ) to get the desired branching ratios. We find that for

BReν = 1, charged scalar masses less than 100GeV are excluded. For BReν < 1, these

limits are weaker, as expected, and the charged scalar could be as light as 97GeV (for

BReν = 0.33), if we just consider the LEP selectron (as well as stau, see below) searches.

Figure 11(b) shows the same constraints as in figure 11(a), but for the case of Yee sinϕ =

0.2. The LEP selectron constraints become stronger as we increase Yee and extend to

smaller BReν . However, the mass limit of 100GeV for BReν = 1 from figure 11(a) still

holds here. This is because the charged scalar pair-production cross section drops rapidly

for mh+ > 100GeV due to the kinematic threshold of LEP II with
√
s = 209GeV and is

already below the experimental cross section limit even for Yee sinϕ = 0.2. In this regime,

the single-production channel in figure 10(d) starts becoming important, despite having a

three-body phase space suppression.

Figures 11(c) and 11(d) show the same constraints as in figure 11(a) and 11(b) respec-

tively, but for the Yee = 0 case. Here we have fixed Yτe sinϕ and varied Yτα (with α = e

or µ) to get the desired branching ratios. In this case, the single-production channel in

association with the W boson (cf. figure 10(c)) goes away, and therefore, the limits from

selectron and stau searches become slightly weaker. Note that for the NSI purpose, we

must have a non-zero Yαe (for α = e, µ or τ). Therefore, the t-channel contribution to the

9This choice is consistent with the observed neutrino oscillation data (see section 4.13).
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pair-production (cf. figure 10(b)), as well as the Drell-Yan single-production channel are

always present.10

Tau channel: in the same way, we can also use the LEP stau searches [106] to derive an

upper limit on

σ̃ττ ≡ σ(e+e− → h+h−)BR2
τν + σ(e+e− → h±W∓)BRτνBRW→τν (4.46)

and the corresponding LEP exclusion region in the plane of charged scalar mass and BRτν ,

as shown in figure 11 by the blue-shaded region. We find that for BRτν = 1, charged scalar

masses less than 104 (105) GeV are excluded for Yee sinφ = 0.1 (0.2).

For BRτν 6= 0, a slightly stronger limit can be obtained from the LEP searches for the

charged Higgs boson pairs in the 2HDM [108]. Their analysis focused on three kinds of final

states, namely, τντν, cs̄τν (or c̄sτν) and cs̄c̄s, under the assumption that BRτν+BRcs̄ = 1,

which is valid in the 2HDM as the couplings of the charged Higgs boson to the SM fermions

are proportional to the fermion masses. In our case, the observed LEP upper limit on

σ(e+e− → h+h−)BR2
τν for BRτν = 1 can be recast into an upper limit on

σhττ ≡ σ(e+e− → h+h−)BR2
τν + σ(e+e− → h±W∓)BRτνBRW→τν (4.47)

and the corresponding exclusion region is shown in figure 11 by the green-shaded region.

We can also use the LEP cross section limit on cs̄τν for BRτν 6= 1 as an upper limit

on σ(e+e− → h±W∓)BRτνBRW→cs̄ and the corresponding exclusion region is shown in

figure 11 by the cyan-shaded region, which is found to be weaker than the τντν mode.

4.7.2 Constraints from LHC searches

As for the LHC constraints, there is no t-channel contribution to the singlet charged-

scalar production. The only possible channel for pair-production is the s-channel Drell-

Yan process pp → γ⋆/Z⋆ → h+h− (see figure 12(a)), followed by the leptonic decay of

h± → ℓν. There are also single-production processes as shown in figure 12(b)–(d), which

are less important. The relevant LHC searches are those for right-handed selectrons/staus:

pp → ℓ̃+R ℓ̃
−
R → ℓ+Rχ̃

0ℓ−Rχ̃
0, which will mimic the ℓ+νℓ−ν final states from h+h− decay in

the massless neutralino limit. The
√
s = 13TeV LHC stau searches focus on the stau

mass range above 100GeV and it turns out that the current limits [109] on the stau pair-

production cross section are still a factor of five larger than the h+h− pair-production cross

section in our case; therefore, there are no LHC limits from the tau sector. A
√
s = 8TeV

ATLAS analysis considered the mass range down to 80GeV [110]; however, the observed

cross section is still found to be larger than the theoretical prediction in our case even

for BRτν = 1.

As for the selectron case, we take the
√
s = 13TeV CMS search [111], which focuses

on the selectron masses above 120GeV, and use the observed cross section limit on σ(pp→
e+Rχ̃

0e−Rχ̃
0) to derive an upper limit on σ(pp → h+h−)BR2

eν , which can be translated into

10This might be the reason why the LEP limits derived here are somewhat more stringent than those

reported in ref. [107], which presumably only considered the s-channel contribution.

– 29 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

(a) (b)

(c) (d)

Figure 11. Collider constraints on light charged scalar h± in the Zee model for (a) Yee sinϕ = 0.1,

(b) Yee sinϕ = 0.2, (c) Yee sinϕ = 0, Yτe sinϕ = 0.1, and (d) Yee sinϕ = 0, Yτe sinϕ = 0.2. We plot

the h± branching ratios to τν and eν (with the sum being equal to one) as a function of its mass.

All shaded regions are excluded: blue and orange regions from stau and selectron searches at LEP

(see section 4.7.1); purple region from selectron searches at LHC (see section 4.7.2); yellow, brown,

and pink regions from W universality tests in LEP data for µ/e, τ/e, and τ/µ sectors respectively

(see section 4.8); light green and gray regions from tau decay universality and lifetime constraints

respectively (see section 4.9). The W universality constraints do not apply in panels (b) and (c),

because the h±W∓ production channel in figure 10(c) vanishes in the Yee → 0 limit.
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Figure 12. Feynman diagrams for pair- and single-production of singly-charged scalars h± at LHC.

a bound on the charged scalar mass, as shown in figure 11 by the purple-shaded regions.

It is evident that the LHC limits can be evaded by going to larger BRτν & 0.4, which can

always be done for any given Yukawa coupling Yαe by choosing an appropriate Yβτ . This

however may not be the optimal choice for NSI, especially for Yee 6= 0, where the lepton

universality constraints restrict us from having a larger BRτν . Thus, the LHC constraints

will be most relevant for εee, as we will see in figure 18(a).

4.8 Constraints from lepton universality in W± decays

The presence of a light charged Higgs can also be constrained from precision measurements

of W boson decay rates. The topology of the charged Higgs pair production h+h− (fig-

ure 10(a) and 10(b)) and the associated production h±W∓ (figure 10(c)) is very similar to

the W+W− pair production at colliders, if the charged Higgs mass is within about 20GeV

of the W boson mass. Thus, the leptonic decays of the charged Higgs which are not nec-

essarily flavor-universal can be significantly constrained from the measurements of lepton

universality in W decays. From the combined LEP results [112], the constraints on the

ratio of W branching ratios to leptons of different flavors are as follows:

Rµ/e =
Γ(W → µν)

Γ(W → eν)
= 0.986± 0.013 , (4.48)

Rτ/e =
Γ(W → τν)

Γ(W → eν)
= 1.043± 0.024 , (4.49)

Rτ/µ =
Γ(W → τν)

Γ(W → µν)
= 1.070± 0.026 . (4.50)

Note that while the measured value of Rµ/e agrees with the lepton universality prediction

of the SM, RSM
µ/e = 1, within 1.1σ CL, theW branching ratio to tau with respect to electron
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is about 1.8σ and to muon is about 2.7σ away from the SM prediction: RSM
τ/ℓ = 0.9993 (with

ℓ = e, µ), using the one-loop calculation of ref. [113].

The best LEP limits on lepton universality in W decays come from the W+W−

pair-production channel, where one W decays leptonically, and the other W hadronically,

i.e., e+e− →W+W− → ℓνqq̄′ [112]. However, due to the leptophilic nature of the charged

Higgs h± in our model, neither the e+e− → h+h− channel (figures 10(a) and 10(b)) nor

the Drell-Yan single-production channel (figure 10(d)) will lead to ℓνqq̄ final state. So

the only relevant contribution to the W universality violation could come from the h±W∓

production channel (figure 10(c)), with the W decaying hadronically and h± decaying lep-

tonically. The pure leptonic channels (eνeν and µνµν) have ∼ 40% uncertainties in the

measurement and are therefore not considered here.

Including the h±W∓ contribution, the modified ratios Rℓ/ℓ′ can be calculated as

follows:

Rℓ/ℓ′ =
σ(W+W−)BRWqq̄′BR

W
ℓν + σ(h±W∓)BRWqq̄′BRℓν

σ(W+W−)BRWqq̄′BR
W
ℓ′ν + σ(h±W∓)BRWqq̄′BRℓ′ν

, (4.51)

where σ(W+W−) and σ(h±W∓) are the production cross sections for e+e− → W+W−

and e+e− → h±W∓ respectively, BRWℓν denotes the branching ratio of W → ℓν (with

ℓ = e, µ, τ ), whereas BRℓν denotes the branching ratio of h± → ℓν as before (with ℓ = e, τ).

At LEP experiment, the W+W− pair production cross section σW+W− is computed to be

17.17 pb at
√
s = 209GeV [112]. Within the SM, W± decays equally to each generation

of leptons with branching ratio of 10.83% and decays hadronically with branching ratio of

67.41% [85]. We numerically compute using MadGraph5 [99] the h±W∓ cross section at√
s = 209GeV as a function of mh± and BRℓν , and compare eq. (4.51) with the measured

values given in eqs. (4.48)–(4.50) to derive the 2σ exclusion limits in the mh+-BRℓν plane.

This is shown in figures 11(a) and 11(b) by yellow, brown, and pink-shaded regions for

µ/e, τ/e, and τ/µ universality tests, respectively. Note that these constraints are absent

in figures 11(c) and 11(d), because when Yee = 0, there is no W±h∓ production at LEP

(cf. figure 10(c) in the Zee model. But when Yee is relatively large, these constraints turn

out to be some of the most stringent ones in the mh+-BRℓν plane shown in figures 11(a)

and 11(b), and rule out charged scalars below 110GeV (129GeV) for Yee sinϕ = 0.1 (0.2).

These constraints are not applicable for mh± > 129GeV, because h±W∓ can no longer be

produced on-shell at LEP II with maximum
√
s = 209GeV.

As mentioned before, the measured W branching ratio to tau with respect to muon is

2.7σ above the SM prediction. Since in our case, h± decays to either eν or τν, but not µν,

this contributes to Rτµ only in the numerator, but not in the denominator. Therefore, the

2.7σ discrepancy can be explained in this model, as shown by the allowed region between

the upper and lower pink-dashed curves in figure 11(a) with Yee sinϕ = 0.1.11 The upper

pink-shaded region with larger BRτν gives Rτµ > 1.122, which is above the allowed 2σ

range given in eq. (4.50). On the other hand, the lower pink-shaded region with smaller

BRτν gives Rτµ < 1.018, which is below the allowed 2σ range given in eq. (4.50). For

11Light charged scalar has been used to address the lepton universality issue in W decays in ref. [114].
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Figure 13. Feynman diagram for the new decay mode of the τ lepton mediated by light charged

scalar in the Zee model.

larger Yukawa coupling Yee, as illustrated in figure 11(b) with Yee sinϕ = 0.2, the whole

allowed range of parameter space from Rτ/µ shifts to lower values of BRτν . This is because

the h±W∓ production cross section σ(h±W∓) in eq. (4.51) is directly proportional to

|Yee|2, and therefore, for a large Yee, a smaller BRτν would still be compatible with the

Rτ/µ-preferred range.

4.9 Constraints from tau decay lifetime and universality

In order to realize a light charged scalar h− consistent with LEP searches, we have assumed

that the decay h− → τ ν̄β proceeds with a significant branching ratio. h− also has coupling

with eν̄α, so that non-negligible NSI is generated. When these two channels are combined,

we would get new decay modes for the τ lepton, as shown in figure 13. This will lead to

deviation in τ -lifetime compared to the SM expectation. The new decay modes will also

lead to universality violation in τ decays, as the new modes preferentially lead to electron

final states. Here we analyze these constraints and evaluate the limitations these pose for

NSI.

The effective four-fermion Lagrangian relevant for the new τ decay mode is given by

Leff = (ν̄LαeR)(τ̄RνLβ)YαeY
⋆
βτ

sin2 ϕ

m2
h+

. (4.52)

This can be recast, after a Fierz transformation, as

Leff = −1

2
(ν̄LαγµνLβ)(τ̄Rγ

µeR)YαeY
⋆
βτ

sin2 ϕ

m2
h+

. (4.53)

This can be directly compared with the SM τ decay Lagrangian, given by

LSM = 2
√
2GF (ντLγµντL)(τ̄Lγ

µeL) . (4.54)

It is clear from here that the new decay mode will not interfere with the SM model (in

the limit of ignoring the lepton mass), since the final state leptons have opposite helicity

in the two decay channels. The width of the τ lepton is now increased from its SM value

by a factor 1 + ∆, with ∆ given by [115]

∆ =
1

4
|gsRR|2 , (4.55)
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where

gsRR = −
YαeY

⋆
βτ sin

2 ϕ

2
√
2GFm2

h+

. (4.56)

The global-fit result on τ lifetime is ττ = (290.75±0.36)×10−15 s, while the SM prediction

is τSMτ = (290.39 ± 2.17) × 10−15 s [85]. Allowing for 2σ error, we find ∆ ≤ 1.5%. If the

only decay modes of h− are h− → ν̄αe
− and h− → ν̄βτ

−, then we can express |Yβτ |2 in

terms of |Yαe|2 as

|Yβτ |2 = |Yαe|2
BR(h− → τν)

BR(h− → eν)
. (4.57)

Using this relation, we obtain

∆ = |εαα|2
BR(h− → τν)

BR(h− → eν)
, (4.58)

where εαα is the diagonal NSI parameter for which the expression is derived later in

eq. (4.74). Therefore, a constraint on ∆ from the tau lifetime can be directly translated

into a constraint on εαα:

|εαα| ≤ 12.2%

√
BR(h− → eν)

BR(h− → τν)
. (4.59)

An even stronger limit is obtained from e−µ universality in τ decays. The experimental

central value prefers a slightly larger width for τ → µνν compared to τ → eνν. In our

scenario, h− mediation enhances τ → eνν relative to τ → µνν. We have in this scenario

Γ(τ → µνν)

Γ(τ → eνν)
= 1−∆ , (4.60)

which constrains ∆ ≤ 0.002, obtained by using the measured ratio Γ(τ→µνν)
Γ(τ→eνν) = 0.9762 ±

0.0028 [85], and allowing 2σ error. This leads to a limit

|εαα| ≤ 4.5%

√
BR(h− → eν)

BR(h− → τν)
. (4.61)

In deriving the limits on a light charged Higgs mass from LHC constraints, we have imposed

the τ decay constraint as well as the universality constraint on ∆, see figure 11. Avoiding

the universality constraint by opening up the τ → µνν channel will not work, since that

will be in conflict with µ→ eνν constraints, which are more stringent.

The Michel parameters in τ decay will now be modified [116]. While the ρ and δ

parameters are unchanged compared to their SM value of 3/4, ξ is modified from its SM

value of 1 to

ξ = 1− 1

2
|gsRR|2 . (4.62)

However, the experimental value is ξ = 0.985±0.030 [85], which allows for significant room

for the new decay. Again, our choice of Yukawa couplings does not modify the µ → eνν

decay, and is therefore, safe from the Michel parameter constraints in the muon sector,

which are much more stringent.

– 34 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

h

h
+

h
+

γ

γ

(a)

h

h
±

h
∓∗

ℓ
∓

ν

(b)

Figure 14. (a) New contribution to h → γγ decay mediated by charged scalar loop. (b) New

contribution to h→ 2ℓ2ν via the exotic decay mode h→ h±h∓⋆.

4.10 Constraints from Higgs precision data

In this subsection, we analyze the constraints on light charged scalar from LHC Higgs

precision data. Both ATLAS and CMS collaborations have performed several measure-

ments of the 125GeV Higgs boson production cross sections and branching fractions at

the LHC, both in Run I [117] and Run II [118, 119]. Since all the measurements are in

good agreement with the SM expectations, any exotic contributions to either production

or decay of the SM-like Higgs boson will be strongly constrained. In the Zee model, since

the light charged scalar is leptophilic, it will not affect the production rate of the SM-like

Higgs h (which is dominated by gluon fusion via top-quark loop). However, it gives new

contributions to the loop-induced h→ γγ decay (see figure 14(a)) and mimics the tree-level

h → WW ⋆ → 2ℓ2ν channel via the exotic decay mode h → h±h∓⋆ → h±ℓν → 2ℓ2ν (see

figure 14(b)). Both these contributions are governed by the effective hh+h− coupling given

by

λhh+h− = −
√
2µ sinϕ cosϕ+ λ3v sin

2 ϕ+ λ8v cos
2 ϕ . (4.63)

Therefore, the Higgs precision data from the LHC can be used to set independent con-

straints on these Higgs potential parameters, as we show below.

The Higgs boson yield at the LHC is characterized by the signal strength, defined as

the ratio of the measured Higgs boson rate to its SM prediction. For a specific production

channel i and decay into specific final states f , the signal strength of the Higgs boson h

can be expressed as

µif ≡ σi

(σi)SM

BRf
(BRf )SM

≡ µi · µf , (4.64)

where µi (with i = ggF, VBF, V h, and tt̄h) and µf (with f = ZZ⋆,WW ⋆, γγ, τ+τ−, bb̄) are
the production and branching rates relative to the SM predictions in the relevant channels.

As mentioned above, the production rate does not get modified in our case, so we will set

µi = 1 in the following. As for the decay rates, the addition of the two new channels shown

in figure 14 will increase the total Higgs decay width, and therefore, modify the partial

widths in all the channels.

To derive the Higgs signal strength constraints on the model parameter space, we

have followed the procedure outlined in ref. [70, 120], using the updated constraints on
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signal strengths reported by ATLAS and CMS collaboration for all individual production

and decay modes at 95% CL, based on the
√
s = 13TeV LHC data. The individual

analysis by each experiment examines a specific Higgs boson decay mode corresponding

to various production processes. We use the measured signal strengths in the following

dominant decay modes for our numerical analysis: h→ γγ [121–124], h→ ZZ⋆ [125, 126],

h→WW ⋆ [127–129], h→ ττ [130, 131] and h→ bb̄ [132–134].

We formulate the modified h→ γγ decay rate as

Γ(h→ γγ) = κ2γΓ(h→ γγ)SM , (4.65)

where the scaling factor κγ is given by

κγ =

∑
f N

f
c Q2

fA1/2(τf ) +A1(τW ) +
λhh+h−v

2m2
h+

A0(τh+)

∑
f N

f
c Q2

fA1/2(τf ) +A1(τW )
, (4.66)

where Nf
c = 3 (1) is the color factor for quark (lepton),

∑
f is the sum over the SM fermions

f with charge Qf , and the loop functions are given by [135]

A0(τ) = −τ + τ2f(τ), (4.67)

A1/2(τ) = 2τ [1 + (1− τ)f(τ)], (4.68)

A1(τ) = −2− 3τ [1 + (2− τ)f(τ)], (4.69)

with f(τ) =





arcsin2
(

1√
τ

)
, if τ ≥ 1

−1

4

[
log

1 +
√
1− τ

1−
√
1− τ

− iπ

]2
, if τ < 1 .

(4.70)

The parameters τi = 4m2
i /m

2
h are defined by the corresponding masses of the heavy parti-

cles in the loop. For the fermion loop, only the top quark contribution is significant, with

the next leading contribution coming from the bottom quark which is an 8% effect. Note

that the new contribution in eq. (4.66) due to the charged scalar can interfere with the SM

part either constructively or destructively, depending on the sign of the effective coupling

λhh+h− in eq. (4.63).

As for the new three-body decay mode h → h±h∓
⋆ → h±ℓν, the partial decay rate is

given by

Γ(h→ h+ℓ−ν̄) =
|λhh+h− |2
64π3mh

Tr(Y †Y )

∫ 1
2
(1+r)

√
r

dx
(1− 2x+ r)

√
x2 − r

(1− 2x)2 +
r2Γ2

h+

m2
h

, (4.71)

where Y is the Yukawa coupling defined in eq. (4.19), Γh+ = Tr(Y †Y )mh+/8π is the total

decay width of h+, and r = m2
h+/m

2
h. With this new decay mode, the signal strength in

the h→ 2ℓ2ν channel will be modified to include Γ(h→ h±ℓν → 2ℓ2ν) along with the SM

contribution from Γ(h→WW ⋆ → 2ℓ2ν), and to some extent, from Γ(h→ ZZ⋆ → 2ℓ2ν).
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Figure 15. Constraints from the Higgs boson properties in λ8 − sinϕ plane in the Zee model

(with λ3 = λ8). The red, cyan, green, yellow, and purple-shaded regions are excluded by the signal

strength limits for various decay modes (γγ, ττ, bb̄, ZZ⋆,WW ⋆) respectively. The white unshaded

region simultaneously satisfies all the experimental constraints. Grey-shaded region (only visible in

the upper right panel) is excluded by total decay width constraint.

The partial decay widths of h in other channels will be the same as in the SM, but

their partial widths will now be smaller, due to the enhancement of the total decay width.

A comparison with the measured signal strengths therefore imposes an upper bound on

the effective coupling λhh±h∓ which is a function of the cubic coupling µ, quartic couplings

λ3 and λ8, and the mixing angle sinϕ (cf. eq. (4.64)). For suppressed effective coupling

λhh±h∓ to be consistent with the Higgs observables, we need some cancellation between the

cubic and quartic terms. In order to have large NSI effect, we need sufficiently large mixing

sinϕ, which implies large value of µ (cf. eq. (4.13)). In order to find the maximum allowed
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Figure 16. Feynman diagrams for charged scalar contributions to monophoton signal at LEP.

value of sinϕ, we take λ3 = λ8 in eq. (4.64) and show in figure 15 the Higgs signal strength

constraints in the λ8−sinϕ plane. The red, blue, yellow, cyan, and green-shaded regions are

excluded by the signal strength limits γγ,WW ⋆, ZZ⋆, ττ , and bb̄ decay modes, respectively.

We have fixed the light charged Higgs mass at 100GeV, and the different panels are for

different benchmark values of the heavy charged Higgs mass: mH+ = 700GeV (upper

left), 2TeV (upper right), 1.6TeV (lower left) and 450GeV (lower right). The first choice

is the benchmark value we will later use for NSI studies, while the other three values

correspond to the minimum allowed values for the heavy neutral Higgs mass (assuming it

to be degenerate with the heavy charged Higgs to easily satisfy the T -parameter constraint

(cf. section 4.4)) consistent with the LEP contact interaction bounds for O(1) Yukawa

couplings (cf. section 4.6). From figure 15, we see that the h → γγ signal strength gives

the most stringent constraint. If we allow λ8 to be as large as 3, then we can get maximum

value of sinϕ up to 0.67 (0.2) for mH+ = 0.7 (2) TeV.

In addition to the modified signal strengths, the total Higgs width is enhanced due to

the new decay modes. Both ATLAS [103] and CMS [136] collaborations have put 95% CL

upper limits on the Higgs boson total width Γh from measurement of off-shell production

in the ZZ → 4ℓ channel. Given the SM expectation ΓSM
h ∼ 4.1MeV, we use the CMS

upper limit on Γh < 9.16MeV [136] to demand that the new contribution (mostly from

h → h±h∓⋆, because the h → γγ branching fraction is much smaller) must be less than

5.1MeV. This is shown in figure 15 by the grey-shaded region (only visible in the upper

right panel), which turns out to be much weaker than the signal strength constraints in

the individual channels.

4.11 Monophoton constraint from LEP

Large neutrino NSI with electrons inevitably leads to a new contribution to the monophoton

process e+e− → νν̄γ that can be constrained using LEP data [137]. In the SM, this process

occurs via s-channel Z-boson exchange and t- channel W -boson exchange, with the photon

being emitted from either the initial state electron or positron or the intermediate state

W boson. In the Zee model, we get additional contributions from t-channel charged scalar

exchange (see figure 16). Both light and heavy charged scalars will contribute, but given the
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mass bound on the heavy states from LEP contact interaction, the dominant contribution

will come from the light charged scalar.

The total cross section for the process e+e− → ναν̄βγ can be expressed as σ = σSM +

σNS, where σSM is the SM cross section (for α = β) and σNS represents the sum of the

pure non-standard contribution due to the charged scalar and its interference with the SM

contribution. Note that since the charged scalar only couples to right-handed fermions,

there is no interference with the W -mediated process (for α = β = e). Moreover, for either

α or β not equal to e, the W contribution is absent. For α 6= β, the Z contribution is

also absent.

The monophoton process has been investigated carefully by all four LEP experi-

ments [85], but the most stringent limits on the cross section come from the L3 experiment,

both on [138] and off [139] Z-pole. We use these results to derive constraints on the charged

scalar mass and Yukawa coupling. The constraint |σ − σexp| ≤ δσexp, where σexp ± δσexp

is the experimental result, can be expressed in the following form:

∣∣∣∣1 +
σNS

σSM
− σexp

σSM

∣∣∣∣ ≤
(
σexp

σSM

)(
δσexp

σexp

)
. (4.72)

We evaluate the ratio σexp/σSM by combining the L3 results [138, 139] with an accurate

computation of the SM cross section, both at Z-pole and off Z-pole. Similarly, we compute

the ratio σNS/σSM numerically as a function of the charged scalar massmh+ and the Yukawa

coupling Yαβ sinϕ. For comparison of cross sections at Z-pole, we adopt the same event

acceptance criteria as in ref. [138], i.e., we allow photon energy within the range 1GeV

< Eγ < 10GeV and the angular acceptance 45◦ < θγ < 135◦. Similarly, for the off Z-pole

analysis, we adopt the same event topology as described in ref. [139]: i.e., 14◦ < θγ < 166◦,
1GeV < Eγ , and pγT > 0.02

√
s. We find that the off Z-pole measurement imposes more

stringent bound than the Z-pole measurement bound. As we will see in the next section

(see figure 18), the monophoton constraints are important especially for the NSI involving

tau-neutrinos. We also note that our monophoton constraints are somewhat weaker than

those derived in ref. [140] using an effective four-fermion approximation.

4.12 NSI predictions

The new singly-charged scalars η+ and H+
2 in the Zee Model induce NSI at tree level as

shown in figure 17. Diagrams (a) and (d) are induced by the pure singlet and doublet

components of the charged scalar fields and depend on the Yukawa couplings f and Y

respectively (cf. eqs. (4.1) and (4.19)). On the other hand, diagrams (b) and (c) are induced

by the mixing between the singlet and doublet fields, and depend on the combination of

Yukawa couplings and the mixing angle ϕ (cf. eq. (4.13)). As mentioned in section 4.2,

satisfying the neutrino mass requires the product f ·Y to be small. For Y ∼ O(1), we must

have f ∼ 10−8 to get mν ∼ 0.1 eV (cf. eq. (4.21)). In this case, the NSI from figures 17(a)

and (c) are heavily suppressed. So we will only consider diagrams (b) and (d) for the

following discussion and work in the mass basis for the charged scalars, where η+ and H+
2

are replaced by h+ and H+ respectively (cf. eq. (4.12)).
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ναL ℓσL
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(a)

ℓρR νβL

ναL ℓσR

H
+
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H
+
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(b)

ℓρL νβL
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η+
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+
2

η+
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H
+
2
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Figure 17. Tree-level NSI induced by the exchange of charged scalars in the Zee model. Diagrams

(a) and (d) are due to the pure singlet and doublet charged scalar components, while (b) and (c)

are due to the mixing between them.

The effective NSI Lagrangian for the contribution from figure 17(b) is given by

Leff = sin2 ϕ
YαρY

⋆
βσ

m2
h+

(ν̄αL ℓρR)(ℓ̄σR νβL)

= −1

2
sin2 ϕ

YαρY
⋆
βσ

m2
h+

(ν̄αγ
µPLνβ)(ℓ̄σγµPRℓρ) , (4.73)

where in the second step, we have used the Fierz transformation. Comparing eq. (4.73)

with eq. (3.1), we obtain the h+-induced matter NSI parameters (setting ρ = σ = e)

ε
(h+)
αβ =

1

4
√
2GF

YαeY
⋆
βe

m2
h+

sin2 ϕ . (4.74)

Thus, the diagonal NSI parameters εαα depend on the Yukawa couplings |Yαe|2, and are

always positive in this model, whereas the off-diagonal ones εαβ (with α 6= β) involve the

product YαeY
⋆
βe and can be of either sign, or even complex. Also, we have a correlation

between the diagonal and off-diagonal NSI:

|εαβ | =
√
εααεββ , (4.75)

which is a distinguishing feature of the model.

Similarly, figure 17(d) gives the H+-induced matter NSI contribution:

ε
(H+)
αβ =

1

4
√
2GF

YαeY
⋆
βe

m2
H+

cos2 ϕ . (4.76)

Hence, the total matter NSI induced by the charged scalars in the Zee model can be

expressed as

εαβ ≡ ε
(h+)
αβ + ε

(H+)
αβ =

1

4
√
2GF

YαeY
⋆
βe

(
sin2 ϕ

m2
h+

+
cos2 ϕ

m2
H+

)
. (4.77)
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To get an idea of the size of NSI induced by eq. (4.77), let us take the diagonal NSI

parameters from the light charged scalar contribution in eq. (4.74):

ε(h
+)

αα =
1

4
√
2GF

|Yαe|2
m2
h+

sin2 ϕ . (4.78)

Thus, for a given value of mh+ , the NSI are maximized for maximum allowed values of |Yαe|
and sinϕ. Following eq. (4.63), we set the trilinear coupling λhh+h− → 0, thus minimizing

the constraints from Higgs signal strength. We also assume λ3 = λ8 to get

µ =

√
2λ8v

sin 2ϕ
. (4.79)

Now substituting this into eq. (4.13), we obtain

sin2 ϕ ≃ λ8v
2

2(m2
H+ −m2

h+
)
. (4.80)

Furthermore, assuming the heavy charged and neutral scalars to be mass-degenerate, the

LEP contact interaction constraints (cf. section 4.6) require

m2
H+

|Yαe|2
&

Λ2
α

8π
, (4.81)

where Λα = 10TeV, 7.9TeV and 2.2TeV for α = e, µ, τ , respectively [96]. Combining

eqs. (4.78), (4.80) and (4.81), we obtain

εmax
αα ≃ λ8v

2

m2
h+

π√
2GFΛ2

α

(4.82)

Using benchmark values of mh+ = 100GeV and λ8 = 3, we obtain:

εmax
ee ≈ 3.5% , εmax

µµ ≈ 5.6% , εmax
ττ ≈ 71.6% . (4.83)

Although a rough estimate, this tells us that observable NSI can be obtained in the Zee

model, especially in the τ sector. To get a more accurate prediction of the NSI in the Zee

model and to reconcile large NSI with all relevant theoretical and experimental constraints,

we use eq. (4.77) to numerically calculate the NSI predictions, as discussed below.

4.12.1 Heavy neutral scalar case

First, we consider the case with heavy neutral and charged scalars, so that the LEP contact

interaction constraints (cf. section 4.6) are valid. To be concrete, we have fixed the heavy

charged scalar mass mH+ = 700GeV and the quartic couplings λ3 = λ8 = 3. In this

case, the heavy charged scalar contribution to NSI in eq. (4.77) can be ignored. The NSI

predictions in the light charged scalar mass versus Yukawa coupling plane are shown by

black dotted contours in figure 18 for diagonal NSI and figure 19 for off-diagonal NSI.

The theoretical constraints on sinϕ from charge-breaking minima (cf. section 4.3) and

T -parameter (cf. section 4.4) constraints are shown by the light and dark green-shaded
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regions, respectively. Similarly, the Higgs precision data constraint (cf. section 4.10) on

sinϕ is shown by the brown-shaded region. To cast these constraints into limits on Yαe sinϕ,

we have used the LEP contact interaction limits on Yαe (cf. section 4.6) for diagonal NSI,

and similarly, the cLFV constraints (cf. section 4.5) for off-diagonal NSI, and combined

these with the CBM, T -parameter and Higgs constraints, which are all independent of

the light charged scalar mass. Also shown in figures 18 and 19 are the LEP and/or LHC

constraints on light charged scalar (cf. section 4.7) combined with the lepton universality

constraints from W and τ decays (cf. sections 4.8 and 4.9), which exclude the blue-shaded

region below mh+ ∼ 100GeV. In addition, the LEP monophoton constraints from off

Z-pole search (cf. section 4.11) are shown in figure 18 by the light purple-shaded region.

The corresponding limit from LEP on Z-pole search (shown by the purple dashed line in

figure 18(c) turns out to be weaker.

The model predictions for NSI are then compared with the current direct experimental

constraints from neutrino-electron scattering experiments (red/yellow-shaded), and the

global-fit constraints (orange-shaded) [61] which include the neutrino oscillation data [85],

as well as the recent results from COHERENT experiment [141];12 see table 9 for more

details. For neutrino-electron scattering constraints, we only considered the constraints

on εeRαβ [146–149], since the dominant NSI in the Zee model always involves right-handed

electrons (cf. eq. (4.73)). For εµµ, we have rederived the CHARM II limit following ref. [146],

but using the latest PDG value for s2w = 0.22343 (on-shell) [85]. Specifically, we used the

CHARM II measurement of the Z-coupling to right-handed electrons geR = 0.234 ± 0.017

obtained from their νµe→ νe data [150] and compared with the SM value of (geR)SM = s2w
to obtain a 90% CL limit on εµµ < 0.038, which is slightly weaker than the limit of 0.03

quoted in ref. [147]. Nevertheless, the CHARM limit turns out to be the strongest in

realizing maximum εµµ in the Zee model, as shown in figure 18(b).

There is a stronger constraint on |εττ − εµµ| < 9.3% from the IceCube atmospheric

neutrino oscillation data [151–153]. In general, this bound can be evaded even for large

NSI, if e.g. both εµµ and εττ are large and there is a cancellation between them. However,

in the Zee model, such cancellation cannot be realized, because we can only allow for

one large diagonal NSI at a time, otherwise there will be stringent constraints from cLFV

(cf. section 4.5). For instance, making both εµµ and εττ large necessarily implies a large εµτ
(due to the relation given by eq. (4.75)), which is severely constrained by τ− → µ−e−e+

(cf. table 7 and figure 19(a)) and also by IceCube itself [152, 154, 155]. Therefore, the

bound on εττ − εµµ is equally applicable to both εµµ and εττ . This is shown by the brown-

shaded regions in figure 18(b) and (c), respectively. This turns out to be the most stringent

constraint for εττ , although the model allows for much larger NSI, as shown by the black

dotted contours in figure 18(c).

For completeness, we also include in figure 18 global-fit constraints from neutrino

oscillation plus scattering experiments [61].13 The global-fit analysis assumes the simulta-

neous presence of all εαβ ’s, and therefore, the corresponding limits on each εαβ are much

12For related NSI studies using the COHERENT data, see e.g. refs. [59, 142–145].
13We use the constraints on ε

p
αβ from ref. [61], assuming that these will be similar for εeαβ due to charge-

neutrality in matter.
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weaker than the ones derived from oscillation or scattering data alone, due to parameter

degeneracies. For instance, the global-fit constraint on εττ ∈ [−35%, 140%] (cf. table 9) is

significantly affected by the presence of nonzero εee and εeτ [156], which were set to zero

in the IceCube analysis of ref. [152].

Also shown in figure 18 (blue solid lines) are the future sensitivity at long-baseline

neutrino oscillation experiments, such as DUNE with 300 kt.MW.yr and 850 kt.MW.yr

of exposure, derived at 90% CL using GloBES3.0 [157] with the DUNE CDR simulation

configurations [158]. Here we have used δ (true) = −π/2 for the true value of the Dirac

CP phase and marginalized over all other oscillation parameters [66]. We find that even

the most futuristic DUNE sensitivity will not be able to surpass the current constraints

on the Zee model. On the other hand, the current neutrino scattering experiments like

COHERENT and atmospheric neutrino experiments such as IceCube should be able to

probe a portion of the allowed parameter space for εµµ and εττ , respectively.

4.12.2 Light neutral scalar case

Now we consider the case where the neutral scalars H and A are light, so that the LEP

contact interaction constraints (cf. 4.6) are not applicable. In this case, both h+ and H+

contributions to the NSI in eq. (4.77) should be kept. For concreteness, we fix mH+ =

130GeV to allow for the maximum H+ contribution to NSI while avoiding the lepton

universality constraints on H+ (cf. section 4.8). We also choose the neutral scalars H and

A to be nearly mass-degenerate with the charged scalar H+, so that the T -parameter and

CBM constraints are easily satisfied. The Higgs decay constraints can also be significantly

relaxed in this case by making λhh+h− → 0 in eq. (4.63). The NSI predictions for this

special choice of parameters are shown in figure 20. Note that for higher mh+ , the NSI

numbers are almost constant, because of the mH+ contribution which starts dominating.

We do not show the off-diagonal NSI plots for this scenario, because the cLFV constraints

still cannot be overcome (cf. figure 19).

Taking into account all existing constraints and this possibility of light h+ and H+,

the maximum possible allowed values of the NSI parameters in the Zee model are shown

in the second column of table 9, along with the combination of the relevant constraints

limiting each NSI parameter (shown in parentheses). Thus, we find that for the diagonal

NSI, one can get maximum εee of 8%, εµµ of 3.8%, and εττ of 9.3%, only limited by

direct experimental searches (TEXONO, CHARM and IceCube, respectively). Thus, the

future neutrino experiments could probe diagonal NSI in the Zee model. As for the off-

diagonal NSI, they require the presence of at least two non-zero Yukawa couplings Yαe, and

their products are all heavily constrained from cLFV; therefore, one cannot get sizable off-

diagonal NSI in the Zee model that can be probed by any neutrino scattering or oscillation

experiment in the foreseeable future.

4.13 Consistency with neutrino oscillation data

In this section, we show that the choice of the Yukawa coupling matrix used to maximize

our NSI parameter values is consistent with the neutrino oscillation data. The neutrino
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(a) (b)

(c)

Figure 18. Zee model predictions for diagonal NSI (εee, εµµ, εττ ) are shown by the black dot-

ted contours. Color-shaded regions are excluded by various theoretical and experimental con-

straints: blue-shaded region excluded by direct searches from LEP and LHC (section 4.7) and/or

lepton universality (LU) tests in W decays (section 4.8); purple-shaded region by off Z-pole LEP

monophoton search (cf. section 4.11), with the purple dashed line in (c) indicating a weaker limit

from on Z-pole LEP search; light green, brown and deep green-shaded regions respectively by

T parameter (section 4.4), precision Higgs data (section 4.10), and charge-breaking minima (sec-

tion 4.3), each combined with LEP contact interaction constraint (section 4.6). In addition, we show

the direct constraints on NSI from neutrino-electron scattering experiments (red/yellow-shaded),

like CHARM [147], TEXONO [148] and BOREXINO [149], from IceCube atmospheric neutrino

data [152] (light brown), as well as the global-fit constraints from neutrino oscillation+COHERENT

data [61] (orange-shaded). We also show the future DUNE sensitivity (blue solid lines), for both

300 kt.MW.yr and 850 kt.MW.yr exposure [66].
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(a) (b)

(c)

Figure 19. Zee model predictions for off-diagonal NSI (εeµ, εµτ , εeτ ) are shown by black dotted

contours. Color-shaded regions are excluded by various theoretical and experimental constraints.

Blue-shaded region is excluded by direct searches from LEP and LHC (section 4.7) and/or lepton

universality (LU) tests in W decays (section 4.8). Light green, brown and deep green-shaded

regions are excluded respectively by T -parameter (section 4.4), precision Higgs data (section 4.10),

and charge-breaking minima (section 4.3), each combined with cLFV constraints (section 4.5). The

current NSI constraints from neutrino oscillation and scattering experiments are weaker than the

cLFV constraints, and do not appear in the shown parameter space. The future DUNE sensitivity

is shown by blue solid lines, for both 300 kt.MW.yr and 850 kt.MW.yr exposure [66].

– 45 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

(a) (b)

(c)

Figure 20. Zee model predictions for diagonal NSI for light neutral scalar case. Here we have

chosen mH+ = 130GeV. Labeling of the color-shaded regions is the same as in figure 18, except

for the LEP dilepton constraint (green-shaded region) which replaces the T -parameter, CBM and

LHC Higgs constraints.
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NSI Zee Model Individual Global-fit DUNE

Prediction (Max.) constraints constraints [61] sensitivity [66]

εee 0.08 [−0.07, 0.08] [148] [−0.010, 2.039] [−0.185, 0.380]

(TEXONO) ([−0.130, 0.185])

εµµ 0.038 [−0.03, 0.03] [147] [−0.364, 1.387] [−0.290, 0.390]

(CHARM) [−0.017, 0.038] (ours) ([−0.192, 0.240])

εττ 0.093 [−0.093, 0.093] [152] [−0.350, 1.400] [−0.360, 0.145]

(IceCube) ([−0.120, 0.095])

εeµ 1.5× 10−5 [−0.13, 0.13] [147] [−0.179, 0.146] [−0.025, 0.052]

(LEP + LU + cLFV + T -param.) ( [−0.017, 0.040])

εeτ 0.0056 [−0.19, 0.19] [148] [−0.860, 0.350] [−0.055, 0.023]

(LEP + LU + cLFV + T -param.) ([−0.042, 0.012])

εµτ 0.0034 [−0.10, 0.10] [147] [−0.035, 0.028] [−0.0.015, 0.013]

(LEP + LU + cLFV + T -param) ([−0.010, 0.010])

Table 9. Maximum allowed NSI (with electrons) in the Zee model, after imposing constraints

from CBM (section 4.3), T -parameter (section 4.4), cLFV searches (section 4.5), LEP contact in-

teraction (section 4.6), direct collider searches (section 4.7), lepton universality (LU) in W decays

(section 4.8), LHC Higgs data (section 4.10), and LEP monophoton searches (section 4.11). We also

impose the individual constraints, taking one NSI parameter at a time, from either neutrino-electron

scattering or neutrino oscillation experiments (as shown in the third column), like CHARM-II [147],

TEXONO [148] and BOREXINO [149] (only ǫeRαβ are considered, cf. eq. (4.73)) or IceCube [152] as

well as the global-fit constraints (as shown in the fourth column), taking all NSI parameters simul-

taneously, from neutrino oscillation+COHERENT data [61] (only εpαβ are considered), whichever

is stronger. The maximum allowed value for each NSI parameter is obtained after scanning over

the light charged Higgs mass (see figures 18 and 19) and the combination of all relevant constraints

limiting the NSI are shown in parentheses in the second column. In the last column, we also show

the future DUNE sensitivity for 300 kt.MW.yr exposure (and 850 kt.MW.yr in parentheses) [66].

mass matrix in the Zee model is given by eq. (4.21) which is diagonalized by the unitary

transformation

UTPMNSMν UPMNS = M̂ν , (4.84)

where M̂ν = diag(m1,m2,m3) is the diagonal mass matrix with the eigenvalues m1,2,3 and

UPMNS is the 3 × 3 lepton mixing matrix. In the standard parametrization [85],

UPMNS =




c12c13 c13s12 e−iδs13
−c23s12 − c12s13s23e

iδ c12c23 − s12s13s23e
iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23


 , (4.85)

where cij ≡ cos θij , sij ≡ sin θij , θij being the mixing angle between different flavor eigen-

states i and j, and δ is the Dirac CP phase. We diagonalize the neutrino mass matrix (4.21)

numerically, assuming certain forms of the Yukawa coupling matrices given below. The uni-

tary matrix thus obtained is converted to the mixing angles θij using the following relations

from eq. (4.85):

s212 =
|Ue2|2

1− |Ue3|2
, s213 = |Ue3|2, s223 =

|Uµ3|2
1− |Ue3|2

. (4.86)
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Since the NSI expressions in eq. (4.77) depend on Yαe (the first column of the Yukawa

matrix), we choose the following three sets of benchmark points (BPs) for Yukawa textures

to satisfy all the cLFV constraints, see tables 6 and 7. For simplicity, we also take all the

elements of Yukawa matrix to be real.

BP I : Y =



Yee 0 Yeτ
0 Yµµ Yµτ
0 Yτµ Yττ


 , (4.87)

BP II : Y =




0 Yeµ Yeτ
Yµe 0 Yµτ
0 Yτµ Yττ


 , (4.88)

BP III : Y =



Yee 0 Yeτ
0 Yµµ Yµτ
Yτe 0 Yττ


 (4.89)

For BP I, substituting Y from eq. (4.87) in eq. (4.21), we get a symmetric neutrino mass

matrix as follows:

Mν = a0



m11 m12 m13

m12 m22 m23

m13 m23 m33


 , (4.90)

where a0 = κfµτYee fixes the overall scale, and the entries in Mν are given by

m11 = 2mτx2 y13 ,

m12 = −mex1y11 +mτy13 +mµ x1 y22 +mτ x2 y23 ,

m13 = −mex2y11 +mµx1y32 +mτ x2 y33 ,

m22 = 2mτy23 ,

m23 = −mµ y22 +mτy33 ,

m33 = −2mµ y32 ,

and we have defined the ratios x1 =
feµ
fµτ

, x2 = feτ
fµτ

, y13 = Yeτ
Yee

, y22 =
Yµµ
Yee

, y23 =
Yµτ
Yee

,

y32 =
Yτµ
Yee

, and y33 = Yττ
Yee

. Similarly, for BPs II and III, one can absorb Yµµ and Yττ
respectively in the overall factor a0 to get the mass matrix parameters in terms of the

ratios xi and yij .

For each set of Yukawa structure, we show in table 10 the best-fit values of the param-

eters xi, yij and a0. For BP I and II, we obtain inverted hierarchy (IH) and for BP III,

we get normal hierarchy (NH) of neutrino masses. The model predictions for the neutrino

oscillation parameters in each case are shown in table 11, along with the 3σ allowed range

from a recent NuFit4 global analysis [159]. It is clear that the fits for all the three sets

are in very good agreement with the observed experimental values. We note here that

the NuFit4 analysis does not include any NSI effects, which might affect the fit results;

however, it is sufficient for the consistency check of our benchmark points. A full global
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BP x1 x2 y11 y12 y13 y21 y22 y23 y31 y32 y33 a0(10
−9)

BP I (IH) −7950 34 −1.0 0 −0.01 0 0.001 0.08 0 0.05 0.70 0.017

BP II (IH) 14 4.7 0 0.05 0.01 1.0 0 0.02 0 0.06 0.03 0.19

BP III (NH) −9.9 0.27 0.01 0 0.07 0 0.13 −0.007 −1.0 0 −0.036 0.6

Table 10. Values of parameters chosen for different sets of Yukawa structure given in eqs. (4.87)–

(4.89) to fit the neutrino oscillation data.

Oscillation 3σ allowed range Model prediction

parameters from NuFit4 [159] BP I (IH) BP II (IH) BP III (NH)

∆m2
21(10

−5 eV2) 6.79–8.01 7.388 7.392 7.390

∆m2
23(10

−3 eV2)(IH) 2.412–2.611 2.541 2.488 —

∆m2
31(10

−3 eV2)(NH) 2.427–2.625 — — 2.505

sin2 θ12 0.275–0.350 0.295 0.334 0.316

sin2 θ23 (IH) 0.423–0.629 0.614 0.467 —

sin2 θ23 (NH) 0.418–0.627 — — 0.577

sin2 θ13 (IH) 0.02068–0.02463 0.0219 0.0232 —

sin2 θ13(NH) 0.02045–0.02439 — — 0.0229

Table 11. 3σ allowed ranges of the neutrino oscillation parameters from a recent global-fit [159]

(without NSI), along with the model predictions for each BP.

analysis of the oscillation data in presence of NSI to compare with our benchmark points

is beyond the scope of this work.

In addition to the best fit results in the tabulated format, we also display them in

figure 21 in the two-dimensional projections of 1σ, 2σ and 3σ confidence regions of the

global-fit results [159] (without inclusion of the Super-K atmospheric ∆χ2-data). Colored

regions (grey, magenta, cyan) are for normal hierarchy, whereas regions enclosed by solid,

dashed, dotted lines are for inverted hierarchy. The global-fit best-fit points, along with

the model predictions for each benchmark point, are shown for comparison. It is clear that

the theoretical predictions are within the observed 3σ range in each case.

5 NSI in one-loop leptoquark model

There are only four kinds of scalar LQs that can interact with the neutrinos at the renor-

malizable level in the SM (see table 1): LdcΩ, LQχ⋆, LQρ̄ and Lucδ.14 In this section and

next, we discuss neutrino mass models with various combinations of these LQs. Our focus

is again the range of neutrino NSI that is possible in these models. We note in passing

that all these scalar LQ scenarios have gained recent interest in the context of semileptonic

B-decay anomalies, viz., RD(⋆) and RK(⋆) (see e.g., [161]). But it turns out that none of

these scalar LQ models can simultaneously explain both RD(⋆) and RK(⋆) [162].

We start with a LQ variant of the Zee model that generates small neutrino masses at

one-loop level, via the operator is O3b (cf. eq. (2.2c)). It turns out that O3b will induce

14The LQ fields Ω, χ⋆, ρ̄, δ are often denoted as S1, S3, R2, R̃2 respectively [160].
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Figure 21. Global oscillation analysis obtained from NuFit4[159] for both Normal hierarchy (NH)

and Inverted hierarchy (IH) compared with our model benchmark points (BP1, BP2, BP3). Gray,

Magenta, and Cyan colored contours represent 1σ, 2σ, and 3σ CL contours for NH, whereas solid,

dashed, and dotted lines respectively correspond to 1σ, 2σ, and 3σ CL contours for IH. Red, purple,

and (blue, black, brown) markers are respectively best-fit from NuFit for IH and NH, and benchmark

points I, II and III for Yukawa structures given in eqs. (4.87)–(4.89).

neutrino masses at one-loop, while O3a, owing to the SU(2)L index structure, will induce

mν at the two-loop level. A UV complete model of O3a will be presented in section 7.2.3.

More precisely, the model of this section corresponds to O8
3 of table 3, which involves

two LQ fields and no new fermions. All other realizations of O3 will be analyzed in

subsequent sections.

The phenomenology of the basic LQ model generating O8
3 will be analyzed in detail in

this section, and the resulting maximum neutrino NSI will be obtained. The constraints

that we derive here on the model parameters can also be applied, with some modifications,

to the other O3 models, as well as other one-loop, two-loop and three-loop LQ models

discussed in subsequent sections.

To realize operator O3b the SU(2)L doublet and singlet scalars of the Zee model [14]

are replaced by SU(2)L doublet and singlet LQ fields. This model has been widely studied

in the context of R-parity breaking supersymmetry, where the LQ fields are identified as

the Q̃ and d̃c fields of the MSSM [28, 163, 164]. For a non-supersymmetric description and

analysis of the model, see ref. [30].

The gauge symmetry of the model denoted as O8
3 is the same as the SM: SU(3)c ×

SU(2)L × U(1)Y . In addition to the SM Higgs doublet H
(
1,2, 12

)
, two SU(3)c triplet
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⟨H0⟩

χ−1/3ω−1/3

να dcγ dγ νβ

Figure 22. One-loop diagram inducing neutrino mass in the LQ model. This is the model O8
3 of

table 3. In SUSY models with R-parity violation, ω−1/3 is identified as d̃ and χ⋆1/3 as d̃c.

LQ fields Ω
(
3,2, 16

)
=
(
ω2/3, ω−1/3

)
and χ−1/3

(
3,1,−1

3

)
are introduced. The Yukawa

Lagrangian relevant for neutrino mass generation in the model is given by

LY ⊃ λαβL
i
αd

c
βΩ

jǫij + λ′αβL
i
αQ

j
βχ

⋆ǫij +H.c.

≡ λαβ

(
ναd

c
βω

−1/3 − ℓαd
c
βω

2/3
)
+ λ′αβ (ναdβ − ℓαuβ)χ

⋆ +H.c. (5.1)

Here {α, β} are family indices and {i, j} are SU(2)L indices as before. As in the Zee model,

a cubic scalar coupling is permitted, given by

V ⊃ µH†Ωχ⋆ +H.c. ≡ µ
(
ω2/3H− + ω−1/3H

0
)
χ⋆ +H.c. (5.2)

which ensures lepton number violation.

Once the neutral component of the SM Higgs doublet acquires a VEV, the cubic term

in the scalar potential (5.2) will generate mixing between the ω−1/3 and χ−1/3 fields, with

the mass matrix given by:

M2
LQ =

(
m2
ω µv/

√
2

µ⋆v/
√
2 m2

χ

)
, (5.3)

where m2
ω and m2

χ include the bare mass terms plus a piece of the type λv2 arising from

the SM Higgs VEV. The physical states are denoted as {X−1/3
1 , X

−1/3
2 }, defined as

X1 = cosαω + sinαχ ,

X2 = − sinαω + cosαχ , (5.4)

with the mixing angle given by

tan 2α =
−
√
2µv

m2
χ −m2

ω

. (5.5)

The squared mass eigenvalues of these states are:

m2
1,2 =

1

2

[
m2
ω +m2

χ ∓
√

(m2
ω −m2

χ)
2 + 4µ2v2

]
. (5.6)
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dR eL

eL dR

ω
2/3

(a)

eL

uL uL

eL

χ
−1/3

(b)

Figure 23. Doublet and singlet LQ contribution to APV at tree-level.

Neutrino masses are induced via the one-loop diagram shown in figure 22. The mass

matrix is given by:

Mν =
3 sin 2α

32π2
log

(
m2

1

m2
2

)
(λMdλ

′T + λ′Mdλ
T ) . (5.7)

Here Md is the diagonal down-type quark mass matrix. Acceptable neutrino masses and

mixing can arise in the model for a variety of parameters. Note that the induced Mν is

proportional to the down-quark masses, the largest being mb. In the spirit of maximizing

neutrino NSI, which are induced by either the ω−1/3 or the χ−1/3 field, without relying

on their mixing, we shall adopt a scenario where the couplings λαβ are of order one,

while λ′αβ ≪ 1. Such a choice would realize small neutrino masses. One could also consider

λ′ ∼ O(1), with λ≪ 1 as well. However, in the former case, there is a GIM-like suppression

in the decay rate for ℓα → ℓβ + γ [33], which makes the model with λ ∼ O(1), λ′ ≪ 1

somewhat less constrained from cLFV, and therefore we focus on this scenario. The reason

for this suppression will be elaborated in section 5.1.4.

5.1 Low-energy constraints

One interesting feature of the LQ model presented in this section is that the radiative

decay ℓα → ℓβ+γ is suppressed in the model due to a GIM-like cancellation. On the other

hand, µ−e conversion in nuclei gives a stringent constraint on the Yukawa couplings of the

model, as do the trilepton decays of the lepton to some extent. Since the product |λλ′| ≪ 1

in order to generate the correct magnitude of the neutrino masses (cf. eq. (5.7)), we shall

primarily consider the case where |λ′| ≪ 1 with |λ| being of order one. This is the case

where the constraints from radiative decays are nonexistent. If on the other hand, |λ| ≪ 1

and |λ′| is of order unity, then these radiative decays do provide significant constraints.

This situation will be realized in other LQ models as well; so we present constraints on

the model of this section in this limit as well. The processes that are considered are:

ℓα → ℓβ + γ, µ − e conversion in nuclei, ℓα → ℓ̄βℓγℓδ (with at least two of the final state

leptons being of same flavor), τ → ℓπ, τ → ℓη, τ → ℓη′ (where ℓ = e or µ), and APV.

5.1.1 Atomic parity violation

The strongest constraints on the λed and λ′ed couplings come from atomic parity violation

(APV) [165], analogous to the R-parity violating supersymmetric case [166]. The diagrams
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shown in figure 23 lead to the following effective couplings between up/down quarks and

electrons:

Leff =
|λed|2
m2
ω

(ēLdR)
(
d̄ReL

)
+

|λ′ed|2
m2
χ

(
ecLuL

)
(ūLe

c
L)

=− 1

2

|λed|2
m2
ω

(ēLγ
µeL)

(
d̄RγµdR

)
+

1

2

|λ′ed|2
m2
χ

(ēLγ
µeL) (ūLγµuL) , (5.8)

where we have used the Fierz transformation in the second step. The parity-violating parts

of these interactions are given by

LPV
eff =

1

8

|λed|2
m2
ω

[(
ēγµγ5e

) (
d̄γµd

)
− (ēγµe)

(
d̄γµγ

5d
)]

− 1

8

|λ′ed|2
m2
χ

[(
ēγµγ5e

)
(ūγµu) + (ēγµe)

(
ūγµγ

5u
)]
. (5.9)

On the other hand, the parity-violating SM interactions at tree-level are given by

LPV
SM =

GF√
2

∑

q=u,d

[
C1q

(
ēγµγ5e

)
(q̄γµq) + C2q (ēγ

µe)
(
q̄γµγ

5q
)]
, (5.10)

with

C1u = −1

2
+

4

3
s2w , C2u = −1

2
+ 2s2w ,

C1d =
1

2
− 2

3
s2w , C2d =

1

2
− 2s2w . (5.11)

Correspondingly, the weak charge of an atomic nucleus with Z protons and N neutrons is

given by

Qw(Z,N) = −2 [C1u(2Z +N) + C1d(Z + 2N)] = (1− 4s2w)Z −N , (5.12)

where (2Z +N) and (Z + 2N) are respectively the number of up and down quarks in the

nucleus. The presence of the new PV couplings in eq. (5.9) will shift the weak charge to

δQw(Z,N) =
1

2
√
2GF

[
(2Z +N)

|λ′ed|2
m2
χ

− (Z + 2N)
|λed|2
m2
ω

]
. (5.13)

There are precise experiments measuring APV in cesium, thallium, lead and bis-

muth [167]. The most precise measurement comes from cesium (at the 0.4% level [168]),

so we will use this to derive constraints on LQ. For 133
55 Cs, eq. (5.13) becomes

δQw
(
133
55 Cs

)
=

1

2
√
2GF

(
188

|λ′ed|2
m2
χ

− 211
|λed|2
m2
ω

)
. (5.14)

Taking into account the recent atomic structure calculation [165], the experimental value

of the weak charge of 133
55 Cs is given by [85]

Qexp
w

(
133
55 Cs

)
= −72.62± 0.43 , (5.15)
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µ e

dc

ω
2/3

u

µ e

u

χ
−1/3

Figure 24. Feynman diagrams leading to µ− e conversion at tree-level in the doublet-singlet LQ

model.

whereas the SM prediction is [85, 165]

QSM
w

(
133
55 Cs

)
= −73.23± 0.02 , (5.16)

based on a global-fit to all electroweak observables with radiative corrections. Assum-

ing new radiative corrections from LQ are small and saturating the difference between

eqs. (5.15) and (5.16), we obtain a 2σ allowed range of δQw:

−0.29 < δQw < 1.51 . (5.17)

Comparing this with eq. (5.14), we obtain the corresponding 2σ bounds on λed and λ′ed as

a function of the LQ mass as follows:

|λed| < 0.21

(
mω

TeV

)
, |λ′ed| < 0.51

(
mχ

TeV

)
. (5.18)

The APV constraint on down-quark coupling of the LQ is stronger than the up-quark

coupling constraint due to the fact that the experimental value of Qw (cf. eq. (5.15)) is

1.5σ larger than the SM prediction (cf. eq. (5.16)), while the doublet LQ contribution to

Qw goes in the opposite direction (cf. eq. (5.14)).

5.1.2 µ − e conversion

Another constraint on the LQ model being discussed comes from the cLFV process of

coherent µ − e conversion in nuclei (µN → eN). We will only consider the tree-level

contribution as shown in figure 24, since the loop-level contributions are sub-dominant.

Following the general procedure described in ref. [115], we can write down the branching

ratio for this process as [33]

BR(µN → eN) ≃
|~pe|Eem3

µα
3Z4

effF
2
p

64π2ZΓN
(2A− Z)2

(
|λ⋆edλµd|
m2
ω

+
|λ′⋆edλ′µd|
m2
χ

)2

, (5.19)

where ~pe and Ee are the momentum and energy of the outgoing electron respectively, Z and

A are the atomic number and mass number of the nucleus respectively, Zeff is the effective

atomic number, Fp is the nuclear matrix element, and ΓN is the muon capture rate of the

nucleus. Here we take |~pe| ≃ Ee ≃ mµ and use the values of Zeff and Fp from ref. [169], and

the value of ΓN from ref. [170]. Comparing the model predictions from eq. (5.19) with the

experimental limits for different nuclei [171–173], we obtain the constraints on the Yukawa

couplings (either λ or λ′) and LQ mass as shown in table 12.
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Nucleus Experimental Zeff Fp ΓN [170] Constraint

Limit [169] [169] (106 s−1) on |λ⋆edλµd|
48
22Ti BR < 6.1× 10−13 [171] 17.6 0.54 2.59 < 4.30× 10−6

(
mω

TeV

)2
197
79 Au BR < 7.0× 10−13 [172] 33.5 0.16 13.07 < 4.29× 10−6

(
mω

TeV

)2
208
82 Pb BR < 4.6× 10−11 [173] 34.0 0.15 13.45 < 3.56× 10−5

(
mω

TeV

)2

Table 12. Constraints on Yukawa couplings and LQ masses from µ − e conversion in different

nuclei. For |λ′⋆edλ′µd|, the same constraints apply, with mω replaced by mχ.

5.1.3 ℓα → ℓ̄βℓγℓδ decay

LQs do not induce trilepton decays of the type µ → 3e at the tree-level. However, they

do induce such processes at the loop level. There are LQ mediated Z and photon penguin

diagrams, as well as box diagrams. These contributions have been evaluated for the LQ

model of this section in ref. [33]. With the Yukawa couplings λ being of order one, but

with |λ′| ≪ 1, the branching ratio for µ− → e+e−e− decay is given by [33]

BR(µ→ 3e) =

(
3
√
2

32π2GF

)2

CLdd
|λedλ⋆µd|2

m4
ω

, (5.20)

where

CLdd =
1

7776

[
72e4

(
log

m2
µ

m2
ω

)2

− 108(3e4 + 2e2|λed|2) log
(
m2
µ

m2
ω

)

+ (449 + 68π2)e4 + 486e2|λed|2 + 243|λed|4
]
. (5.21)

Here we have kept only those couplings that are relevant for neutrino NSI, and we have

assumed that there are no accidental cancellations among various contributions. Using

BR(µ→ 3e) < 1.0× 10−12 [94], we obtain

|λedλ⋆µd| < 4.4× 10−3

(
mω

TeV

)2 (
1 + 1.45|λed|2 + 0.81|λed|4

)−1/2
. (5.22)

Analogous constraints from τ → 3e and τ → 3µ are less stringent. For example, from

BR(τ → 3e) < 1.4× 10−8 [95], and using eq. (5.20) with a multiplicative factor of BR(τ →
ν̄ℓℓντ ) = 0.174, we obtain

|λedλ⋆τd| < 1.2

(
mω

TeV

)2

(1 + 1.96|Yed|2 + 1.50|Yed|4)−1/2 . (5.23)

Similarly, from BR(τ → 3µ) < 1.2× 10−8 [95] we obtain

|λµdλ⋆τd| < 1.1

(
mω

TeV

)2

(1 + 1.96|Yµd|2 + 1.50|Yµd|4)−1/2 . (5.24)

The constraint on |λedλ⋆µd| from the trilepton decay (cf. eq. (5.22)) turns out to be

weaker than those from µ − e conversion (cf. table 12). Similarly, the constraints on

|λedλ⋆τd| and |λµdλ⋆τd| from the trilepton decay (cf. eqs. (5.23) and (5.24)) turn out to be

weaker than those from semileptonic tau decays (cf. table 14).

– 55 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

ℓα uρ(d
c
ρ) ℓβ

γ
χ⋆(ω2/3)

ℓα uρ(d
c
ρ) uρ(d

c
ρ) ℓβ

γ

χ⋆(ω2/3)

Figure 25. One-loop Feynman diagrams for ℓα → ℓβγ processes mediated by LQ.

Process Exp. limit Constraint

µ→ eγ BR < 4.2× 10−13 [89] |λ′edλ′⋆µd| < 2.4× 10−3
( mχ

TeV

)2

τ → eγ BR < 3.3× 10−8 [88] |λ′edλ′⋆τd| < 1.6
( mχ

TeV

)2

τ → µγ BR < 4.4× 10−8 [88] |λ′⋆µdλ′τd| < 1.9
( mχ

TeV

)2

Table 13. Constraints on the Yukawa couplings λ′ as a function of the singlet LQ mass from

ℓα → ℓβγ processes.

5.1.4 ℓα → ℓβγ constraint

The lepton flavor violating radiative decay ℓα → ℓβ + γ arises via one-loop diagrams with

the exchange of LQ fields (see figure 25). These diagrams are analogous to figure 8, but

with the charged and neutral scalars replaced by LQ scalars. Note that the photon can

be emitted from either the LQ line, or the internal fermion line. It turns out that the LQ

Yukawa coupling matrix λ leads to suppressed decay rates for ℓα → ℓβ + γ, owing to a

GIM-like cancellation. The coupling of the ω2/3 LQ has the form ℓαLdcβRω
2/3, which implies

that QB = 2/3 and QF = −1/3 in eq. (4.30). Consequently, the rate becomes proportional

to a factor which is at most of order (m2
b/m

2
ω)

2. Thus, the off-diagonal couplings of λ are

unconstrained by these decays.

On the other hand, the χ−1/3 LQ field does mediate ℓα → ℓβ + γ decays, proportional

to the Yukawa coupling matrix λ′. The relevant couplings have the form ūLℓLχ
⋆, which

implies that QF = −2/3 and QB = 1/3 in eq. (4.30). We find the decay rate to be

Γ(ℓα → ℓβ + γ) =
9α

576

|λ′βdλ′⋆αd|2

(16π2)2
m5
α

m4
χ

, (5.25)

where 9 = 32 is a color factor. Here we have assumed t = m2
F /m

2
B → 0, since the LQ

is expected to be much heavier than the SM charged leptons to satisfy the experimental

constraints. The limits on the products of Yukawa couplings from these decays are listed

in table 13.

5.1.5 Semileptonic tau decays

The decays τ− → ℓ−π0, ℓ−η, ℓ−η′, with ℓ = e or µ will occur at tree level mediated by the

doublet LQ ω2/3 or the singlet LQ χ−1/3. The relevant Feynman diagrams are shown in
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dc

ℓ

ω2/3

π0, η

τ

u

u

ℓ

χ⋆

π0, η

Figure 26. Feynman diagram for τ → µπ0 (µη, µη′) and τ → eπ0 (eη, eη′) decays.

figure 26. The decay rate for τ− → ℓ−π0 mediated by ω LQ is given by

Γτ→ℓπ0 =
|λℓdλ⋆τd|

2

1024π

f2πm
3
τ

m4
ω

Fτ (mℓ,mπ) , (5.26)

where

Fτ (mℓ,mπ) =

[(
1− m2

ℓ

m2
τ

)2

−
(
1 +

m2
ℓ

m2
τ

)
m2
π

m2
τ

][
1−

(
mℓ

mτ
+
mπ

mτ

)2
]1/2

×
[
1−

(
mℓ

mτ
− mπ

mτ

)2
]1/2

. (5.27)

If this decay is mediated by the χ LQ, the same relation will hold, up to a factor of

|Vud|2, with the replacement (λ, mω) → (λ′, mχ). The rates for τ− → ℓ−η and τ− → ℓ−η′

can be obtained from eq. (5.26) by the replacement (fπ, mπ) → (mη, f
q
η ) and (mη′ , f

q
η′)

respectively. Here we have defined the matrix elements to be

〈π0(p)|ūγµγ5u|0〉 = −〈π0(p)|d̄γµγ5d|0〉 = −i fπ√
2
pµ , (5.28)

〈η(p)|ūγµγ5u|0〉 = 〈η(p)|d̄γµγ5d|0〉 = −i f
q
η√
2
pµ , (5.29)

〈η′(p)|ūγµγ5u|0〉 = 〈η′(p)|d̄γµγ5d|0〉 = −i
f qη′√
2
pµ . (5.30)

The sign difference in eq. (5.28) is due to the fact that the state |π0〉 = (uū − dd̄)/
√
2.

As for |η〉 and |η′〉 states, these are obtained from the mixing of the flavor states |ηq〉 =

(ūu+ d̄d)/
√
2 and |ηs〉 = s̄s:

|η〉 = cosφ |ηq〉 − sinφ |ηs〉,
|η′〉 = sinφ |ηq〉+ cosφ |ηs〉 . (5.31)

The matrix elements entering semileptonic τ decays are then related as

f qη = cosφfq , f qη′ = sinφfq (5.32)
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Process Exp. limit [85] Constraint

τ → µπ0 BR < 1.1× 10−7 |λµdλ⋆τd| < 9.3× 10−2
(
mω

TeV

)2

τ → eπ0 BR < 8× 10−8 |λedλ⋆τd| < 7.9× 10−2
(
mω

TeV

)2

τ → µη BR < 6.5× 10−8 |λµdλ⋆τd| < 9.5× 10−2
(
mω

TeV

)2

τ → eη BR < 9.2× 10−8 |λedλ⋆τd| < 1.1× 10−1
(
mω

TeV

)2

τ → µη′ BR < 1.3× 10−7 |λµdλ⋆τd| < 2.3× 10−1
(
mω

TeV

)2

τ → eη′ BR < 1.6× 10−7 |λedλ⋆τd| < 2.5× 10−1
(
mω

TeV

)2

Table 14. Constraints on couplings and the LQ mass from semileptonic tau decays. Exactly the

same constraints apply to λ′ couplings, with mω replaced by mχ.

where fq is defined through

〈ηq(p)|q̄γµγ5q|0〉 = −i fq√
2
pµ . (5.33)

The mixing angle φ and the decay parameter fq have been determined to be [174]

φ = (39.3± 1)0 , fq = (1.07± 0.02)fπ . (5.34)

Using these relations, and with fπ ≃ 130MeV, we have f qη ≃ 108MeV and f qη′ ≃
89MeV [175]. Using these values and the experimental limits on the semileptonic branch-

ing ratios [85], we obtain limits on products of Yukawa couplings as functions of the LQ

mass, which are listed in table 14. It turns out that these limits are the most constraining

for off-diagonal NSI mediated by LQs.

We should mention here that similar diagrams as in figure 26 will also induce alternative

pion and η-meson decays: π0 → e+e− and η → ℓ+ℓ− (with ℓ = e or µ). In the SM,

BR(π0 → e+e−) = 6.46 × 10−8 [85], compared to BR(π0 → γγ) ≃ 0.99. Specifically, the

absorptive part of π0 → e+e− decay rate15 is given by [176, 177]

Γabsp(π
0 → e+e−)

Γ(π0 → γγ)
=

1

2
α2

(
me

mπ

)2 1

β

(
log

1 + β

1− β

)2

, (5.35)

where β =
√
1− 4m2

e/m
2
π. For LQ mediation, the suppression factor (me/mπ)

2 ∼
1.4 × 10−5 is replaced by the factor (mπ/mω)

4 ∼ 3.3 × 10−16 for a TeV-scale LQ. Simi-

lar suppression occurs for the η decay processes η → ℓ+ℓ− (with ℓ = e or µ) [176, 178].

Therefore, both pion and η decay constraints turn out to be much weaker than those from

τ decay given in table 14.

5.1.6 Rare D-meson decays

The coupling matrix λ′ of eq. (5.1) contains, even with only diagonal entries, flavor violating

couplings in the quark sector. To see this, we write the interaction terms in a basis where

the down quark mass matrix is diagonal. Such a choice of basis is always available and

15The dispersive part of π0 → e+e− decay rate is found to be 32% smaller than the absorptive part in

the vector meson dominance [176].
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Figure 27. Feynman diagram for rare leptonic and semileptonic D-meson decays mediate by the

χ LQ.

conveniently takes care of the stringent constraints in the down-quark sector, such as from

rare kaon decays. The χ LQ interactions with the physical quarks, in this basis, read as

− LY ⊃ λ′αd (ναdχ
⋆ − ℓαV

⋆
iduiχ

⋆) + H.c. (5.36)

Here V is the CKM mixing matrix. In particular, the Lagrangian contains the following

terms:

− LY ⊃ −λ′αd (V ⋆
udℓαuχ

⋆ + V ⋆
cdℓαcχ

⋆) + H.c. (5.37)

The presence of these terms will result in the rare decays D0 → ℓ+ℓ− as well as D → πℓ+ℓ−

where ℓ = e, µ. The partial width for the decay D0 → ℓ+ℓ− is given by

ΓD0→ℓ−α ℓ
+
α

=
|λ′αdλ′⋆αd|2|VudV ⋆

cd|2
128π

m2
ℓf

2
DmD

m4
χ

(
1− 4m2

ℓ

m2
D

)1/2

. (5.38)

Here we have used the effective Lagrangian arising from integrating out the χ field to be

Leff =
λ′αdλ

′⋆
βd

2m2
χ

(ūLγ
µcL)(ℓ̄βLγ

µℓαL) (5.39)

and the hadronic matrix element

〈D0|ūγµγ5c|0〉 = −ifDpµ . (5.40)

Using fD = 200MeV, we list the constraint arising from this decay in table 15. It will turn

out that the NSI parameter εµµ will be most constrained by the limit D0 → µ+µ−, in cases

where χ LQ is the mediator. Note that this limit only applies to SU(2)L singlet and triplet

LQ fields, and not to the doublet LQ field Ω. The doublet LQ field always has couplings

to a SU(2)L singlet quark field, which does not involve the CKM matrix, and thus has not

quark flavor violation arising from V .

The semileptonic decay D+ → π+ℓ+ℓ− is mediated by the same effective Lagrangian

as in eq. (5.39). The hadronic matrix element is now given by

〈π+(p2)|ūγµc|D+(p1)〉 = F+(q
2)(p1 + p2)µ + F−(q

2)(p1 − p2)µ (5.41)
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Process Exp. limit [85] Constraint

D0 → e+e− BR < 7.9× 10−8 |λ′ed| < 16.7
( mχ

TeV

)

D0 → µ+µ− BR < 6.2× 10−9 |λ′µd| < 0.614
( mχ

TeV

)

D+ → π+e+e− BR < 1.1× 10−6 |λ′ed| < 0.834
( mχ

TeV

)

D+ → π+µ+µ− BR < 7.3× 10−8 |λ′µd| < 0.426
( mχ

TeV

)

D+ → π+e+µ− BR < 3.6× 10−6 |λ′µdλ′⋆ed| < 1.28
( mχ

TeV

)2

Table 15. Constraints on the χ LQ Yukawa couplings from D0 → ℓ+ℓ− and D+ → π+ℓ+ℓ− decays.

with q2 = (p1 − p2)
2. Since the F−(q2) term is proportional to the final state lepton mass,

it can be ignored. For the form factor F+(q
2) we use

F+(q
2) =

fD
fπ

gD⋆Dπ
1− q2/m2

D⋆
. (5.42)

For the D⋆ → Dπ decay constant we use gD⋆Dπ = 0.59 [179]. Vector meson dominance

hypothesis gives very similar results [180]. With these matrix elements, the decay rate is

given by

ΓD+→π+ℓ+α ℓ
−
β

=

[
|λ′αdλ′⋆βd|
4m2

χ

fD
fπ
gD⋆Dπ|VudV ⋆

cd|
]2

1

64π3mD
F . (5.43)

The function F is defined as

F =
m2
D⋆

12m2
D

[
−2m6

D + 9m4
Dm

2
D⋆ − 6m2

Dm
4
D⋆ − 6(m2

D⋆ −m2
D)

2m2
D⋆ log

(
m2
D⋆ −m2

D

m2
D⋆

)]
.

Note that in the limit of infinite D⋆ mass, this function F reduces tom6
D/24. The numerical

value of the function is F ≃ 2.98GeV6. Using fD = 200MeV, fπ = 130MeV, gD⋆Dπ = 0.59

and the experimental upper limits on the corresponding branching ratios [85], we obtain

bounds on the λ′ couplings as shown in table 15. These semileptonic D decays have a mild

effect on the maximal allowed NSI. Note that the experimental limits on D0 → π0ℓ+ℓ− are

somewhat weaker than the D+ decay limits and are automatically satisfied when the D+

semileptonic rates are satisfied.

5.2 Contact interaction constraints

High-precision measurements of inclusive e±p → e±p scattering cross sections at HERA

with maximum
√
s = 320GeV [181] and e+e− → qq̄ scattering cross sections at LEP II

with maximum
√
s = 209GeV [96] can be used in an effective four-fermion interaction

theory to set limits on the new physics scale Λ >
√
s that can be translated into a bound

in the LQ mass-coupling plane. This is analogous to the LEP contact interaction bounds

derived in the Zee model 4.6. Comparing the effective LQ Lagrangian (5.8) with eq. (4.37)

(for f = u, d), we see that for the doublet LQ, the only relevant chirality structure is

LR, whereas for the singlet LQ, it is LL, with ηdLR = ηuLL = −1. The corresponding

experimental bounds on Λ− and the resulting constraints on LQ mass and Yukawa coupling

are given in table 16.
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LQ LEP HERA

type Exp. bound [96] Constraint Exp. bound [181] Constraint

ω2/3 Λ−
LR > 5.1TeV mω

|λed|
> 1.017TeV Λ−

LR > 4.7TeV mω

|λed|
> 0.937TeV

χ−1/3 Λ−
LL > 3.7TeV

mχ

|λed|
> 0.738TeV Λ−

LL > 12.8TeV
mχ

|λed|
> 2.553TeV

Table 16. Constraints on the ratio of LQ mass and the Yukawa coupling from LEP [96] and

HERA [181] contact interaction bounds.
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Figure 28. Feynman diagrams for pair- and single-production of LQ at the LHC.

In principle, one could also derive an indirect bound on LQs from the inclusive dilepton

measurements at the LHC, because the LQ will give an additional t-channel contribution

to the process pp → ℓ+ℓ−. However, for a TeV-scale LQ as in our case, the LHC contact

interaction bounds [182, 183] with
√
s = 13TeV are not applicable. Recasting the LHC

dilepton searches in the fully inclusive category following ref. [184] yields constraints weaker

than those coming from direct LQ searches shown in figure 29.

5.3 LHC constraints

In this section, we derive the LHC constraints on the LQ mass and Yukawa couplings which

will be used in the next section for NSI studies.

5.3.1 Pair production

At hadron colliders, LQs can be pair-produced through either gg or qq̄ fusion, as shown

in figure 28(a), (b) and (c). Since LQs are charged under SU(3)c, LQ pair production

at LHC is a QCD-driven process, solely determined by the LQ mass and strong coupling
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Figure 29. LHC constraints on scalar LQ in the LQ mass and branching ratio plane. For a given

channel, the branching ratio is varied from 0 to 1, without specifying the other decay modes which

compensate for the missing branching ratios to add up to one. Black, red, green, blue, brown

and purple solid lines represent present bounds from the pair production process at the LHC,

i.e., looking for e+e−jj, µ+µ−jj, τ+τ−bb̄, τ+τ−tt̄, τ+τ−jj and νν̄jj signatures respectively. These

limits are independent of the LQ Yukawa coupling. On the other hand, black (red) dashed, dotted

and dot-dashed lines indicate the bounds on LQ mass from the single production in association

with one charged lepton for LQ couplings λed (µd) = 2, 1.5 and 1 respectively for first (second)

generation LQ.

constant, irrespective of their Yukawa couplings. Although there is a t-channel diagram

[cf. figure (28)(c)] via charged lepton exchange through which LQ can be pair-produced

via quark fusion process, this cross-section is highly suppressed compared to the s-channel

pair production cross-section.

There are dedicated searches for pair production of first [185, 186], second [186–188]

and third generation [188–190] LQs at the LHC. Given the model Lagrangian 5.1, we are

interested in the final states containing either two charged leptons and two jets (ℓℓjj), or

two neutrinos and two jets (ννjj). Note that for the doublet LQ Ω = (ω2/3, ω−1/3), the jets

will consist of down-type quarks, while for the singlet LQ χ−1/3, the jets will be of up-type

quarks. For the light quarks u, d, c, s, there is no distinction made in the LHC LQ searches;

therefore, the same limits on the corresponding LQ masses will apply to both doublet and

singlet LQs. The only difference is for the third-generation LQs, where the limit from

τ+τ−bb̄ final state is somewhat stronger than that from τ+τ−tt̄ final state [188, 190].

In figure 29, we have shown the LHC limits on LQ mass as a function of the corre-

sponding branching ratios for each channel. For a given channel, the branching ratio is

varied from 0 to 1, without specifying the other decay modes which compensate for the
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missing branching ratios to add up to one. For matter NSI, the relevant LQ couplings

must involve either up or down quark. Thus, for first and second generation LQs giving

rise to NSI, we can use e+e−jj and µ+µ−jj final states from LQ pair-production at LHC

to impose stringent bounds on the λαd and λ′αd couplings (with α = e, µ) which are rel-

evant for NSI involving electron and muon flavors. There is no dedicated search for LQs

in the τ+τ−jj channel to impose similar constraints on λτd and λ′τd relevant for tau-flavor

NSI. There are searches for third generation LQ [189, 190] looking at τ+τ−bb̄ and τ+τ−tt̄
signatures which are not relevant for NSI, since we do not require λ′τt (for χ

−1/3) or λτb
(for ω2/3) couplings. For constraints on λτd, we recast the τ+τ−bb̄ search limits [188–190]

taking into account the b-jet misidentification as light jets, with an average rate of 1.5%

(for a b-tagging efficiency of 70%) [191]. As expected, this bound is much weaker, as shown

in figure 29.

However, a stronger bound on NSI involving the tau-sector comes from νν̄jj final

state. From the Lagrangian (5.1), we see that the same λτd coupling that leads to τ+τ−dd
final state from the pair-production of ω2/3 also leads to ντ ν̄τdd final state from the pair-

production of the SU(2)L partner LQ ω−1/3, whose mass cannot be very different from

that of ω2/3 due to electroweak precision data constraints (similar to the Zee model case,

cf. section 4.4). Since the final state neutrino flavors are indistinguishable at the LHC, the

νν̄jj constraint will equally apply to all λαd (with α = e, µ, τ ) couplings which ultimately

restrict the strength of tau-sector NSI, as we will see in the next subsection. The same

applies to the λ′τd couplings of the singlet LQ χ−1/3, which are also restricted by the νν̄jj

constraint.

5.3.2 Single production

LQs can also be singly produced at the collider in association with charged leptons via s-

and t- channel quark-gluon fusion processes, as shown in figure 28(d) and (e). The single

production limits, like the indirect low-energy constraints, are necessarily in the mass-

coupling plane. This signature is applicable to LQs of all generations. In figure 29, we

have shown the collider constraints in the single-production channel for some benchmark

values of the first and second generation LQ couplings λed and λµd (since d jets cannot be

distinguished from s jets) equal to 1, 1.5 and 2 by dot-dashed, dotted and dashed curves

respectively. The single-production limits are more stringent than the pair-production

limits only for large λed, but not for λµd. There is no constraint in the τj channel, and the

derived constraint from τb channel is too weak to appear in this plot.

5.3.3 How light can the leptoquark be?

There is a way to relax the νν̄jj constraint and allow for smaller LQ masses for the doublet

components. This is due to a new decay channel ω−1/3 → ω2/3+W− which, if kinematically

allowed, can be used to suppress the branching ratio of ω−1/3 → νd decay for relatively

smaller values of λαd couplings, thereby reducing the impact of the νν̄jj constraint. The
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Figure 30. Tree-level NSI diagrams with the exchange of heavy LQs: (a) for doublet LQ with

Yukawa λ ∼ O(1), and (b) for singlet LQ with Yukawa λ′ ∼ O(1).

partial decay widths for ω−1/3 → ω2/3 +W− and ω−1/3 → ναdβ are respectively given by

Γ(ω−1/3 → ω2/3W−) =
1

32π

m3
ω−1/3

v2

(
1−

m2
ω2/3

m2
ω−1/3

)2

(5.44)

×
[{

1−
(
mω2/3 +mW

mω−1/3

)2
}{

1−
(
mω2/3 −mW

mω−1/3

)2
}]1/2

,

Γ(ω−1/3 → ναdβ) =
|λαβ |2
16π

mω−1/3 . (5.45)

In deriving eq. (5.44), we have used the Goldstone boson equivalence theorem, and in

eq. (5.45), the factor in the denominator is not 8π (unlike the SM h→ bb̄ case, for instance),

because only one helicity state contributes.

The lighter LQ ω2/3 in this case can only decay to ℓαdβ with 100% branching ratio.

Using the fact that constraints from τ+τ−jj channel are weaker, one can allow for ω2/3

as low as 522GeV, as shown in figure 29 by the solid brown curve, when considering the

λτd coupling alone. This is, however, not applicable to the scenario when either λed or λµd
coupling is present, because of the severe constraints from e+e−jj and µ+µ−jj final states.

5.4 NSI prediction

The LQs ω−1/3 and χ−1/3 in the model have couplings with neutrinos and down-quark

(cf. eq. (5.1)), and therefore, induce NSI at tree level as shown in figure 30 via either λ or

λ′ couplings. From figure 30, we can write down the effective four-fermion Lagrangian as

L =
λ⋆αdλβd
m2
ω

(d̄RνβL)(ν̄αLdR) +
λ′⋆αdλ

′
βd

m2
χ

(d̄LνβL)(ν̄αLdL)

= −1

2

[
λ⋆αdλβd
m2
ω

(d̄Rγ
µdR)(ν̄αLγµνβL) +

λ′⋆αdλ
′
βd

m2
χ

(d̄Lγ
µdL)(ν̄αLγµνβL)

]
, (5.46)
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where we have used Fierz transformation in the second step. Comparing eq. (5.46) with

eq. (3.1), we obtain the NSI parameters

εdαβ =
1

4
√
2 GF

(
λ⋆αdλβd
m2
ω

+
λ′⋆αdλ

′
βd

m2
χ

)
. (5.47)

For Yn(x) ≡ Nn(x)
Np(x)

= 1, one can obtain the effective NSI parameters from eq. (3.5) as

εαβ ≡ 3εdαβ =
3

4
√
2 GF

(
λ⋆αdλβd
m2
ω

+
λ′⋆αdλ

′
βd

m2
χ

)
. (5.48)

To satisfy the neutrino mass constraint [cf. eq. (5.7)], we can have either λ⋆αdλβd or λ
′⋆
αdλ

′
βd

of O(1), but not both simultaneously, for a given flavor combination (α, β). But we can

allow for λ⋆αdλβd and λ′⋆α′dλ
′
β′d simultaneously to be of O(1) for either α 6= α′ or β 6= β′,

which will be used below to avoid some experimental constraints for the maximum NSI

predictions.

5.4.1 Doublet leptoquark

First, let us consider the doublet LQ contribution by focusing on the λ-couplings only.

We show in figures 31 and 32 the predictions for diagonal (εee, εµµ, εττ ) and off-diagonal

(εeµ, εµτ , εeτ ) NSI parameters respectively from eq. (5.48) by black dotted contours. Color-

shaded regions in each plot are excluded by various theoretical and experimental con-

straints. In figures 31(b) and (c), the yellow colored regions are excluded by perturbativity

constraint, which requires the LQ coupling λαd <
√

4π√
3
[192]. Red-shaded region in fig-

ure 31(a) is excluded by the APV bound (cf. section 5.1.1), while the brown and cyan

regions are excluded by HERA and LEP contact interaction bounds, respectively (cf. ta-

ble 16). Red-shaded region in figure 31(c) is excluded by the global-fit constraint from

neutrino oscillation+COHERENT data [61]. Blue-shaded regions in figures 31(a) and (b)

are excluded by LHC LQ searches (cf. figure 29) in the pair-production mode for small λαd
(which is independent of λαd) and single-production mode for large λαd) with α = e, µ.

Here we have assumed 50% branching ratio to ej or µj, and the other 50% to τd in order

to relax the LHC constraints and allow for larger NSI. Blue-shaded region in figure 31(c)

is excluded by the LHC constraint from the νν̄jj channel, where the vertical dashed line

indicates the limit assuming BR(ω−1/3 → νd) = 100%, and the unshaded region to the left

of this line for small λτd is allowed by opening up the ω−1/3 → ω2/3W− channel (cf. sec-

tion 5.3.3). Note that we cannot completely switch off the ω−1/3 → νd channel, because

that would require λτd → 0 and in this limit, the NSI will also vanish.

The red line in figure 31(b) is the suggestive limit on εdRαβ from NuTeV data [146] (cf. ta-

ble 17). This is not shaded because there is a 2.7σ discrepancy of their s2w measurement

with the PDG average [85] and a possible resolution of this might affect the NSI constraint

obtained from the same data. Here we have rederived the NuTeV limit following ref. [146],

but using the latest value of s2w (on-shell) [85] (without including NuTeV). Specifically, we

have used the NuTeV measurement of the effective coupling
(
g̃µR
)2

= 0.0310± 0.0011 from
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νµq → νq scatterings [193] which is consistent with the SM prediction of
(
g̃µR
)2
SM

= 0.0297.

Here
(
g̃µR
)2

is defined as

(
g̃µR
)2

=
(
guR + εuRµµ

)2
+
(
gdR + εdRµµ

)2
, (5.49)

where guR = −2
3s

2
w and gdR = 1

3s
2
w are the Z couplings to right-handed up and down

quarks respectively. Only the right-handed couplings are relevant here, since the effective

NSI Lagrangian (5.46) involves right-handed down-quarks for the doublet LQ component

ω2/3. In eq. (5.49), setting εuRµµ = 0 for this LQ model and comparing
(
g̃µR
)2

with the

measured value, we obtain a 90% CL on εdRµµ < 0.029, which should be multiplied by 3

(since εαβ ≡ 3εdRαβ) to get the desired constraint on εαβ shown in figure 31(b).

Also note that unlike in the Zee model case discussed earlier, the IceCube limit on

|εττ − εµµ| [152] is not shown in figures 31(b) and (c). This is because the NSI parameters

in the LQ model under consideration receive two contributions as shown in eq. (5.48).

Although we cannot have both λ and λ′ contributions large for the same εαβ , it is possible

to have a large λ contribution to εαβ and a large λ′ contribution to εα′β′ (with either α 6= β

or β 6= β′), thus evading the cLFV constraints (which are only applicable to either λ or λ′

sectors), as well as the IceCube constraint on |εττ − εµµ|, which is strictly applicable only

in the limit of all εeα → 0. This argument can be applied to all the LQ models discussed

in subsequent sections, with a few exceptions, when the NSI arises from only one type of

couplings; see e.g. eq. (7.14) and (7.19)). So we will not consider the IceCube limit on εµµ
and εττ | for our LQ NSI analysis, unless otherwise specified.

For εee, the most stringent constraint comes from APV (section 5.1.1), as shown by

the red-shaded region in figure 31(a) which, when combined with the LHC constraints on

the mass of LQ, rules out the possibility of any observable NSI in this sector. Similarly, for

εµµ, the most stringent limit of 8.6% comes from NuTeV. However, if this constraint is not

considered, εµµ can be as large as 21.6%. Similarly, εττ can be as large as 34.3%, constrained

only by the LHC constraint on the LQ mass and perturbative unitarity constraint on the

Yukawa coupling (cf. figure 31(c)). This is within the future DUNE sensitivity reach, at

least for the 850 kt.MW.yr (if not 300 kt.MW.yr) exposure [66], as shown in figure 31(c).

As for the off-diagonal NSI in figure 19, the LHC constraints (cf. section 5.3) are

again shown by blue-shaded regions. The yellow-shaded region in figure 19(b) is from the

combination of APV and perturbative unitarity constraints. However, the most stringent

limits for all the off-diagonal NSI come from cLFV processes. In particular, τ → ℓπ0

and τ → ℓη (with ℓ = e, µ) impose strong constraints (cf. section 5.1.5) on εµτ and εeτ ,

as shown in figures 32(a) and (b). For εeµ, the most stringent limit comes from µ −
e conversion (cf. section 5.1.2), as shown in figure 32(c). The maximum allowed NSI

in each case is tabulated in table 17, along with the current constraints from neutrino-

nucleon scattering experiments, like CHARM [146], COHERENT [142] and IceCube [154],

as well as the global-fit constraints from neutrino oscillation+COHERENT data [61] and

future DUNE sensitivity [66]. It turns out that the cLFV constraints have essentially

ruled out the prospects of observing any off-diagonal NSI in this LQ model in future

neutrino experiments. This is consistent with general arguments based on SU(2)L gauge-

invariance [20].
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LQ model prediction (Max.) Individual Global-fit DUNE

NSI Doublet Singlet constraints constraints [61] sensitivity [66]

εee 0.004 0.0069 [−1.8, 1.5] [146] [−0.036, 1.695] [−0.185, 0.380]

(LHC + APV) (LHC+HERA) ([−0.130, 0.185])

εµµ 0.216 0.0086 [−0.024, 0.045] [146] [−0.309, 1.083] [−0.290, 0.390]

(LHC+PU) (D → πµµ) [0.0277, 0.0857] (ours) ([−0.192, 0.240])

εττ 0.343 [−0.225, 0.99] [142] [−0.306, 1.083] [−0.360, 0.145]

(LHC + Unitarity) ([−0.120, 0.095])

εeµ 1.5× 10−7 [−0.21, 0.12] [142] [−0.174, 0.147] [−0.025, 0.052]

(LHC + µ− e conv.) ([−0.017, 0.040])

εeτ 0.0036 [−0.39, 0.36] [142] [−0.618, 0.330] [−0.055, 0.023]

(LHC + τ → eπ0) ([−0.042, 0.012])

εµτ 0.0043 [−0.018, 0.0162] [154] [−0.033, 0.027] [−0.015, 0.013]

(LHC + τ → µπ0) ([−0.010, 0.010])

Table 17. Maximum allowed NSI (with d-quarks) in the one-loop LQ model, after imposing the

constraints from APV (section 5.1.1), cLFV (sections 5.1.2, 5.1.5, 5.1.6), LEP and HERA contact in-

teraction (section 5.2), perturbative unitarity and collider (section 5.3) constraints. We also impose

the constraints from neutrino-nucleon scattering experiments, like CHARM II [146], NuTeV [146],

COHERENT [142] and IceCube [154], as well as the global-fit constraints from neutrino oscilla-

tion+COHERENT data [61], whichever is stronger. The scattering and global-fit constraints are

on εdαβ , so it has been scaled by a factor of 3 for the constraint on εαβ in the table. The maximum

allowed value for each NSI parameter is obtained after scanning over the LQ mass (see figures 31

and 32) and the combination of the relevant constraints limiting the NSI are shown in parentheses

in the second column. The same numbers are applicable for the doublet and singlet LQ exchange,

except for εee where the APV constraint is weaker than HERA (figure 33(a))) and for εµµ which

has an additional constraint from D+ → π+µ+µ− decay (see figure 33(b)). In the last column,

we also show the future DUNE sensitivity [66] for 300 kt.MW.yr exposure (and 850 kt.MW.yr in

parentheses).

5.4.2 Singlet leptoquark

Now if we take the λ′ couplings instead of λ in eq. (5.48), the NSI predictions, as well

as the constraints, can be analyzed in a similar way as in figures 31 and 32. Here the

APV (cf. eq. (5.18)), as well as the LEP and HERA contact interaction constraints on

εee (cf. table 16) are somewhat modified. In addition, there are new constraints from

D+ → π+ℓ+ℓ− and D0 → ℓ+ℓ− (cf. section 5.1.6) for εee and εµµ, as shown in figure 33(a)

and (b). For εee, the D
+ → π+e+e− constraint turns out to be much weaker than the APV

constraint. The D0 → e+e− constraint is even weaker and does not appear in figure 33(a).

However, for εµµ, the D
+ → π+µ+µ− constraint turns out to be the strongest, limiting the

maximum allowed value of εµµ to a mere 0.8%, as shown in figure 33(b) and in table 17.

The NuTeV constraint also becomes more stringent here due to the fact that the singlet

LQ χ couples to left-handed quarks (cf. eq. (5.46)). So it will affect the effective coupling(
g̃ℓL
)
. For εµµ, we use the NuTeV measurement of

(
g̃µL
)2

= 0.3005± 0.0014 from νµq → νq

scatterings [193] which is 2.7σ smaller than the SM prediction of
(
g̃µL
)2
SM

= 0.3043. Here
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(a) (b)

(c)

Figure 31. Predictions for diagonal NSI (εee, εµµ, εττ ) induced by doublet LQ in the one-loop LQ

model are shown by black dotted contours. Color-shaded regions are excluded by various theoretical

and experimental constraints. Yellow colored region is excluded by perturbativity constraint on LQ

coupling λαd [192]. Blue-shaded region is excluded by LHC LQ searches (figure 29) in subfigure (a)

by e+jets channel (pair production for small λed and single-production for large λed), in subfigure

(b) by µ+jets channel, and in subfigure (c) by ν+jet channel. In (a), the red, brown and cyan-shaded

regions are excluded by the APV bound (cf. eq. 5.18), HERA and LEP contact interaction bounds

(cf. table 16) respectively. In (b), the red line is the suggestive limit from NuTeV [146]. In (c), the

red-shaded region is excluded by the global-fit constraint from neutrino oscillation+COHERENT

data [61]. We also show the future DUNE sensitivity in blue solid lines for both 300 kt.MW.yr and

850 kt.MW.yr [66].
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(a) (b)

(c)

Figure 32. Predictions for off-diagonal NSI (εeµ, εµτ , εeτ ) induced by the doublet LQ in the

one-loop LQ model are shown by black dotted contours. Color-shaded regions are excluded by

various theoretical and experimental constraints. Blue-shaded area is excluded by LHC LQ searches

(cf. figure 29). In (a) and (b), the brown and green-shaded regions are excluded by τ → ℓπ0 and

τ → ℓη (with ℓ = e, µ) constraints (cf. table 14). In (a), the red-shaded region is excluded by

the global-fit constraint on NSI from neutrino oscillation+COHERENT data [61], and the light

brown-shaded region is excluded by IceCube constraint [154]. In (b), the yellow-shaded region is

excluded by perturbativity constraint on LQ coupling λαd [192] combined with APV constraint

(cf. eq. (5.18)). In (c), the red-shaded region is excluded by µ → e conversion constraint. Also

shown in (b) are the future DUNE sensitivity in blue solid lines for both 300 kt.MW.yr and 850

kt.MW.yr [66].
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(a) (b)

(c) (d)

Figure 33. Additional low-energy constraints on NSI induced by singlet LQ. Subfigure (a) has

the same APV and LHC constraints as in figure 18(a), the modified HERA and LEP contact

interaction bounds (cf. table 16), plus the D+ → π+e+e− constraint, shown by green-shaded region

(cf. section 5.1.6). Subfigure (b) has the same constraints as in figure 18(b), plus the D+ → π+µ+µ−

constraint, shown by light-green-shaded region, and D0 → µ+µ− constraint shown by brown-shaded

region (cf. section 5.1.6). Subfigure (c) has the same constraints as in figure 19(a), plus the τ → µγ

constraint, shown by purple-shaded region. Subfigure (d) has the same constraints as in figure 19(b),

plus the τ → eγ constraint, shown by purple-shaded region.
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⟨H0⟩

ρ̄1/3ω−1/3

να dcγ dγ νβ

Figure 34. Neutrino mass generation in the one-loop model with both doublet and triplet LQs.

This is the O9
3 model of table 3 [31].

(
g̃µL
)2

is defined as

(
g̃µL
)2

=
(
guL + εuLµµ

)2
+
(
gdL + εdLµµ

)2
, (5.50)

where guL = 1
2 − 2

3s
2
w and gdL = −1

2 + 1
3s

2
w. For the SM prediction, we have used the

latest PDG value for on-shell s2w = 0.22343 from a global-fit to electroweak data (without

NuTeV) [85] and comparing
(
g̃µL
)2

with the measured value, derive a 90% CL constraint on

0.0018 < εµµ < 0.8493. Note that this prefers a non-zero εµµ at 90% CL (1.64σ) because

the SM with εµµ = 0 is 2.7σ away and also because there is a cancellation between gdL
(which is negative) and εµµ (which is positive) in eq. (5.50) to lower the value of

(
g̃µL
)2

to

within 1.64σ of the measured value.

For the off-diagonal sector, there are new constraints from τ → ℓγ relevant for εµτ and

εeτ , as shown in figures 33(c) and (d). However, these are less stringent than the τ → ℓπ0

and τ → ℓη constraints discussed before. There are no new constraints for εττ and εeµ that

are stronger than those shown in figures 31(c) and 32(c) respectively, so we do not repeat

these plots again in figure 33.

6 NSI in a triplet leptoquark model

This is the O9
3 model of table 3 [31]. In this model, two new fields are introduced —

an SU(2)L-triplet scalar LQ ρ̄
(
3̄,3, 13

)
=
(
ρ̄4/3, ρ̄1/3, ρ̄−2/3

)
and an SU(2)L-doublet LQ

Ω
(
3,2, 16

)
=
(
ω2/3, ω−1/3

)
. The relevant Lagrangian for the neutrino mass generation can

be written as

−LY ⊃ λαβLαd
c
αΩ+ λ′αβLαQβ ρ̄+H.c.

= λαβ

(
ναd

c
βω

−1/3 − ℓαd
c
βω

2/3
)

+λ′αβ

[
ℓαdβ ρ̄

4/3 − 1√
2
(ναdβ + ℓαuβ) ρ̄

1/3 + ναuβ ρ̄
−2/3

]
+H.c. (6.1)

These interactions, along with the potential term

V ⊃ µΩ̃ρH +H.c. =µ

[
ω⋆1/3ρ−4/3H+ +

1√
2

(
ω⋆1/3H0 − ω⋆−2/3H+

)
ρ−1/3

− ω⋆−2/3ρ2/3H0

]
+H.c. , (6.2)
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where ρ̄ is related to ρ by charge conjugation as ρ
(
3,3,−1

3

)
=
(
ρ2/3, −ρ−1/3, ρ−4/3

)
,

induce neutrino mass at one-loop level via the O9
3 operator in the notation of ref. [31], as

shown in figure 34. The neutrino mass matrix can be estimated as

Mν ∼ 1

16π2
µv

M2

(
λMdλ

′T + λ′Mdλ
T
)
, (6.3)

where Md is the diagonal down-type quark mass matrix and M ≡ max(mω,mρ). The NSI

parameters read as

εαβ =
3

4
√
2GF

(
λ⋆αdλβd
m2
ω

+
λ′⋆αuλ

′
βu

m2
ρ−2/3

+
λ′⋆αdλ

′
βd

2m2
ρ1/3

)
. (6.4)

Note that both λ and λ′ cannot be large at the same time due to neutrino mass constraints

(cf. eq. (6.3)). For λ ≫ λ′, this expression is exactly the same as the doublet LQ con-

tribution derived in eq. (5.48) and the corresponding maximum NSI can be read off from

table 17 for the doublet component.

On the other hand, for λ′ ≫ λ, the third term in eq. (6.4) is analogous to the down-

quark induced singlet LQ NSI given in eq. (5.48) (except for the Clebsch-Gordan factor of

(1/
√
2)2), whereas the second term is a new contribution from the up-quark sector. Note

that both terms depend on the same Yukawa coupling λ′αu = λ′αd in the Lagrangian (6.1).

This is unique to the triplet LQ model, where neutrinos can have sizable couplings to

both up and down quarks simultaneously, without being in conflict with the neutrino mass

constraint. As a result, some of the experimental constraints quoted in section 5 which

assumed the presence of only down-quark couplings of LQ will be modified in the triplet

case, as discussed below:

6.1 Atomic parity violation

The shift in the weak charge given by eq. (5.13) is modified to

δQw(Z,N) =
1

2
√
2GF

[
(2Z +N)

|λ′eu|2
2m2

ρ1/3

− (Z + 2N)
|λ′ed|2
m2
ρ4/3

]
. (6.5)

Assuming mρ1/3 = mρ4/3 ≡ mρ and noting that λ′αu = λ′αd in eq. (6.1), we obtain

δQw
(
133
55 Cs

)
= − 117

2
√
2GF

|λ′ed|2
m2
ρ

. (6.6)

Comparing this with the 2σ allowed range (5.17), we obtain the modified constraint

|λ′ed| < 0.29

(
mρ

TeV

)
, (6.7)

which is weaker (stronger) than that given by eq. (5.18) for the SU(2)L-doublet (singlet)

LQ alone.
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6.2 µ − e conversion

From eq. (5.19), we see that for the triplet case, the rate of µ−e conversion will be given by

BR(µN → eN) ≃
|~pe|Eem3

µα
3Z4

effF
2
p

64π2ZΓN
(2A− Z)2

(
|λ′⋆edλ′µd|
m2
ρ4/3

+
|λ′⋆euλ′µu|
2m2

ρ1/3

)2

, (6.8)

For degenerate ρ-mass and λ′ℓd = λ′ℓu, we obtain the rate to be (3/2)2 times larger than

that given in eq. (5.19). Therefore, the constraints on |λ′⋆edλ′µd| given in table 12 will be a

factor of 3/2 stronger.

6.3 Semileptonic tau decays

The semileptonic tau decays such as τ− → ℓ−π0, ℓ−η, ℓ−η′ will have two contributions

from ρ̄1/3 and ρ̄4/3. The relevant terms in the Lagrangian (7.22) are

−LY ⊃ λ′αβ

(
− 1√

2
ℓαuβ ρ̄

1/3 + ℓαdβ ρ̄
4/3

)
+H.c.

⊃ λ′τd

(
− 1√

2
τV ⋆

uduρ̄
1/3 + τdρ̄4/3

)
+ λℓd

(
− 1√

2
ℓV ⋆
uduρ̄

1/3 + ℓdρ̄4/3
)
+H.c. , (6.9)

where we have assumed a basis with diagonal down-type quark sector. Using the matrix

element (5.28), we find the modified decay rate for τ− → ℓ−π0 from eq. (5.26):

Γτ→ℓπ0 =
|λ′ℓdλ′⋆τd|

2

1024π
f2πm

3
τFτ (mℓ,mπ)

(
1

m2
ρ4/3

− 1

2m2
ρ−1/3

)2

. (6.10)

Thus, for mρ−1/3 = mρ4/3 , the τ
− → ℓ−π0 decay rate is suppressed by a factor of 1/4,

compared to the doublet or singlet LQ case (cf. eq. (5.26)). So the constraints on λ′ℓdλ
⋆
τd

from τ → ℓπ0 shown in table 14 will be a factor of 2 weaker in the triplet LQ case.

On the other hand, using the matrix element (5.29), we find that the modified decay

rate for τ− → ℓ−η becomes

Γτ→ℓη =
|λ′ℓdλ′⋆τd|

2

1024π
f2ηm

3
τFτ (mℓ,mη)

(
1

m2
ρ4/3

+
1

2m2
ρ−1/3

)2

, (6.11)

which is enhanced by a factor of 9/4 for mρ−1/3 = mρ4/3 , compared to the doublet or singlet

LQ case. So the constraints on λℓdλ
⋆
τd from τ → ℓη shown in table 14 will be a factor of 3/2

stronger in the triplet LQ case. The same scaling behavior applies to τ → ℓη′ constraints.
These modified constraints are summarized in table 18.

6.4 ℓα → ℓβ + γ

The cLFV decay ℓα → ℓβ+γ arises via one-loop diagrams with the exchange of ρ̄ LQ fields,

analogous to figure 25. The relevant couplings in eq. (6.1) have the form ℓuρ̄1/3 = ucPLℓρ̄
1/3

for whichQF = −2/3 andQB = 1/3 in the general formula (4.30), whereas for the couplings

ℓdρ̄4/3 = dcPLℓρ̄
4/3, we have QF = 1/3 and QB = 4/3. Substituting these charges in
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Process Exp. limit [85] Constraint

τ → µπ0 BR < 1.1× 10−7 |λ′µdλ′⋆τd| < 1.9× 10−1
( mρ

TeV

)2

τ → eπ0 BR < 8× 10−8 |λ′edλ′⋆τd| < 1.6× 10−1
( mρ

TeV

)2

τ → µη BR < 6.5× 10−8 |λ′µdλ′⋆τd| < 6.3× 10−2
( mρ

TeV

)2

τ → eη BR < 9.2× 10−8 |λ′edλ′⋆τd| < 7.3× 10−2
( mρ

TeV

)2

τ → µη′ BR < 1.3× 10−7 |λ′µdλ′⋆τd| < 1.5× 10−1
( mρ

TeV

)2

τ → eη′ BR < 1.6× 10−7 |λ′edλ′⋆τd| < 1.7× 10−1
( mρ

TeV

)2

Table 18. Constraints on couplings and the LQ mass from semileptonic tau decays in the triplet

LQ case. Here we have assumed all the triplet fields (ρ̄4/3, ¯rho
1/3

, ρ̄−2/3) to have the same mass

mρ.

eq. (4.30) and taking the limit t = m2
F /m

2
B → 0 (since the LQs are expected to be much

heavier than the SM charged leptons), we obtain

Γ(ℓα → ℓβ + γ) =
9α

256

|λ′βdλ′⋆αd|
(16π2)2

m5
α

m4
ρ

, (6.12)

where 9 = 32 is a color factor and we have assumed mρ−1/3 = mρ4/3 . The rate in eq. (6.12)

is 9/4 times larger than that given in eq. (5.25) for the singlet LQ case. Therefore, the

constraints on |λ′βdλ′⋆αd| derived in table 13 will be weakened by a factor of 3/2.

6.5 D-meson decays

The ℓαuβ ρ̄
1/3 and ℓαdβ ρ̄

4/3 terms in eq. (7.22) induce flavor violating quark decays. Follow-

ing the discussion in section 5.1.6, we work in a basis where the down quark mass matrix is

diagonal, so there are no constraints from rare kaon decays. However, the ℓαuβ ρ̄
1/3 term in

eq. (7.22) now becomes ℓαV
⋆
iduiρ̄

1/3 which induces D0 → ℓ+ℓ− and D+ → π+ℓ+ℓ− decays.

The analysis will be the same as in section 5.1.6, except that the λ′αd couplings will now

be replaced by λ′αd/
√
2. Correspondingly, the constraints on |λ′αd| given in table 15 will be√

2 times weaker. For instance,

|λ′µd| <
{
0.868

( mρ
TeV

)
from D0 → µ+µ−

0.602
( mρ
TeV

)
from D+ → π+µ+µ−

. (6.13)

6.6 Contact interaction constraints

The LEP and HERA contact interaction bounds discussed in section 5.2 will also be mod-

ified in the triplet LQ case. Here, the interactions are only of LL type, but the effective

Yukawa coupling is
√

3/2 times that of the singlet case in table 16. The modified constraint

is given by

mρ

|λ′ed|
=

√
3

16π
ΛLL− >

{
0.904 TeV from LEP

3.127 TeV from HERA
. (6.14)
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6.7 LHC constraints

The LHC constraints on the ρ̄ fields will be similar to the discussion in section 5.3. Com-

paring the Lagrangians (5.1) and (7.22), we see that ρ̄1/3 will have the same decay modes

to νj and ℓj, and therefore, the same constraints as the singlet χ−1/3 discussed in sec-

tion 5.4.2. In our analysis, we have assumed degenerate mass spectrum for all the triplet

LQ fields. But we note here that the ρ̄−2/3 component can in principle be lighter, since

it can only decay to νj for which the constraints are weaker (cf. figure 29). However, the

mass splitting between ρ̄−2/3 and ρ̄1/3 cannot be more than ∼ 100GeV from T -parameter

constraints, analogous to the charged scalar case discussed in section 4.4 (cf. figure 7). In

that case, the limit on mρ1/3 for 50% branching ratio to νj and ℓj channels (since they are

governed by the same λ′αd coupling), one can allow for mρ−2/3 as low as 800GeV or so.

6.8 NSI prediction

Taking into account all the constraints listed above, we show in figures 35 and 36 the

predictions for diagonal (εee, εµµ, εττ ) and off-diagonal (εeµ, εµτ , εeτ ) NSI parameters re-

spectively from eq. (6.4) by black dotted contours. Color-shaded regions in each plot are

excluded by various theoretical and experimental constraints, as in figures 31 and 32. The

main difference is in the NuTeV constraint shown in figure 35(b), which is more stringent

than those shown in figures 31(b) and 33(b). The reason is that in presence of both εuLµµ and

εdLµµ as in this LQ model (cf. (6.1)), the total contribution to
(
g̃µL
)2

in eq. (5.50) is always

positive, and therefore, any nonzero εµµ will make the discrepancy worse than the SM case

of 2.7σ. Therefore, we cannot impose a 90% CL (1.64σ) constraint from NuTeV in this

scenario. The line shown in figure 35(b) corresponds to the 3σ constraint on εµµ < 0.0007,

which is subject to the same criticism as the discrepancy with the SM, and therefore, we

have not shaded the NuTeV exclusion region and do not consider it while quoting the

maximum allowed NSI.

From figures 35 and 36, we find the maximum allowed values of the NSI parameters

in the triplet LQ model to be

εmax
ee = 0.0059 , εmax

µµ = 0.0007 , εmax
ττ = 0.517 ,

εmax
eµ = 1.9× 10−8 , εmax

eτ = 0.0050 , εmax
µτ = 0.0038 . (6.15)

This is also summarized in figure 59 and in table 20.

7 Other type-I radiative models

In this section, we briefly discuss the NSI predictions in other type-I radiative models

at one-, two- and three-loops. In each case, we present the new particle content, model

Lagrangian, Feynman diagrams for neutrino mass generation and expressions for neutrino

mass, followed by the expression for NSI parameters. The maximum NSI allowed in each

model is summarized in table 20.
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(a) (b)

(c)

Figure 35. Predictions for diagonal NSI (εee, εµµ, εττ ) induced by the triplet LQ are shown by

black dotted contours. Color-shaded regions are excluded by various theoretical and experimental

constraints. The labels are same as in figure 31.
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(c)

Figure 36. Predictions for off-diagonal NSI (εeµ, εµτ , εeτ ) induced by the triplet LQ are shown by

black dotted contours. Color-shaded regions are excluded by various theoretical and experimental

constraints. The labels are same as in figure 32.
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Figure 37. One-loop neutrino mass in the minimal radiative inverse seesaw model [43]. This model

induces the operator O′
2 of eq. (7.1).

7.1 One-loop models

7.1.1 Minimal radiative inverse seesaw model

This is an exception to the general class of type-I radiative models, where the new particles

running in the loop will always involve a scalar boson. In this model, the SM Higgs and

Z bosons are the mediators, with the new particles being SM-singlet fermions.16 The

low-energy effective operator that leads to neutrino mass in this model is the dimension-7

operator

O′
2 = LiLjHkH lǫikǫjl(H

†H) . (7.1)

However, this mechanism is only relevant when the dimension-5 operator given by eq. (1.1)

that leads to the tree-level neutrino mass through the seesaw mechanism is forbidden due

to some symmetry. This happens in the minimal radiative inverse seesaw model [43]. In

the usual inverse seesaw model [194], one adds two sets of SM-singlet fermions, N and S,

with opposite lepton numbers. The presence of a Majorana mass term for the S-field, i.e.,

µSSS leads to a tree-level neutrino mass via the standard inverse seesaw mechanism [194].

However, if one imposes a global U(1) symmetry under which the S-field is charged, then the

µSSS term can be explicitly forbidden at tree-level.17 In this case, the only lepton number

breaking term that is allowed is the Majorana mass term for the N -field, i.e., µRNN . It

can be shown that this term by itself does not give rise to neutrino mass at tree-level, but

a non-zero neutrino mass is inevitably induced at one-loop through the diagram shown

in figure 37 involving the SM Higgs doublet (which gives rise to two diagrams involving

the SM Higgs and Z-boson after electroweak symmetry breaking [43]). One can see that

the low-energy effective operator that leads to neutrino mass in this model is the d = 7

operator O′
1 of eq. (1.5) by cutting figure 37 at one of the H-legs in the loop.

16There is yet another possibility where the mediators could be new vector bosons; however, this necessar-

ily requires some new gauge symmetry and other associated Goldstone bosons to cancel the UV divergences.
17This can be done, for instance, by adding a singlet scalar field σ with a global U(1) charge of +2, and

by making N and S oppositely charged under this U(1), viz., N(−1) and S(+1), so that the SσS term is

forbidden, but NσN and SσN are allowed. Furthermore, this global U(1) symmetry can be gauged, e.g.,

in an E6 GUT embedding, where the fundamental representation 27 breaks into 161 + 10−2 + 14 under

SO(10) × U(1). The ν and N belong to the 161 subgroup, while the S belongs to 14. Adding two scalars

σ, σ′ with U(1) charges −2 and −5 respectively allows the Dirac mass term NσS and Majorana mass term

Nσ′N in eq. (7.2), but not the Majorana mass terms Sσ(′)S.
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The relevant part of the Yukawa Lagrangian of this model is given by

− LY ⊃ YαβLαHNβ + Sρα(MN )ραNα +
1

2
NT
α C(µR)αβNβ +H.c. (7.2)

After electroweak symmetry breaking, evaluating the self-energy diagrams that involve

the Z-boson and Higgs boson (cf. figure 37), the neutrino mass reads as (in the limit

µR ≪MN ) [43, 195]:

Mν ≃ αw
16πm2

W

(MDµRM
T
D)

[
xh

xN − xH
log

(
xN
xH

)
+

3xZ
xN − xZ

log

(
xN
xZ

)]
, (7.3)

where MD ≡ Y v/
√
2, αw ≡ g2/4π, xN = m2

N/m
2
W , xH = m2

H/m
2
W and xZ = m2

Z/m
2
W ,

and we have assumed MN = mN1 for simplicity.

The NSI in this model arise due to the fact that the light SU(2)L-doublet neutrinos ν

mix with the singlet fermions N and S, due to which the 3× 3 lepton mixing matrix is no

longer unitary. The neutrino-nucleon and neutrino-electron interactions proceed as in the

SM via t-channel exchange of W and Z bosons, but now with modified strength because

of the non-unitarity effect, that leads to NSI [196]. If only one extra Dirac state with mass

larger than ∼GeV (such that it cannot be produced in accelerator neutrino oscillation

experiments, such as DUNE) mixes with the three light states with mixing parameters Uα4
(with α = e, µ, τ ), we can write the NSI parameters as

εee =

(
Yn
2

− 1

)
|Ue4|2, εµµ =

Yn
2
|Uµ4|2, εττ =

Yn
2
|Uτ4|2,

εeµ =
1

2
(Yn − 1)Ue4U

⋆
µ4, εeτ =

1

2
(Yn − 1)Ue4U

⋆
τ4, εµτ =

Yn
2
Uµ4U

⋆
τ4 . (7.4)

Here Yn = Nn/Ne is the ratio of the average number density of neutrons and electrons in

matter. Note that for Yn → 1 which is approximately true for neutrino propagation in earth

matter, we get vanishing εeµ and εeτ up to second order in Uα4.
18 Taking into account all

the experimental constraints on Uα4U
⋆
β4 from neutrino oscillation data in the averaged-out

regimes, beta decay, rare meson decay, beam dump experiments, cLFV searches, collider

constraints from LEP and LHC, as well as electroweak precision constraints [196–201], the

maximum NSI parameters allowed in this model are summarized in table 20. We find

that [65]

|εmax
ee | = 1.3× 10−3 , εmax

µµ = 2.2× 10−4 , εmax
ττ = 2.8× 10−3 ,

εmax
eµ = 3.5× 10−5 , εmax

eτ = 1.4× 10−4 , εmax
µτ = 1.2× 10−3 . (7.5)

For εeµ and εeτ , we have used Yn = 1.051 (for average value all over the earth) in eq. (7.4),

in addition to the cLFV constraints on Ue4U
⋆
µ4 and Ue4U

⋆
τ4. The maximum NSI values

listed above (and also summarized in table 20) are obtained for a relatively heavy sterile

neutrino (with mass larger than the electroweak-scale), so that the stringent low-energy

18This result is in disagreement with ref. [196], where they have εαβ = 1
2
Uα4U

⋆
β4 for all the off-diagonal

NSI parameters, which cannot be the case, because for α = e, both CC and NC contributions are present,

whereas for α 6= e, only the NC contribution matters.
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Figure 38. Neutrino mass generation in the one-loop model with vectorlike leptons. This is the

O1
2 model of table 2 [31].

constraints from beam dump and meson decays can be avoided, and the only relevant

constraint comes from the electroweak precision data [201].

The NSI expressions (7.4) also apply to two-loop radiative models with two W -boson

exchange [202–204]. However, the maximum NSI obtainable in these models will be much

smaller than the estimate in eq. (7.5) because the sterile neutrino in this case is required

to be heavier for successful neutrino mass generation at two-loop.

7.1.2 One-loop model with vectorlike leptons

This model [31] utilizes the same d = 7 operator O2 = LiLjLkecH lǫijǫkl (cf. eq. (2.2b)), as

in the Zee model to generate a one-loop neutrino mass. The new particles added are a scalar

singlet η+(1,1, 1) and a vectorlike lepton ψ
(
1,2,−3

2

)
= (E, F−−), which give rise to the

O1
2 operator L(LL)(e

cH) (cf. table 2). Neutrino mass is generated via the one-loop diagram

shown in figure 38. The relevant Lagrangian for the neutrino mass generation reads:

− L ⊃ fαβLαLβη
+ + y′αβLαψ

c
βη

− + yαβℓ
c
αψβH +mψψψ

c +H.c. (7.6)

where ψc = (F++, −Ec) and H
(
1,2, 12

)
is the SM Higgs doublet. Expanding the first two

terms, we get

− L ⊃ fαβ(ναℓβη
+ − ℓανβη

+)− y′αβ(ναE
+
β η

− + ℓαE
++
β η−) + H.c. (7.7)

The neutrino mass matrix can be estimated as

Mν ∼ 1

16π2
v

M2

(
f Mℓ yME y

′T + y′MEy
TMℓf

T
)
, (7.8)

whereMℓ is the diagonal mass matrix for the SM charged leptons, ME is the diagonal mass

matrix for the vector-like leptons with eigenvalues mEi , andM ≡ max(mη,mEi). Note that

just one flavor of ψ is not sufficient, because in this case, the neutrino mass matrix (7.8)

would have a flavor structure given by (fMℓ −Mℓf), which has all the diagonal entries

zero, similar to the Zee-Wolfenstein model [77]. Such a structure is ruled out by observed

neutrino oscillation data. Thus, we require at least two flavors of ψ, in which case the

diagonal entries of Mν are nonzero, and the model is consistent with experiments.
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Observable Exp. limit Constraint

µ→ eγ BR < 4.2× 10−13 [89] |f⋆eτfµτ | < 1.09× 10−3
(m

h+

TeV

)2

τ → eγ BR < 3.3× 10−8 [88] |f⋆eµfµτ | < 0.71
(m

h+

TeV

)2

τ → µγ BR < 4.4× 10−8 [88] |f⋆eµfeτ | < 0.82
(m

h+

TeV

)2

lep./had. univ.
∑

q=d,s,b

|V exp
uq |2 = 0.9992± 0.0011 [85] |feµ|2 < 0.015

(m
h+

TeV

)2

µ/e univ. gexpµ /gexpe = 1.0001± 0.0020 [85]
∣∣|fµτ |2 − |feτ |2

∣∣ < 0.05
(m

h+

TeV

)2

τ/µ univ. gexpτ /gexpµ = 1.0004± 0.0022 [85]
∣∣|feτ |2 − |feµ|2

∣∣ < 0.06
(m

h+

TeV

)2

τ/e univ. gexpτ /gexpe = 1.0004± 0.0023 [85]
∣∣|fµτ |2 − |feµ|2

∣∣ < 0.06
(m

h+

TeV

)2

Table 19. Constraints on the singly-charged scalar Yukawa couplings [205]. Here gexpα stands for

the effective gauge coupling extracted from muon and tau decays in the different leptonic channels.

NSI in this model are induced by the f -type couplings in eq. (7.7), similar to the

f -couplings in the Zee model Lagrangian (4.2). The NSI parameters read as

εαβ ≡ εeeαβ =
1√
2GF

f⋆eαfeβ
m2
η+

. (7.9)

Due to the antisymmetric nature of the f couplings, the only relevant NSI parameters

in this case are εµτ , εµµ, and εττ . These are severely constrained by cLFV searches and

universality of charged currents [205], as shown in table 19. This is similar to the case of

Zee-Babu model discussed later in section 7.2.1. Since the singly-charged scalar mass has

to be above ∼ 100GeV to satisfy the LEP constraints (cf. section 4.7), we obtain from

eq. (7.9) and table 19 the following maximum values:

εmax
ee = 0 , εmax

µµ = 9.1× 10−4 , εmax
ττ = 3.0× 10−3 ,

εmax
eµ = 0 , εmax

eτ = 0 , εmax
µτ = 3.0× 10−3 . (7.10)

This is also summarized in table 20.

7.1.3 SU(2)L-singlet leptoquark model with vectorlike quark

This model [31] is the O4
3 realization of the dimension-7 operator O3 (cf. table 3). The new

particles introduced are a scalar LQ singlet χ
(
3,1,−1

3

)
and a vectorlike quark doublet

Q
(
3,2,−5

6

)
=
(
D−1/3, X−4/3

)
. Neutrino mass is generated at one-loop level as shown

in figure 39. The QQχ⋆ and dcucχ interaction terms, allowed by gauge invariance, are

forbidden by demanding baryon-number conservation in order to avoid rapid proton decay.

The relevant Lagrangian for the neutrino mass generation reads as

− LY ⊃ λαβLαQβχ
⋆ + λ′αLαQcχ+ fαd

c
αQH + f ′αβℓ

c
αu

c
βχ+H.c. (7.11)

Expanding the first two terms, we get

− LY ⊃ λαβ(ναdβχ
⋆ − ℓαuβχ

⋆)− λ′α(ναD
cχ+ ℓαX

cχ) . (7.12)
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Figure 39. Neutrino mass generation in the one-loop singlet LQ model with vectorlike quarks.

This is the O4
3 model of table 3 [31].

The neutrino mass matrix can be estimated as

Mν ∼ 1

16π2
v

M2

(
λMdfMDλ

′T + λ′MDf
TMdλ

T
)
, (7.13)

where Md is the diagonal down-type quark mass matrix, MD is the mass matrix for the

down-type VQ with eigenvalues mDi , and M ≡ max(mχ,mDi). With a single copy of VQ

quarks, the rank of Mν is two, implying that the lightest neutrino has zero mass at the

one-loop order. This model can lead to consistent neutrino oscillation phenomenology.

NSI in this model are induced by the λ-type interactions in eq. (7.12):

εαβ =
3

4
√
2GF

λ⋆αdλβd
m2
χ

. (7.14)

This is similar to the singlet LQ contribution in eq. (5.48), with the important exception

that the NSI get contribution only from the λ-couplings, and therefore, the IceCube limits

on |εµµ−εττ | < 9.3% cannot be avoided, just like in the Zee model case. The corresponding

maximum NSI can be read off from table 17, except for εττ :

εmax
ee = 0.0069 , εmax

µµ = 0.0086 , εmax
ττ = 0.093 ,

εmax
eµ = 1.5× 10−7 , εmax

eτ = 0.0036 , εmax
µτ = 0.0043 . (7.15)

This is also summarized in table 20.

7.1.4 SU(2)L-doublet leptoquark model with vectorlike quark

This is referred to as O6
3 in table 3. The model has an SU(2)L-doublet LQ Ω

(
3,2, 16

)
=(

ω2/3, ω−1/3
)
and an SU(2)L-triplet vectorlike quark Σ

(
3,3, 23

)
=
(
Y 5/3, U2/3, D−1/3

)
.

Neutrino mass is generated at one-loop level via the Feynman diagram shown in figure 40.

The relevant Lagrangian for the neutrino mass generation can be written as

−LY ⊃ MΣΣΣ
c +

(
λαβLαd

c
βΩ+ λ′αQαΣ

cH + λ′′αLαΣΩ̃ + H.c.
)
, (7.16)

– 82 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

να dcγ dγ Dc D νβ

ω−1/3

⟨H0⟩

Figure 40. Neutrino mass generation in the one-loop doublet LQ model with vectorlike quarks.

This is the model O6
3 of table 3 [31].

where Ω̃ = iτ2Ω
⋆ is the isospin conjugate field. Expanding the terms in eq. (7.16), we

obtain

−LY ⊃MΣ (Y Y c +DDc + UU c) +

[
λαβ

(
ναω

−1/3 − ℓαω
2/3
)
dcβ

+λ′α

{
uαY

cH+ +
1√
2

(
uαH

0 + dαH
+
)
U c + dαD

cH0

}

+λ′′α

{
ναDω

⋆1/3 − 1√
2

(
−ναω⋆−2/3 + ℓαω

⋆1/3
)
U − ℓαY ω

⋆−2/3

}
+H.c.

]
. (7.17)

The neutrino mass can be estimated as

Mν ∼ 1

16π2
v

M2

(
λMdλ

′MDλ
′′T + λ′′MDλ

′TMdλ
T
)
, (7.18)

where Md and MD are the diagonal down quark mass matrix and vectorlike quark mass

matrix respectively, and M ≡ max(mω,mDi), with mDi being the eigenvalues of MD. As

in previous models with one copy of vectorlike fermion, the rank of Mν is two in this model,

implying that the lightest neutrino is massless at the one-loop level.

NSI in this model are induced by the doublet LQ component ω−1/3. The NSI param-

eters read as

εαβ =
3

4
√
2GF

λ⋆αdλβd
m2
ω

. (7.19)

This expression is similar to the doublet LQ contribution in eq. (5.48), with the exception

that the IceCube limits on |εµµ − εττ | < 9.3% cannot be avoided. The corresponding

maximum NSI can be read off from table 17, except for εµµ and εττ :

εmax
ee = 0.004 , εmax

µµ = 0.093 , εmax
ττ = 0.093 ,

εmax
eµ = 1.5× 10−7 , εmax

eτ = 0.0036 , εmax
µτ = 0.0043 . (7.20)

This is also summarized in table 20.

7.1.5 Model with SU(2)L-triplet leptoquark and vectorlike quark

This is based on the operator O5
3 (see table 3) which is realized by adding an SU(2)L-

triplet ρ̄
(
3̄,3, 13

)
=
(
ρ̄4/3, ρ̄1/3, ρ̄−2/3

)
and a vectorlike quark doublet Q

(
3,2,−5

6

)
=
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Figure 41. Neutrino mass generation in the one-loop triplet LQ model with vectorlike quarks.

This model corresponds to O5
3 of table 3 [31].

(
D−1/3, X−4/3

)
. Neutrino mass is generated at one-loop level, as shown as figure 41.

There is also a two-loop diagram involving ρ2/3, which is not considered here, as that

would be sub-dominant to the one-loop diagram. The interaction term QQρ is forbidden

by demanding baryon-number conservation to avoid proton decay. The relevant Lagrangian

for the neutrino mass generation can be written as

−LY ⊃ MQQQc + (λαβLαQβ ρ̄+ λ′αLαQ
cρ+ yαd

c
αQH +H.c.) , (7.21)

where ρ̄ is related to ρ by charge conjugation as ρ
(
3,3,−1

3

)
=
(
ρ2/3, −ρ−1/3, ρ−4/3

)
.

Expanding the terms in eq. (7.21), we get

−LY ⊃MQ (DDc +XXc) +

[
λαβ

{
ναuβ ρ̄

−2/3 − 1√
2
(ναdβ + ℓαuβ) ρ̄

1/3 + ℓαdβ ρ̄
4/3

}

+λ′α

{
ναX

cρ−4/3 +
1√
2
(ℓαX

c − ναD
c) ρ−1/3 − ℓαD

cρ2/3
}

+ yα
(
DH0 −H+X

)
dcα +H.c.

]
. (7.22)

The neutrino mass can be estimated as

Mν ∼ 1

16π2
v

M2

(
λMd yMD λ

′T + λ′MD y
TMd λ

T
)
, (7.23)

whereMd andMD are the diagonal mass matrices for down-type quark and vectorlike quark

fields, and M = max(mDi ,mρ), with mDi being the eigenvalues of MD. With a single copy

of the vectorlike quark, the matrices y and λ′ are 3 × 1 dimensional. Consequently the

rank of Mν is two, which would imply that the lightest neutrino mass m1 = 0 at the one-

loop level. Realistic neutrino mixing can however be generated, analogous to the model of

ref. [15, 16].

NSI in this model are induced by both ρ̄−2/3 and ρ̄1/3 fields, which couple to up and

down quarks respectively (cf. eq. (7.22)). The NSI parameters read as

εαβ =
3

4
√
2GF

(
λ⋆αuλβu
m2
ρ−2/3

+
λ⋆αdλβd
2m2

ρ1/3

)
. (7.24)

This is same as the triplet contribution in eq. (6.4) and the maximum allowed values are

given in eq. (6.15).

– 84 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

⟨H0⟩

ρ̄(−2/3)
δ2/3

να ucγ uγ νβ

⟨H0⟩
⟨H0⟩

ξ2/3

Figure 42. Feynman diagram for neutrino mass generation in the extended one-loop LQ model

with up-type quark chiral suppression in the loop. The ∆L = 2 effective operator is Õ1 of eq. (7.25).

7.1.6 A new extended one-loop leptoquark model

Here we present a variation of the one-loop LQ model of section 5 wherein the neutrino

mass is generated with up-quark chiral suppression (see figure 42), rather than down-quark

mass suppression (as in figure 22). The effective operator of the model is of dimension nine,

given by

Õ1 = (LQ)(Luc)(HH)H , (7.25)

which may appear to be a product of O1 of eq. (1.1) and the SM operator (QucH); but the

SU(2)L contractions mix the two sub-operators. To realize this operator at the one-loop

level, three SU(3)c-triplet LQ fields are introduced: δ
(
3,2, 76

)
=
(
δ5/3, δ2/3

)
, ρ̄
(
3̄,3, 13

)
=(

ρ̄4/3, ρ̄1/3, ρ̄−2/3
)
, ξ
(
3,1, 23

)
. Since three new fields are introduced, this model may be

viewed as non-minimal, and does not fit into the classification of The corresponding La-

grangian for the neutrino mass generation reads as

−LY ⊃λαβLαu
c
βδ + λ′αβLαQβ ρ̄+H.c.

=λαβ

(
ναu

c
βδ

2/3 − ℓαu
c
βδ

5/3
)

+ λ′αβ

[
ℓαdβ ρ̄

4/3 − 1√
2
(ναdβ + ℓαuβ) ρ̄

1/3 + ναuβ ρ̄
−2/3

]
+H.c. (7.26)

Neutrino mass is generated by the diagram shown in figure 42 using the Lagrangian (7.26),

together with the potential terms

V ⊃ λ1ρ̄H̃H̃ξ + µH̃δξ⋆ +H.c.

= λ1ξ
2/3
(
ρ̄4/3H−H− +

√
2ρ̄1/3H0H− + ρ̄−2/3H0H0

)

+µξ⋆−2/3
(
H0δ2/3 +H−δ5/3

)
+H.c. (7.27)

where H̃ = (H0, −H−) represents the SM Higgs doublet. The neutrino mass matrix can

be estimated as

Mν ∼ 1

16π2
µλ1v

3

m2
1m

2
2

(λMuλ
′T + λ′Muλ

T ) , (7.28)

where m1 and m2 are the masses of the heaviest two LQs among the δ, ρ̄ and ξ fields,

and Mu is the diagonal mass matrix in the up-quark sector. To get small neutrino masses,
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we need the product λλ′ ≪ 1. We may take λ ∼ O(1) and λ′ ≪ λ which is preferable to

the other case of λ ≪ λ′, since the λ′ couplings are constrained by D-meson decays (see

section 5.1.6).

After integrating out the heavy LQ fields, eq. (7.26) leads to an effective NSI La-

grangian with up-quarks in the neutrino propagation through matter. The NSI parameters

read as

εαβ =
3

4
√
2GF

(
λ⋆αuλβu
m2
δ

+
λ′⋆αuλ

′
βu

m2
ρ−2/3

+
λ′⋆αdλ

′
βd

2m2
ρ1/3

)
. (7.29)

For λ ≫ λ′, this expression is exactly the same as the doublet LQ contribution derived

in eq. (5.48) and the corresponding maximum NSI can be read off from table 17 for the

doublet component. For λ′ ≫ λ, eq. (7.29) is the same as eq. (7.24). This latter choice

maximizes NSI in this model and is summarized in table 20.

There are other variations of one-loop LQ models with more exotic particles [29, 30],

where the neutrino mass is proportional to up-type quark mass. The NSI predictions in

these models are the same as in eq. (7.29).

7.2 Two-loop models

7.2.1 Zee-Babu model

This model realizes the operator O9 of eq. (1.4). In this model [15, 16], two SU(2)L-singlet

Higgs fields, h+(1,1, 1) and k++(1,1, 2), are introduced. The corresponding Lagrangian

for the generation of neutrino mass reads:

−LY ⊃ fαβL
i
αCL

j
βh

+ǫij + hαβℓ
T
αCℓβk

++ +H.c.

= fαβ(ν
T
αCℓβ − νTβ Cℓα)h

+ + hαβℓ
T
αCℓβk

++ +H.c. (7.30)

Majorana neutrino masses are induced at two-loop as shown in figure 43 by the La-

grangian (7.30), together with the potential term

V ⊃ −µh−h−k++ +H.c. . (7.31)

The neutrino mass matrix reads:

Mν ≃ 1

(16π2)2
8µ

M2
fMuh

†Muf
TI , (7.32)

where M = max(mk++ ,mh+) and I is a dimensionless function that depends on the ratio

of the masses of the two new scalars [90, 205–207]. The singly charged scalar h+ induces

NSI at tree-level through the f -type Yukawa coupling in eq. (7.30). After integrating out

the heavy scalars, NSI induced in neutrino propagation through normal matter can be

written as in eq. (7.9), with the replacement mη+ → mh+ , and the maximum NSI are given

by eq. (7.10). These are severely constrained by cLFV searches and universality of charged

currents [205] (cf. table 19), restricting the maximum NSI to O(10−3) level [208]. These

numbers are summarized in table 20.
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Figure 43. Neutrino mass generation at two-loop in the Zee-Babu model [15, 16]. This model

generates operator O9 of eq. (1.4).

7.2.2 Leptoquark/diquark variant of the Zee-Babu model

One can also generate neutrino mass at two-loop by replacing leptons with quarks in the

Zee-Babu model as shown in figure 44. Here the effective operator is of dimension nine,

given by

O11 = LiLjQkdcQldcǫikǫjl . (7.33)

In addition to the SM fields, this model [32] employs a scalar LQ χ
(
3,1,−1

3

)
and a scalar

DQ ∆
(
6,1,−2

3

)
. The χ (∆) field plays the role of singly (doubly)-charged scalar in the

Zee-Babu model. The relevant Yukawa Lagrangian for the neutrino mass generation is

written as

−LY ⊃λαβL
i
αQ

j
βχ

⋆ǫij + hαβd
c
αd

c
β∆

−2/3 +H.c.

=λαβ (ναdβ − ℓαuβ)χ
⋆ + hαβd

c
αd

c
β∆

−2/3 +H.c. (7.34)

Neutrino mass is generated at two-loop via the Lagrangian (7.34) in combination with the

potential term

V ⊃ −µχ⋆χ⋆∆−2/3 +H.c. (7.35)

The neutrino mass matrix can be calculated as

Mν ∼ 24µ

(16π2)2M2
λMdh

†Mdλ
TI , (7.36)

where M ≡ max(mχ,m∆), Md is the diagonal down-type quark mass matrix, and I is a

dimensionless two-loop integral defined in terms of the ratio of m2
∆ and m2

χ [90]. After

integrating out the heavy scalars, the NSI parameters in this model are given by This is

also summarized in table 20.

There are a few variants of this LQ/DQ version of the Zee-Babu model. First, one

could replace the color sextet field ∆
(
6,1,−2

3

)
by a color triplet scalar ∆

(
3,1,−2

3

)
in

figure 44. The cubic term χ⋆χ⋆∆ will not be allowed by Bose symmetry in this case. By

assuming two copies of the χ field, namely, χ1 and χ2, one could restore this coupling from

χ⋆1χ
⋆
2∆, in which case the diagram of figure 44 can be connected [41]. The NSI in such a

model is identical to the model described in this section. Second, one could replace the

internal down quarks of figure 44 by up-type quarks, with a simultaneous replacement of

χ
(
3,1,−1

3

)
by ρ

(
3,3,−1

3

)
and ∆

(
6,1,−2

3

)
by ∆

(
6,1, 43

)
. Neutrino NSI will then follow

the ρ NSI predictions as in section 7.1.5. In this up-quark variant, one could replace the

DQ ∆
(
6,1, 43

)
by a color triplet field ∆

(
3,1, 43

)
as well [41].
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Figure 44. Neutrino mass generation at two-loop in the LQ/DQ variant of the Zee-Babu model

which generates operator O11 [32], cf. eq. (1.4).
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a
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H−
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Figure 45. Two-loop diagrams contributing to neutrino mass generation in the model of ref. [33].

The model realizes operator O4
8 of table 5.

7.2.3 Model with SU(2)L-doublet and singlet leptoquarks

Operator O4
8 of table 5 does not induce neutrino mass via one-loop diagrams owing to

the SU(2)L index structure. This operator will, however, lead to generation of neutrino

masses at the two-loop level. A simple realization of O4
8 is given in ref. [33]. This model

uses the same gauge symmetry and particle content as in the LQ variant of the Zee model

(cf. section 5), i.e., Ω
(
3,2, 16

)
=
(
ω2/3, ω−1/3

)
and χ

(
3,1,−1

3

)
, with χ coupling modified

as follows:

−LY ⊃λαβL
i
αd

c
βΩ

jǫij + fαβℓ
c
αu

c
βχ+H.c. ,

=λαβ

(
ναd

c
βω

−1/3 − ℓαd
c
βω

2/3
)
+ fαβℓ

c
αu

c
βχ+H.c. (7.37)

Note that these Yukawa couplings conserve both baryon and lepton number as can be seen

by assigning (B,L) charges of
(
1
3 ,−1

)
to Ω and

(
1
3 , 1
)
to χ. The couplings λ̃αβu

c
αd

c
βχ

⋆,

allowed by the gauge symmetry are forbidden by B, and the couplings λ′αβLαQβχ
⋆ (as in

eq. (5.1)), allowed by gauge symmetry as well as B are forbidden by L.19 The L symmetry

is softly broken by the cubic term in the scalar potential (5.2).

The simultaneous presence of eqs. (7.37) and (5.2) would lead to neutrino mass genera-

tion at two-loop level as shown in figure 45. HereXa (with a = 1, 2) are the mass eigenstates

obtained from the mixture of the ω−1/3 and χ−1/3 states (cf. eq. (5.4)). Evaluation of the

19The simultaneous presence of the f and λ′ couplings will drastically alter the successful V −A structure

of the SM [209], and therefore, the λ′ terms must be forbidden in this model by L symmetry.
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Figure 46. Two-loop neutrino mass generation in the model of ref. [34] with a LQ and a vector-like

quark. This model corresponds to O3
3 of table 3.

LQ-W exchange diagrams in figure 45(a) give the neutrino mass matrix as

Mν ∼ 3g2 sin 2α

(16π2)2M2

[
λMdV

TMuf
†Mℓ +Mℓf

⋆MuVMdλ
T
]
I , (7.38)

where 3 is a color factor, α is the ω − χ mixing angle (cf. eq. (5.5)), Mu,d,ℓ are diagonal

mass matrices for the up- and down-type quarks, and charged leptons, respectively, V is

the CKM mixing matrix, M ≡ min(m1,m2) (with m1,2 given by eq. (5.6)), and I is a

dimensionless two-loop integral that depends on m1,2, mW and Mu,d,ℓ [33].

NSI induced in this LQ model has the same features as the LQ variant of the Zee model

discussed in section 5.4. Note that the fαβ-couplings in eq. (7.37) do not lead to neutrino

NSI. The expression for the NSI parameters is given by eq. (7.19), with the maximum

allowed values given in eq. (7.20) and also summarized in table 20.

7.2.4 Leptoquark model with SU(2)L-singlet vectorlike quark

This model utilizes the dimension-7 operator LiLjǫijQ
kH lǫkld

c to generate two-loop neu-

trino mass [34]. This specific realization corresponds to the model O3
3 of table 3 [31]. In ad-

dition to the SM fields, an SU(2)L-singlet vector-like quarks U
(
3,1, 23

)
and U c

(
3⋆,1,−2

3

)
,

and a scalar doublet LQ Ω
(
3,2, 16

)
=
(
ω2/3, ω−1/3

)
are added to the SM spectrum. Addi-

tion of these fields leads to the following new Yukawa Lagrangian:

−LY ⊃λαβLαΩd
c
β + λ′αLαΩ̃U + fαQαHU

c +H.c. ,

=λαβ(ναd
c
βω

−1/3 − ℓαd
c
βω

2/3) + λ′α
[(
ω−1/3

)⋆
ℓαU + να

(
ω2/3

)⋆
U
]

(7.39)

+ fα(uαH
0U c − dαH

+U c) + H.c. ,

where Ω̃ ≡ iτ2Ω
⋆. The presence of all three Yukawa terms implies that lepton number is

not conserved. Together with the quartic coupling term in the potential

V ⊃ λω|ΩiHjǫij |2 ⊃ −λωω−1/3ω−2/3H+H0 +H.c. , (7.40)
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Figure 47. Two-loop neutrino mass generation in the Angelic model [35]. This model induces

operator O11 of ref. [26].

the Lagrangian (7.40) leads to neutrino mass generation at two-loop as shown in figure 46.

This can be estimated as

Mν ≃ λω
(16π2)2

v

M2
(λMdfMUλ

′T + λ′MT
U f

TMT
d λ

T ) , (7.41)

where Md and MU are the diagonal down quark and vectorlike quark mass matrices re-

spectively, and M =max(mω,mUi), with mUi being the eigenvalues of MU .

NSI in this model are induced by the ω−1/3 LQ and are given by eq. (7.19). The

maximum NSI that can be obtained in this model are given in eq. (7.20) and are also

summarized in table 20.

7.2.5 Angelic model

This model induces operator O11 of ref. [26]:

O11 = LiLjQkdcQldcǫikǫjl . (7.42)

In this model [35], one adds two scalar LQs χa
(
3,1,−1

3

)
(with a = 1, 2) and a color-octet

Majorana fermion F (8,1, 0). The relevant Yukawa Lagrangian is written as

− LY ⊃ λαβaLαQβχa + λ′αad
c
αFχa + λ′′αβae

c
αuβχa +H.c. (7.43)

Expanding the first term, we get

− LY ⊃ λαβ1 (ναdβ − ℓαuβ)χ
⋆
1 + λαβ2 (ναdβ − ℓαuβ)χ

⋆
2 +H.c. (7.44)

Within this framework, neutrino mass is induced at two-loop level as shown in figure 47

which can be estimated as

Mν ∼ 4mF

(16π2)2M2
(λλ′V )(MdIMd)(λλ

′V )T , (7.45)

where V is the CKM-matrix, Md is the diagonal down-quark mass matrix, M ≡
max(mF ,mχa), and I is a loop function containing mχa ,mF and Md [35].

NSI in this model are induced by the singlet LQ χ and are given by

εαβ =
3

4
√
2GF

λ⋆αdaλβda
m2
χa

. (7.46)

This is similar to the singlet LQ contribution in eq. (7.14). The maximum NSI in this

model are the same as in eq. (7.15). This is tabulated in table 20.
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Figure 48. Two-loop neutrino mass generation with singlet scalar and vector-like quark, corre-

sponding to O1
3 or table 3 [31].

7.2.6 Model with singlet scalar and vectorlike quark

This model realizes the O1
3 operator (cf. table 3) by adding a singlet scalar η+(1,1, 1) and

vectorlike quark Q
(
3,2,−5

6

)
=
(
D−1/3, X−4/3

)
. Neutrino mass is generated at two-loop

level as shown in the figure 48. The relevant Lagrangian for the neutrino mass generation

can be read as:

−LY ⊃ fαβLαLβη
+ + f ′αQcQαη

− + YαQdcαH +H.c.

= fαβ(ναℓβη
+ − ℓανβη

+)− f ′α(X
cdαη

− +Dcuαη
−)

+Yα(Dd
c
αH

0 −XdcαH
+) + H.c. (7.47)

The neutrino mass can be estimated as

Mν ∼ g2 sinϕ

(16π2)2m2
η

(
M2
ℓ f + fTM2

ℓ

)
, (7.48)

where sinϕ represents the mixing between W+ and η+. The role of the vectorlike quarks

in this model is to achieve such a mixing, which requires lepton number violation. Note

that only the longitudinal component of W mixes with η+, which brings in two powers of

lepton mass suppression in the neutrino mass estimate — one from the Yukawa coupling of

the longitudinal W and the other from a required chirality-flip inside the loop. It is to be

noted that eq. (7.48) does not fit the neutrino oscillation data as it has all diagonal entries

zero, owing to the anti-symmetric nature of the f -couplings.

Other operators which lead to similar inconsistency with the neutrino oscillation data

are O2
3, O1

4 and O2
4 (cf. tables 3 and 4). Therefore, we do not discuss the NSI prospects in

these models.

7.2.7 Leptoquark model with vectorlike lepton

This model is a realization of O2
8 in table 5. This is achieved by adding an SU(2)L-doublet

LQ Ω
(
3,2, 16

)
and a vectorlike lepton ψ

(
1,2,−1

2

)
= (N, E). The Lagrangian responsible
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Figure 49. Two-loop neutrino mass generation with SU(2)L-doublet LQ and vector-like lepton,

corresponding to O2
8 of table 5 [31].

for neutrino mass generation can be written as

−LY ⊃ mψψψ
c + (λαβLαΩd

c
β + λ′αψ

cucαΩ+ λ′′αψℓ
c
αH̃ +H.c.)

= mψ(NN
c + EEc) +

[
λαβ(ναd

c
βω

−1/3 − ℓαd
c
βω

2/3) + λ′α(E
cω−1/3 +N cω2/3)ucα

+λ′′α(NH
− + EH

0
)ℓcα +H.c.)

]
. (7.49)

Neutrino masses are generated at two-loop level via diagrams shown in figure 49 and can

be estimated as:

Mν ∼ g2

(16π2)2
v

m2
ωm

2
E

(
λMdMuλ

′⋆MEλ
′′†Mℓ +Mℓλ

′′⋆MEλ
′†MuMdλ

T
)
, (7.50)

where Md, Mu, Mℓ and ME are the diagonal mass matrices for down quark, up quark,

charged leptons and vectorlike leptons, respectively, and mE is the largest eigenvalue of

ME . The NSI parameters can be written as in eq. (7.19), with the maximum values given

in eq. (7.20) and also summarized in table 20.

7.2.8 Leptoquark model with SU(2)L–doublet vectorlike quark

This model realizes the O3
8 operator (cf. table 5) by adding an SU(2)L-doublet LQ

Ω
(
3,2, 16

)
and an SU(2)L-doublet vectorlike quark ξ

(
3,2, 76

)
=
(
V 5/3, U2/3

)
. The cor-

responding Lagrangian for the neutrino mass generation is given by

−LY ⊃ mξξξ
c + (λαβLαΩd

c
β + λ′αξu

c
αH̃ + λ′′αξ

cℓcαΩ+H.c.)

= mξ(V V
c + UU c) +

[
λαβ(ναω

−1/3 − ℓαω
2/3)dcβ − λ′α(V H

− + UH̄0)ucα

+λ′′α(U
cω−1/3 + V cω2/3)ℓcα +H.c.

]
. (7.51)

Neutrino mass is generated at two-loop level as shown in figure 50 and can be estimated as

Mν ∼ g2

(16π2)2
v

m2
ωm

2
U

(
λMdMuλ

′⋆MUλ
′′†Mℓ +Mℓλ

′′⋆MUM
′†
λMuMdλ

T
)
. (7.52)

where Md, Mu, Mℓ and MU are the diagonal mass matrices for down quark, up quark,

charged leptons and vectorlike quarks, respectively, and mU is the largest eigenvalue of

MU . The NSI parameters can be written as in eq. (7.19), with the maximum values given

in eq. (7.20).
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Figure 50. Two-loop neutrino mass generation with SU(2)L-doublet LQ and SU(2)L-doublet

vectorlike quark corresponding to O3
8 or table 5 [31].
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Figure 51. New two-loop scalar LQ model with up-quark loops. The operator induced in the

model is Od=13 in eq. (7.53).

7.2.9 A new two-loop leptoquark model

Here we propose a new two-loop LQ model for neutrino mass, where one can get NSI with

up-quark. The effective ∆L = 2 operator is d = 13, and is given by

Od=13 = QLucQLucHHHH . (7.53)

This model utilizes two scalar LQs — δ
(
3,2, 76

)
=
(
δ5/3, δ2/3

)
and Ω

(
3,2, 16

)
=

(
ω2/3, ω−1/3

)
, and a scalar DQ ∆̂

(
6⋆,3,−1

3

)
=
(
∆̂−4/3, ∆̂−1/3, ∆̂2/3

)
. The relevant

Yukawa Lagrangian for the neutrino mass generation reads as

−LY ⊃ fαβLαδu
c
β + hαβQα∆̂Qβ + yαβQαHu

c
β +H.c.

= fαβ

(
ναu

c
βδ

2/3 − ℓαu
c
βδ

5/3
)
+ hαβ

(
uαuβ∆̂

−4/3 +
√
2uαdβ∆̂

−1/3 + dαdβ∆̂
2/3
)

+ yαβ
(
uαH

0ucβ − dαH
+ucβ

)
+H.c. (7.54)

The relevant terms in the potential that leads to neutrino mass generation read as

V ⊃ µΩ2∆̂ + λδ†ΩHH +H.c. (7.55)
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The neutrino mass is induced at two-loop level as shown in figure 51 and can be estimated as

Mν ∼ 1

(16π2)2
µv4λ2

m2
δm

2
ωm

2
∆̂

fMuhMuf
T , (7.56)

whereMu is the diagonal up-type quark mass matrix. Note thatMν is a symmetric matrix,

as it should be, since h = hT .

After integrating out the heavy scalars, NSI induced in this model can be written as

εαβ =
3

4
√
2GF

f⋆αufβu
m2
δ

. (7.57)

This is same as the extended one-loop LQ model prediction in eq. (7.29) for λ ≫ λ′ with
the exception that εµµ and εττ are now constrained by IceCube. The maximum allowed

values are given in eq. (7.20). This is also summarized in table 20.

7.3 Three-loop models

7.3.1 KNT model

The Krauss-Nasri-Trodden (KNT) model [36] generates the d = 9 operator O9 of eq. (1.4).

SM-singlet fermions Nα(1,1, 0) and two SM-singlet scalars η+1 and η+2 with SM charges

(1,1, 1) are introduced. The relevant Yukawa Lagrangian is written as

− LY ⊃ fαβ LαLβη
+
1 + f ′αβ ℓ

c
αNβη

−
2 +

1

2
(MN )αβNαNβ . (7.58)

Tree level mass is prevented by imposing a Z2 symmetry under which the fields η+2 and

N are odd, while the other fields are even. The Majorana mass term for N as shown in

eq. (7.58) explicitly breaks lepton number. Neutrino masses are generated at three-loop as

shown in figure 52 by the Lagrangian (7.58), together with the quartic term in the potential

V ⊃ λs(η
+
1 η

−
2 )

2 . (7.59)

The estimated neutrino mass matrix reads as

Mν ≃ − λs
(16π2)3

1

M2
fMℓf

′†MNf
′⋆Mℓf

TI , (7.60)

where Mℓ is the diagonal charged lepton mass matrix, MN = diag(mNα) is the diagonal

Majorana mass matrix for Nα fermions, M ≡ max(mNα ,mη1 ,mη2), and I is a three-loop

function obtained in general by numerical integration [210].

NSI in the KNT model arise from singly-charged scalar η+1 that has the same structure

as in the Zee-Babu model (cf. section 7.2.1) and are given by eq. (7.9). The maximum NSI

one can get in this model are same as in eq. (7.10) and also summarized in table 20.
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Figure 52. Three-loop neutrino mass generation in the KNT model [36]. The model induces

operator O9 of eq. (1.4).
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Figure 53. Three-loop neutrino mass generation in the AKS model [38]. The model induces

operator O′
3 of eq. (7.61).

7.3.2 AKS model

In the Aoki-Kanemura-Seto (AKS) model [38] an effective ∆L = 2 operator of dimension

11 is induced:

O′
3 = LLHHececec ec . (7.61)

Note that there is a chiral suppression in this model unlike generic operators of type O′
1

given in eq. (1.5). In addition to the SM fields, the following particles are added: an isospin

doublet scalar Φ2

(
1,2, 12

)
, a singly-charged scalar singlet η+(1,1, 1), a real scalar singlet

η0(1,1, 0), and two isospin-singlet right-handed neutrinos Nα(1,1, 0) (with α = 1, 2). The

relevant Yukawa Lagrangian for the neutrino mass generation reads as

− LY ⊃ yαβaΦ̃aLαℓ
c
β + hαβℓ

c
αNβη

− +
1

2
(MN )αβNαNβ +H.c. , (7.62)

where Φ1

(
1,2, 12

)
is the SM Higgs doublet. Tree-level neutrino mass is forbidden by im-

posing a Z2 symmetry under which η±, η0 and NαR are odd, while the remaining fields are

even. Neutrino masses are generated at three-loop, as shown in figure 53, by combining

eq. (7.62) with the quartic term in the potential

V ⊃ κǫab(Φ
c
a)

†Φbη
−η0 +H.c. (7.63)

In figure 53 H± are the physical charged scalars from a linear combination of Φ1 and Φ2.

The neutrino mass matrix reads as follows:

Mν ≃ 1

(16π2)3

(
−mNv

2
)

m2
N −m2

η0
4κ2 tan2 β(yh)(yh)TI , (7.64)
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Figure 54. Three-loop neutrino mass generation in the cocktail model [39]. The effective operator

induced is Od=15 of eq. (1.4).

where tan β ≡ 〈Φ0
2〉/〈Φ0

1〉 and I is a dimensionless three-loop integral function that depends

on the masses present inside the loop.

NSI in this model are induced by the charged scalar H−. After integrating out the

heavy scalars, the NSI expression can be written as

εαβ =
1

4
√
2GF

y⋆eαayeβa
m2
H−

. (7.65)

This is similar to the heavy charged scalar contribution in eq. (4.76). However, since the

same Yukawa couplings yeαa contribute to the electron mass in eq. (7.62), we expect

εαβ ∝ y2e tan
2 β ∼ O

(
10−10

)
, (7.66)

where ye is the electron Yukawa coupling in the SM. Thus, the maximum NSI in this model

are of order of O
(
10−10

)
, as summarized in table 20.

7.3.3 Cocktail model

This model [39] induces operator Od=15 at the three-loop level:

Od=15 = LLHH(Ψ̄Ψ)(Ψ̄Ψ)(H†H)2 (7.67)

with Ψ = L or ec. The model includes two SU(2)L-singlet scalars η+(1,1, 1) and

k++(1,1, 2), and a second scalar doublet Φ2

(
1,2, 12

)
, in addition to the SM Higgs doublet

Φ1

(
1,2, 12

)
. The fields η+ and Φ2 are odd under a Z2 symmetry, while k++ and all SM

fields are even. With this particle content, the relevant term in the Lagrangian reads as

−LY ⊃ yαβΦ̃1Lαℓ
c
β + Yαβℓ

c
αℓβk

++ +H.c. , (7.68)
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Figure 55. Three-loop neutrino mass generation in the LQ variant of the KNT model, which

induces operator O11 [37].

which breaks lepton number when combined with the following cubic and quartic terms in

the potential:

V ⊃ λ

2
(Φ†

1Φ2)
2 + κ1Φ

T
2 iτ2Φ1η

− + κ2k
++η−η− + ξΦT2 iτ2Φ1η

+k−− +H.c. (7.69)

The Φ2 field is inert and does not get a VEV. After electroweak symmetry breaking, it can

be written as

Φ2 =

(
φ+2

H + iA

)
. (7.70)

For κ1 6= 0, the singly-charged state φ+2 mixes with η+ (with mixing angle β), giving rise

to two singly-charged scalar mass eigenstates:

H+
1 = cβφ

+
2 + sβη

+ ,

H+
2 = −sβφ+2 + cβη

+ , (7.71)

where sβ ≡ sinβ and cβ ≡ cosβ.

The neutrino mass matrix is obtained from the three-loop diagram as shown in figure 54

and reads as [39]

Mν ∼ g2

(16π2)3
Mℓ(Y + Y T )Mℓ , (7.72)

where Mℓ stands for the diagonal charged lepton mass matrix.

As for the NSI, since both Φ2 and η+ are odd under Z2 and the SM fields are even,

there is no tree-level NSI in this model. Note that neutrino mass generation utilizes the W

boson couplings, thus the neutrino matter effects in this model are the same as in the SM.

7.3.4 Leptoquark variant of the KNT model

One can replace the charged leptons in the KNT model (cf. section 7.3.1) by quarks, and

the charged scalars by LQs. The effective operator induced in this model remains as

O11 or eq. (7.33). To achieve this, two isospin-singlet scalar LQs χ
−1/3
a

(
3,1,−1

3

)
(with

a = 1, 2) and at least two SM-singlet right-handed neutrinos Nα(1,1, 0) (with α = 1, 2) are

supplemented to the SM fields. A Z2 symmetry is invoked under which χ
−1/3
2 and N are

odd, while the rest of the fields are even. The relevant Yukawa Lagrangian is as follows:

− LY ⊃ λαβL
i
αQ

j
βχ

⋆1/3
1 ǫij + λ′αβd

c
αNβχ

⋆1/3
2 +

1

2
(MN )αβNαNβ +H.c. (7.73)
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Figure 56. Three-loop neutrino mass generation with SU(2)L-singlet scalar and fermion fields [55],

which induces operator O9.

Here the first term expands to give λαβ (ναdβ − ℓαuβ)χ
⋆1/3
1 . These interactions, along with

the quartic term in the potential

V ⊃ λ0

(
χ
⋆1/3
1 χ

−1/3
2

)2
, (7.74)

generate neutrino masses at three-loop level, as shown in figure 55. The neutrino mass

matrix reads as

Mν ∼ 15λ0
(16π2)3m2

χ1

λMdλ
′⋆MNλ

′†Mdλ
T I , (7.75)

where the factor 15 comes from total color-degrees of freedom, Md and MN are the diag-

onal down-type quark and right-handed neutrino mass matrices, respectively, and I is a

dimensionless three-loop integral that depends on the ratio of the masses of particles inside

the loop [37].

NSI in this model arise from the χ
−1/3
1 interactions with neutrinos and down-quarks.

The expression for NSI parameters is given as in eq. (7.14), with the replacement mχ →
mχ1 . The maximum NSI for this model are the same as those given in eq. (7.15) and are

summarized in table 20.

7.3.5 SU(2)L–singlet three-loop model

This model [55] introduces two SU(2)L-singlet scalars η1(1,1, 1) and η2(1,1, 3), and a

singlet fermion F (1,1, 2), in addition to the SM fields. The effective operator induced

in this model is O9 in eq. (1.4). The relevant Lagrangian term for the neutrino mass

generation can be read as:

− LY ⊃MFFF
c + (fαβη1LαLβ + f ′αℓ

c
αFη

⋆
2 + f ′′αℓ

c
αF

cη1 +H.c.) , (7.76)

With the potential term

V ⊃ λη1η1η1η
⋆
2 +H.c. , (7.77)

the Lagrangian (7.76) generates the neutrino mass at three-loop level, as shown in figure 56.

The neutrino mass matrix can be written as

Mν ≃ fMℓf
′†MF f

′′⋆Mℓ′f
Tλ

(16π2)3M2
, (7.78)
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where Mℓ is the diagonal charged lepton mass matrix and M ≡ max(mF ,mη1 ,mη2). NSI

in this model arise from singly-charged η1 that has the same structure as in the Zee-Babu

(cf. section 7.2.1) and KNT (cf. section 7.3.1) models and and are given by eq. (7.9). The

maximum NSI one can get in this model are same as in eq. (7.10) and also summarized in

table 20. Other three-loop models of this type discussed in ref. [55] will have similar NSI

predictions.

7.4 Four- and higher-loop models

As noted in the introduction, it is very unlikely that neutrino masses and mixing of the right

order can be induced in type-I radiative models at four or higher loops. The magnitude

of mν in such models would be much smaller than needed to explain neutrino oscillation

data, provided that the loop diagrams have chiral suppression proportional to a SM fermion

mass. We illustrate below the difficulties with higher loop models with a four loop model

presented in ref. [211].

In ref. [211] an effective d = 9 operator involving only SU(2)L-singlet fermions of the

SM was studied. The operator has the form

Os = ℓcℓcucucdc dc . (7.79)

Various UV completions are possible to induce this operator, with differing fermion con-

tractions. All these models will induce light neutrino mass only at the four-loop level,

since each fermion in Os has to be annihilated. A rough (and optimistic) estimate of the

four-loop induced neutrino mass is [211]

mν ∼ (ytybv)
2

(16π2)4Λ
(7.80)

where Λ is the UV cut-off scale. If the other Yukawa couplings involved are all of order

one, Λ = (100 MeV − 1 GeV) is needed to generate mν ∼ 0.05 eV. However, such a low

value of Λ will be inconsistent with experimental data on search for new particles, since

the mediators needed to induce Os are either colored or electrically charged, with lower

limits of order TeV on their masses from collider searches.

Models with such higher dimensional operators are nevertheless very interesting, as

they can lead to lepton flavor and lepton number violating processes, without being con-

strained by neutrino masses, as emphasized in ref. [211]. For example, neutrinoless double

beta decay may occur at an observable level purely from Os, which would be unrelated to

the neutrino mass.

8 Type II radiative models

As discussed in the introduction (cf. section 1.1), type-II radiative neutrino mass models in

our nomenclature contain no SM particle inside the loop diagrams generating mν , and

therefore, do not generally contribute to tree-level NSI, although small loop-level NSI

effects are possible [212]. To illustrate this point, let us take the scotogenic model [44]

as a prototypical example. The new particles introduced in this model are SM-singlet
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Figure 57. Neutrino mass generation at one-loop in the scotogenic model [44].

fermions Nα(1,1, 0) (with α = 1, 2, 3) and an SU(2)L doublet scalar η
(
1,2, 12

)
: (η+, η0).

A Z2 symmetry is imposed under which the new fields Nα and η are odd, while all the SM

fields are even. The new Yukawa interactions in this model are given by

−LY ⊃ hαβ(ναη
0 − ℓαη

+)Nβ +
1

2
(MN )αβNαNβ +H.c. (8.1)

Together with the scalar quartic term

V ⊃ λ5
2
(Φ†η)2 +H.c. , (8.2)

where Φ is the SM Higgs doublet, the Lagrangian (8.1) gives rise to neutrino mass at

one-loop, as shown in figure 57. Since this diagram does not contain any SM fields inside

the loop, it cannot be cut to generate an effective higher-dimensional operator of the SM.

Therefore, we label it as a type-II radiative model. The neutrino mass in this model is

given by

Mν =
λ5v

2

8π2
hMNh

T

m2
0 −M2

N

[
1− M2

N

m2
0 −M2

N

log

(
m2

0

M2
N

)]
, (8.3)

where we have assumed MN to be diagonal, and m2
0 is the average squared mass of the real

and imaginary parts of η0. It is clear from eq. (8.3) that the neutrino mass is not chirally

suppressed by any SM particle mass.

A new example of type-II-like radiative model is shown in figure 58, where the new

particles added are as follows: one color-sextet DQ ∆
(
6,1, 43

)
, one SU(2)L doublet scalar

LQ δ
(
3,2, 76

)
= (δ5/3, δ2/3), and an SU(2)L singlet scalar LQ ξ

(
3,1, 23

)
. The relevant

Yukawa Lagrangian is given by

−LY ⊃ fαβ(ναδ
2/3 − ℓαδ

5/3)ucβ + λαβu
c
α∆u

c
β +H.c. (8.4)

Together with the scalar potential terms

V ⊃ µδ†Φδ + µ′δ2∆+H.c. , (8.5)
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Figure 58. A new example of type-II radiative neutrino mass model.

where Φ is the SM Higgs doublet, the Lagrangian (8.4) gives rise to neutrino mass at

two-loop level, as shown in figure 58. The neutrino mass can be approximated as follows:

Mν ∼ 1

(16π2)2
µ2µ′v2

m2
1m

2
2

(fλfT ) , (8.6)

where m1 and m2 are the masses of the heaviest two LQs among the δ, ξ and ∆ fields that

run in the loop. Thus, although this model can be described as arising from an effective

∆L = 2 operator O′
1 of eq. (1.5), the neutrino mass has no chiral suppression here. In this

sense, this can be put in the type-II radiative model category, although it leads to tree-level

NSI induced by the δ LQs, as in the one-loop type-I model discussed in section 7.1.6. A

similar two-loop radiative model without the chiral suppression can be found in ref. [213].

9 Conclusion

We have made a comprehensive analysis of neutrino non-standard interactions generated

by new scalars in radiative neutrino mass models. For this purpose, we have proposed a

new nomenclature to classify radiative neutrino mass models, viz., the class of models with

at least one SM particle in the loop are dubbed as type-I radiative models, whereas those

models with no SM particles in the loop are called type-II radiative models. From NSI

perspective, the type-I radiative models are most interesting, as the neutrino couples to a

SM fermion (matter field) and a new scalar directly, thus generating NSI at tree-level, unlike

type-II radiative models. After taking into account various theoretical and experimental

constraints, we have derived the maximum possible NSI in all the type-I radiative models.

Our results are summarized in figure 59 and table 20.

We have specifically analyzed two popular type-I radiative models, namely, the Zee

model and its variant with LQs replacing the charged scalars, in great detail. In the

Zee model with SU(2)L singlet and doublet scalar fields, we find that large NSI can be

obtained via the exchange of a light charged scalar, arising primarily from the SU(2)L-

singlet field but with some admixture of the doublet field. A light charged scalar with

mass as low as ∼100GeV is found to be consistent with various experimental constraints,

including charged-lepton flavor violation (cf. section 4.5), monophoton constraints from

LEP (cf. section 4.11), direct searches for charged scalar pair and single production at
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LEP (cf. section 4.7.1) and LHC (cf. section 4.7.2), Higgs physics constraints from LHC

(cf. section 4.10), and lepton universality in W± (cf. section 4.8) and τ (cf. section 4.9)

decays. In addition, for the Yukawa couplings and the mixing between singlet and doublet

scalars, we have considered the contact interaction limits from LEP (cf. section 4.6), elec-

troweak precision constraints from T -parameter (cf. section 4.4), charge-breaking minima

of the Higgs potential (cf. section 4.3), as well as perturbative unitarity of Yukawa and

quartic couplings. After imposing all these constraints, we find diagonal values of the NSI

parameters (εee, εµµ, εττ ) can be as large as (8%, 3.8%, 9.3%), while the off-diagonal NSI

parameters (εeµ, εeτ , εµτ ) can be at most (10−3%, 0.56%, 0.34%), as summarized in fig-

ure 59 and table 9. Most of these NSI values are still allowed by the global-fit constraints

from neutrino oscillation and scattering experiments, and some of these parameters can be

probed at future long-baseline neutrino oscillation experiments, such as DUNE.

We have also analyzed in detail the LQ version of the Zee model, the results of which

can be applied to other LQ models with minimal modification. This analysis took into ac-

count the experimental constraints from direct searches for LQ pair and single production

at LHC (cf. section 5.3), as well as the low-energy constraints from APV (cf. section 5.1.1),

charged-lepton flavor violation (cf. sections 5.1.4 and 5.1.5) and rare meson decays (cf. sec-

tion 5.1.6), apart from the theoretical constraints from perturbative unitarity of the Yukawa

couplings. Including all these constraints we found that diagonal NSI (εee, εµµ, εττ ) can be

as large as (0.4%, 21.6%, 34.3%), while off-diagonal NSI (εeµ, εeτ εµτ ) can only be as large

as (10−5%, 0.36%, 0.43%), as summarized in figure 59 and table 17. A variant of the LQ

model with triplet LQs (cf. section 6) allows for larger εττ ) which can be as large as 51.7%.

Neutrino scattering experiments are found to be the most constraining for the diagonal

NSI parameters εee and εµµ, while the cLFV searches are the most constraining for the

off-diagonal NSI. εττ is the least constrained and can be probed at future long-baseline

neutrino oscillation experiments, such as DUNE, whereas the other NSI parameters are

constrained to be below the DUNE sensitivity reach.
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Figure 59. Summary of maximum NSI strength |εαβ | allowed in different classes of radiative

neutrino mass models discussed here. Red, yellow, green, cyan, blue and purple bars correspond to

the Zee model, minimal radiative inverse seesaw model, LQ model with singlet, doublet and triplet

LQs, and Zee-Babu model respectively.

A Analytic expressions for charged Higgs cross sections

It is instructive to write down the explicit formula for the charged-Higgs pair-production

(figures 10(a) and 10(b) cross section:

σ(e+e− → h+h−) =
β3

48πs

[
e4 +

g4

8c4w
(1−4s2w+8s4w)

(
s2w − 1

2
sin2 ϕ

)2 s2

(s−m2
Z)

2 + Γ2
Zm

2
Z

+
e2g2

2c2w
(4s2w − 1)

(
s2w − 1

2
sin2 ϕ

)
s(s−m2

Z)

(s−m2
Z)

2 + Γ2
Zm

2
Z

]
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+
|Yαe|4
32πs

[
−β +

1

2
(1 + β2) ln

1 + β

1− β

]

− |Yαe|2
128πs

[
2β(1 + β2)− (1− β2)2 ln

1 + β

1− β

]

×
[
e2 +

g2

c2w

(
s2w − 1

2
sin2 ϕ

)
(2s2w − 1)

s(s−m2
Z)

(s−m2
Z)

2 + Γ2
Zm

2
Z

]
, (A.1)

where β =
√

1− 4m2
h+
/s, s is the squared center-of-mass energy, e and g are the elec-

tromagnetic and SU(2)L coupling strengths, respectively, and cw ≡ cos θw, sw ≡ sin θw
(θw being the weak mixing angle). Note that the t-channel cross section depends on the

Yukawa coupling Yαe, and it turns out there is a destructive interference between the s and

t-channel processes. Similarly, the differential cross section for the production of h±W∓

(figure 10(c)) is given by

dσ(e+e− → h±W∓)
d cos θ

=
g2|Yee|2
64πs

λ1/2
(
1,
m2
h+

s
,
m2
W

s

)

× A cos2 θ +B cos θ + C
[
1− m2

h+
+m2

W

s − λ1/2
(
1,

m2
h+

s ,
m2
W
s

)
cos θ

]2 , (A.2)

where θ is the angle made by the outgoing h± with respect to the initial e−-beam direction,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, and

A =
s

4m2
W

[
1− (mh+ −mW )2

s

] [
1− (mh+ +mW )2

s

] [
1− 2m2

W

s

]
(A.3)

B = − s

2m2
W

(
1− m2

h+ +m2
W

s

)
λ1/2

(
1,
m2
h+

s
,
m2
W

s

)
, (A.4)

C =
s

4m2
W

(
1− 2m2

h+

s
− 3m4

W

s2
− 2m2

h+m
2
W

s2
+

2m6
W

s3
− 2m2

h+m
4
W

s3
+
m4
h+

s2
+
m4
h+m

2
W

s3

)
.

(A.5)

The analytic cross section formula for the single-production of charged Higgs via Drell-

Yan process (figure 10(d)) is more involved due to the three-body phase space and is not

given here.
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[3] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity

nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

[4] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131

(1979) 95 [INSPIRE].

[5] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf.

Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

[6] S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687.

[7] J. Schechter and J.W.F. Valle, Neutrino masses in SU(2)×U(1) theories, Phys. Rev. D 22

(1980) 2227 [INSPIRE].

[8] T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2)×U(1) models

of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
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[199] A. de Gouvêa and A. Kobach, Global constraints on a heavy neutrino, Phys. Rev. D 93

(2016) 033005 [arXiv:1511.00683] [INSPIRE].

[200] R. Alonso, M. Dhen, M.B. Gavela and T. Hambye, Muon conversion to electron in nuclei in

type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].

– 116 –

https://doi.org/10.1016/j.physletb.2016.11.011
https://doi.org/10.1016/j.physletb.2016.11.011
https://arxiv.org/abs/1609.07138
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.07138
http://cds.cern.ch/record/2628477
https://doi.org/10.1103/PhysRevD.93.032004
https://arxiv.org/abs/1509.03744
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03744
https://doi.org/10.1140/epjc/s10052-019-7181-x
https://arxiv.org/abs/1902.00377
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.00377
https://doi.org/10.1103/PhysRevD.98.032005
https://arxiv.org/abs/1805.10228
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.10228
https://doi.org/10.1007/JHEP03(2019)170
https://doi.org/10.1007/JHEP03(2019)170
https://arxiv.org/abs/1811.00806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.00806
https://doi.org/10.1007/JHEP06(2019)144
https://arxiv.org/abs/1902.08103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.08103
https://doi.org/10.1088/1748-0221/8/04/P04013
https://doi.org/10.1088/1748-0221/8/04/P04013
https://arxiv.org/abs/1211.4462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4462
https://doi.org/10.1140/epjc/s10052-017-5118-9
https://arxiv.org/abs/1706.01868
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01868
https://doi.org/10.1103/PhysRevLett.88.091802
https://arxiv.org/abs/hep-ex/0110059
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0110059
https://doi.org/10.1103/PhysRevD.34.1642
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D34,1642%22
https://doi.org/10.1103/PhysRevD.87.053007
https://arxiv.org/abs/1212.3808
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3808
https://doi.org/10.1007/JHEP04(2017)153
https://arxiv.org/abs/1609.08637
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.08637
https://doi.org/10.1088/1126-6708/2009/05/030
https://doi.org/10.1088/1126-6708/2009/05/030
https://arxiv.org/abs/0901.3589
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3589
https://doi.org/10.1088/1367-2630/17/7/075019
https://doi.org/10.1088/1367-2630/17/7/075019
https://arxiv.org/abs/1502.06541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06541
https://doi.org/10.1103/PhysRevD.93.033005
https://doi.org/10.1103/PhysRevD.93.033005
https://arxiv.org/abs/1511.00683
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00683
https://doi.org/10.1007/JHEP01(2013)118
https://arxiv.org/abs/1209.2679
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2679


J
H
E
P
0
3
(
2
0
2
0
)
0
0
6

[201] S. Antusch and O. Fischer, Non-unitarity of the leptonic mixing matrix: Present bounds

and future sensitivities, JHEP 10 (2014) 094 [arXiv:1407.6607] [INSPIRE].

[202] S.T. Petcov and S.T. Toshev, Conservation of lepton charges, massive Majorana and

massless neutrinos, Phys. Lett. B 143 (1984) 175.

[203] K.S. Babu and E. Ma, Natural hierarchy of radiatively induced Majorana neutrino masses,

Phys. Rev. Lett. 61 (1988) 674 [INSPIRE].

[204] S. Davidson, G. Isidori and A. Strumia, The smallest neutrino mass, Phys. Lett. B 646

(2007) 100 [hep-ph/0611389] [INSPIRE].

[205] M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu Model at

the CERN LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013

[arXiv:0711.0483] [INSPIRE].

[206] D. Schmidt, T. Schwetz and H. Zhang, Status of the Zee–Babu model for neutrino mass and

possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524

[arXiv:1402.2251] [INSPIRE].

[207] J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, The Zee–Babu model revisited in

the light of new data, Nucl. Phys. B 885 (2014) 542 [arXiv:1402.4491] [INSPIRE].

[208] T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu

model, Phys. Lett. B 681 (2009) 269 [arXiv:0909.0455] [INSPIRE].

[209] W. Buchmüller and D. Wyler, Constraints on SU(5) type leptoquarks, Phys. Lett. B 177

(1986) 377 [INSPIRE].

[210] K. Cheung, H. Ishida and H. Okada, Accommodation of the Dirac phase in the

Krauss-Nasri-Trodden model, arXiv:1609.06231 [INSPIRE].
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